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ABSTRACT

This research presents the design of a soft composite finger with tunable joint stiffness. The 

com-posite finger, made from two different types of silicone, has hybrid actuation principle 

combining tendon and pneumatic actuation schemes. Tendons control the finger shape in a 

prescribed di-rection to demonstrate discrete bending behavior due to different material moduli, 

similar to the human finger’s discrete bending. Whereas, pneumatic actuation changes the 

stiffness of joints us-ing air chambers. The feasibility of adjustable stiffness joints is proven 

using both the parallel spring-damper model and experiments, demonstrating the stiffening 

effect when pressurized. A set of experiments were also conducted on fingers with four 

different chamber designs to see the effect of chamber shape on stiffening and the discrete 

bending capability of the finger. These stiff-ened fingers lead to firm grasp as they constrain the 

object better and apply higher grasping force. The gripper made up of soft composite fingers can 

grasp objects of various sizes, shapes and in different orientations.
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NOMENCLATURE

PDMS Polydimethylsiloxane

fo Tendon force

di Compression due to pneumatic actuation

(∆d)i Elongation of air spring due to pressurization

Ki Stiffness constant of the linear spring

∆Ki Additional stiffness constant of the air spring

(∆f)i Air spring force due to pressurization

n Polytropic constant

P Atmospheric pressure

V Volume of air chamber

Ao Cross-sectional area of air chamber

ai Length of semi-major axis of the ellipse

h Height of the finger

xi Change in lateral side of the chamber due to pressurization

bi Length of semi-minor axis of the ellipse

Aini Initial area of silicone around the joint

Afin Final area of silicone around the joint after pressurization

Kfinger Stiffness constant of the finger

∆Kfinger Additional stiffness constant due to pressurization

dfinger Cumulative deformation in linear spring of both joints

∆dfinger Total elongation in both air springs due to pressurization

Ks Stiffness of Non-linear spring
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∆e Deformation of the finger

N Normal force

f Friction force

fs Friction force when the robotic arm is stationary

α Rate of increase of shear strength

τo Shear strength of the surface force when load is zero

mo Mass of the object

ẍ2 Acceleration of the object at the tip

g Object gravity vector

a Radius of contact area
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1. INTRODUCTION AND LITERATURE REVIEW

The human finger is a state of the art composite structure in terms of design, compliance and

manipulation capacity [1]. One of the most engrossing features of the human finger is its intricate

joint design that defines its passive compliance and the direction of motion of the finger. The hu-

man finger has both multiple degrees of freedom and multi-directional compliance due to elastic

elements (ligaments, tendons, geometry of bone cavity) in it along with overarching joint design

[1], [2]. Also, this joint design helps the human finger to conform to unknown objects, thus enhanc-

ing its adaptive capacity. Inspired by the human hands, several robotic hands have been studied

previously [3], [4]. Although, all these robotic hands have precise position control and produce

strong forces at finger tips, they have fixed degrees of freedom due to simplified embedded me-

chanical joints. These kinds of joints have made these hands non-compliant and less adaptive to

objects they manipulate. In addition, they cannot handle delicate objects such as soft body organs

[5] without advanced haptics capability.

With the advent of Soft Robotics, researchers have developed controllable structures from elas-

tomeric materials [6]. These structures can bend, expand, compress and twist to achieve the desired

end effector motion. A pneumatic [7], tendon [8], hydraulic [9], shape memory materials [10],

material jamming [11], or electro-active polymers [12] actuation scheme deform the shape and

reinforce the structural strength. Due to the nature of inherent softness in both, the body material

and actuation scheme, these robots can perform a variety of tasks in unstructured environments

and can interact with human beings without causing any harm [13], [14]. Soft robotic hands have

higher DOF and greater passive compliance [15], [16]. These less constrained joints allow more

compliance, which enable these robotic hands to grab and manipulate objects [17]. Nevertheless,

these entirely soft structures also lead to decreased grasping force followed by an issue of slipping

of objects and making it hard to predict their deformed shapes [17], [18], [19].

