## A DESIGN APPROACH FOR ON-PURPOSE PROPYLENE PRODUCTION WITH SAFETY

# AND SUSTAINABILITY CONSIDERATIONS

A Thesis

by

## ASHWIN AGARWAL

## Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

## MASTER OF SCIENCE

| Chair of Committee,     | Mahmoud M. El-Halwagi |
|-------------------------|-----------------------|
| Co- Chair of Committee, | M. Sam Mannan         |
| Committee Member,       | Ahmad Hilaly          |

Head of Department,

August 2018

M. Nazmul Karim

Major Subject: Chemical Engineering

Copyright 2018 Ashwin Agarwal

#### ABSTRACT

The advent of Shale Gas and the increasing spread between the supply and demand curves for propylene present an opportunity for adopting alternative pathways to produce propylene. This study aims to investigate a sustainable process design approach to on-purpose propylene production. An FEL-1 level analysis was performed on the various technologies used to produce on-purpose propylene and it was determined that propane dehydrogenation (PDH) was the most profitable route. A hierarchical approach to sustainable process design is proposed and implemented in a case study with propane dehydrogenation (PDH) as the process under consideration. A base case design was developed and avenues for reduction in overall energy and water consumption, as well as reduction in carbon and VOC emissions, were analyzed. Process integration and intensification techniques were applied to reduce dependence on external utilities and to lower the overall capital investment. Waste heat recovery and off gas recycle were additional options used to intensify the overall energy consumption of the process. Emissions from the process were calculated from the EPA's guidelines. Economic and environmental metrics models were then developed to study the impact of the integration and intensification techniques. Up to 70% reductions in CO2 emissions were achieved as a result of this approach to sustainable design. The Sustainability Weighted Return on Investment (SWROI) metric was evaluated for all cases. In addition, an inherent safety analysis was performed of the flowsheets developed and the PRI and PSI indices were estimated to identify potentially high-risk streams. Multi-objective decision making for the optimum design was facilitated by the sustainability and safety metrics augmented with the traditional economic criteria.

#### ACKNOWLEDGEMENTS

I would like to express my gratitude to my principal investigator Dr. Mahmoud El-Halwagi for his continuous guidance and support throughout the course of my research. He has been a true source of inspiration and I thank him for his enthusiasm, patience, and immense knowledge. I would also like to extend my sincere thanks to my committee members Dr. Sam Manan, and Dr. Ahmad Hilaly for their insightful comments and inputs.

This work would not have been possible without counsel provided by Dr. Debalina Sengupta. Right from the time I joined the Process Integration and Systems Optimization research group, she has been a constant pillar of support and has encouraged me as an advisor and friend over last 2 years.

Thanks to all my colleagues from the research group for all the stimulating discussions and the fun we had. A special thanks to all my friends for keeping me sane and creating the overall experience that A&M was.

Finally, I express my profound gratitude to my parents and brother for providing me unfailing support and continuous encouragement throughout these two years. None of this would have been possible without them.

## **CONTRIBUTORS AND FUNDING SOURCES**

This work was supervised by a dissertation committee consisting of Professor Mahmoud M. El-Halwagi [principal advisor] of the Department of Chemical Engineering and Gas and Fuels Research Institute, Professor Sam M. Manan [co-advisor] of the Department of Petroleum Engineering and Mary Kay O'Connor Process Safety Center, and Professor Ahmad Hilaly of the Department of Chemical Engineering. Guidance was also provided by Dr. Debalina Sengupta of the Gas and Fuels Research Institute. All work for the dissertation was completed independently by the student.

# NOMENCLATURE

| PDH         | Propane Dehydrogenation                   |
|-------------|-------------------------------------------|
| OPP         | On-purpose Propylene                      |
| FCC         | Fluidized Catalytic Cracking              |
| NGL's       | Natural Gas Liquids                       |
| МТО         | Methanol to Olefins                       |
| MTP         | Methanol to Propylene                     |
| MTA         | Metric Tons per Annum                     |
| MISR        | Metric for Inspecting Sales and Reactants |
| HEN         | Heat Exchanger Network                    |
| MER         | Minimum Energy Requirements               |
| CC          | Composite Curve                           |
| GCC         | Grand Composite Curve                     |
| CCR         | Continuous Catalyst Regeneration          |
| SHP         | Selective Hydrogenation Process           |
| PSA         | Pressure Swing Adsorption                 |
| PP Splitter | Propylene-Propane Splitter                |
| HPC         | Heat Pump Compressor                      |
| OGR         | Off-Gas Recycle                           |
| WHR         | Waste Heat Recovery                       |
| DCFROR      | Discounted Cash Flow Rate of Return       |
| MACRS       | Modified Accelerated Cost Recovery System |

| IRR      | Internal Rate of Return                                        |
|----------|----------------------------------------------------------------|
| ROI      | Return on Investment                                           |
| NPV      | Net Present Value                                              |
| EPA      | Environmental Protection Agency                                |
| SWROI    | Sustainability Weighted Return on Investment                   |
| SASWROIM | Safety and Sustainability Weighted Return on Investment Metric |
| ASP      | Annual Sustainability Profit                                   |
| ASSP     | Annual Safety and Sustainability Profit                        |
| AEP      | Annual Economic Profit                                         |
| LFL      | Lower Flammability Limit                                       |
| UFL      | Upper Flammability Limit                                       |
| QRA      | Quantitative Risk Assessment                                   |
| PIIS     | Prototype Index for Inherent Safety                            |
| ISI      | Inherent Safety Index                                          |
| PRI      | Process Route Index                                            |
| PSI      | Process Stream Index                                           |

| AB  | STRA  | мСТ ii                                     |
|-----|-------|--------------------------------------------|
| AC  | KNO   | WLEDGEMENTS                                |
| CO  | NTR   | BUTORS AND FUNDING SOURCES iv              |
| NO  | MEN   | CLATUREv                                   |
| LIS | ST OF | FIGURES ix                                 |
| LIS | ST OF | TABLESx                                    |
| 1.  | INT   | RODUCTION1                                 |
| 2.  | PRC   | BLEM STATEMENT5                            |
| 3.  | ME    | THODOLOGY                                  |
| 4.  | CAS   | E STUDY11                                  |
|     | 4.1   | On-Purpose Propylene Technologies11        |
|     | 4.2   | Base Case Model and Simulation             |
|     | 4.3   | Energy Analysis                            |
|     | 4.4   | Process Integration                        |
|     |       | 4.4.1 Integrated Case                      |
|     |       | 4.4.2 Integrated Case with Intensification |
|     | 4.5   | Water Analysis                             |
|     | 4.6   | Emissions Analysis                         |

# **TABLE OF CONTENTS**

|    |      | 4.6.1   | Waste Heat Recovery (WHR)                                | 36 |
|----|------|---------|----------------------------------------------------------|----|
|    |      | 4.6.2   | Off-Gas Recovery (OGR)                                   | 37 |
|    | 4.7  | Econor  | nic Analysis                                             |    |
|    | 4.8  | Sustain | ability Analysis                                         | 40 |
|    | 4.10 | Safety  | Analysis                                                 | 43 |
|    |      | 4.10.1  | Process Route Index (PRI)                                | 44 |
|    |      | 4.10.2  | SASWROIM - Safety and Sustainability Weighted ROI Metric | 46 |
|    |      | 4.10.3  | Process Stream Index (PSI)                               | 48 |
| 5. | CON  | ICLUSI  | ONS                                                      | 53 |
| RE | FERE | NCES    |                                                          | 55 |
| AP | PENE | DIX     |                                                          | 63 |

## LIST OF FIGURES

| Figure 1: Proposed Hierarchical Approach for Process Sustainability Assessment<br>Methodology                                     | 8  |
|-----------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2: Simplified Process Flow Diagram for the Base Case                                                                       | 15 |
| Figure 3: Pinch Analysis (Hot and Cold Composite Curves) for Base Case Design                                                     | 21 |
| Figure 4: Simplified Process Flow Diagram for the Integrated Case                                                                 | 24 |
| Figure 5: Comparison of Grand Composite Curves of Base Case and Integrated Case with Intensification                              | 26 |
| Figure 6: Process Flow Diagram for Integrated and Intensified Case with the addition of the<br>Heat Pump Compression (HPC) system | 28 |
| Figure 7: Comparison of Capital Costs for Base Case, Integrated Case, and Integrated Case with Intensification                    | 32 |
| Figure 8: Comparison of Utility Costs for Base Case, Integrated Case, and Integrated Case with Intensification                    | 32 |
| Figure 9: Composite Curves for Integrated and Intensified Case                                                                    | 33 |
| Figure 10: Chart showing PRI Values, ROI, and SWROI for all three cases considered                                                | 45 |
| Figure 11: Simplified PFD of the Integrated Case with Intensification highlighting the High<br>Risk streams in Red                | 52 |

# LIST OF TABLES

| Table 1: Feedstock and Product Prices for MISR Calculation                                                     | 12   |
|----------------------------------------------------------------------------------------------------------------|------|
| Table 2: Metric for Inspecting Sales and Reactants (MISR) for competing Propylene         Production Processes | . 12 |
| Table 3: Stream Summary for the Base Case                                                                      | .17  |
| Table 4: Distribution of Utility Costs in Base Case                                                            | . 19 |
| Table 5: Comparison of Utility costs for Base Case, Integrated Case, and Integrated +<br>Intensified Case      | . 22 |
| Table 6: Stream Summary for the Integrated Case                                                                | . 25 |
| Table 7: Stream Summary for the Integrated and Intensified Case                                                | . 29 |
| Table 8: Comparison of Capital Costs in Base Case with the Integrated and Intensified Case                     | 30   |
| Table 9: AP-42 Emission Factors for Natural Gas Combustion (Industrial Heaters) (U.S.EPA, 2016)                | . 35 |
| Table 10: Emission Factors for Electricity Generation (U.S.EPA, 2017a)                                         | . 36 |
| Table 11: Comparison of Emissions with Waste Heat Recovery and Offgas Recovery for various scenarious          | . 38 |
| Table 12: Economic Indicators for Base Case, Integrated Case, and Integrated Case with         Intensification | . 39 |
| Table 13: Sustainability Weighted Analysis for all scenarios considered                                        | 41   |
| Table 14: Tabulation of the SASWROIM values for various process flowsheets                                     | 48   |
| Table 15: PSI Values for streams in the Base Case                                                              | . 49 |
| Table 16: PSI values for streams in Integrated Case with Intensification                                       | . 50 |

#### **1. INTRODUCTION**

Reprinted (adapted) with permission from AGARWAL, A., SENGUPTA, D. & EL-HALWAGI, M. 2018. Sustainable Process Design Approach for On-Purpose Propylene Production and Intensification. ACS Sustainable Chemistry & Engineering, 6, 2407-2421. Copyright (2018) American Chemical Society.

Fossil resources have seen an incredible shift in resource consumption, utilization, and treatment strategies in recent years as shale oil and gas have emerged as one of the most lucrative energy options for the United States. Shale based natural gas in the US Gulf Coast has spurred recent increase in industrial activities and is projected to continue growing in the near future. While it is important to continue the growth for the US manufacturing jobs, it is also crucial that the sustainability of processes is taken into account while designing and operating these new processes. Annual production from shale gas has increased from 1,293 billion cubic feet (Bcf) in 2007, to 15,213 billion cubic feet in 2015, accounting for approximately 44% of the total United States natural gas production(Al-Douri et al., 2017). The Energy Information Administration projects that shale gas is going to make-up roughly two-thirds of total U.S. Natural Gas production by 2040, thereby accounting for a quarter of the U.S. energy production (U.S.EIA, 2017b). It is estimated that over the next two decades US will have cumulative production of 459 trillion cubic feet (Tcf) of shale gas which can be used to produce a wide variety of value-added chemicals and fuels (Al-Douri et al., 2017, Siirola, 2014, Zhang and El-Halwagi, 2017) with major shifts in manufacturing routes, supply chains, and environmental impact (Hasaneen and El-Halwagi, 2017, Gao and You, 2015).

Shale gas typically has more Natural Gas Liquids (NGLs) and introduces new clean feedstock in the form of ethane, propane, butanes and higher hydrocarbons in the market. Such

NGLs offer attractive pathways to produce olefins (Ortiz-Espinoza et al., 2017b, Thiruvenkataswamy et al., 2016, He and You, 2016, Yang and You, 2017). In particular, the production of propylene will be highly impacted by the increasing supply of shale gas.

Propylene has traditionally been produced as a by-product of ethylene from steam cracking, or as a by-product of gasoline in fluid catalytic cracking (FCC) in refineries. Together, these technologies accounted for 90% of the propylene market until 2012 (ICIS, 2012). Recently, the availability of low cost ethane in the United States has shifted the steam cracker feed from naphtha to ethane primarily due to higher yields in ethylene obtained by using ethane (ICIS, 2012). The production of propylene from FCC depends on the gasoline prices. If prices are high, the propylene produced is used to make octane-boosting alkylate. On the other hand, if the demand is low, refiners cut operations and propylene output falls. This implies that the propylene supply was dictated more by the developments in the gasoline and ethylene markets, than the demand for propylene.

The demand for propylene is expected to grow from 109 million tons in 2014, to about 165 million tons by 2030, roughly 12-14% greater than the amount of propylene that can be produced by the conventional technologies (Mackenzie, 2014). This gap between demand and supply can be filled by the new 'on-purpose' propylene technologies (OPP) which utilize feedstocks derived from shale gas. Examples include Propane Dehydrogenation (PDH), Methanol-to-Propylene/Olefins (MTP/MTO), and Olefin Metathesis. The choice of the optimal production route depends on various factors such as feedstock availability, market conditions, price volatility, technology maturity, sustainability, and safety (Guillen-Cuevas et al., 2018, Roy et al., 2016).

2

Process systems engineering tools offer an attractive framework for incorporating sustainability in the conceptual design and optimization of process technologies. Several reviews and textbooks cover the principles, techniques, and applications of systems approaches to the inclusion of sustainability in the creation and assessment of process flowsheets. Examples include the use of process integration (Sengupta and El-Halwagi, 2017, El-Halwagi and Yee Foo, 2000, El-Halwagi, 1997, El-Halwagi, 2017a, Foo et al., 2012, Sikdar, 2001), green chemistry and engineering (Allen and Shonnard, 2001, Anastas and Zimmerman, 2003), sustainable design of processes, products, and supply chain, and sustainability metrics. Focus has also been given to the sustainable design aspects in engineering for the creation of products (You, 2015, Ruiz-Mercado and Cabezas, 2016). Sikdar highlighted the need of sustainability evaluation of processes and systems through the use of sustainability metrics (Sikdar, 2003). Material efficiency, water conservation, energy efficiency and greenhouse gas emissions are some of the metrics that have been used to compare various processes for sustainability (Sikdar et al., 2017). A complete analysis of sustainability of processes is often not possible due to several conflicting goals, measurement and our inability to compare all options (Mukherjee et al., 2015). Recently, El-Halwagi has introduced the Sustainably Weighted Return on Investment (SWROI) metric (El-Halwagi, 2017e) which augments sustainability criteria in the conventional calculation of financial return on investment. The use of aggregated metrics, such as the SWROI, can help the decision makers to easily determine and interpret the sustainability tradeoffs of a process and in terms of traditional indicators such as ROI. It should be mentioned that sustainable process design is different from product sustainability where the entire life cycle of a product is taken into account and each life cycle stage is evaluated, which is not the focus of this paper.

In this paper, several propylene-production pathways are studied, assessed, and screened based on multiple criteria. First, high-level screening is carried out to provide preliminary screening. The promising pathways are simulated with sufficient details to enable conceptual design and techno-economic analysis. Process integration is carried out to enhance the performance of each pathway. Economic, environmental, and safety metrics are used in the assessment. This case study for on-purpose propylene production process is used to systematically develop a method to assess sustainability and safety of the process during the initial design phases.

#### 2. PROBLEM STATEMENT

Reprinted (adapted) with permission from AGARWAL, A., SENGUPTA, D. & EL-HALWAGI, M. 2018. Sustainable Process Design Approach for On-Purpose Propylene Production and Intensification. ACS Sustainable Chemistry & Engineering, 6, 2407-2421. Copyright (2018) American Chemical Society.

It has been clear that the market for propylene is facing a supply gap owing to the shift in feedstock of naphtha crackers to ethane and volatility in the prices of gasoline. This work looks to address this supply gap by analyzing alternatives ways to produce propylene. In addition, the rising concerns of climate change have made it necessary to design processes which are sustainable and have a lower carbon footprint. This study aims to design a sustainable on-purpose propylene production facility. For the purpose of this work, the United States Gulf Coast is chosen as the desired location because of the proximity to cheap feedstock sources. A techno-economic analysis is carried out to answer the following questions:

- 1) What is the most promising economic route for propylene production?
- 2) What does the process flowsheet look like for this route?
- 3) What are the key sustainability metrics associated with this process?
- 4) What process changes can be made to improve the sustainability performance of the process?
- 5) How do these changes affect the economics and overall sustainability of the process?
- 6) Which is the desired process flowsheet based on economic and sustainability criteria?
- 7) Do new metrics for sustainability in economic terms (SWROI) help in making better selection of processes?

8) How do the changes made due to process integration and intensification affect the inherent safety of the process?

A base case design with a capacity of 600,000 metric tons per annum (MTA) propylene production is designed. The available feedstocks considered are propane, ethane/ethylene, butylene, and methanol depending on the type of OPP technology used.

#### **3. METHODOLOGY**

Reprinted (adapted) with permission from AGARWAL, A., SENGUPTA, D. & EL-HALWAGI, M. 2018. Sustainable Process Design Approach for On-Purpose Propylene Production and Intensification. ACS Sustainable Chemistry & Engineering, 6, 2407-2421. Copyright (2018) American Chemical Society.

The proposed method for the assessment and screening of the various propyleneproduction pathways uses a hierarchical approach that starts with limited data and calculations to perform a preliminary screening, then, proceeds with more detailed analysis for the promising alternatives. Techno-economic assessment and sustainability analysis is carried out and integrated with the economic criteria. *Figure 1* shows a summary of these steps.

*Process data inventory* is created in the first step by collecting information on the various process alternatives, their feedstocks, the chemical pathways to produce the desired product, and the feedstock and product market prices.

*Stoichiometric-economic targeting* is performed to quickly eliminate certain process options based on overall profitability of a process. This uses the data from the process data inventory. The metric for inspecting sales and reactants "MISR" (El-Halwagi, 2017b) is used as the indicator in this case as shown in Equation 1. If the value of the MISR is less than one, the pathway is discarded. For pathways with MISR > 1, the process in considered to be potentially viable which warrants a more detailed techno-economic analysis to assess the profitability criteria of the process. As a rule of thumb, higher values of MISR are typically more desirable.