Inspired by the varying stiffness and object grasping capability of the octopus tentacle [20],

robotics researchers have figured out actuation schemes to tune the stiffness of soft structures. Ali
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Figure 1.1: Design of soft composite finger: (a) robotic hand made up of three soft composite
fingers holding a fragile daily-life object. (b) section view of pressurized chamber in the joint. (c)
soft composite finger similar to human finger.

et al developed the stiffness-controllable robot arm with the hybrid and inherently antagonistic ac-

tuation scheme [21]. Stiffness variation is realized with tendons routed within the silicone body

that can be actuated using stepper motors. A similar concept has been proposed in [22]. A tendon-

driven and pneumatic-actuated bio-inspired soft manipulator is presented which can change its

length and control its stiffness. Researchers have further demonstrated the stiffening capability of

soft robots by implementing the hybrid actuation approach that employs both tendon and pneu-

matic actuation [23]. Moreover, some other stiffness variation methods are also implemented in

soft robots such as, using granules that can be jammed by applying a vacuum [24], [25], varying

friction between the overlapping layers of Mylar film to tune stiffness [26] and thermally tunable

composite that can achieve wide range of stiffness [27].
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In this thesis, under the enlightenment of the physiological study of the human finger, we

propose a potential approach of the soft composite structure with hybrid actuation for anthropo-

morphic soft fingers as shown in Fig.1.1. Motivated by [28], the composite structure integrates

soft silicone and relatively rigid silicone to partially combine the merits of both materials. The

hybrid actuation includes both tendon and pneumatic actuation. The tendon based actuation is

implemented to bend the finger in a defined and predictable manner [29]. Whereas, the pneumatic

actuation is used to stiffen the finger to achieve firm grasp [21], [23], [22].

The soft anthropomorphic soft composite finger is designed to have two joints: the distal joint

and the proximal joint. These joints tune the compliance of the composite structure that could

locally change the stiffness properties of the finger [5]. The asymmetric design of each joint

enhances discrete bending as the top part of the joint consists of rigid silicone, whereas the bottom

part is soft silicone. Also, the shape of the chamber affects the stiffness and bending capability of

the finger. Such an approach will address the challenges in how to make fingers more compliant

and adaptive to the significant range of objects, yet still perpetuate a sufficient amount of stiffness

to enhance firm grasp in a predictable way.

This thesis is organized as follows: It includes the design of a soft composite finger with the

stiffness model to support the feasibility of pressurized joints. The fabrication process is explained

in Section II. To demonstrate the stiffening capability and discrete bending of the finger, several

experiments have been conducted on fingers with different joint designs (see Section III). The

results and discussion section (Section IV) compare different joint designs in terms of stiffness and

bending behavior. Finally, the soft gripper is attached to one link robotic arm to experimentally

validate firm grasp. The last section concludes this study by presenting future work.
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2. OBJECTIVES

The crux of this study is to deal with the feasibility of pressurizing joints to cause stiffness in

the finger. A stiffness model is derived for the proposed finger design to validate that pressuriz-

ing of the joints causes stiffness in the finger. In addition to this, several experiments have been

conducted to evaluate the performance of finger in terms of stiffness followed by measuring joint

angle for both joints at an allowable pressure range to show explicit discrete bending behavior.

This model and experimental study is also done for four different chamber shapes. Subsequently,

these composite fingers are assembled into a gripper to substantiate that pressurizing the joints lead

to firm grasp. These are the following objectives to justify our claims.

1. Design and Fabrication

• Joint Stiffness Model: derive stiffness model using the geometrical parameter of the

joints.

• Finger Stiffness Model: derive the model for finger stiffness.

• Firm Grasp: show that stiffened fingers lead to firm grasp.

• Fabrication: explain fabrication procedure staring from raw materials to the final prod-

uct.

2. Experimental Assessment

• Stiffness Evaluation: measure stiffness of the finger at different pressures for certain

pulling lengths to validate that pressurization leads to stiffening.

• Joint Angle Experiments: measure joint angles for both distal and proximal joints at

different pressures and pulling lengths to validate the discrete bending behavior.