7

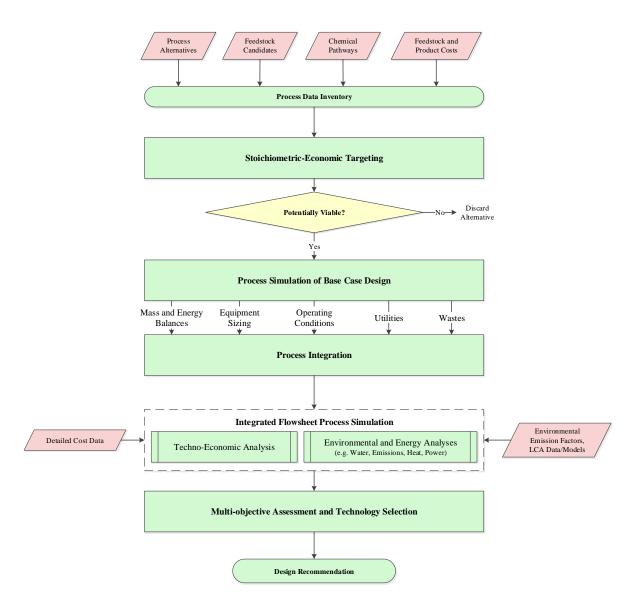



Figure 1: Proposed Hierarchical Approach for Process Sustainability Assessment Methodology

$$MISR = \frac{\sum_{p=1}^{N_{products}} Annual \text{ production rate of product } p \times Purchase \text{ price of product } p}{\sum_{r=1}^{N_{reactants}} Annual \text{ feed rate of reactant } r \times Purchase \text{ price of reactant } r}$$
(1)

*Economically Viable* process choice is guided by the value of MISR. Significantly higher MISR values will be more desirable to further analyze. However, if the MISR values are close

for two or more processes, they should all be considered for further evaluation. Process alternatives having MISR less than 1 signifies that it costs more to purchase raw materials than earned by selling the finished products. Hence no process modification will be good enough to overcome this barrier, particularly if better MISR values are obtained from other process options.

*Simulation of Base Case Design* of the process options having high MISR is developed as the next step. A base case design is used to identify the process flow from raw material to the final product. This is also the step when two or more processes having similar MISR need to be expanded in scope of analysis, such as comparing for technologies that give better productivity, yield etc. The objective in the base case design step is to establish the potential unit operations to be utilized in the flow-scheme and construct a detailed process flowsheet. Traditional process synthesis steps ensure that the base case provides the individual and total mass and energy balances for the process and technology choice. Other important information that can be computed from the base case include equipment sizing, utilities and types, optimal operating conditions, and environmental waste streams.

*Process Integration* step follows the base case design using the flow information for mass and energy streams. Mass and energy integration can be performed using tools like the thermal pinch analysis for heat integration which deals with the optimal structure of heat exchange between process streams, as well as optimal use of utilities18. The analysis identifies targets for minimum hot and cold utility consumptions (referred to as Minimum Energy Requirements "MER"). Composite curves (CC) may be used to represent the counter-current heat flow among the streams that have been selected for heat transfer. The Grand Composite Curves (GCC) plots the excess heat of the hot and cold streams across temperature intervals which determines the selection and placement of utilities. Finally, a Heat Exchanger Network (HEN) can be synthesized and optimized for MER and maximum heat recovery by eliminating redundant elements and finding the trade-off between utility consumption, heat exchange area, and number of units.

*Integrated Flowsheet Process Simulation* is created from the results of process integration. These flowsheets typically show reduced material and energy consumption, and the overall environmental footprint, however this may lead to increase or decrease in capital costs for the process. Rigorous techno-economic analysis and environmental analyses are carried out with characterization for available emission streams.

#### 4. CASE STUDY

Reprinted (adapted) with permission from AGARWAL, A., SENGUPTA, D. & EL-HALWAGI,
M. 2018. Sustainable Process Design Approach for On-Purpose Propylene Production and
Intensification. ACS Sustainable Chemistry & Engineering, 6, 2407-2421. Copyright (2018)
American Chemical Society

### 4.1 **On-Purpose Propylene Technologies**

The case study considers the following technologies: Propane Dehydrogenation (PDH), Metathesis, Methanol-to-Olefins and Methanol-to-Propylene (MTO/MTP) since they are the most established technology routes to directly produce propylene (Jasper and El-Halwagi, 2015, Izadi, 2011). These are also the processes that have been commercially established through facilities around the world. In the PDH process, propane is converted to propylene over a bed of catalyst at high temperatures and low pressures. MTO/MTP process converts methanol into olefins, and it can be controlled to produce more propylene than ethylene. The MTO process converts methanol to olefins over a fluidized catalyst bed operating between 350-550 °C (Izadi, 2011). In China, the abundance of coal has accelerated the widespread adoption of this route through coal gasification technologies. Olefin metathesis uses the ethylene (C2) and butylene (C4) to produce two C3 molecules. The key determinants in the feasibility of this technology are the spread in prices between ethylene and propylene, and the availability of butylenes.

For a preliminary assessment of the candidate technologies, a stoichiometric-economic targeting is performed using the MISR metric from Equation 1. The annual production rate of 600,000 metric tons per annum was used in this calculation, using stoichiometric ratios of the reactants. The prices of feedstock and products is given in *Table 1*. The calculated values of the

MISR are reported in Table 2. As can be seen from Table 2, PDH shows the highest potential for profitability. In the MTO process, it is considered that the propylene to ethylene ratio is 1.8 (Funk et al., 2013) to maximize propylene production. For the considered costs of raw materials and values of products, both metathesis and MTO have MISR values less than one and, therefore, will not be considered for further analysis.

| Feedstock/Product | Price                  |
|-------------------|------------------------|
| Propane           | \$0.48/kg <sup>a</sup> |
| Propylene         | \$0.95/kg <sup>b</sup> |
| Ethylene          | \$0.65/kg <sup>c</sup> |
| Butylene          | \$1.18/kg <sup>d</sup> |
| Methanol          | \$396/MT <sup>e</sup>  |
|                   |                        |

Table 1: Feedstock and Product Prices for MISR Calculation

<sup>a</sup>U.S.EIA (2017a); <sup>b</sup>Platts (2017b); <sup>c</sup>ICIS (2017b); <sup>d</sup>Platts (2017a); <sup>e</sup>MethanexCorporation (2017)

Table 2: Metric for Inspecting Sales and Reactants (MISR) for competing Propylene Production

| Processes                         |      |  |  |  |  |  |  |
|-----------------------------------|------|--|--|--|--|--|--|
| On-Purpose Propylene Process MISR |      |  |  |  |  |  |  |
| Propane Dehydrogenation           | 2.07 |  |  |  |  |  |  |
| Olefin Metathesis                 | 0.95 |  |  |  |  |  |  |
| Methanol to Olefins               | 0.98 |  |  |  |  |  |  |

It is worth noting that these results are only valid for the considered prices of raw materials and products. For instance, if the methanol price decreases from \$396/MT to \$300/MT (ICIS, 2017a) (e.g., in China due to the relatively low cost of producing methanol from coal), the value of MISR increases to 1.29 rendering the process potentially viable. Similarly, olefin

metathesis process has an MISR=1 if the price of C4 raffinate drops from \$1179/MT to \$1100/MT. Based on this preliminary analysis, it was decided to choose PDH as the primary chemical production route of choice. Table 2 represents MISR values for different technologies based on 100% selectivity. It is worth noting that the selectivity of Propane Dehydrogenation is 90% (Gregor and Wei, 2005) which gives the MISR of PDH as 1.86. This is still greater than 1 and more profitable when compared to the Olefin Metathesis and MTO technology options.

### 4.2 Base Case Model and Simulation

Figure 2 is a schematic representation of the PDH flowsheet. In this process, propane is passed over a hot bed of catalyst where it reacts to produce propylene and hydrogen. Honeywell UOP's OLEFLEX<sup>TM</sup> and CB&I Lummus' CATOFIN<sup>TM</sup> technologies dominate the market in this sector (Nawaz, 2015). UOP's Oleflex process is used in 16 of the 23 operating PDH units in the world and UOP had been awarded 34 of the last 39 dehydrogenation worldwide since 2011 (Banach, 2016). In this paper, the OLEFLEX<sup>TM</sup> process was chosen for simulation for its wider acceptability in the world.

Nawaz (2015) gave an overview of the process flow for the OLEFLEX<sup>TM</sup> process. Figure 2 extracts key features from the OLEFLEX<sup>TM</sup> technology but is not intended to replicate or claimed to represent the OLEFLEX<sup>TM</sup> process. Computer-aided simulation using Aspen HYSYS was carried out for a process producing 600,000 MTA (metric ton per annum) of propylene.

The flowsheet can be broadly divided into the following sections: depropanizer column, reactor, reactor effluent cooling and compression, cold box, SHP reactor, deethanizer column, and the propylene-propane splitter column. Fresh propane feed is mixed with recycled propane and enters the depropanizer column. The depropanizer column is designed to separate C4+ material coming in the fresh feed and formed in the dehydrogenation reactors. The pressure of the column is kept high enough such that cooling water can be used as the condensing media. The propane rich steam from depropanizer overhead enters the cold box where its auto-refrigeration property is utilized to cool the reactor effluent stream. The cold-box is modeled based on the patented (O'Brien, 2001) design which does not require any external refrigeration.

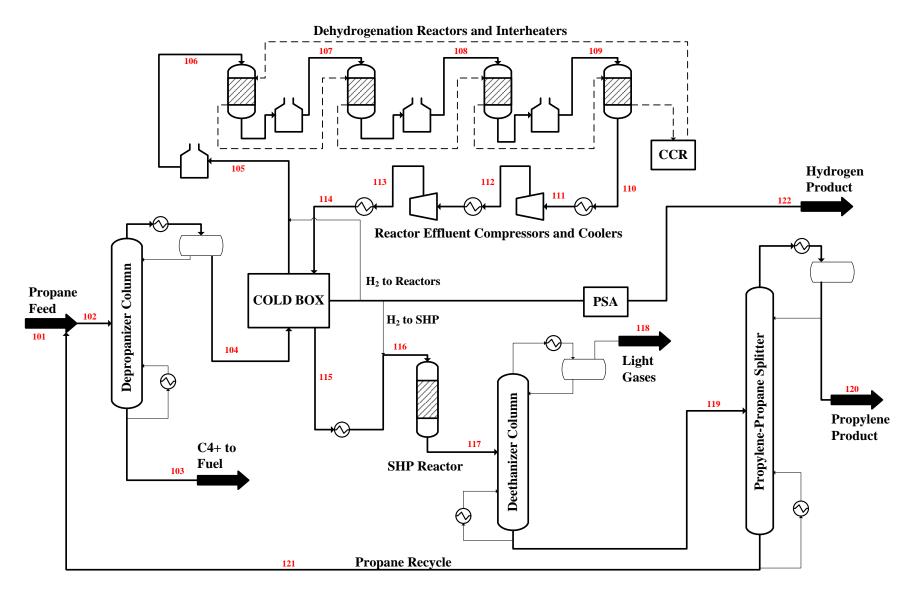



Figure 2: Simplified Process Flow Diagram for the Base Case

Coming out of the cold box, the propane feed stream is mixed with hydrogen stream and enters the fired-heater. The fired heater takes the feed temperature to 580-620 °C (Farjoo et al., 2011) before it enters the reactor system.

The reaction occurs over a fluidized catalyst bed in a radial flow reactor to minimize the pressure drop across the beds (Vora, 2012). A continuous catalyst regenerator (CCR) is used to continuously regenerate the catalyst by burning off the coke formed. The overall reaction selectivity towards propylene is 90% (mole) and the once-through conversion is 40% (mole) (Gregor and Wei, 2005). The remaining 10% of propane is converted in side reactions to produce light gases (methane, ethane, ethylene) (Farjoo et al., 2011) due to cracking, some diolefins (methyl-acetylene and propadiene), and some heavy key components (benzene, toluene, xylene) (Mole et al., 1985).

The reaction is highly endothermic in nature ( $\Delta H = 124.3 \text{ kJ/mol}$ ) leading to considerable temperature drop in each reactor. Inter-stage heaters are placed to increase the temperature of each reactor effluent stream to the subsequent reactor inlet temperature. This makes the reactor section of the propane dehydrogenation process extremely energy intensive. The reactor effluent is a mix of propylene, unconverted propane, light gases such as methane, ethane and ethylene, diolefins, and some heavier hydrocarbon components formed in the reactor. The reactor effluent is cooled and then compressed in the multistage compressors and coolers. The compressed gas is then sent to the Cold Box where hydrogen is separated from the hydrocarbon stream. In order to liquefy the hydrocarbon material and separate out the hydrogen, the cold box uses a series of isentropic expansion, separation and subcooling (O'Brien, 2001). The auto-refrigeration across the expanders is a function of the pressure reduction.

|                                       | Unit     | 101                | 102              | 103              | 104              | 105    | 106    | 107    | 108    | 109    | 110    | 111    |
|---------------------------------------|----------|--------------------|------------------|------------------|------------------|--------|--------|--------|--------|--------|--------|--------|
| Vapor Fraction                        |          | 0                  | 0                | 0                | 0                | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
| Temperature                           | Κ        | 313.1              | 302.5            | 328.4            | 316.1            | 302.2  | 873.1  | 883.2  | 893.2  | 893.2  | 840.8  | 306.5  |
| Pressure                              | kPa      | 6894.8             | 1514.8           | 1647.8           | 1772.0           | 475.7  | 379.2  | 296.5  | 215.8  | 137.9  | 124.1  | 96.5   |
| <b>Molar Flow</b>                     | kgmole/h | 1950               | 4827             | 6                | 4822             | 7291   | 7291   | 7736   | 8181   | 8615   | 9044   | 9044   |
| Mass Flow                             | kg/h     | 85049              | 211822           | 274              | 211548           | 218391 | 218391 | 218390 | 218390 | 218390 | 218390 | 218394 |
| Mole Fractions                        |          |                    |                  |                  |                  |        |        |        |        |        |        |        |
| Hydrogen                              |          | 0.0000             | 0.0000           | 0.0000           | 0.0000           | 0.3219 | 0.3219 | 0.3555 | 0.3859 | 0.4129 | 0.4376 | 0.4375 |
| Methane                               |          | 0.0027             | 0.0011           | 0.0000           | 0.0011           | 0.0161 | 0.0161 | 0.0208 | 0.0244 | 0.0272 | 0.0292 | 0.0292 |
| Ethylene                              |          | 0.0001             | 0.0000           | 0.0000           | 0.0000           | 0.0007 | 0.0007 | 0.0035 | 0.0057 | 0.0075 | 0.0090 | 0.0090 |
| Ethane                                |          | 0.0290             | 0.0117           | 0.0000           | 0.0117           | 0.0082 | 0.0082 | 0.0105 | 0.0123 | 0.0136 | 0.0146 | 0.0146 |
| Propene                               |          | 0.0000             | 0.0133           | 0.0000           | 0.0133           | 0.0089 | 0.0089 | 0.0628 | 0.1107 | 0.1526 | 0.1901 | 0.1901 |
| Propane                               |          | 0.9675             | 0.9735           | 0.9069           | 0.9737           | 0.6440 | 0.6440 | 0.5468 | 0.4607 | 0.3855 | 0.3187 | 0.3187 |
| Propadiene                            |          | 0.0000             | 0.0000           | 0.0000           | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0002 | 0.0002 | 0.0002 |
| m-Acetylene                           |          | 0.0000             | 0.0000           | 0.0000           | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0002 | 0.0002 | 0.0002 |
| i-Butane                              |          | 0.0006             | 0.0003           | 0.0856           | 0.0001           | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
| n-Butane                              |          | 0.0000             | 0.0000           | 0.0047           | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| Benzene                               |          | 0.0000             | 0.0000           | 0.0024           | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0002 | 0.0002 | 0.0002 |
| Toluene                               |          | 0.0000             | 0.0000           | 0.0003           | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0001 |
|                                       | Unit     | 112                | 113              | 114              | 115              | 116    | 117    | 118    | 119    | 120    | 121    | 122    |
| Vapor Fraction                        |          | 1                  | 1                | 1                | 0                | 0      | 0      | 1      | 0.595  | 0      | 0      | 1      |
| Temperature                           | Κ        | 403.9              | 395.4            | 306.5            | 310.0            | 333.0  | 334.0  | 220.0  | 293.8  | 284.3  | 296.1  | 308.4  |
| Pressure                              | kPa      | 404.7              | 1404.4           | 1376.9           | 4238.2           | 4203.7 | 4100.3 | 446.1  | 928.7  | 894.2  | 1514.8 | 777.0  |
| <b>Molar Flow</b>                     | kgmole/h | 9044               | 9044             | 9044             | 4854             | 4871   | 4867   | 265    | 4606   | 1730   | 2878   | 1564   |
| Mass Flow                             | kg/h     | 218394             | 218394           | 218394           | 206227           | 206262 | 206262 | 6663   | 199601 | 72828  | 126772 | 3152   |
| Mole Fractions                        |          |                    |                  |                  |                  |        |        |        |        |        |        |        |
| Hydrogen                              |          | 0.4375             | 0.4375           | 0.4375           | 0.0002           | 0.0039 | 0.0030 | 0.0546 | 0.0000 | 0.0000 | 0.0000 | 1.000  |
| Methane                               |          | 0.0292             | 0.0292           | 0.0292           | 0.0114           | 0.0113 | 0.0113 | 0.2079 | 0.0000 | 0.0000 | 0.0000 | 0.000  |
| Ethylene                              |          | 0.0090             | 0.0090           | 0.0090           | 0.0146           | 0.0145 | 0.0145 | 0.2669 | 0.0000 | 0.0000 | 0.0000 | 0.000  |
| Ethane                                |          | 0.0146             | 0.0146           | 0.0146           | 0.0257           | 0.0256 | 0.0256 | 0.4689 | 0.0001 | 0.0001 | 0.0000 | 0.000  |
| Propene                               |          | 0.1901             | 0.1901           | 0.1901           | 0.3534           | 0.3521 | 0.3533 | 0.0015 | 0.3854 | 0.9947 | 0.0223 | 0.000  |
| Propane                               |          | 0.3187             | 0.3187           | 0.3187           | 0.5930           | 0.5908 | 0.5914 | 0.0003 | 0.6141 | 0.0052 | 0.9776 | 0.000  |
| 1 i opune                             |          | 0.0002             | 0.0002           | 0.0002           | 0.0005           | 0.0005 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000  |
| Propadiene                            |          | 0.0001             |                  |                  |                  | 0.0005 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000  |
| 1                                     |          | 0.0002             | 0.0002           | 0.0002           | 0.0005           | 0.0005 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000  |
| Propadiene                            |          |                    | 0.0002<br>0.0001 | 0.0002<br>0.0001 | 0.0005<br>0.0001 | 0.0005 | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.0001 |        |
| Propadiene<br>m-Acetylene             |          | 0.0002             |                  |                  |                  |        |        |        |        |        |        | 0.000  |
| Propadiene<br>m-Acetylene<br>i-Butane |          | $0.0002 \\ 0.0001$ | 0.0001           | 0.0001           | 0.0001           | 0.0001 | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.0001 | 0.000  |

Table 3: Stream Summary for the Base Case

Hence, a high-pressure reactor effluent stream results in lower temperature across the expander, thereby making hydrogen separation easier. Hydrogen produced is partially sent to the dehydrogenation and Selective Hydrogenation Process (SHP) reactors and the net hydrogen is sent to the Pressure Swing Adsorption (PSA) unit for meeting pipeline quality specifications. Liquid from the cold box is sent to the SHP reactor to convert the diolefins formed in the side reactions to propylene. From SHP, the liquid is fed to the Deethanizer column to get rid of the C2- components. The Deethanizer bottoms are sent to the Propylene-Propane Splitter which produces the final propylene product.