• Firm Grasping: demonstrate firm grasp using a gripper attached to robotic arm to vali-

date that stiffened fingers can have a firm grasp over the object.
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Given the above objectives, there are certain limitations to this study. Firstly, the composite

finger shows viscoelastic behavior which is not taken into consideration when deriving the stiffness

model of the finger. However, the experiments are repeated several times after substantial time to

avoid the viscoelastic effect of the finger.
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3. DESIGN AND MODELING

3.0.1 Joint Stiffness

This section focuses on the analytical modeling of two joints to see the effect of pressurizing

on stiffness of the joints. Each joint has a linear spring, damper and air spring fixed in a parallel

combination (see Fig.3.1). When tendons are pulled, the joints are compressed so a linear spring

is used to model the deformation in the joint. In addition, joints elongate in the longitudinal

direction when they are pressurized so an air spring is used to model this behavior [30], [31].

The damper is added to model the viscoelastic effect of soft materials but our main focus is on

modeling the stiffness effect. This model captures the explicit relationship between force due to

pressurization and stiffness of the air spring by taking joint parameters into consideration. The

stress-strain relationship for both silicones is highly non-linear but non-linearities of the material

are not accounted in this model. Also, this model is limited to low values of input pressure and

pulling lengths.

The constitutive relation for the parallel spring system in the joint can be written as

fo = (Ki + ∆Ki)(di − (∆d)i) (3.1)


i = d, for distal joint

i = p, for proximal joint

where di is the deformation in the linear spring, fo is the tendon force, (∆d)i is the elongation

of the air spring due to pressurization, Ki is the stiffness constant of the linear spring, ∆Ki is the

additional stiffness constant of the air spring.

The pressurization of composite finger is considered as polytropic process so the air spring

force due to pressurization, (∆f)i can be related to deformation of air spring using the following

relation [32].
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Figure 3.1: Modeling of stiffening joints: (a) composite finger showing geometrical parameters
with deformed ellipse. Shape change due to pneumatic actuation is shown by red dashed line.
Shape change due to tendon actuation is shown by black dashed line. (b) ti, thickness of soft
silicone around the joint. Aini represents the area of silicone around the joint before pressurization.
(c) xi, change in lateral sides of the air chamber due to pressurization. (d) pressure acting on
rectangular cross-sectional area.

(∆f)i =
nPoAo

2(∆d)i
V

(3.2)

where, n is equal to 1 because temperature is assumed constant during pressurization, Po is

atmospheric pressure, V is volume of air in the air chamber and Ao is cross-sectional area of air

chamber which is assumed as a rectangle in our case. The rectangular cross-sectional area plays

significant role in determining the stiffening capability of the joint (see Fig.3.1(d)).

This model can be implemented on all the chamber shapes but we have chosen vertical ellipse

7



for this case. We substituted expressions for Ao and V in Equation (3.2) to relate deformation of

air spring with the joint parameters of the finger.

(∆d)i =
2πbi(∆f)i

8Poai(h+ xi)− π(∆f)i
(3.3)

where, ai is the length of semi-major axis of the ellipse, bi is the length of semi-minor axis

of the ellipse, h is the height of finger and xi is the change in lateral sides of the chamber due to

pressurization.

In order to find xi, we have assumed that the initial volume of silicone is equal to the final

volume of silicone around the joint after pressurization as used in [33].

Ainih = Afin(h+ xi) (3.4)

Aini = πai(bi + ti)− πaibi;

Afin = πai(bi + ti)− πai(bi +
(∆d)i

2
);

where, bi is the length of semi-minor axis of the ellipse, ti is the thickness of soft silicone

around the joint, Aini is the initial area of silicone and Afin is the final area of silicone around the

joint after pressurization, respectively (see Fig.3.1(b)).

To determine the stiffness for each joint due to pressurization, we substituted Equation (3.3)

into Equation (3.1).

Ki + ∆Ki =
fo

di − 2πbi(∆f)i
8Poai(h+xi)−π(∆f)i

(3.5)

The results for vertical ellipse chamber shape in the Fig.3.2(a)(b) shows that increasing pressure

at constant pulling length increases stiffness for both distal and proximal joints.
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Figure 3.2: Increasing pressure stiffens the joints: (a) proximal joint (b) distal joint

3.0.2 Finger Stiffness

The increased joint stiffness leads to overall finger being stiffened. The constitutive relation for

finger stiffness is similar to joint stiffness and can be written as:

fo = (Kfinger + ∆Kfinger)(dfinger −∆dfinger) (3.6)

where, Kfinger is the stiffness constant of the finger and ∆Kfinger is the additional stiffness

constant due to pressurization, dfinger is the cumulative deformation in linear spring of both joints
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and ∆dfinger is the total elongation in both air springs due to pressurization.

The stiffness of the finger due to pressurization is derived in a similar way as it was derived for

the joint (see Equation (3.5)).

Kfinger + ∆Kfinger =
fo

dfinger −∆dfinger
(3.7)

∆dfinger = (∆d)p + (∆d)d

The results of the model are shown in Fig.6.1 and Fig.6.2 and they show that increasing pressure

at all pulling lengths leads to stiffening of the finger.

3.0.3 Firm Grasp

A robot hand with stiffened fingers can firmly grasp the objects in dynamic situations because

they have higher structural rigidity which help them constrain the object at multiple points (see

Fig.3.3). Also, when the finger is pressurized keeping the tendon pulling length constant, this

increases the joint angles due to the asymmetric design of the finger as inextensible tendons con-

straint the lower side (AA’) and pressure expands the chamber (B’B and CC’) (see Fig.3.3). This

causes finger to apply higher normal force on the object which can decrease the slippage. This

can also be shown by using a simplified model consisting of a spring (Ks) attached at the fingertip.

When the finger is pressurized, it exerts a push on the object which increases the deformation of

the finger, ∆e thus resulting in higher normal force (∆N=Ks∆e) on the object (see Fig.3.4).

In addition, we have modeled to show that increased normal force at a single point can reduce

object slippage during manipulation. Initially, it is important to model frictional force between the

soft tip and the rigid object. The Coulomb’s model is not applicable when it comes to modeling

contact forces between soft finger and rigid objects so a different formulation derived in [34] is

considered for our case (see Fig.3.4).

|f | ≤ αN + πτoa
2 (3.8)
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where, f is the friction force between finger tip and object, α is the rate of increase of shear

strength, τo is the shear strength of surface force when load is zero [35], a is radius of contact area

and N is the normal force.

Also, we derived the dynamics of the object to predict its behavior during manipulation [36].

moẍ2 + fs = −f (3.9)

where, ẍ2 is acceleration of the object, fs is the friction force when the object is stationary, mo

is the mass of the object and f is the friction force between soft finger tip and the object.

Equation (3.9) can be substituted into Equation (3.8) to derive a condition for acceleration at

which the object can be manipulated without slipping from the fingers [34].

ẍ2 ≤
Nα + τoπa

2 − fs
mo

(3.10)

This condition validates the firm grip as increased normal force allows higher acceleration

object manipulation keeping material parameters constant.
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Figure 3.3: Soft composite finger with augmented structural rigidity to better constrain the object
at multiple points. The inextensible tendon keeps AA’ constant, whereas B’B and CC’ increases
with pressurization which exerts a push against the object.
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Figure 3.4: Modeling of normal force between soft finger tip and object.
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4. FABRICATION

The composite finger is fabricated from two translucent silicones: PDMS (Sylgard 184 - Dow

Corning, MI, USA) and ECOFLEX 00-30 (Smooth-On Inc., PA, USA). These materials were

chosen for their stability, strength, and ability to cohesively bond to one another. PDMS has a

Shore A hardness of 50 and a tensile strength of 6.70 MPa which makes it suitable to strengthen

the overall structure of the finger. Meanwhile, ECOFLEX has lower Shore A hardness of 30 and

tensile strength of 1.40 MPa which enhances the compliant nature of the finger that helps it to

adapt to different kinds of objects in unstructured environments. In addition, it also augments the

softness of the finger.