The propylene-propane splitter is a super-fractionator due to the difficulty in the separation between the two components. The column bottoms from the PP Splitter contain the unconverted propane which is recycled back to the Depropanizer column. *Table 3* provides summary of the stream data from the base case simulation. The stream numbers are shown in *Figure 2*.

### 4.3 Energy Analysis

The Aspen HYSYS simulation provided information on equipment involved, utility consumption, and the quality of energy required. The reactor section, compression and cooling section, and the product separation section are the big energy consumers in the process. The utilities used in the process include cooling water, low pressure (LP) steam, natural gas for firing in the heaters, and purchased electricity. The electricity could also be generated onsite, but not considered in this process analysis. A nominal 6.5 cents/kW-hr electricity rate has been assumed. A split up of the energy consumption in terms of the duty required and their respective costs of the utilities consumed is shown in *Table 4*.

| Utility Type     | Type Unit Cost         |               | Cost      | % of Total | Major Consumer in Process                                   |  |
|------------------|------------------------|---------------|-----------|------------|-------------------------------------------------------------|--|
|                  |                        | ( <b>MW</b> ) | (MM\$/yr) | Utility    |                                                             |  |
| Cooling<br>Water | \$0.023/m <sup>3</sup> | 358           | 8.4       | 10.7%      | PP Splitter Condenser and Reactor<br>Effluent Coolers (83%) |  |
| LP Steam         | \$10.7/kg              | 237.4         | 35.5      | 45%        | PP Splitter Reboiler (80%)                                  |  |
| Natural Gas      | \$10.1/MW-hr           | 159.3         | 15.7      | 19.9%      | Fired Heaters (100%)                                        |  |
| Electricity      | \$0.065/KW-hr          | 35.6          | 19.2      | 24.4%      | Reactor Effluent Compressors (95%)                          |  |
| Total Utility    |                        | 790.3         | 78.8      | 100%       |                                                             |  |

Table 4: Distribution of Utility Costs in Base Case

From *Table 4*, LP Steam contributes 45% of the total annual utility costs. The reboiler for the PP Splitter consumes about 80% of the overall LP Steam. The separation between propane and propylene is extremely difficult due to the small difference between the relative volatility of the two components. This separation requires unusually large reflux and boil-up ratios leading to

the massive reboiler and condenser energy requirements. The electricity consumption constitutes about 24% of the utility costs. The reactor effluent compressors are the major consumers of this electricity where the fluids exiting the reactor section are compressed from nearly 35 kPa to about 1500 kPa. The fired heaters are responsible for the entire natural gas firing requirement to get the feed to the reactor inlet temperatures. In the base case, the fired heater preceding Reactor 1 contributes to two-thirds of the fired heater duty as it heats the combined feed to from 29 °C to 600 °C. The total fixed capital investment for the base case scenario is approximately \$585MM and given in *Table 4*. Exchangers and the distillation columns combined contribute to roughly two-thirds of this value.

### 4.4 **Process Integration**

A thermal pinch analysis was performed on the base case to estimate the possibility for recovering heat within the process streams. The composite curves are shown in *Figure 3*. The pinch temperature is found at 70.4 °C, and it can be seen from the composite curve that there is a large potential for integration above and below the pinch. The minimum hot and cold utility requirements are 278.5 MW (950 MMBtu/hr) and 230.7 MW (787 MMBtu/hr) respectively for a minimum temperature approach of 14°C (25°F). This minimum temperature approach is consistent with the rule of thumb values for petrochemical processes (March, 1998). The hot utility values are due to the large heating requirements of the fired heater and the PP splitter's reboiler.

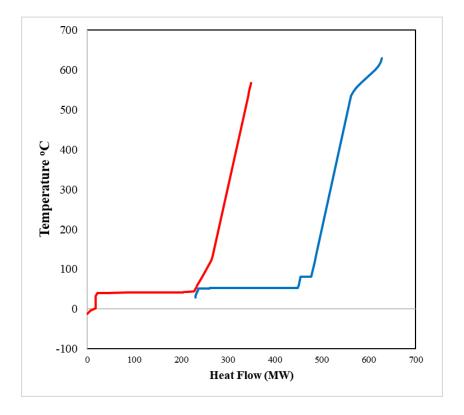



Figure 3: Pinch Analysis (Hot and Cold Composite Curves) for Base Case Design

The large cold utility requirements are due to the reactor effluent cooler, and the PP Splitter condenser. There is potential for heat exchange in the temperature range 40 °C - 550 °C which is constituted by heating and cooling requirements of the reactor feed and effluent streams. The composite curves can be further analyzed to systematically derive the optimum heat exchanger network which provides lowest energy consumption options from external utilities.

### 4.4.1 Integrated Case

Given the enormous costs of utilities in the base case, and results from the thermal pinch analysis indicating that heat exchanges are possible, an integrated case is developed to reduce the energy consumption from external sources by utilizing some of the process heat. *Figure 4* shows the process flow diagram after heat integration was implemented.

| Utility Type         | Base Case Utility<br>Cost<br>(MM\$/yr.) | Integrated Case<br>Utility Cost<br>(MM\$/yr.) | Integrated and Intensified<br>Case Utility Cost<br>(MM\$/yr.) |
|----------------------|-----------------------------------------|-----------------------------------------------|---------------------------------------------------------------|
| <b>Cooling Water</b> | 8.4                                     | 3.6                                           | 1.2                                                           |
| LP steam             | 35.5                                    | 31.9                                          | 4.0                                                           |
| Natural Gas          | 15.7                                    | 7.1                                           | 7.1                                                           |
| Firing               |                                         |                                               |                                                               |
| Electricity          | 19.2                                    | 19.2                                          | 27.1                                                          |
| Total Utility        | 78.8                                    | 61.8                                          | 39.4                                                          |

Table 5: Comparison of Utility costs for Base Case, Integrated Case, and Integrated + Intensified Case

The red, blue and green exchangers are the additions to the process which utilize the energy present in the reactor effluent streams to pre-heat the feed to the reactor, and partially provide energy to the Depropanizer and Deethanizer reboilers. The duty of the fired heater preceding Reactor 1 comes down from 106 MW (362.6 MMBtu/hr.) to 19 MW (64.8 MMBtu/hr.).

In order to achieve the process-process heat exchange, four additional heat exchangers must be added to the process. While this will lead to significant capital investment, the reduction in the sizes of the fired heater upstream of reactor 1, and the coolers in the reactor effluent cooling and compression section, offsets this value. Additionally, the combined reactor effluent cooling duty reduces from 126 MW (432 MMBtu/hr) to 15.5 MW (52.9 MMBtu/hr) as the reactor effluent is cooled by the reactor feed. There is \$11.5MM additional capital invested with a payback period of 8 months for the four exchangers which results in utility reductions of almost \$37MM/yr. when compared to the base case. *Table 6* shows the summary of stream data for the "Integrated Case" simulation.