The composite finger consists of ECOFLEX encompassing a cured PDMS structure in 1:1

ECOFLEX-PDMS volumetric ratio. The design of the soft composite finger is inspired from mor-

phology of the human finger. The PDMS structure consists of two thin arches connecting three

distinct segments of different lengths, analogous to the proximal, middle, and distal phalanges of

a human finger [37]. There are two joints similar to proximal and distal interphalangeal joints.

There are two channels for tendon actuation on the lateral side of the finger and one channel

for pneumatic actuation in the center of the finger. The Kevlar thread (size 46, strength 14 Lbs,

The Thread Exchange, NC, USA) is routed through tendon channels to allow tendon actuation.

Whereas, a 2mm silicone tube (McMASTER-Carr, IL, USA) is cured in the pneumatic channel

which connects two air chambers and continues to the proximal end of the finger to enable pneu-

matic actuation.

The PDMS and ECOFLEX are casted in 3D printed molds made of PLA filament (1.75mm

Polylactic Acid, HATCHBOX 3D, CA, USA). Each mold has two unique knuckles that are used

to fabricate both distal and proximal joints in the finger as shown in Fig.4.1(a). The PDMS and

ECOFLEX cure around the knuckles, creating indentations in the structures when removed. Also,

knuckles allow the cured silicones to be removed from the mold without damaging the silicone

tubing.
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The finger fabrication process is outlined in Fig.4.1. The two metal rods are inserted in the

base (proximal end) of the finger and extended to the tip to create channels through the structure

for the tendons to be routed (see Fig.4.1(b)). Secondly, the silicone tube is sealed at one end using

a silicone adhesive (Smooth-On Inc., PA, USA) to ensure that neither PDMS nor ECOFLEX goes

into the tubing during the curing process. Then, the silicone tubing is inserted through the base and

extended to the distal knuckle (see Fig.4.1(b)). A small piece of heat shrink (McMASTER-Carr,

IL, USA) is also placed around the end of the tubing to avoid the silicone leakage. The knuckles

are inserted into their designated spaces as shown in (see Fig.4.1(b)), securing the silicone tubing

in place. The entire prepared mold is sprayed with an Ease Release Spray (Smooth-On Inc., PA,

USA) to aid the removal process.

First, a PDMS casting is made. Sylgard 184 Elastomer Base and Curing Agent are mixed in

10 to 1 ratio. The mixture is left to settle for 15 minutes and then it is degassed thrice at -1 bar

in a vacuum chamber to remove air bubbles from the mixture that could cause weakness in the

PDMS structure. Then, the mixture is poured into the prepared mold and is left to cure at room

temperature for 48 hours (see Fig.4.1(c)).

After the PDMS has cured, the needles and heat shrink are removed from the mold (see

Fig.4.1(d)). The casting is carefully removed and inserted into the ECOFLEX mold [see Fig.4.1(e)].

The mold is prepared again, as previously explained (see Fig.4.1(f)). Then, ECOFLEX parts A and

B are mixed in 1 to 1 ratio before degassing in the vacuum chamber. The mixture is poured into

the mold which is left to cure at room temperature for 4 hours (see Fig.4.1(g)).

The cured finger is removed from the mold. The silicone tubing is trimmed at the end to remove

the silicone epoxy seal to pressurize the distal air chamber. A small piece of tubing is cut out of the

proximal air chamber, allowing air to flow into the air chamber (see Fig.4.1(h)). The air chambers

are sealed by placing the finger on top of a shallow tray filled with PDMS to create an airtight seal

over the chambers as shown in (see Fig.4.1(i)).

The Kevlar thread is routed through the parallel tendon channels such that the free ends of the

thread exit at the base of the finger. The finger bends when tension is applied to Kevlar threads
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causing the composite finger to bend in a discrete manner. The end of the silicone tubing is con-

nected to pneumatic system to stiffen the finger (see Fig.4.1(j)). The pneumatic system consists

of 3V and 6V mini air pump motors (Uxcell, New Territories, Hong Kong) used to pressurize the

finger, solenoid valve (Uxcell, New Territories, Hong Kong) to control the flow of air and a mi-

crocontroller (Trinket 5V, Adafruit, New York, NY, USA) board to control the timing of air pump

motor and valve.

Moreover, in order to see the effect of chamber shape on the performance of finger, different

shapes were fabricated in a similar way as explained earlier. Vertical ellipse (see Fig.4.2(a)) was

chosen on the basis of embedding a joint which can enhance local stiffening capability and promote

discrete bending. As the rectangular cross-sectional area determines the local stiffening at the joint,

so circle (see Fig.4.2(b)) was derived from vertical ellipse with similar rectangular cross-sectional

area to see its effect on the performance of the finger. As volume of air going into these chambers

play significant role in stiffening so small circle (see Fig.4.2(c)) was adopted as it can store similar

volume of air as vertical ellipse. Horizontal ellipse (see Fig.4.2(d)) is exactly similar to vertical

ellipse except the orientation of the ellipse.
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Figure 4.2: Different finger designs. (a) Vertical Ellipse (b) Circle (c) Small Circle (d) Horizontal
Ellipse.
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5. EXPERIMENTS

5.0.1 Stiffness Experiments

The first set of experiments were conducted to investigate the effect of increasing pressure on

overall stiffness of the finger. The experiments consisted of pulling the tendons for different dis-

placements (3mm, 7mm, 12mm) and measuring the resulting force needed to bend the finger using

a six DOF force sensor (Nano 17, ATI Industrial Automation, NC, USA) as shown in Fig.5.1(a).

The sensor was attached to a 3-D printed part mounted on the motorized linear platform. The data

from the force sensor was recorded at 1Hz using a DAQ card (USB-6210, National Instruments,

TX, USA). The same procedure was also conducted at higher pressures (6600 Pa and 10400 Pa)

to get stiffness values. The raw force displacement data was used to calculate overall stiffness of

the finger. This experiment was also repeated for different chamber shapes to see the effect of

pressurization on them.

5.0.2 Joint Angle Experiments

As the soft composite finger shows discrete bending behavior when Kevlar tendons are pulled

so the second set of experiments were performed to characterize this behavior in terms of joint

angle (see Fig.5.1(b)). The finger was marked before the experiment to evaluate the joint angles

as shown in Fig.5.1(b). The first line was drawn parallel to the fixture, following the second line

connecting the center of both joints and parallel to middle segment. The third line connects the

center of distal joint to the finger tip. The Kevlar tendons routed in the finger were attached to 3-D

printed part fixed to a motorized linear mechanism which was programmed to displace for 3 mm, 7

mm and 12 mm at a constant velocity. A high-definition camera (EOS Rebel SL1, Canon Inc., NY,

USA), was used to capture photos of the soft composite finger at all displacements. This routine

was repeated at higher pressures (6600 Pa and 10400 Pa) to see the effect of pressurizing on joint

angles or discrete behavior.

This experiment was also done for different chamber shapes to see their effect on bending of
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Figure 5.1: Experimental setups for soft composite finger. (a) Experimental setup for stiffness
tests using force sensor and motorized linear module. (b) Soft composite finger showing discrete
bending behavior.

the finger. Finally, all the captured photos were analyzed using a raster graphics editor software

to calculate the joint angle for both joints of the finger. This set of experiments were repeated

after substantial time to avoid the interference of viscoelastic nature of silicones as it significantly

effects the following set of trials.