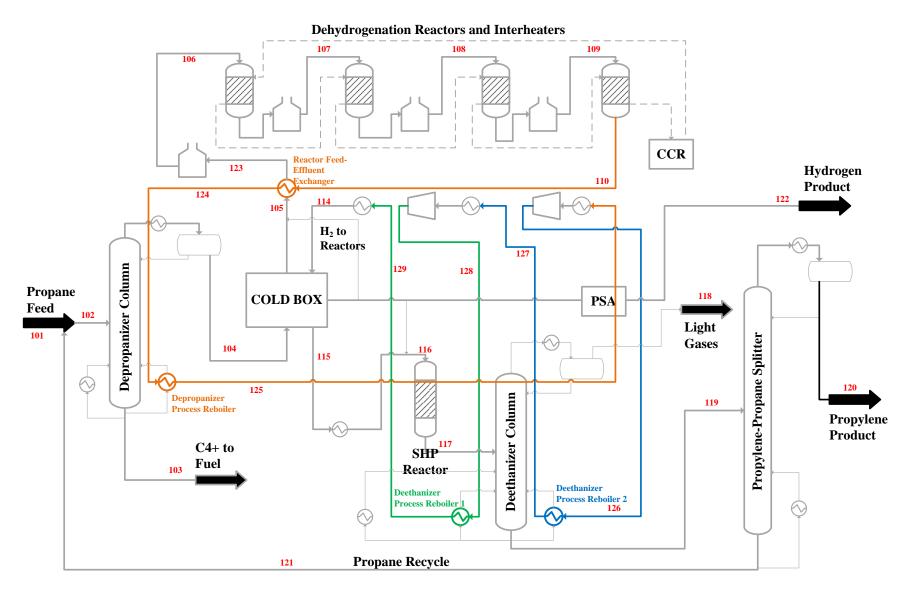



Figure 4: Simplified Process Flow Diagram for the Integrated Case

|                                                                                                                                                                                              | Unit                 | 101                                                                                                                                                                    | 102                                                                                                                                                  | 103                                                                                                                                                                             | 104                                                                                                                                                                         | 105                                                                                                                                                                                | 106                                                                                                                                      | 107                                                                                                                                                  | 108                                                                                                                                                          | 109                                                                                                                                                         | 110                                                                                                                                                          | 114                                                                                                                                                         | 115                                                                                                                                                           | 116                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vapor Fraction                                                                                                                                                                               |                      | 0                                                                                                                                                                      | 0                                                                                                                                                    | 0                                                                                                                                                                               | 0                                                                                                                                                                           | 1                                                                                                                                                                                  | 1                                                                                                                                        | 1                                                                                                                                                    | 1                                                                                                                                                            | 1                                                                                                                                                           | 1                                                                                                                                                            | 1                                                                                                                                                           | 1                                                                                                                                                             | 1                                                                                                                                                                      |
| Temperature                                                                                                                                                                                  | K                    | 313.2                                                                                                                                                                  | 302.5                                                                                                                                                | 324.1                                                                                                                                                                           | 316.1                                                                                                                                                                       | 302.2                                                                                                                                                                              | 873.1                                                                                                                                    | 883.2                                                                                                                                                | 893.2                                                                                                                                                        | 893.2                                                                                                                                                       | 840.8                                                                                                                                                        | 403.9                                                                                                                                                       | 395.4                                                                                                                                                         | 306.5                                                                                                                                                                  |
| Pressure                                                                                                                                                                                     | kPa                  | 6894.8                                                                                                                                                                 | 1514.8                                                                                                                                               | 1641.0                                                                                                                                                                          | 1772.0                                                                                                                                                                      | 475.7                                                                                                                                                                              | 379.2                                                                                                                                    | 296.5                                                                                                                                                | 215.8                                                                                                                                                        | 137.9                                                                                                                                                       | 124.1                                                                                                                                                        | 404.7                                                                                                                                                       | 1404.4                                                                                                                                                        | 1376.9                                                                                                                                                                 |
| Molar Flow                                                                                                                                                                                   | kgmole/h             | 1950                                                                                                                                                                   | 4827                                                                                                                                                 | 6                                                                                                                                                                               | 4822                                                                                                                                                                        | 7291                                                                                                                                                                               | 7291                                                                                                                                     | 7736                                                                                                                                                 | 8181                                                                                                                                                         | 8615                                                                                                                                                        | 9044                                                                                                                                                         | 9044                                                                                                                                                        | 9044                                                                                                                                                          | 9044                                                                                                                                                                   |
| Mass Flow                                                                                                                                                                                    | kg/h                 | 85049                                                                                                                                                                  | 211822                                                                                                                                               | 274                                                                                                                                                                             | 211548                                                                                                                                                                      | 218391                                                                                                                                                                             | 218391                                                                                                                                   | 218390                                                                                                                                               | 218390                                                                                                                                                       | 218390                                                                                                                                                      | 218390                                                                                                                                                       | 218394                                                                                                                                                      | 218394                                                                                                                                                        | 218394                                                                                                                                                                 |
| Mole Fractions                                                                                                                                                                               |                      |                                                                                                                                                                        |                                                                                                                                                      |                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                              |                                                                                                                                                             |                                                                                                                                                              |                                                                                                                                                             |                                                                                                                                                               |                                                                                                                                                                        |
| Hydrogen                                                                                                                                                                                     |                      | 0.0000                                                                                                                                                                 | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                                          | 0.0000                                                                                                                                                                      | 0.3219                                                                                                                                                                             | 0.3219                                                                                                                                   | 0.3555                                                                                                                                               | 0.3859                                                                                                                                                       | 0.4129                                                                                                                                                      | 0.4376                                                                                                                                                       | 0.4375                                                                                                                                                      | 0.4375                                                                                                                                                        | 0.4375                                                                                                                                                                 |
| Methane                                                                                                                                                                                      |                      | 0.0027                                                                                                                                                                 | 0.0011                                                                                                                                               | 0.0000                                                                                                                                                                          | 0.0011                                                                                                                                                                      | 0.0161                                                                                                                                                                             | 0.0161                                                                                                                                   | 0.0208                                                                                                                                               | 0.0244                                                                                                                                                       | 0.0272                                                                                                                                                      | 0.0292                                                                                                                                                       | 0.0292                                                                                                                                                      | 0.0292                                                                                                                                                        | 0.0292                                                                                                                                                                 |
| Ethylene                                                                                                                                                                                     |                      | 0.0001                                                                                                                                                                 | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                                          | 0.0000                                                                                                                                                                      | 0.0007                                                                                                                                                                             | 0.0007                                                                                                                                   | 0.0035                                                                                                                                               | 0.0057                                                                                                                                                       | 0.0075                                                                                                                                                      | 0.0090                                                                                                                                                       | 0.0090                                                                                                                                                      | 0.0090                                                                                                                                                        | 0.0090                                                                                                                                                                 |
| Ethane                                                                                                                                                                                       |                      | 0.0290                                                                                                                                                                 | 0.0117                                                                                                                                               | 0.0000                                                                                                                                                                          | 0.0117                                                                                                                                                                      | 0.0082                                                                                                                                                                             | 0.0082                                                                                                                                   | 0.0105                                                                                                                                               | 0.0123                                                                                                                                                       | 0.0136                                                                                                                                                      | 0.0146                                                                                                                                                       | 0.0146                                                                                                                                                      | 0.0146                                                                                                                                                        | 0.0146                                                                                                                                                                 |
| Propene                                                                                                                                                                                      |                      | 0.0000                                                                                                                                                                 | 0.0133                                                                                                                                               | 0.0000                                                                                                                                                                          | 0.0133                                                                                                                                                                      | 0.0089                                                                                                                                                                             | 0.0089                                                                                                                                   | 0.0628                                                                                                                                               | 0.1107                                                                                                                                                       | 0.1526                                                                                                                                                      | 0.1901                                                                                                                                                       | 0.1901                                                                                                                                                      | 0.1901                                                                                                                                                        | 0.1901                                                                                                                                                                 |
| Propane                                                                                                                                                                                      |                      | 0.9675                                                                                                                                                                 | 0.9735                                                                                                                                               | 0.9069                                                                                                                                                                          | 0.9737                                                                                                                                                                      | 0.6440                                                                                                                                                                             | 0.6440                                                                                                                                   | 0.5468                                                                                                                                               | 0.4607                                                                                                                                                       | 0.3855                                                                                                                                                      | 0.3187                                                                                                                                                       | 0.3187                                                                                                                                                      | 0.3187                                                                                                                                                        | 0.3187                                                                                                                                                                 |
| Propadiene                                                                                                                                                                                   |                      | 0.0000                                                                                                                                                                 | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                                          | 0.0000                                                                                                                                                                      | 0.0000                                                                                                                                                                             | 0.0000                                                                                                                                   | 0.0000                                                                                                                                               | 0.0001                                                                                                                                                       | 0.0002                                                                                                                                                      | 0.0002                                                                                                                                                       | 0.0002                                                                                                                                                      | 0.0002                                                                                                                                                        | 0.0002                                                                                                                                                                 |
| m-Acetylene                                                                                                                                                                                  |                      | 0.0000                                                                                                                                                                 | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                                          | 0.0000                                                                                                                                                                      | 0.0000                                                                                                                                                                             | 0.0000                                                                                                                                   | 0.0000                                                                                                                                               | 0.0001                                                                                                                                                       | 0.0002                                                                                                                                                      | 0.0002                                                                                                                                                       | 0.0002                                                                                                                                                      | 0.0002                                                                                                                                                        | 0.0002                                                                                                                                                                 |
| i-Butane                                                                                                                                                                                     |                      | 0.0006                                                                                                                                                                 | 0.0003                                                                                                                                               | 0.0856                                                                                                                                                                          | 0.0001                                                                                                                                                                      | 0.0001                                                                                                                                                                             | 0.0001                                                                                                                                   | 0.0001                                                                                                                                               | 0.0001                                                                                                                                                       | 0.0001                                                                                                                                                      | 0.0001                                                                                                                                                       | 0.0001                                                                                                                                                      | 0.0001                                                                                                                                                        | 0.0001                                                                                                                                                                 |
| n-Butane                                                                                                                                                                                     |                      | 0.0000                                                                                                                                                                 | 0.0000                                                                                                                                               | 0.0047                                                                                                                                                                          | 0.0000                                                                                                                                                                      | 0.0000                                                                                                                                                                             | 0.0000                                                                                                                                   | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                       | 0.0000                                                                                                                                                      | 0.0000                                                                                                                                                       | 0.0000                                                                                                                                                      | 0.0000                                                                                                                                                        | 0.0000                                                                                                                                                                 |
| Benzene                                                                                                                                                                                      |                      | 0.0000                                                                                                                                                                 | 0.0000                                                                                                                                               | 0.0024                                                                                                                                                                          | 0.0000                                                                                                                                                                      | 0.0000                                                                                                                                                                             | 0.0000                                                                                                                                   | 0.0000                                                                                                                                               | 0.0001                                                                                                                                                       | 0.0002                                                                                                                                                      | 0.0002                                                                                                                                                       | 0.0002                                                                                                                                                      | 0.0002                                                                                                                                                        | 0.0002                                                                                                                                                                 |
| Toluene                                                                                                                                                                                      |                      | 0.0000                                                                                                                                                                 | 0.0000                                                                                                                                               | 0.0003                                                                                                                                                                          | 0.0000                                                                                                                                                                      | 0.0000                                                                                                                                                                             | 0.0000                                                                                                                                   | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                       | 0.0001                                                                                                                                                      | 0.0001                                                                                                                                                       | 0.0001                                                                                                                                                      | 0.0001                                                                                                                                                        | 0.0001                                                                                                                                                                 |
|                                                                                                                                                                                              |                      |                                                                                                                                                                        |                                                                                                                                                      |                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                              |                                                                                                                                                             |                                                                                                                                                              |                                                                                                                                                             |                                                                                                                                                               |                                                                                                                                                                        |
|                                                                                                                                                                                              | Unit                 | 117                                                                                                                                                                    | 118                                                                                                                                                  | 119                                                                                                                                                                             | 120                                                                                                                                                                         | 121                                                                                                                                                                                | 122                                                                                                                                      | 123                                                                                                                                                  | 124                                                                                                                                                          | 125                                                                                                                                                         | 126                                                                                                                                                          | 127                                                                                                                                                         | 128                                                                                                                                                           | 129                                                                                                                                                                    |
| Vapor Fraction                                                                                                                                                                               |                      | 0                                                                                                                                                                      | 0                                                                                                                                                    | 0                                                                                                                                                                               | 1                                                                                                                                                                           | 0.595                                                                                                                                                                              | 0                                                                                                                                        | 0                                                                                                                                                    | 1                                                                                                                                                            | 1                                                                                                                                                           | 1                                                                                                                                                            | 1                                                                                                                                                           | 1                                                                                                                                                             | 1                                                                                                                                                                      |
| Vapor Fraction<br>Temperature                                                                                                                                                                | K                    | 0<br>310.0                                                                                                                                                             | 0<br>333.0                                                                                                                                           | 0<br>334.0                                                                                                                                                                      | 1<br>220.0                                                                                                                                                                  | 0.595<br>293.8                                                                                                                                                                     | 0<br>284.3                                                                                                                               | 0<br>296.1                                                                                                                                           | 1<br>398.3                                                                                                                                                   | 1<br>324.8                                                                                                                                                  | 1<br>398.3                                                                                                                                                   | 1<br>324.8                                                                                                                                                  | 1<br>395.4                                                                                                                                                    | 1<br>353.6                                                                                                                                                             |
| Temperature<br>Pressure                                                                                                                                                                      | K<br>kPa             | 0<br>310.0<br>4238.2                                                                                                                                                   | 0<br>333.0<br>4203.7                                                                                                                                 | 0<br>334.0<br>4100.3                                                                                                                                                            | 1<br>220.0<br>446.1                                                                                                                                                         | 0.595<br>293.8<br>928.7                                                                                                                                                            | 0<br>284.3<br>894.2                                                                                                                      | 0<br>296.1<br>1514.8                                                                                                                                 | 1<br>398.3<br>110.3                                                                                                                                          | 1<br>324.8<br>96.5                                                                                                                                          | 1<br>398.3<br>110.3                                                                                                                                          | 1<br>324.8<br>96.5                                                                                                                                          | 1<br>395.4<br>1404.4                                                                                                                                          | 1<br>353.6<br>1390.6                                                                                                                                                   |
| Temperature<br>Pressure<br>Molar Flow                                                                                                                                                        | K                    | 0<br>310.0<br>4238.2<br>4854                                                                                                                                           | 0<br>333.0<br>4203.7<br>4871                                                                                                                         | 0<br>334.0<br>4100.3<br>4867                                                                                                                                                    | 1<br>220.0<br>446.1<br>265                                                                                                                                                  | 0.595<br>293.8<br>928.7<br>4606                                                                                                                                                    | 0<br>284.3<br>894.2<br>1730                                                                                                              | 0<br>296.1<br>1514.8<br>2878                                                                                                                         | 1<br>398.3<br>110.3<br>9044                                                                                                                                  | 1<br>324.8<br>96.5<br>9044                                                                                                                                  | 1<br>398.3<br>110.3<br>9044                                                                                                                                  | 1<br>324.8<br>96.5<br>9044                                                                                                                                  | 1<br>395.4<br>1404.4<br>9044                                                                                                                                  | 1<br>353.6<br>1390.6<br>9044                                                                                                                                           |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow                                                                                                                                           | K<br>kPa             | 0<br>310.0<br>4238.2                                                                                                                                                   | 0<br>333.0<br>4203.7                                                                                                                                 | 0<br>334.0<br>4100.3                                                                                                                                                            | 1<br>220.0<br>446.1                                                                                                                                                         | 0.595<br>293.8<br>928.7                                                                                                                                                            | 0<br>284.3<br>894.2                                                                                                                      | 0<br>296.1<br>1514.8                                                                                                                                 | 1<br>398.3<br>110.3                                                                                                                                          | 1<br>324.8<br>96.5                                                                                                                                          | 1<br>398.3<br>110.3                                                                                                                                          | 1<br>324.8<br>96.5                                                                                                                                          | 1<br>395.4<br>1404.4                                                                                                                                          | 1<br>353.6<br>1390.6                                                                                                                                                   |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions                                                                                                                         | K<br>kPa<br>kgmole/h | 0<br>310.0<br>4238.2<br>4854<br>206227                                                                                                                                 | 0<br>333.0<br>4203.7<br>4871<br>206262                                                                                                               | 0<br>334.0<br>4100.3<br>4867<br>206262                                                                                                                                          | 1     220.0     446.1     265     6663                                                                                                                                      | 0.595<br>293.8<br>928.7<br>4606<br>199601                                                                                                                                          | 0<br>284.3<br>894.2<br>1730<br>72828                                                                                                     | 0<br>296.1<br>1514.8<br>2878<br>126772                                                                                                               | 1<br>398.3<br>110.3<br>9044<br>218394                                                                                                                        | 1<br>324.8<br>96.5<br>9044<br>218394                                                                                                                        | 1<br>398.3<br>110.3<br>9044<br>218394                                                                                                                        | 1<br>324.8<br>96.5<br>9044<br>218394                                                                                                                        | 1<br>395.4<br>1404.4<br>9044<br>218394                                                                                                                        | 1<br>353.6<br>1390.6<br>9044<br>218394                                                                                                                                 |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen                                                                                                             | K<br>kPa<br>kgmole/h | 0<br>310.0<br>4238.2<br>4854<br>206227<br>0.0002                                                                                                                       | 0<br>333.0<br>4203.7<br>4871<br>206262<br>0.0039                                                                                                     | 0<br>334.0<br>4100.3<br>4867<br>206262<br>0.0030                                                                                                                                | 1     220.0     446.1     265     6663     0.0546                                                                                                                           | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000                                                                                                                                | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000                                                                                           | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000                                                                                                     | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375                                                                                                              | 1<br>324.8<br>96.5<br>9044<br>218394<br>0.4375                                                                                                              | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375                                                                                                              | 1<br>324.8<br>96.5<br>9044<br>218394<br>0.4375                                                                                                              | 1<br>395.4<br>1404.4<br>9044<br>218394<br>0.4375                                                                                                              | 1<br>353.6<br>1390.6<br>9044<br>218394<br>0.4375                                                                                                                       |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane                                                                                                  | K<br>kPa<br>kgmole/h | 0<br>310.0<br>4238.2<br>4854<br>206227<br>0.0002<br>0.0114                                                                                                             | 0<br>333.0<br>4203.7<br>4871<br>206262<br>0.0039<br>0.0113                                                                                           | 0<br>334.0<br>4100.3<br>4867<br>206262<br>0.0030<br>0.0113                                                                                                                      | $ \begin{array}{r}1\\220.0\\446.1\\265\\6663\\0.0546\\0.2079\end{array} $                                                                                                   | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000<br>0.0000                                                                                                                      | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000                                                                                 | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000                                                                                           | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292                                                                                                    | $ \begin{array}{r}1\\324.8\\96.5\\9044\\218394\\0.4375\\0.0292\end{array} $                                                                                 | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292                                                                                                    | $ \begin{array}{r}1\\324.8\\96.5\\9044\\218394\\0.4375\\0.0292\end{array} $                                                                                 | 1<br>395.4<br>1404.4<br>9044<br>218394<br>0.4375<br>0.0292                                                                                                    | 1<br>353.6<br>1390.6<br>9044<br>218394<br>0.4375<br>0.0292                                                                                                             |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene                                                                                      | K<br>kPa<br>kgmole/h | 0<br>310.0<br>4238.2<br>4854<br>206227<br>0.0002<br>0.0114<br>0.0146                                                                                                   | 0<br>333.0<br>4203.7<br>4871<br>206262<br>0.0039<br>0.0113<br>0.0145                                                                                 | 0<br>334.0<br>4100.3<br>4867<br>206262<br>0.0030<br>0.0113<br>0.0145                                                                                                            | 1<br>220.0<br>446.1<br>265<br>6663<br>0.0546<br>0.2079<br>0.2669                                                                                                            | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000<br>0.0000<br>0.0000                                                                                                            | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000                                                                       | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000                                                                                 | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090                                                                                          | 1<br>324.8<br>96.5<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090                                                                                          | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090                                                                                          | 1<br>324.8<br>96.5<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090                                                                                          | 1<br>395.4<br>1404.4<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090                                                                                          | $ \begin{array}{r}1\\353.6\\1390.6\\9044\\218394\\0.4375\\0.0292\\0.0090\end{array} $                                                                                  |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene<br>Ethane                                                                            | K<br>kPa<br>kgmole/h | 0<br>310.0<br>4238.2<br>4854<br>206227<br>0.0002<br>0.0114<br>0.0146<br>0.0257                                                                                         | 0<br>333.0<br>4203.7<br>4871<br>206262<br>0.0039<br>0.0113<br>0.0145<br>0.0256                                                                       | 0<br>334.0<br>4100.3<br>4867<br>206262<br>0.0030<br>0.0113<br>0.0145<br>0.0256                                                                                                  | 1<br>220.0<br>446.1<br>265<br>6663<br>0.0546<br>0.2079<br>0.2669<br>0.4689                                                                                                  | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                  | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                             | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                       | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146                                                                                | $ \begin{array}{c} 1\\324.8\\96.5\\9044\\218394\\0.4375\\0.0292\\0.0090\\0.0146\end{array} $                                                                | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146                                                                                | $ \begin{array}{c} 1\\324.8\\96.5\\9044\\218394\\0.4375\\0.0292\\0.0090\\0.0146\end{array} $                                                                | 1<br>395.4<br>1404.4<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146                                                                                | $ \begin{array}{c} 1\\353.6\\1390.6\\9044\\218394\\0.4375\\0.0292\\0.0090\\0.0146\end{array} $                                                                         |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene<br>Ethane<br>Propene                                                                 | K<br>kPa<br>kgmole/h | 0<br>310.0<br>4238.2<br>4854<br>206227<br>0.0002<br>0.0114<br>0.0146<br>0.0257<br>0.3534                                                                               | 0<br>333.0<br>4203.7<br>4871<br>206262<br>0.0039<br>0.0113<br>0.0145<br>0.0256<br>0.3521                                                             | 0<br>334.0<br>4100.3<br>4867<br>206262<br>0.0030<br>0.0113<br>0.0145<br>0.0256<br>0.3533                                                                                        | 1<br>220.0<br>446.1<br>265<br>6663<br>0.0546<br>0.2079<br>0.2669<br>0.4689<br>0.0015                                                                                        | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.3854                                                                              | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.9947                                                   | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0223                                                   | $ \begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ \end{array} $                                            | $ \begin{array}{c} 1\\324.8\\96.5\\9044\\218394\\0.4375\\0.0292\\0.0090\\0.0146\\0.1901\end{array} $                                                        | $ \begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ \end{array} $                                            | $ \begin{array}{c} 1\\324.8\\96.5\\9044\\218394\\0.4375\\0.0292\\0.0090\\0.0146\\0.1901\end{array} $                                                        | $ \begin{array}{c} 1\\ 395.4\\ 1404.4\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ \end{array} $                                            | $ \begin{array}{c} 1\\353.6\\1390.6\\9044\\218394\\0.4375\\0.0292\\0.0090\\0.0146\\0.1901\end{array} $                                                                 |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene<br>Ethane<br>Propene<br>Propane                                                      | K<br>kPa<br>kgmole/h | 0<br>310.0<br>4238.2<br>4854<br>206227<br>0.0002<br>0.0114<br>0.0146<br>0.0257<br>0.3534<br>0.5930                                                                     | 0<br>333.0<br>4203.7<br>4871<br>206262<br>0.0039<br>0.0113<br>0.0145<br>0.0256<br>0.3521<br>0.5908                                                   | 0<br>334.0<br>4100.3<br>4867<br>206262<br>0.0030<br>0.0113<br>0.0145<br>0.0256<br>0.3533<br>0.5914                                                                              | 1<br>220.0<br>446.1<br>265<br>6663<br>0.0546<br>0.2079<br>0.2669<br>0.4689<br>0.0015<br>0.0003                                                                              | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.3854<br>0.6141                                                                    | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.9947<br>0.0052                               | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0223<br>0.9776                                         | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187                                                            | 1<br>324.8<br>96.5<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187                                                            | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187                                                            | $ \begin{array}{c} 1\\324.8\\96.5\\9044\\218394\\0.4375\\0.0292\\0.0090\\0.0146\\0.1901\\0.3187\end{array} $                                                | 1<br>395.4<br>1404.4<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187                                                            | 1<br>353.6<br>1390.6<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187                                                                     |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene<br>Ethane<br>Propene<br>Propane<br>Propadiene                                        | K<br>kPa<br>kgmole/h | 0<br>310.0<br>4238.2<br>4854<br>206227<br>0.0002<br>0.0114<br>0.0146<br>0.0257<br>0.3534<br>0.5930<br>0.0005                                                           | 0<br>333.0<br>4203.7<br>4871<br>206262<br>0.0039<br>0.0113<br>0.0145<br>0.0256<br>0.3521<br>0.5908<br>0.0005                                         | 0<br>334.0<br>4100.3<br>4867<br>206262<br>0.0030<br>0.0113<br>0.0145<br>0.0256<br>0.3533<br>0.5914<br>0.0000                                                                    | 1<br>220.0<br>446.1<br>265<br>6663<br>0.0546<br>0.2079<br>0.2669<br>0.4689<br>0.0015<br>0.0003<br>0.0000                                                                    | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.3854<br>0.6141<br>0.0000                                                          | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.9947<br>0.0052<br>0.0000                     | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0223<br>0.9776<br>0.0000                               | $ \begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ \end{array} $                          | $\begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ \end{array}$                            | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187<br>0.0002                                                  | $\begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002 \end{array}$                              | $\begin{array}{c} 1\\ 395.4\\ 1404.4\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002 \end{array}$                              | $ \begin{array}{c} 1\\353.6\\1390.6\\9044\\218394\\0.4375\\0.0292\\0.0090\\0.0146\\0.1901\\0.3187\\0.0002\end{array} $                                                 |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene<br>Ethane<br>Propene<br>Propane<br>Propadiene<br>m-Acetylene                         | K<br>kPa<br>kgmole/h | $\begin{array}{c} 0\\ 310.0\\ 4238.2\\ 4854\\ 206227\\ 0.0002\\ 0.0114\\ 0.0146\\ 0.0257\\ 0.3534\\ 0.5930\\ 0.0005\\ 0.0005\\ \end{array}$                            | 0<br>333.0<br>4203.7<br>4871<br>206262<br>0.0039<br>0.0113<br>0.0145<br>0.0256<br>0.3521<br>0.5908<br>0.0005<br>0.0005                               | 0<br>334.0<br>4100.3<br>4867<br>206262<br>0.0030<br>0.0113<br>0.0145<br>0.0256<br>0.3533<br>0.5914<br>0.0000<br>0.0000                                                          | $\begin{array}{c} 1\\ 220.0\\ 446.1\\ 265\\ 6663\\ 0.0546\\ 0.2079\\ 0.2669\\ 0.4689\\ 0.0015\\ 0.0003\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$                            | $\begin{array}{c} 0.595\\ 293.8\\ 928.7\\ 4606\\ 199601\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0001\\ 0.3854\\ 0.6141\\ 0.0000\\ 0.0000\\ \end{array}$                                     | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.9947<br>0.0052<br>0.0000<br>0.0000                     | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0223<br>0.9776<br>0.0000<br>0.0000                               | $\begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ \end{array}$                   | $\begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ \end{array}$                   | $\begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ \end{array}$                   | $\begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ \end{array}$                   | $\begin{array}{c} 1\\ 395.4\\ 1404.4\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ \end{array}$                   | $\begin{array}{c} 1\\ 353.6\\ 1390.6\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ \end{array}$                            |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene<br>Ethylene<br>Propene<br>Propane<br>Propadiene<br>m-Acetylene<br>i-Butane           | K<br>kPa<br>kgmole/h | $\begin{array}{c} 0\\ 310.0\\ 4238.2\\ 4854\\ 206227\\ 0.0002\\ 0.0114\\ 0.0146\\ 0.0257\\ 0.3534\\ 0.5930\\ 0.0005\\ 0.0005\\ 0.0001\\ \end{array}$                   | 0<br>333.0<br>4203.7<br>4871<br>206262<br>0.0039<br>0.0113<br>0.0145<br>0.0256<br>0.3521<br>0.5908<br>0.0005<br>0.0005<br>0.0005                     | 0<br>334.0<br>4100.3<br>4867<br>206262<br>0.0030<br>0.0113<br>0.0145<br>0.0256<br>0.3533<br>0.5914<br>0.0000<br>0.0000<br>0.0001                                                | $\begin{array}{c} 1\\ 220.0\\ 446.1\\ 265\\ 6663\\ 0.0546\\ 0.2079\\ 0.2669\\ 0.4689\\ 0.0015\\ 0.0003\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$                   | $\begin{array}{c} 0.595\\ 293.8\\ 928.7\\ 4606\\ 199601\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0001\\ 0.3854\\ 0.6141\\ 0.0000\\ 0.0000\\ 0.0001\\ \end{array}$                            | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.9947<br>0.0052<br>0.0000<br>0.0000<br>0.0000 | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                     | $\begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1\\ 395.4\\ 1404.4\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1\\ 353.6\\ 1390.6\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$                   |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene<br>Ethane<br>Propene<br>Propane<br>Propadiene<br>m-Acetylene<br>i-Butane<br>n-Butane | K<br>kPa<br>kgmole/h | $\begin{array}{c} 0\\ 310.0\\ 4238.2\\ 4854\\ 206227\\ 0.0002\\ 0.0114\\ 0.0146\\ 0.0257\\ 0.3534\\ 0.5930\\ 0.0005\\ 0.0005\\ 0.0005\\ 0.0001\\ 0.0000\\ \end{array}$ | 0<br>333.0<br>4203.7<br>4871<br>206262<br>0.0039<br>0.0113<br>0.0145<br>0.0256<br>0.3521<br>0.5908<br>0.0005<br>0.0005<br>0.0005<br>0.0001<br>0.0000 | $\begin{array}{c} 0\\ 334.0\\ 4100.3\\ 4867\\ 206262\\ 0.0030\\ 0.0113\\ 0.0145\\ 0.0256\\ 0.3533\\ 0.5914\\ 0.0000\\ 0.0000\\ 0.0001\\ 0.0000\\ 0.0001\\ 0.0000\\ \end{array}$ | $\begin{array}{c} 1\\ 220.0\\ 446.1\\ 265\\ 6663\\ 0.0546\\ 0.2079\\ 0.2669\\ 0.4689\\ 0.0015\\ 0.0003\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$ | $\begin{array}{c} 0.595\\ 293.8\\ 928.7\\ 4606\\ 199601\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0001\\ 0.3854\\ 0.6141\\ 0.0000\\ 0.0000\\ 0.0001\\ 0.0000\\ 0.0001\\ 0.0000\\ \end{array}$ | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000           | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.0000 | $\begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ 0.0000\\ \end{array}$ | $\begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ 0.0000\\ \end{array}$ | $\begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ 0.0000\\ \end{array}$ | $\begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ 0.0000\\ \end{array}$ | $\begin{array}{c} 1\\ 395.4\\ 1404.4\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ 0.0000\\ \end{array}$ | $\begin{array}{c} 1\\ 353.6\\ 1390.6\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0001\\ 0.0000\\ \end{array}$ |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene<br>Ethylene<br>Propene<br>Propane<br>Propadiene<br>m-Acetylene<br>i-Butane           | K<br>kPa<br>kgmole/h | $\begin{array}{c} 0\\ 310.0\\ 4238.2\\ 4854\\ 206227\\ 0.0002\\ 0.0114\\ 0.0146\\ 0.0257\\ 0.3534\\ 0.5930\\ 0.0005\\ 0.0005\\ 0.0001\\ \end{array}$                   | 0<br>333.0<br>4203.7<br>4871<br>206262<br>0.0039<br>0.0113<br>0.0145<br>0.0256<br>0.3521<br>0.5908<br>0.0005<br>0.0005<br>0.0005                     | 0<br>334.0<br>4100.3<br>4867<br>206262<br>0.0030<br>0.0113<br>0.0145<br>0.0256<br>0.3533<br>0.5914<br>0.0000<br>0.0000<br>0.0001                                                | $\begin{array}{c} 1\\ 220.0\\ 446.1\\ 265\\ 6663\\ 0.0546\\ 0.2079\\ 0.2669\\ 0.4689\\ 0.0015\\ 0.0003\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$                   | $\begin{array}{c} 0.595\\ 293.8\\ 928.7\\ 4606\\ 199601\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0001\\ 0.3854\\ 0.6141\\ 0.0000\\ 0.0000\\ 0.0001\\ \end{array}$                            | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.9947<br>0.0052<br>0.0000<br>0.0000<br>0.0000 | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                     | $\begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1\\ 395.4\\ 1404.4\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c}1\\353.6\\1390.6\\9044\\218394\end{array}\\0.4375\\0.0292\\0.0090\\0.0146\\0.1901\\0.3187\\0.0002\\0.0002\\0.0001\end{array}$                         |

 Table 6: Stream Summary for the Integrated Case

### 4.4.2 Integrated Case with Intensification

After heat integration, the cost of LP Steam makes up for more than 50% of the total annualized utility costs (Table 4). If a reduction in the large steam consumption of the PP Splitter reboiler can be achieved, it would result in tremendous energy savings. This is confirmed by analyzing the Grand Composite Curves generated from the pinch analysis of the base case and integrated and intensified case scenarios shown in *Figure 5*.

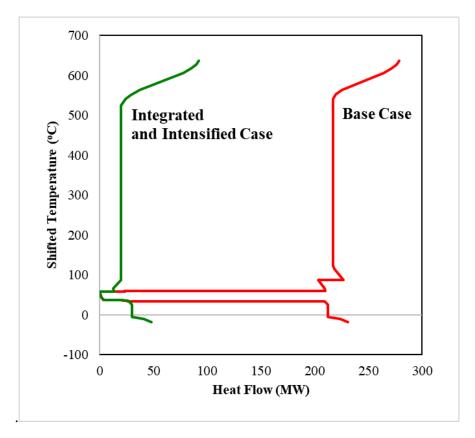



Figure 5: Comparison of Grand Composite Curves of Base Case and Integrated Case with Intensification

A large energy requirement can be observed around the 60°C mark on either side of the pinch. This loop on the GCC presents the opportunity of introducing a heat pump (Dumont et al., 2010, El-Halwagi, 2017d). There are many types of heat pumps used in the industry, such as

electrically driven heat pumps and absorption driven heat pumps. However, in distillation, the most common type of heat pump utilized is the compression system (HPC)

The overhead vapor is first compressed in the heat pump compressor and the discharge is used to reboil the column bottoms liquid. In the PP Splitter, the difference between the boiling points of propane and propylene is very small. This makes it an ideal candidate for HPC as the compression ratio required to attain adequate temperature approach in the reboiler-condenser would be small. This would limit the electricity consumption in the compressor and make the process more viable.

Annakou and Mizsey (1995) discuss various heat pump compression schemes that can be employed in the PP Splitter design. A double compressor scheme has been used in this study where the first stage discharge is used to reboil the column bottoms, while the second stage discharge is condensed in a water-cooled condenser to provide operational flexibility in the process in the event of any upsets. *Figure 6*: Process Flow Diagram for Integrated and Intensified Case with the addition of the Heat Pump Compression (HPC) system shows the simplified process flow diagram with the HPC installed along with the integrated scheme discussed previously.

27

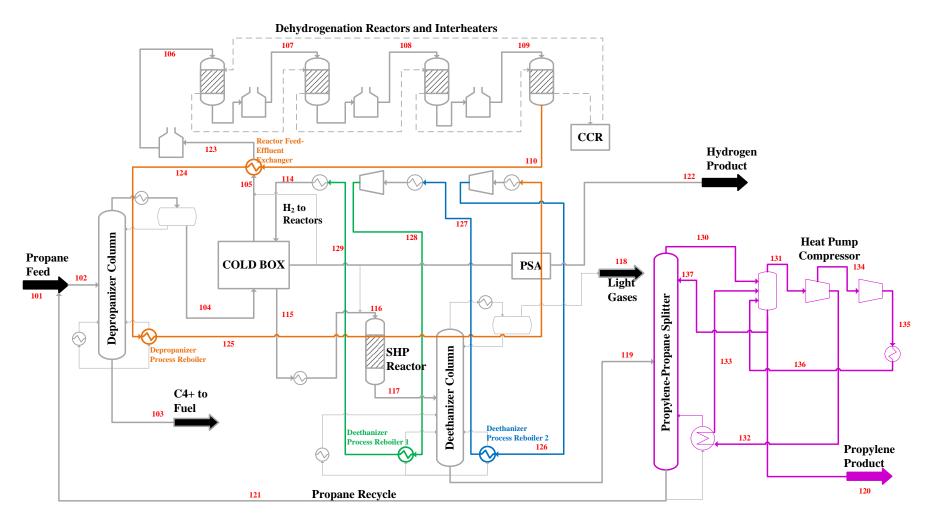



Figure 6: Process Flow Diagram for Integrated and Intensified Case with the addition of the Heat Pump Compression (HPC) system