5.0.3 Firm grasp Experiments

To validate that stiffening joints leads to firm grasp over the object, we have designed an exper-

iment consisting of a single link robotic arm attached to a gripper made up of three soft fingers with

vertical ellipse chamber (see Fig.6.7(b)). In this experiment, the robotic arm carrying a wine glass

was rotated about its axis at increasing amplitudes of acceleration until the wine glass slips out of

the gripper. This experiment was conducted for two cases (No pneumatic actuation and With pneu-

matic actuation). In addition, this experiment was repeated with weights (140g) to substantiate the

effect of mass on stiffening further (see Equation (3.10)).
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6. RESULTS AND DISCUSSION

We tested different chamber shapes as described earlier to demonstrate the stiffening effect due

to pressure. Both experimental results and model predictions indicate that an increased pressure

stiffens the finger (see Fig.6.1 and Fig.6.2). The results also validate our modeling approach using

a single air-spring along the minor axis of an elliptical chamber, aligned with the finger axis (see

Fig.3.1). On the other hand, circular chambers (see Fig.6.1(b) and Fig.6.2(a)) may need multiple

springs, and the horizontal ellipse (see Fig.6.2(b)) should be modeled using a dominant spring

perpendicular to the finger axis, both of which conflict with the modeling assumption. As a result,

the model of the vertical ellipse better matches the experiment (see Fig.6.1(a)), in particular, at low

tendon length and low pressure that may satisfy the simple linear-spring model of the composite

structure made from non-linear silicone materials. Moreover, the directional effect of the dominant

air-spring is also confirmed in the bending angle test.

From the results plotted, it is possible to notice that all chamber designs show non-zero stiff-

ness, Kfinger at zero pressure. Secondly, it is evident that increasing pulling length at constant

pressure decreases overall stiffness of the finger. At higher pulling lengths, both distal and prox-

imal chambers deform significantly due to the bending (cross-sectional area loss) of the finger so

it becomes difficult for pneumatics to stiffen the finger. Although, all chamber shapes demonstrate

increase in stiffness when pressure is increased, small circle shows highest stiffness as compared

to other chamber shapes (see Fig.6.2(a)). The small circle has a similar volume to vertical ellipse

but it has a higher stiffness probably because it has a smaller semi-major axis, ai (see Equation

(3.5)).

Despite the fact that both vertical ellipse and circle have similar rectangular cross-sectional

area, the stiffness of circle is less than that of vertical ellipse (see Fig.6.1(b)). According to Equa-

tion (3.2), vertical ellipse can store less volume of air which leads to higher force due to pressur-

ization, thus higher stiffness. The results also show that changing the orientation of vertical ellipse

to horizontal ellipse decreases the overall stiffness of the finger (see Fig.6.2(b)) probably due to the
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smaller cross sectional area as compared to vertical ellipse which decreases its stiffening capability

(see Equation (3.2)).

In order to characterize the discrete bending of the finger, we performed joint angle experi-

ments. It is evident from the results that increasing the pulling length increases both joint angles

(distal and proximal) at fixed pressure values which leads to an observation that the finger is able

to bend in a discrete manner (see Fig.6.3, Fig.6.4, Fig.6.5, Fig.6.6). The magnitude of proximal

and distal angles seem to depend on the length of the longitudinal axis of the chamber. As the

length of the longitudinal axis increases, the proximal and distal angle decreases with small circle

having smallest and horizontal ellipse having the largest longitudinal axis. The results also show

a similar behavior for vertical ellipse, circle and small circle as increasing the pressure at constant

pulling length increases the joint angle. These increased joint angles due to high pressure results

in an increased curvature at the joints which generates a push against the object leading to the firm

grasp. Whereas, increasing the pressure at constant pulling length decreases joint angle for the hor-

izontal ellipse (see Fig.6.6(a)(b)). In the case of horizontal ellipse, the dominant air spring should

be perpendicular to the finger axis, which straightens the finger when pressurized, thus decreasing

joint angles at higher pressures. In addition, distal joint angle is greater than the proximal joint

angle in the vertical ellipse which shows that the finger is more compliant at the distal joint and it

is in line with the behavior shown by prior soft robots [20].

Although, we have shown through model and experiments that pressurization stiffens the fin-

ger, there is a need to prove experimentally that the stiffening leads to firm grasp over the object.

The ability to achieve firm grasp will allow manipulation of heavier objects even at higher acceler-

ations, according to Equation (3.10). In order to verify the firm grasp of soft composite finger, we

performed a wine glass manipulation experiment. Table 6.1 summarizes the results of this experi-

ment. Comparing both cases, it can be noticed that without the stiffening, the gripper is not able to

hold object with more mass (wine glass with weights) at higher acceleration. The stiffened fingers

are structurally rigid, which constrain the object better and increase normal force on the object,

allowing higher object acceleration as supported analytically by Equation (3.10). In addition, soft

22



composite fingers can grasp objects of varying size, shape and also in different orientation (see

Fig.6.7).

Table 6.1: Summarized results of firm grasp experiment on a Wine glass for two cases (Empty and
with weights)

Wine Glass(Empty) - Acceleration(m/s2)
Pressure 17 19 21
No pressure Pass Pass Fail
Pressure (10400 Pa) Pass Pass Pass

Wine Glass(with weights) - Acceleration(m/s2)
Pressure 17 19 21
No pressure Pass Fail Fail
Pressure (10400 Pa) Pass Pass Fail
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Figure 6.1: Both experimental results (connected by dashed lines) and model predictions (con-
nected by solid lines) show that soft composite finger with different chamber shapes stiffens when
the chambers are pressurized at constant pulling lengths of 3mm, 7mm, 12mm. (a) Vertical ellipse
(b) Circle. As expected, the model of the vertical ellipse satisfying all underlying assumptions
better predicts the experimental results.
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Figure 6.2: Both experimental results (connected by dashed lines) and model predictions (con-
nected by solid lines) show that soft composite finger with different chamber shapes stiffens when
the chambers are pressurized at constant pulling lengths of 3mm, 7mm, 12mm. (a) Small circle (b)
Horizontal ellipse
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Figure 6.3: The soft composite finger shows discrete bending behavior when the tendons are pulled
at constant pressures of 0Pa, 6600Pa, 10400Pa. (a) Vertical ellipse (proximal) (b) Vertical ellipse
(distal).
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Figure 6.4: The soft composite finger shows discrete bending behavior when the tendons are pulled
at constant pressures of 0Pa, 6600Pa, 10400Pa. (a) Circle (proximal) (b) Circle (distal).
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Figure 6.5: The soft composite finger shows discrete bending behavior when the tendons are pulled
at constant pressures of 0Pa, 6600Pa, 10400Pa. (a) Smallcircle (proximal) (b) Smallcircle (distal).
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Figure 6.6: The soft composite finger shows discrete bending behavior when the tendons are pulled
at constant pressures of 0Pa, 6600Pa, 10400Pa. (a) Horizontal ellipse (proximal) (b) Horizontal
ellipse (distal).
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Figure 6.7: The designed gripper can grasp various size(diameter from 20mm to 100mm) and shape
objects such as circular, rectangular, oval, cylindrical, etc. at various orientations. (a) Robotic
arm with gripper (b) Wine glass (c) Avocado (d) Wine glass grasped in a different orientation (e)
Robotic arm with gripper actuated (f) Kevlar Spool (g) Fidget Spinner (h) Microcontroller board.
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7. CONCLUSION AND FUTURE WORKS

In this thesis, we have proposed a design of a soft composite finger with two embedded soft

joints inspired from a human finger. Hybrid actuation combining both tendon and pneumatic actua-

tion is implemented in the finger to bend it in a discrete behavior and stiffen the joints respectively.

The model prediction and experimental results suggest that anthropomorphic soft composite fin-

gers possess stiffening capability and can discretely bend with varying curvature along its length.

Also, the key factors such as cross-sectional area and longitudinal axis of the joints effect the per-

formance of finger in terms of stiffening capability and discrete bending behavior respectively. The

stiffened fingers constrains the object better and apply increased normal force which enhances firm

grasp over the object in dynamic situations.

In future works, viscoelasticity of the materials should be accounted in the stiffness model to

better predict the dynamic performance of the finger at higher pulling lengths and pressure. Also,

further research will focus on optimizing the design of embedded joints in the finger to get higher

stiffness at higher pulling length which will enhance firm grasp behavior of the finger.
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