|                                                                                                                                                                                    | 101                                                                                                                                                                       | 102                                                                                                                                      | 103                                                                                                                                                  | 104                                                                                                                                                          | 105                                                                                                                                                  | 106                                                                                                                                                          | 107                                                                                                                                                  | 108                                                                                                                                                           | 109                                                                                                                                                           | 110                                                                                                                                                                                                | 114                                                                                                                                                                                                | 115                                                                                                                                                                                                 | 116                                                                                                                                                                                                           | 117                                                                                                                                                                                              | 118                                                                                                                                                                                         | 119                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vapor Fraction                                                                                                                                                                     | 0                                                                                                                                                                         | 0                                                                                                                                        | 0                                                                                                                                                    | 0                                                                                                                                                            | 1                                                                                                                                                    | 1                                                                                                                                                            | 1                                                                                                                                                    | 1                                                                                                                                                             | 1                                                                                                                                                             | 1                                                                                                                                                                                                  | 1                                                                                                                                                                                                  | 1                                                                                                                                                                                                   | 1                                                                                                                                                                                                             | 0                                                                                                                                                                                                | 0                                                                                                                                                                                           | 0                                                                                                                                                                                                         |
| <b>T</b> emperature                                                                                                                                                                | 313.2                                                                                                                                                                     | 302.5                                                                                                                                    | 324.1                                                                                                                                                | 316.1                                                                                                                                                        | 302.2                                                                                                                                                | 873.1                                                                                                                                                        | 883.2                                                                                                                                                | 893.2                                                                                                                                                         | 893.2                                                                                                                                                         | 840.8                                                                                                                                                                                              | 403.9                                                                                                                                                                                              | 395.4                                                                                                                                                                                               | 306.5                                                                                                                                                                                                         | 310.0                                                                                                                                                                                            | 333.0                                                                                                                                                                                       | 334.0                                                                                                                                                                                                     |
| Pressure                                                                                                                                                                           | 6894.8                                                                                                                                                                    | 1514.8                                                                                                                                   | 1641.0                                                                                                                                               | 1772.0                                                                                                                                                       | 475.7                                                                                                                                                | 379.2                                                                                                                                                        | 296.5                                                                                                                                                | 215.8                                                                                                                                                         | 137.9                                                                                                                                                         | 124.1                                                                                                                                                                                              | 404.7                                                                                                                                                                                              | 1404.4                                                                                                                                                                                              | 1376.9                                                                                                                                                                                                        | 4238.2                                                                                                                                                                                           | 4203.7                                                                                                                                                                                      | 4100.3                                                                                                                                                                                                    |
| Molar Flow                                                                                                                                                                         | 1950                                                                                                                                                                      | 4827                                                                                                                                     | 6                                                                                                                                                    | 4822                                                                                                                                                         | 7291                                                                                                                                                 | 7291                                                                                                                                                         | 7736                                                                                                                                                 | 8181                                                                                                                                                          | 8615                                                                                                                                                          | 9044                                                                                                                                                                                               | 9044                                                                                                                                                                                               | 9044                                                                                                                                                                                                | 9044                                                                                                                                                                                                          | 4854                                                                                                                                                                                             | 4871                                                                                                                                                                                        | 4867                                                                                                                                                                                                      |
| Mass Flow                                                                                                                                                                          | 85049                                                                                                                                                                     | 211822                                                                                                                                   | 274                                                                                                                                                  | 211548                                                                                                                                                       | 218391                                                                                                                                               | 218391                                                                                                                                                       | 218390                                                                                                                                               | 218390                                                                                                                                                        | 218390                                                                                                                                                        | 218390                                                                                                                                                                                             | 218394                                                                                                                                                                                             | 218394                                                                                                                                                                                              | 218394                                                                                                                                                                                                        | 206227                                                                                                                                                                                           | 206262                                                                                                                                                                                      | 206262                                                                                                                                                                                                    |
| Mole Fractions                                                                                                                                                                     |                                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                              |                                                                                                                                                      |                                                                                                                                                              |                                                                                                                                                      |                                                                                                                                                               |                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                                                                                                           |
| Hydrogen                                                                                                                                                                           | 0.0000                                                                                                                                                                    | 0.0000                                                                                                                                   | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                       | 0.3219                                                                                                                                               | 0.3219                                                                                                                                                       | 0.3555                                                                                                                                               | 0.3859                                                                                                                                                        | 0.4129                                                                                                                                                        | 0.4376                                                                                                                                                                                             | 0.4375                                                                                                                                                                                             | 0.4375                                                                                                                                                                                              | 0.4375                                                                                                                                                                                                        | 0.0002                                                                                                                                                                                           | 0.0039                                                                                                                                                                                      | 0.0030                                                                                                                                                                                                    |
| Methane                                                                                                                                                                            | 0.0027                                                                                                                                                                    | 0.0011                                                                                                                                   | 0.0000                                                                                                                                               | 0.0011                                                                                                                                                       | 0.0161                                                                                                                                               | 0.0161                                                                                                                                                       | 0.0208                                                                                                                                               | 0.0244                                                                                                                                                        | 0.0272                                                                                                                                                        | 0.0292                                                                                                                                                                                             | 0.0292                                                                                                                                                                                             | 0.0292                                                                                                                                                                                              | 0.0292                                                                                                                                                                                                        | 0.0114                                                                                                                                                                                           | 0.0113                                                                                                                                                                                      | 0.0113                                                                                                                                                                                                    |
| Ethylene                                                                                                                                                                           | 0.0001                                                                                                                                                                    | 0.0000                                                                                                                                   | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                       | 0.0007                                                                                                                                               | 0.0007                                                                                                                                                       | 0.0035                                                                                                                                               | 0.0057                                                                                                                                                        | 0.0075                                                                                                                                                        | 0.0090                                                                                                                                                                                             | 0.0090                                                                                                                                                                                             | 0.0090                                                                                                                                                                                              | 0.0090                                                                                                                                                                                                        | 0.0146                                                                                                                                                                                           | 0.0145                                                                                                                                                                                      | 0.0145                                                                                                                                                                                                    |
| Ethane                                                                                                                                                                             | 0.0290                                                                                                                                                                    | 0.0117                                                                                                                                   | 0.0000                                                                                                                                               | 0.0117                                                                                                                                                       | 0.0082                                                                                                                                               | 0.0082                                                                                                                                                       | 0.0105                                                                                                                                               | 0.0123                                                                                                                                                        | 0.0136                                                                                                                                                        | 0.0146                                                                                                                                                                                             | 0.0146                                                                                                                                                                                             | 0.0146                                                                                                                                                                                              | 0.0146                                                                                                                                                                                                        | 0.0257                                                                                                                                                                                           | 0.0256                                                                                                                                                                                      | 0.0256                                                                                                                                                                                                    |
| Propene                                                                                                                                                                            | 0.0000                                                                                                                                                                    | 0.0133                                                                                                                                   | 0.0000                                                                                                                                               | 0.0133                                                                                                                                                       | 0.0089                                                                                                                                               | 0.0089                                                                                                                                                       | 0.0628                                                                                                                                               | 0.1107                                                                                                                                                        | 0.1526                                                                                                                                                        | 0.1901                                                                                                                                                                                             | 0.1901                                                                                                                                                                                             | 0.1901                                                                                                                                                                                              | 0.1901                                                                                                                                                                                                        | 0.3534                                                                                                                                                                                           | 0.3521                                                                                                                                                                                      | 0.3533                                                                                                                                                                                                    |
| Propane                                                                                                                                                                            | 0.9675                                                                                                                                                                    | 0.9735                                                                                                                                   | 0.9069                                                                                                                                               | 0.9737                                                                                                                                                       | 0.6440                                                                                                                                               | 0.6440                                                                                                                                                       | 0.5468                                                                                                                                               | 0.4607                                                                                                                                                        | 0.3855                                                                                                                                                        | 0.3187                                                                                                                                                                                             | 0.3187                                                                                                                                                                                             | 0.3187                                                                                                                                                                                              | 0.3187                                                                                                                                                                                                        | 0.5930                                                                                                                                                                                           | 0.5908                                                                                                                                                                                      | 0.5914                                                                                                                                                                                                    |
| Propadiene                                                                                                                                                                         | 0.0000                                                                                                                                                                    | 0.0000                                                                                                                                   | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                       | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                       | 0.0000                                                                                                                                               | 0.0001                                                                                                                                                        | 0.0002                                                                                                                                                        | 0.0002                                                                                                                                                                                             | 0.0002                                                                                                                                                                                             | 0.0002                                                                                                                                                                                              | 0.0002                                                                                                                                                                                                        | 0.0005                                                                                                                                                                                           | 0.0005                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                    |
| M-Acetylene                                                                                                                                                                        | 0.0000                                                                                                                                                                    | 0.0000                                                                                                                                   | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                       | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                       | 0.0000                                                                                                                                               | 0.0001                                                                                                                                                        | 0.0002                                                                                                                                                        | 0.0002                                                                                                                                                                                             | 0.0002                                                                                                                                                                                             | 0.0002                                                                                                                                                                                              | 0.0002                                                                                                                                                                                                        | 0.0005                                                                                                                                                                                           | 0.0005                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                    |
| i-Butane                                                                                                                                                                           | 0.0006                                                                                                                                                                    | 0.0003                                                                                                                                   | 0.0856                                                                                                                                               | 0.0001                                                                                                                                                       | 0.0001                                                                                                                                               | 0.0001                                                                                                                                                       | 0.0001                                                                                                                                               | 0.0001                                                                                                                                                        | 0.0001                                                                                                                                                        | 0.0001                                                                                                                                                                                             | 0.0001                                                                                                                                                                                             | 0.0001                                                                                                                                                                                              | 0.0001                                                                                                                                                                                                        | 0.0001                                                                                                                                                                                           | 0.0001                                                                                                                                                                                      | 0.0001                                                                                                                                                                                                    |
| n-Butane                                                                                                                                                                           | 0.0000                                                                                                                                                                    | 0.0000                                                                                                                                   | 0.0047                                                                                                                                               | 0.0000                                                                                                                                                       | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                       | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                        | 0.0000                                                                                                                                                        | 0.0000                                                                                                                                                                                             | 0.0000                                                                                                                                                                                             | 0.0000                                                                                                                                                                                              | 0.0000                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                           | 0.0000                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                    |
| Benzene                                                                                                                                                                            | 0.0000                                                                                                                                                                    | 0.0000                                                                                                                                   | 0.0024                                                                                                                                               | 0.0000                                                                                                                                                       | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                       | 0.0000                                                                                                                                               | 0.0001                                                                                                                                                        | 0.0002                                                                                                                                                        | 0.0002                                                                                                                                                                                             | 0.0002                                                                                                                                                                                             | 0.0002                                                                                                                                                                                              | 0.0002                                                                                                                                                                                                        | 0.0005                                                                                                                                                                                           | 0.0005                                                                                                                                                                                      | 0.0005                                                                                                                                                                                                    |
| Toluene                                                                                                                                                                            | 0.0000                                                                                                                                                                    | 0.0000                                                                                                                                   | 0.0003                                                                                                                                               | 0.0000                                                                                                                                                       | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                       | 0.0000                                                                                                                                               | 0.0000                                                                                                                                                        | 0.0001                                                                                                                                                        | 0.0001                                                                                                                                                                                             | 0.0001                                                                                                                                                                                             | 0.0001                                                                                                                                                                                              | 0.0001                                                                                                                                                                                                        | 0.0002                                                                                                                                                                                           | 0.0002                                                                                                                                                                                      | 0.0002                                                                                                                                                                                                    |
|                                                                                                                                                                                    |                                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                              |                                                                                                                                                      |                                                                                                                                                              |                                                                                                                                                      |                                                                                                                                                               |                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                                                                                                           |
|                                                                                                                                                                                    | 121                                                                                                                                                                       | 122                                                                                                                                      | 123                                                                                                                                                  | 124                                                                                                                                                          | 125                                                                                                                                                  | 126                                                                                                                                                          | 127                                                                                                                                                  | 128                                                                                                                                                           | 129                                                                                                                                                           | 130                                                                                                                                                                                                | 131                                                                                                                                                                                                | 132                                                                                                                                                                                                 | 133                                                                                                                                                                                                           | 134                                                                                                                                                                                              | 135                                                                                                                                                                                         | 136                                                                                                                                                                                                       |
| Vapor Fraction                                                                                                                                                                     | <b>121</b><br>0.595                                                                                                                                                       | 0                                                                                                                                        | <b>123</b><br>0                                                                                                                                      | <b>124</b>                                                                                                                                                   | <b>125</b>                                                                                                                                           | <b>126</b>                                                                                                                                                   | <b>127</b>                                                                                                                                           | <b>128</b>                                                                                                                                                    | <b>129</b>                                                                                                                                                    | <b>130</b><br>1.000                                                                                                                                                                                | <b>131</b><br>1.000                                                                                                                                                                                | <b>132</b><br>1.000                                                                                                                                                                                 | <b>133</b><br>0.000                                                                                                                                                                                           | <b>134</b><br>1.000                                                                                                                                                                              | <b>135</b><br>1.000                                                                                                                                                                         | <b>136</b><br>0.000                                                                                                                                                                                       |
| Vapor Fraction<br>Temperature                                                                                                                                                      |                                                                                                                                                                           |                                                                                                                                          | -                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                      | -                                                                                                                                                            |                                                                                                                                                      | 1<br>395.4                                                                                                                                                    |                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                                                                                                                    | -                                                                                                                                                                                                   |                                                                                                                                                                                                               | -                                                                                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                                                                                           |
| Temperature<br>Pressure                                                                                                                                                            | 0.595<br>293.8<br>928.7                                                                                                                                                   | 0<br>284.3<br>894.2                                                                                                                      | 0<br>296.1<br>1514.8                                                                                                                                 | 1<br>398.3<br>110.3                                                                                                                                          | 1<br>324.8<br>96.5                                                                                                                                   | 1<br>398.3<br>110.3                                                                                                                                          | 1<br>324.8<br>96.5                                                                                                                                   | 1<br>395.4<br>1404.4                                                                                                                                          | 1<br>353.6<br>1390.6                                                                                                                                          | 1.000<br>284.9<br>811.5                                                                                                                                                                            | 1.000<br>284.0<br>790.8                                                                                                                                                                            | 1.000<br>312.2<br>1289.2                                                                                                                                                                            | 0.000<br>302.1<br>1268.5                                                                                                                                                                                      | 1.000                                                                                                                                                                                            | 1.000                                                                                                                                                                                       | 0.000<br>306.5<br>1409.6                                                                                                                                                                                  |
| Temperature                                                                                                                                                                        | 0.595<br>293.8                                                                                                                                                            | 0<br>284.3<br>894.2<br>1730                                                                                                              | 0<br>296.1<br>1514.8<br>2878                                                                                                                         | 1<br>398.3<br>110.3<br>9044                                                                                                                                  | 1<br>324.8<br>96.5<br>9044                                                                                                                           | 1<br>398.3<br>110.3<br>9044                                                                                                                                  | 1<br>324.8<br>96.5<br>9044                                                                                                                           | 1<br>395.4<br>1404.4<br>9044                                                                                                                                  | 1<br>353.6<br>1390.6<br>9044                                                                                                                                  | 1.000<br>284.9<br>811.5<br>37956                                                                                                                                                                   | 1.000<br>284.0<br>790.8<br>38375                                                                                                                                                                   | 1.000<br>312.2                                                                                                                                                                                      | 0.000<br>302.1                                                                                                                                                                                                | 1.000<br>312.2                                                                                                                                                                                   | 1.000<br>318.9                                                                                                                                                                              | 0.000<br>306.5<br>1409.6<br>1450                                                                                                                                                                          |
| Temperature<br>Pressure                                                                                                                                                            | 0.595<br>293.8<br>928.7                                                                                                                                                   | 0<br>284.3<br>894.2                                                                                                                      | 0<br>296.1<br>1514.8                                                                                                                                 | 1<br>398.3<br>110.3                                                                                                                                          | 1<br>324.8<br>96.5                                                                                                                                   | 1<br>398.3<br>110.3                                                                                                                                          | 1<br>324.8<br>96.5                                                                                                                                   | 1<br>395.4<br>1404.4                                                                                                                                          | 1<br>353.6<br>1390.6                                                                                                                                          | 1.000<br>284.9<br>811.5                                                                                                                                                                            | 1.000<br>284.0<br>790.8                                                                                                                                                                            | 1.000<br>312.2<br>1289.2                                                                                                                                                                            | 0.000<br>302.1<br>1268.5                                                                                                                                                                                      | 1.000<br>312.2<br>1289.2                                                                                                                                                                         | 1.000<br>318.9<br>1444.1                                                                                                                                                                    | 0.000<br>306.5<br>1409.6                                                                                                                                                                                  |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions                                                                                                               | 0.595<br>293.8<br>928.7<br>4606<br>199601                                                                                                                                 | 0<br>284.3<br>894.2<br>1730<br>72828                                                                                                     | 0<br>296.1<br>1514.8<br>2878<br>126772                                                                                                               | 1<br>398.3<br>110.3<br>9044<br>218394                                                                                                                        | 1<br>324.8<br>96.5<br>9044<br>218394                                                                                                                 | 1<br>398.3<br>110.3<br>9044<br>218394                                                                                                                        | 1<br>324.8<br>96.5<br>9044<br>218394                                                                                                                 | 1<br>395.4<br>1404.4<br>9044<br>218394                                                                                                                        | 1<br>353.6<br>1390.6<br>9044<br>218394                                                                                                                        | 1.000<br>284.9<br>811.5<br>37956<br>1597439                                                                                                                                                        | 1.000<br>284.0<br>790.8<br>38375<br>1615089                                                                                                                                                        | 1.000<br>312.2<br>1289.2<br>36925<br>1554050                                                                                                                                                        | $\begin{array}{c} 0.000\\ 302.1\\ 1268.5\\ 36925\\ 1554050 \end{array}$                                                                                                                                       | 1.000<br>312.2<br>1289.2<br>1450<br>61039                                                                                                                                                        | 1.000<br>318.9<br>1444.1<br>1450<br>61039                                                                                                                                                   | 0.000<br>306.5<br>1409.6<br>1450<br>61039                                                                                                                                                                 |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen                                                                                                   | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000                                                                                                                       | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000                                                                                           | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000                                                                                                     | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375                                                                                                              | 1<br>324.8<br>96.5<br>9044<br>218394<br>0.4375                                                                                                       | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375                                                                                                              | 1<br>324.8<br>96.5<br>9044<br>218394<br>0.4375                                                                                                       | 1<br>395.4<br>1404.4<br>9044<br>218394<br>0.4375                                                                                                              | 1<br>353.6<br>1390.6<br>9044<br>218394<br>0.4375                                                                                                              | 1.000<br>284.9<br>811.5<br>37956<br>1597439<br>0.0000                                                                                                                                              | 1.000<br>284.0<br>790.8<br>38375<br>1615089<br>0.0000                                                                                                                                              | 1.000<br>312.2<br>1289.2<br>36925<br>1554050<br>0.0000                                                                                                                                              | $\begin{array}{c} 0.000\\ 302.1\\ 1268.5\\ 36925\\ 1554050\\ 0.0000 \end{array}$                                                                                                                              | $ \begin{array}{r} 1.000\\ 312.2\\ 1289.2\\ 1450\\ 61039\\ 0.0000\\ \end{array} $                                                                                                                | $ \begin{array}{r} 1.000\\ 318.9\\ 1444.1\\ 1450\\ 61039\\ 0.0000\\ \end{array} $                                                                                                           | 0.000<br>306.5<br>1409.6<br>1450<br>61039<br>0.0000                                                                                                                                                       |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane                                                                                        | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000<br>0.0000                                                                                                             | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000                                                                                 | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000                                                                                           | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292                                                                                                    | 1<br>324.8<br>96.5<br>9044<br>218394<br>0.4375<br>0.0292                                                                                             | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292                                                                                                    | 1<br>324.8<br>96.5<br>9044<br>218394<br>0.4375<br>0.0292                                                                                             | 1<br>395.4<br>1404.4<br>9044<br>218394<br>0.4375<br>0.0292                                                                                                    | 1<br>353.6<br>1390.6<br>9044<br>218394<br>0.4375<br>0.0292                                                                                                    | 1.000<br>284.9<br>811.5<br>37956<br>1597439<br>0.0000<br>0.0000                                                                                                                                    | $ \begin{array}{r} 1.000\\ 284.0\\ 790.8\\ 38375\\ 1615089\\ 0.0000\\ 0.0000\\ \end{array} $                                                                                                       | $\begin{array}{c} 1.000\\ 312.2\\ 1289.2\\ 36925\\ 1554050\\ 0.0000\\ 0.0000\\ \end{array}$                                                                                                         | 0.000<br>302.1<br>1268.5<br>36925<br>1554050<br>0.0000<br>0.0000                                                                                                                                              | 1.000<br>312.2<br>1289.2<br>1450<br>61039<br>0.0000<br>0.0000                                                                                                                                    | $ \begin{array}{r} 1.000\\ 318.9\\ 1444.1\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ \end{array} $                                                                                                  | $\begin{array}{c} 0.000\\ 306.5\\ 1409.6\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ \end{array}$                                                                                                                  |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene                                                                            | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000<br>0.0000<br>0.0000                                                                                                   | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000                                                                       | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000                                                                                 | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090                                                                                          | 1<br>324.8<br>96.5<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090                                                                                   | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090                                                                                          | 1<br>324.8<br>96.5<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090                                                                                   | 1<br>395.4<br>1404.4<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090                                                                                          | 1<br>353.6<br>1390.6<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090                                                                                          | 1.000<br>284.9<br>811.5<br>37956<br>1597439<br>0.0000<br>0.0000<br>0.0000                                                                                                                          | 1.000<br>284.0<br>790.8<br>38375<br>1615089<br>0.0000<br>0.0000<br>0.0000                                                                                                                          | 1.000<br>312.2<br>1289.2<br>36925<br>1554050<br>0.0000<br>0.0000<br>0.0000                                                                                                                          | 0.000<br>302.1<br>1268.5<br>36925<br>1554050<br>0.0000<br>0.0000<br>0.0000                                                                                                                                    | 1.000<br>312.2<br>1289.2<br>1450<br>61039<br>0.0000<br>0.0000<br>0.0000                                                                                                                          | $\begin{array}{c} 1.000\\ 318.9\\ 1444.1\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$                                                                                           | 0.000<br>306.5<br>1409.6<br>1450<br>61039<br>0.0000<br>0.0000<br>0.0000                                                                                                                                   |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane                                                                                        | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                         | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                             | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                       | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146                                                                                | 1<br>324.8<br>96.5<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146                                                                         | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146                                                                                | $ \begin{array}{r}1\\324.8\\96.5\\9044\\218394\\0.4375\\0.0292\\0.0090\\0.0146\end{array} $                                                          | 1<br>395.4<br>1404.4<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146                                                                                | 1<br>353.6<br>1390.6<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146                                                                                | 1.000<br>284.9<br>811.5<br>37956<br>1597439<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                | 1.000<br>284.0<br>790.8<br>38375<br>1615089<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                | 1.000<br>312.2<br>1289.2<br>36925<br>1554050<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                | 0.000<br>302.1<br>1268.5<br>36925<br>1554050<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                          | 1.000<br>312.2<br>1289.2<br>1450<br>61039<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                | $\begin{array}{c} 1.000\\ 318.9\\ 1444.1\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ \end{array}$                                                                         | 0.000<br>306.5<br>1409.6<br>1450<br>61039<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                         |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene                                                                            | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000<br>0.0000<br>0.0000                                                                                                   | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.9947                                         | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0223                                                   | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901                                                                      | $ \begin{array}{r}1\\324.8\\96.5\\9044\\218394\\0.4375\\0.0292\\0.0090\\0.0146\\0.1901\end{array} $                                                  | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901                                                                      | $ \begin{array}{r}1\\324.8\\96.5\\9044\\218394\\0.4375\\0.0292\\0.0090\\0.0146\\0.1901\end{array} $                                                  | $ \begin{array}{c} 1\\ 395.4\\ 1404.4\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ \end{array} $                                            | 1<br>353.6<br>1390.6<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901                                                                      | 1.000<br>284.9<br>811.5<br>37956<br>1597439<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0003<br>0.9950                                                                                            | 1.000<br>284.0<br>790.8<br>38375<br>1615089<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0003<br>0.9950                                                                                            | $\begin{array}{c} 1.000\\ 312.2\\ 1289.2\\ 36925\\ 1554050\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ \end{array}$                                                                              | 0.000<br>302.1<br>1268.5<br>36925<br>1554050<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0003<br>0.9950                                                                                                      | $\begin{array}{c} 1.000\\ 312.2\\ 1289.2\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ \end{array}$                                                                              | $\begin{array}{c} 1.000\\ 318.9\\ 1444.1\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ \end{array}$                                                                | $\begin{array}{c} 0.000\\ 306.5\\ 1409.6\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ \end{array}$                                                                              |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene<br>Ethane                                                                  | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                         | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.9947<br>0.0052                               | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0223<br>0.9776                               | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187                                                            | 1<br>324.8<br>96.5<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187                                                     | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187                                                            | $ \begin{array}{r}1\\324.8\\96.5\\9044\\218394\\0.4375\\0.0292\\0.0090\\0.0146\\0.1901\\0.3187\end{array} $                                          | 1<br>395.4<br>1404.4<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187                                                            | 1<br>353.6<br>1390.6<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187                                                            | $\begin{array}{c} 1.000\\ 284.9\\ 811.5\\ 37956\\ 1597439\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ \end{array}$                                                            | 1.000<br>284.0<br>790.8<br>38375<br>1615089<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                | 1.000<br>312.2<br>1289.2<br>36925<br>1554050<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                | 0.000<br>302.1<br>1268.5<br>36925<br>1554050<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                          | 1.000<br>312.2<br>1289.2<br>1450<br>61039<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                | $\begin{array}{c} 1.000\\ 318.9\\ 1444.1\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ \end{array}$                                                                         | $\begin{array}{c} 0.000\\ 306.5\\ 1409.6\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ \end{array}$                                                                     |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene<br>Ethane<br>Propene                                                       | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.3854<br>0.6141<br>0.0000                                                           | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.9947<br>0.0052<br>0.0000                     | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0223<br>0.9776<br>0.0000                               | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187<br>0.0002                                                  | $ \begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ \end{array} $                   | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187<br>0.0002                                                  | $ \begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ \end{array} $                   | $ \begin{array}{c} 1\\395.4\\1404.4\\9044\\218394\\0.4375\\0.0292\\0.0090\\0.0146\\0.1901\\0.3187\\0.0002\end{array} $                                        | 1<br>353.6<br>1390.6<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187<br>0.0002                                                  | $\begin{array}{c} 1.000\\ 284.9\\ 811.5\\ 37956\\ 1597439\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ \end{array}$                                                   | $\begin{array}{c} 1.000\\ 284.0\\ 790.8\\ 38375\\ 1615089\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ \end{array}$                                                            | $\begin{array}{c} 1.000\\ 312.2\\ 1289.2\\ 36925\\ 1554050\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ \end{array}$                                                            | 0.000<br>302.1<br>1268.5<br>36925<br>1554050<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0003<br>0.9950<br>0.0047<br>0.0000                                                                                  | $\begin{array}{c} 1.000\\ 312.2\\ 1289.2\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ \end{array}$                                                            | $\begin{array}{c} 1.000\\ 318.9\\ 1444.1\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ \end{array}$                                              | $\begin{array}{c} 0.000\\ 306.5\\ 1409.6\\ 1450\\ 61039\\ \hline 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ \end{array}$                                                     |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene<br>Ethane<br>Propene<br>Propane                                            | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.3854<br>0.6141                                                           | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.9947<br>0.0052                               | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0223<br>0.9776                               | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187                                                            | $ \begin{array}{r}1\\324.8\\96.5\\9044\\218394\\0.4375\\0.0292\\0.0090\\0.0146\\0.1901\\0.3187\end{array} $                                          | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187                                                            | $ \begin{array}{r}1\\324.8\\96.5\\9044\\218394\\0.4375\\0.0292\\0.0090\\0.0146\\0.1901\\0.3187\end{array} $                                          | 1<br>395.4<br>1404.4<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187                                                            | 1<br>353.6<br>1390.6<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187                                                            | $\begin{array}{c} 1.000\\ 284.9\\ 811.5\\ 37956\\ 1597439\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ \end{array}$                                                            | $\begin{array}{c} 1.000\\ 284.0\\ 790.8\\ 38375\\ 1615089\\ \hline 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ \end{array}$                                                              | $\begin{array}{c} 1.000\\ 312.2\\ 1289.2\\ 36925\\ 1554050\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ \end{array}$                                                                     | 0.000<br>302.1<br>1268.5<br>36925<br>1554050<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0003<br>0.9950<br>0.0047                                                                                            | $\begin{array}{c} 1.000\\ 312.2\\ 1289.2\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ \end{array}$                                                                     | $\begin{array}{c} 1.000\\ 318.9\\ 1444.1\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ \end{array}$                                                       | $\begin{array}{c} 0.000\\ 306.5\\ 1409.6\\ 1450\\ 61039\\ \hline 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$                                   |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene<br>Ethane<br>Propene<br>Propane<br>Propadiene                              | 0.595<br>293.8<br>928.7<br>4606<br>199601<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.3854<br>0.6141<br>0.0000                                                           | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.9947<br>0.0052<br>0.0000                     | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0223<br>0.9776<br>0.0000                               | 1<br>398.3<br>110.3<br>9044<br>218394<br>0.4375<br>0.0292<br>0.0090<br>0.0146<br>0.1901<br>0.3187<br>0.0002                                                  | $\begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$   | $\begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$   | $\begin{array}{c} 1\\ 395.4\\ 1404.4\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1\\ 353.6\\ 1390.6\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1.000\\ 284.9\\ 811.5\\ 37956\\ 1597439\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$                                 | $\begin{array}{c} 1.000\\ 284.0\\ 790.8\\ 38375\\ 1615089\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ \end{array}$                                                            | $\begin{array}{c} 1.000\\ 312.2\\ 1289.2\\ 36925\\ 1554050\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$                        | 0.000<br>302.1<br>1268.5<br>36925<br>1554050<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0003<br>0.9950<br>0.0047<br>0.0000                                                                                  | $\begin{array}{c} 1.000\\ 312.2\\ 1289.2\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ \end{array}$                                                            | $\begin{array}{c} 1.000\\ 318.9\\ 1444.1\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ \end{array}$                                              | $\begin{array}{c} 0.000\\ 306.5\\ 1409.6\\ 1450\\ 61039\\ \hline 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \hline \end{array}$                   |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene<br>Ethane<br>Propene<br>Propane<br>Propadiene<br>M-Acetylene               | $\begin{array}{c} 0.595\\ 293.8\\ 928.7\\ 4606\\ 199601\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0001\\ 0.3854\\ 0.6141\\ 0.0000\\ 0.0001\\ 0.0000\\ 0.0001\\ 0.0000\\ \end{array}$ | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.9947<br>0.0052<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0223<br>0.9776<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.0000 | $\begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ 0.0000\\ \end{array}$ | $\begin{array}{c}1\\324.8\\96.5\\9044\\218394\end{array}\\0.4375\\0.0292\\0.0090\\0.0146\\0.1901\\0.3187\\0.0002\\0.0002\\0.0001\\0.0000\end{array}$ | $\begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ 0.0000\\ \end{array}$ | $\begin{array}{c}1\\324.8\\96.5\\9044\\218394\end{array}\\0.4375\\0.0292\\0.0090\\0.0146\\0.1901\\0.3187\\0.0002\\0.0002\\0.0001\\0.0000\end{array}$ | $\begin{array}{c} 1\\ 395.4\\ 1404.4\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ 0.0000\\ \end{array}$ | $\begin{array}{c} 1\\ 353.6\\ 1390.6\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ 0.0000\\ \end{array}$ | $\begin{array}{c} 1.000\\ 284.9\\ 811.5\\ 37956\\ 1597439\\ \hline 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \hline \end{array}$ | $\begin{array}{c} 1.000\\ 284.0\\ 790.8\\ 38375\\ 1615089\\ \hline 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \hline \end{array}$ | $\begin{array}{c} 1.000\\ 312.2\\ 1289.2\\ 36925\\ 1554050\\ \hline 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \hline \end{array}$ | $\begin{array}{c} 0.000\\ 302.1\\ 1268.5\\ 36925\\ 1554050\\ \hline\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \hline\end{array}$ | $\begin{array}{c} 1.000\\ 312.2\\ 1289.2\\ 1450\\ 61039\\ \hline 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \hline \end{array}$ | $\begin{array}{c} 1.000\\ 318.9\\ 1444.1\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$ | $\begin{array}{c} 0.000\\ 306.5\\ 1409.6\\ 1450\\ 61039\\ \hline 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \hline \end{array}$ |
| Temperature<br>Pressure<br>Molar Flow<br>Mass Flow<br>Mole Fractions<br>Hydrogen<br>Methane<br>Ethylene<br>Ethylene<br>Propene<br>Propane<br>Propadiene<br>M-Acetylene<br>i-Butane | $\begin{array}{c} 0.595\\ 293.8\\ 928.7\\ 4606\\ 199601\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0001\\ 0.3854\\ 0.6141\\ 0.0000\\ 0.0000\\ 0.0001\\ \end{array}$                   | 0<br>284.3<br>894.2<br>1730<br>72828<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.9947<br>0.0052<br>0.0000<br>0.0000<br>0.0000           | 0<br>296.1<br>1514.8<br>2878<br>126772<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0223<br>0.9776<br>0.0000<br>0.0000<br>0.0000                     | $\begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$   | $\begin{array}{c} 1\\ 398.3\\ 110.3\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1\\ 324.8\\ 96.5\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$   | $\begin{array}{c} 1\\ 395.4\\ 1404.4\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1\\ 353.6\\ 1390.6\\ 9044\\ 218394\\ 0.4375\\ 0.0292\\ 0.0090\\ 0.0146\\ 0.1901\\ 0.3187\\ 0.0002\\ 0.0002\\ 0.0001\\ \end{array}$          | $\begin{array}{c} 1.000\\ 284.9\\ 811.5\\ 37956\\ 1597439\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$                                 | $\begin{array}{c} 1.000\\ 284.0\\ 790.8\\ 38375\\ 1615089\\ \hline 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$                          | $\begin{array}{c} 1.000\\ 312.2\\ 1289.2\\ 36925\\ 1554050\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$                        | $\begin{array}{c} 0.000\\ 302.1\\ 1268.5\\ 36925\\ 1554050\\ \hline\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \hline\end{array}$                   | $\begin{array}{c} 1.000\\ 312.2\\ 1289.2\\ 1450\\ 61039\\ \hline 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \hline \end{array}$                   | $\begin{array}{c} 1.000\\ 318.9\\ 1444.1\\ 1450\\ 61039\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$                   | $\begin{array}{c} 0.000\\ 306.5\\ 1409.6\\ 1450\\ 61039\\ \hline 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.9950\\ 0.0047\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \hline \end{array}$                   |

Table 7: Stream Summary for the Integrated and Intensified Case

The heat pump compressor has the additional benefit of operating the PP Splitter at a lower pressure. The conventional design would require a high pressure to utilize cooling water as its condensing media. However, with the HPC, the column can be operated at lower pressures enhancing the relative volatility between the components (propane and propylene) and making separation easier.

| Equipment Type               | Base Case Capital<br>Cost<br>(\$MM, 2016) | Integrated and<br>Intensified Case<br>Capital Cost<br>(\$MM, 2016) |
|------------------------------|-------------------------------------------|--------------------------------------------------------------------|
| Columns                      | 90                                        | 71                                                                 |
| Vessels                      | 14                                        | 14                                                                 |
| Reactors                     | 46                                        | 46                                                                 |
| Exchangers                   | 100                                       | 54                                                                 |
| Pumps                        | 1                                         | 0.5                                                                |
| Compressors                  | 34                                        | 54                                                                 |
| Fired Heaters                | 19                                        | 11                                                                 |
| Refrigeration Equipment      | 17                                        | 17                                                                 |
| Total Installed Capital Cost | 321                                       | 268                                                                |

Table 8: Comparison of Capital Costs in Base Case with the Integrated and Intensified Case

Outside Battery Limits (OSBL) 30% (as a percentage of Total Installed Cost)<sup>a</sup>

Detailed Engineering and Construction 30 % (as percentage of Total Installed Cost + OSBL)<sup>a</sup>

Contingency 10% (as a percentage of Total Installed Cost + OSBL)<sup>a</sup>

|  | Total Fixed Capital Investment | 585 | 488 |
|--|--------------------------------|-----|-----|
|--|--------------------------------|-----|-----|

<sup>a</sup>Towler and Sinnott (2013)

The conventional design required 220 stages to achieve the same separation that the heat pump compressor design can achieve in 160 stages. This also reduces the size of the distillation column and significantly lowered the capital investment requirement. There is overwhelming literature evidence to corroborate the application of heat pump systems to PP splitters in order to reduce capital and operating expenditure. Studies done by Quadri (1981), Supranto et al. (1986), and Olujic et al. (2006) discuss various configurations of the Heat Pump Compressor for the PP splitter but come up with similar conclusions for capital and operational cost savings. *Table 7* shows the summary of the stream data for the Integrated and Intensified case simulation. *Table 8* shows the capital costs of running the integrated case with the HPC system and compares it with base case.

While there is an increase in the electricity consumption, due to the addition of the heat pump, the overall utility costs have gone down considerably due to the elimination of the LP steam and cooling water costs in the PP Splitter's reboiler and condenser respectively. The overall utility costs are reduced to \$39.9 MM which is almost 50% lower than the base case scenario. Additionally, the total fixed capital investment is reduced by 17% to \$488MM due to the elimination of the large condenser/reboilers of the PP Splitter column, as well as the reduction in the size of the column due to lower pressure operation. It eliminates the requirement of steam in the overall process flowsheet and substantially reduces the cooling water requirement as well. A comparison of the capital and utility costs for all three scenarios for the design are shown in *Figure 7* and *Figure 8* and respectively.

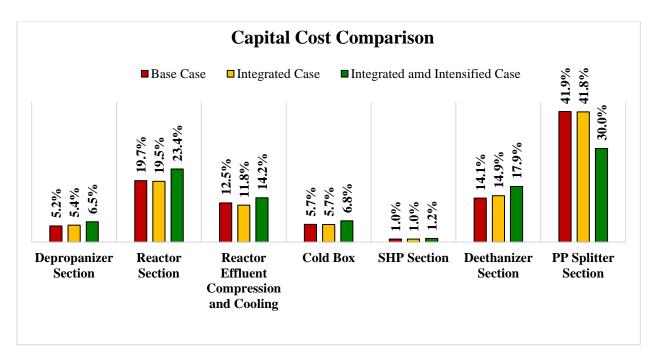



Figure 7: Comparison of Capital Costs for Base Case, Integrated Case, and Integrated Case with

Intensification

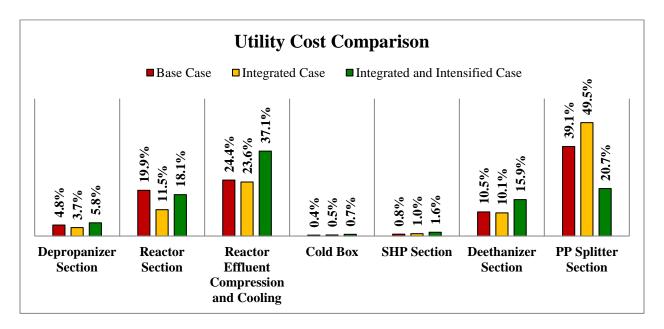



Figure 8: Comparison of Utility Costs for Base Case, Integrated Case, and Integrated Case with

Intensification

The composite curves for the Integrated and Intensified Case implemented is shown in *Figure 9*. The updated pinch temperature is at 70 °C with the minimum hot and cold utility requirements reduced to 92.2 MW and 48.4 MW respectively. The overlap area between the hot composite and cold composite curves is less than 15 MW. It may not be economically feasible to recover this overlap between the hot and cold streams as it would require large number of heat exchangers. Most of the hot utility requirement is above 100 °C which is supplied by the fired heaters in the reactor section. Significant cold utility requirement is at sub-zero temperatures for which refrigeration is required.

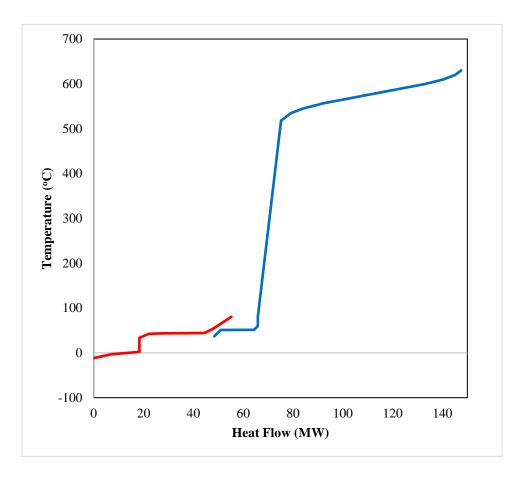



Figure 9: Composite Curves for Integrated and Intensified Case

# 4.5 Water Analysis

The water use in the process and subsequent economic cost for cooling water utility and LP Steam was minimized in the process by both integration and intensification options. This has been demonstrated in Table 4. The cost for a water recovery and reuse system can be considered outside the boundary limits of the current process considerations for further cost and resource use reduction. The PP Splitter condenser and reboiler in the base case, accounts for over 70% of the water consumption in the process in terms of cooling water and LP Steam requirements, respectively. Therefore, it can be safely assumed that due to the process intensification changes implemented, significant water reduction has already been achieved, as both the condenser and the reboiler have been replaced by a single process-process exchanger. The remaining water requirement in the process is minimal. A rigorous water treatment and recovery system would be a viable addition if there are other high-water consumers and discharges in the vicinity of the propylene plant to share the additional capital investment for the recovery system.

## 4.6 Emissions Analysis

It is critical to evaluate the environmental impact of the changes made in design for sustainability. One way to estimate that is to calculate the carbon footprint of these processes. Three major greenhouse gas emission sources have been identified in the PDH process:

- Natural gas combustion
- Electricity consumption
- Burning/flaring of waste streams

The Environmental Protection Agency (EPA) first published the AP-42 report in 1972, with updated being made periodically since, to quantify air emissions based on factors for

different sources of emissions (U.S.EPA, 2016). Chapter-1.4 (U.S.EPA, 2017b) of AP-42 provides the emissions due to natural gas combustion. Estimating the annual consumption of natural gas in the process for combustion purposes can be used in conjunction with AP-42 emission factors to calculate the amount of greenhouse gas emissions as given in Table 9. The emission factor ratings determine the reliability of the estimate with "A" denoting most reliable estimate, which has been developed based on many observations, and widely accepted test procedures. On the other hand, "E" denotes a factor based on a single observation of questionable quality, or one extrapolated from another factor for a similar process.

| Pollutant                         | Emission Factor (lb/10^6scf) | Emission Factor Rating |
|-----------------------------------|------------------------------|------------------------|
| CO <sub>2</sub>                   | 120,000                      | А                      |
| N <sub>2</sub> O (Low NOx Burner) | 0.64                         | E                      |
| $SO_2$                            | 0.6                          | А                      |
| TOC                               | 11                           | В                      |
| Methane                           | 2.3                          | В                      |
| VOC                               | 5.5                          | С                      |

Table 9: AP-42 Emission Factors for Natural Gas Combustion (Industrial Heaters) (U.S.EPA, 2016)

The eGRID2014v2 Annual Output Emission Rates (U.S.EPA, 2017a) lists the greenhouse gas emissions resulting from electricity consumption categorized based on sub-regional grids within United States. Since the electricity requirement in the process is known, the emissions resulting from them can also be estimated. In this paper, it is assumed that all electricity is purchased and the emission factors from the Texas Grid (ERCOT) are used as the basis for electricity generation emissions as given in

Finally, burning waste streams from the process will also result in greenhouse gas emissions. The offgas from deethanizer, flash gas from the cold box, and C4+ stream from depropanizer bottoms are the three waste streams identified in the process. In order to estimate the emissions from these streams, it is assumed that a complete combustion resulting in CO<sub>2</sub> emissions for the carbon species will occur in the flare system.

| <b>Electricity Source</b> | CO <sub>2</sub> | Methane   | N <sub>2</sub> O |
|---------------------------|-----------------|-----------|------------------|
|                           | (lb/MWhr)       | (lb/GWhr) | (lb/GWhr)        |
| ERCOT (Texas) Grid        | 1142.8          | 81.8      | 11.6             |
| US Avg.                   | 1122.9          | 110.9     | 16.0             |
| SRMW (SERC Midwest)       | 1772.0          | 208.8     | 30.4             |

Table 10: Emission Factors for Electricity Generation (U.S.EPA, 2017a)

## 4.6.1 Waste Heat Recovery (WHR)

In addition to the conventional process integration and intensification techniques, low grade energy recovery in processes can be effectively utilized to increase the overall efficiency of the process. There are technologies and systems available to recover heat from industrial clean gases at high temperature (>650 °C), medium temperature (230 – 650 °C), and low temperature (<230 °C). About 60% of the unrecovered waste heat is of low quality (at temperatures <230 °C) (Sengupta, 2017). In the current process under consideration, the reaction of propane to propylene is endothermic in nature. Due to this, we have four fired heaters which heat the process gas to roughly 600 °C to maintain catalyst activity and increase conversion. The flue gas coming out of the radiation sections of these fired heaters is a good source of medium temperature heat. Ibrahim and Al-Qassimi(Ibrahim and Al-Qassimi, 2010) discuss the heat

recovery calculation in the convection section and show that about 35% of the radiant section duty can be recovered in the convection section. For our calculations, a conservative value of 30% of the radiant section duty recovery is assumed without going into the details of fired heater design. A common application for utilizing this energy is steam generation (Sengupta, 2017). This steam generated can then be used in heating up the reboilers for depropanizer, deethanizer, and PP Splitter (for the Base Case and Integrated Case scenarios).

## 4.6.2 Off-Gas Recovery (OGR)

Another step which can be taken to minimize the carbon footprint, is utilizing the potential waste streams. It is observed that the Low Heating Value (LHV) of the deethanizer offgas stream is 1207 MJ/kgmol (Std.) which is more than 30% higher than the heating value of Natural Gas (915 MJ/kgmol (Std.)). Therefore, this stream can be used as fuel gas and reduce the consumption of Natural Gas. Given that the flow rate of this stream is 265 kgmol/hr, a maximum of 89 MW of duty can be extracted from this stream at 100% efficiency. Factoring in for the efficiency of burning fuel (85%), a significant portion of energy in the stream can be integrated with the process which leads to reduction in overall natural gas requirement.

The reduction in emissions resulting from waste heat recovery and offgas recycle options were analyzed and tabulated in *Table 11*. 70% reduction in total emissions compared to the base case is achieved by implementing WHR and OGR with process integration and intensification. If a carbon tax of 25/ton of CO<sub>2</sub> is levied, this can translate to roughly 17.4 MM worth savings every year going from the base case design to the Integrated and Intensified case with waste heat recovery and Offgas recovery implemented.

|                                                  |           | Base Case |         | Ir         | ntegrated Case |                | Integra    | ated + Intensif | ied Case    |
|--------------------------------------------------|-----------|-----------|---------|------------|----------------|----------------|------------|-----------------|-------------|
|                                                  | Base Case | Base Case | Base    | Integrated | Integrated     | Integrate      | Integrate  | Integrated      | Integrated  |
|                                                  |           | + WHR     | Case +  | Case       | Case with      | d case         | <b>d</b> + | +               | +           |
| Pollutant                                        |           |           | WHR +   |            | WHR            | + <b>WHR</b> + | Intensifie | Intensified     | Intensified |
|                                                  |           |           | OGR     |            |                | OGR            | d Case     | Case +          | case +      |
|                                                  |           |           |         |            |                |                |            | WHR             | WHR+        |
|                                                  |           |           |         |            |                |                |            |                 | OGR         |
|                                                  |           | tons/yr   |         |            | tons/yr        |                |            | tons/yr         |             |
| CO2                                              | 1,013,054 | 911,646   | 748,282 | 820,723    | 776,074        | 612,710        | 531,606    | 480,676         | 317,312     |
| Methane                                          | 21.94     | 20.00     | 20.00   | 18.25      | 17.40          | 17.40          | 15.99      | 15.01           | 15.01       |
| SO2                                              | 3.57      | 3.07      | 3.07    | 2.61       | 2.39           | 2.39           | 0.85       | 0.60            | 0.60        |
| ТОС                                              | 65.50     | 56.20     | 56.20   | 47.87      | 43.77          | 43.77          | 15.63      | 10.96           | 10.96       |
| VOC                                              | 32.75     | 28.10     | 28.10   | 23.93      | 21.89          | 21.89          | 7.81       | 5.48            | 5.48        |
| N2O                                              | 4.98      | 4.44      | 4.44    | 3.95       | 3.72           | 3.72           | 2.71       | 2.44            | 2.44        |
| Total Emissions                                  | 1,013,182 | 911,758   | 748,394 | 820,819    | 776,164        | 612,800        | 531,649    | 480,711         | 317,347     |
| Cost of CO2 Emissions<br>@\$25/ton<br>(\$MM/yr.) | 25.33     | 22.79     | 18.71   | 20.52      | 19.40          | 15.32          | 13.29      | 12.02           | 7.93        |

Table 11: Comparison of Emissions with Waste Heat Recovery and Offgas Recovery for various scenarious

# 4.7 Economic Analysis

A Discounted Cash Flow Rate of Return (DCFROR) analysis (Towler and Sinnott, 2013) is done to develop more detailed economic indicators. The Return on Investment (ROI), Internal Rate of Return (IRR) and Net Present Value (NPV) are estimated over a 20-year period. The Modified Accelerated Cost Recovery System (MACRS) model over a 7-year recovery period is assumed for calculating depreciation and the tax rate is assumed to be 40%. Table 12 shows the economic indicators for all three cases.

| Economic Criteria            | <b>Base Case</b> | Integrated Case | Integrated and   |  |
|------------------------------|------------------|-----------------|------------------|--|
|                              |                  |                 | Intensified Case |  |
| Simple Pay-back (yrs)        | 5.82             | 5.34            | 4.06             |  |
| Return on Investment (15yrs) | 15%              | 17%             | 25%              |  |
| NPV (15 yrs) [\$MM]          | 240.7            | 314.6           | 489.5            |  |
| IRR (15 yrs)                 | 14%              | 16%             | 22%              |  |

Table 12: Economic Indicators for Base Case, Integrated Case, and Integrated Case with Intensification

## 4.8 Sustainability Analysis

El-Halwagi (2017c) introduced the Sustainability Weighted Return on Investment (SWROI) metric which is an extension of the Return on Investment concept with the augmented sustainability metrics and process integration targeting approaches. Considering a set a process alternatives:  $p = 1, 2, 3..., N_{projects}$ . For the p<sup>th</sup> project, a new term called the Annual Sustainability Profit (ASP) is given in Equation 2.

$$ASP_{P} = AEP_{P} \left[ 1 + \sum_{i=1}^{N_{indicators}} w_{i} \left( \frac{Indicator_{p,i}}{Indicator_{i}^{Target}} \right) \right]$$
(1)

Where *i* is an index for the different sustainability indicators (other than net annual economic profit with *i* = 1, 2, 3..., N<sub>indicators</sub>). AEP<sub>p</sub> is the Annual Economic Profit. The weighing factor *w<sub>i</sub>* is a ratio representing the relative importance of the *i<sup>th</sup>* sustainability indicator compared to the annual net economic profit. The term (Indicator<sub>p,1</sub>) represents the value of the *i<sup>th</sup>* sustainability indicator associated with the *p<sup>th project</sup>* and the term (Indicator<sub>1</sub><sup>Target</sup>) corresponds to the target of the *i<sup>th</sup>* sustainability indicator (obtained from process integration benchmarking or taken as the largest value from all project). The ratio  $\left(\frac{Indicator_{p,i}}{Indicator_{i}^{Target}}\right)$  then represents the

fractional contribution of project p towards meeting the desired/targeted performance for the  $i^{th}$  sustainability metric. The SWROI of a project p is then defined as given in Equation 3.

$$SWROI_P = \frac{ASP_p}{TCI_P}$$
(2)

Where  $\text{TCP}_p$  is the Total Capital Investment for project *p*.

*Table 13* shows the detailed sustainability analysis of the options considered. The impact of WHR and OGR is evaluated on all three case studies listed above.

| Description                                  | 10 yr. Avg.<br>Taxable | Total Capital<br>Investment | Water<br>Reduction    | Electrical<br>Energy Savings | Fuel Savings<br>(NG Firing in      | CO2<br>emission          | VOC<br>Reduction | ROI<br>(10 yrs.) | SWROI  |
|----------------------------------------------|------------------------|-----------------------------|-----------------------|------------------------------|------------------------------------|--------------------------|------------------|------------------|--------|
|                                              | Income                 | mvestment                   | (Steam + CW)          | (Power)                      | (iver Filing III<br>Fired Heaters) | Reductions               | Keuucuon         | (10 y1s.)        |        |
|                                              | MM\$/yr                | MM\$                        | 10 <sup>6</sup> kg/hr | MW                           | MW                                 | 10 <sup>3</sup> tons/yr. | tons/yr.         |                  |        |
| Weight Factors                               | -                      | -                           | 0.1                   | 0.1                          | 0.07                               | 0.25                     | 0.05             |                  |        |
| Targets                                      | -                      | -                           | 45.08                 | 36                           | 159                                | 1013                     | 32.7             |                  |        |
| Base Case + WHR                              | 67                     | 643                         | 0                     | 0                            | 0                                  | 101.4                    | 4.6              | 10.38%           | 10.71% |
| Base Case + WHR +<br>OGR                     | 67                     | 643                         | 0                     | 0                            | 0                                  | 264.8                    | 4.6              | 10.38%           | 11.13% |
| Integrated Case                              | 79                     | 645                         | 25.6                  | 0                            | 87                                 | 192.3                    | 8.8              | 12.29%           | 14.21% |
| Integrated Case + WHR                        | 79                     | 645                         | 25.6                  | 0                            | 87                                 | 237                      | 10.9             | 12.29%           | 14.38% |
| Integrated Case + WHR<br>+ OGR               | 79                     | 645                         | 25.6                  | 0                            | 87                                 | 400.3                    | 10.9             | 12.29%           | 14.88% |
| Integrated + Intensified<br>Case             | 104                    | 536                         | 38.7                  | -14.5                        | 87                                 | 481.4                    | 24.9             | 19.45%           | 24.12% |
| Integrated + Intensified<br>Case + WHR       | 104                    | 536                         | 38.7                  | -14.5                        | 87                                 | 532.4                    | 27.3             | 19.45%           | 24.43% |
| Integrated + Intensified<br>Case + WHR + OGR | 104                    | 536                         | 38.7                  | -14.5                        | 87                                 | 695.7                    | 27.3             | 19.45%           | 25.21% |

Table 13: Sustainability Weighted Analysis for all scenarios considered

The different sustainability criteria are listed. The results for these criteria are used in Eqs. (2) and (3) to evaluate the sustainability weighted return on investment. The targets for this analysis are set based on the maximum realizable potential for reduction of the individual metrics. This can be deduced from the process integration studies done above for all categories except CO<sub>2</sub> emissions. For CO<sub>2</sub>, it is theoretically possible to reduce and eliminate completely if capital investment is available. The weights are assigned based on the relative contribution to the overall profit. Since water, electricity, and fuel savings have been accounted for in terms of lower operating cost, they have been allotted lower weights. CO<sub>2</sub> emissions have not been accounted for in the profit equation in any step of our study which gives it a higher weight factor. It is worth noting that the electrical energy savings for the integrated and intensified case are negative because the addition of a compressor leads to an increase in the electricity consumption. It also marginally adds on to the water footprint as it is assumed that steam would be consumed to generate electricity that runs the compressor, but the overall result is a reduction in water footprint due to the elimination of large condensers and reboilers on the PP Splitter.

It can be seen that the Integrated and Intensified Case with the waste heat recovery and off gas recycle has the highest SWROI value and is the most attractive overall design, both from an economic and sustainability point of view. From the above analysis, the trend is an increasing SWROI as the integration and intensification options are implemented. However, this may not always be the case, as often there could be a tradeoff between the overall reductions achieved and the total capital invested.

42

## 4.10 Safety Analysis

In the previously developed flowsheets, an economic, energy, and sustainability analysis is performed, and various metrics have been derived. One aspect of primary importance is generally left for analysis once the design has been completed and that has to do with process safety. To ensure the inclusion of safety during the design stages, the inherent safety of the process can be evaluated.

There are several metrics proposed for the evaluation of inherent safety of a process which take into account the chemical and process parameters that are available at the early stages. One such approach is the Quantitative Risk Assessment (QRA), in which a process is analyzed for the failure frequency and then combined with the consequence analysis to provide a measure of the overall risk. When considering complete flowsheets, QRA becomes rather complex and arduous. Other metrics like the Process Route Index (PRI) (Leong and Shariff, 2009) and the Process Stream Index (PSI) have been developed in order to capture the comprehensive risks posed by multi-component streams while minimizing scope for human error.

PRI can be used to rank different process flowsheets based on their inherent safety levels, while PSI serves to rank individual process streams within a process according their risk levels. Both are defined as a function of the stream parameters such as flammability, temperature, pressure, and density. The PRI was benchmarked by Leong and Shariff (2009) against the Prototype Index for Inherent Safety (PIIS) (Edwards and Lawrence, 1993), the Inherent Safety Index (ISI) (Heikkilä, 1999), and the i-Safe Index (Palaniappan et al., 2004). In addition, PRI can distinguish between process flowsheets that were ranked at the same level of Inherent Safety by the ISI (Ortiz-Espinoza et al., 2017a). Both PRI and the PSI indices have the limitation that they only rank processes or streams relative to one another, therefore do not provide a quantitative measure of risk. While QRA is a more comprehensive approach, the combined use of PRI and PSI provides a useful tool for an initial comparative assessment of inherent safety.

#### 4.10.1 Process Route Index (PRI)

The basis for the PRI index is a set of process parameters related to the potential damage that can cause an explosion (Leong and Shariff, 2009). The distance due to explosion is given by Crowl and Louvar (2002) where the process parameters that influence consequences fir to explosion include the total mass of flammable material in the cloud, and the lower heat of combustion. Additionally, the combustibility of the material plays an important role in determining the explosion hazard. Heikkilä (1999), Edwards and Lawrence (1993) showed that combustibility can be defined as the difference between the Lower Flammability Limit (LFL) and Upper Flammability Limit (UFL) of a given substance. The term "mass" can be converted into basic process parameters (pressure and density) which can be directly extracted from any process simulator. The logic behind this being that the mass of fluid released during a leak is a function of the density of the fluid and the pressure differential between the system and surroundings. Therefore, PRI can be defined as (Leong and Shariff, 2009):

## PRI = f(density, pressure, energy, combustibility)(4)

The combustibility of the mixture is calculated based on the difference between the upper and lower flammability limits. These can be corrected for temperatures using the equations (5) and (6) as given in Crowl and Louvar (2002). The lower flammability limit is not affected by changes in pressure, but the upper flammability limit has to be corrected for pressure using the equation (7) (Crowl and Louvar, 2002).

$$LFL_{T} = LFL_{25} \left[ 1 - \frac{0.75(T - 25)}{\Delta H_{c}} \right]$$

$$\tag{5}$$

$$UFL_{T} = UFL_{25} \left[ 1 + \frac{0.75(T - 25)}{\Delta H_{c}} \right]$$
(6)

$$UFL_{\rm T} = UFL + 20.6(\log(P) + 1)$$
(7)

(8)

Where,  $LFL_T$ =Lower Flammability Limit (T(°C)), UFL<sub>T</sub>=Upper Flammability Limit (T(°C)),  $\Delta H_c$ = heat of combustion for component (kcal/mol), P = Pressure (MPa). Since PRI represents the overall process route, it is acceptable to take an average of all the properties in equation (4) resulting in:

# $PRI = [(average mass heating value) \times (average fluid density) \times (average pressure) \times (average \Delta FL_{mix})]/10^{8}$

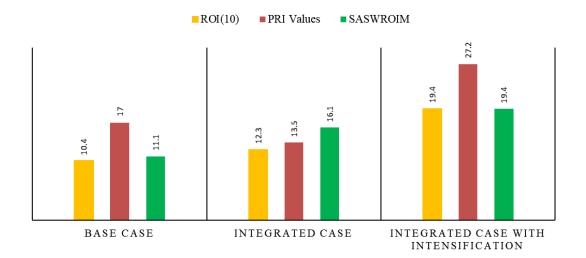



Figure 10: Chart showing PRI Values, ROI, and SWROI for all three cases considered

PRI values were calculated for all the three cases and *Figure 10* shows the comparison of these values for the three flowsheets under consideration. It is interesting to note that the integrated and intensified case is the one resulting in the lowest PRI number, meaning it is the safest route among the three processes compared.

## 4.10.2 SASWROIM - Safety and Sustainability Weighted ROI Metric

Analogous to the SWROIM metric describe above, a safety and sustainability weighted return on investment metric can be introduced which incorporates safety metrics along with the sustainability factors. Once the traditional economic return on investment (ROI) has been calculated for the base case design, a set of safety and sustainability indicators are identified. A comprehensive assessment of these factors yields the values indexed as  $Indicator_{Base,i}$ . The associated target values for these indicators are designated  $Indicator_{Target,i}$ . Strategic benchmarking techniques based on best achievable practices, can be utilized to determine the values of these targets (Guillen-Cuevas et al., 2018).

Several process and design alternatives can be generated using process synthesis, analysis, integration, and intensification activities. Representing each of these alternatives by an index p, with  $p = 1,2,3...N_{projects}$ , a new term called the Annual Safety and Sustainability Profit (ASSP) can be introduced for the  $p^{th}$  project which is defined as:

$$ASSP_{P} = AEP_{P}\left[1 + \sum_{i=1}^{N_{indicators}} w_{i}\left(\frac{\text{Indicator}_{\text{Base},i} - \text{Indicator}_{p,i}}{\text{Indicator}_{\text{Base},i} - \text{Indicator}_{i}^{\text{Target}}}\right)\right]$$
(9)

The SASWROIM can then defined as:

$$SASWROI_{P} = \frac{ASSP_{p}}{TCI_{P}}$$
(10)

In Equation (9),  $w_i$  is the weighing factor in the form of a ratio representing the relative importance of the sustainability and safety factors compared to the economic profits. *Indicator*<sub>p,i</sub> is the value of the i<sup>th</sup> safety or sustainability factor associated with the p<sup>th</sup> design option. The denominator *Indicator*<sub>Base,i</sub> – *Indicator*<sub>Target,i</sub> is the improvement (where the difference is positive) or deterioration (where the difference is negative) associated with the p<sup>th</sup> design. Therefore, the ratio  $\left(\frac{\text{Indicator}_{\text{Base,i}}-\text{Indicator}_{\text{pi}}}{(\text{Indicator}_{\text{Base,i}}-\text{Indicator}_{1}^{\text{Target}})}\right)$  represents the fractional contribution of the p<sup>th</sup> design option toward the target performance associated with the i<sup>th</sup> safety or sustainability metric. The term ASSP<sub>p</sub> is the generalized form for the quantification of the overall profit as well as possible safety and sustainability benefits of the project. This term is enhanced when there is an improvement in safety or sustainability compared to the base case design, and its value is reduced when the alternative design option results in deterioration of the safety or sustainability relevant performance indicators when compared to those associated with the base case project. The final SASWROIM is then defined in equation (10).

Table 14 below tabulates the SASROIM values for the three flowsheets (Base Case, Integrated Case, Integrated Case with Intensification) that we have considered in our case study. As can be seen, the Integrated Case with Intensification has a PRI value of 27.2 which is the highest among the three design options. This translates to a relatively unsafe design as compared to the other two scenarios. However, the resulting sustainability benefits of performing intensification in the PP Splitter design, offset the deteriorated safety performance resulting due to the introduction of high pressure streams in the process. Overall, the Integrated Case with Intensification gets a SASWROIM value of 19.4% which is considerably higher than that of the remaining design options considered.

| Description                             | <b>10 yr. Avg.</b><br><b>Taxable</b><br><b>Income</b><br>MM\$/yr | <b>Total</b><br>Capital<br>Investment<br>MM\$ | ROI(10) | SWROI  | PRI<br>Values | SASWROIM |
|-----------------------------------------|------------------------------------------------------------------|-----------------------------------------------|---------|--------|---------------|----------|
| Weight Factors                          |                                                                  |                                               |         |        | 0.25          |          |
| Targets                                 |                                                                  |                                               |         |        | 8.5           |          |
| Base Case                               | 67                                                               | 643                                           | 10.38%  | 11.13% | 17            | 11.13%   |
| Integrated Case                         | 79                                                               | 645                                           | 12.29%  | 14.88% | 13.5          | 16.15%   |
| Integrated Case with<br>Intensification | 104                                                              | 536                                           | 19.45%  | 25.21% | 27.2          | 19.38%   |

Table 14: Tabulation of the SASWROIM values for various process flowsheets

# 4.10.3 Process Stream Index (PSI)

As we saw in the above case, the Integrated Case with Intensification has the highest SASWROIM value but ranks at the bottom in terms of its relative safety metric. Hence, in order to identify the most vulnerable parts of the process flowsheet, we can use the Process Safety Index (PSI) which was introduced by Shariff et al. (2012). Similar to the PRI, PSI is used to determine the inherent risk severity of individual streams within the process. The PSI can then be used to prioritize the inherent safety of individual stream against the overall streams in the simulation (Shariff et al., 2012). This relative ranking is developed for all parameters affecting the explosion hazard as discussed previously.

$$I_{e} = \frac{\text{heating value of individual stream}}{\text{average heating value of all streams}}$$
(11)

$$I_{p} = \frac{\text{pressure value of individual stream}}{\text{average pressure value of all streams}}$$
(12)

$$I_{\rm r} = \frac{\text{density of individual stream}}{\text{average density of all streams}}$$
(13)

$$I_{FL} = \frac{\Delta FL \text{ of individual stream}}{\text{average } \Delta FL \text{ of all streams}}$$
(14)

The resulting dimensionless numbers can be used to differentiate the streams when considering the properties individually. They can also be combined to give an index that reflects the severity of a process stream in case of a leakage leading to a fire and/or explosion. This combined index (PSI) is expressed in equation 15.

$$\mathbf{PSI} = \mathbf{A}_{\mathbf{0}} \times (\mathbf{I}_{\mathbf{e}} \times \mathbf{I}_{\mathbf{p}} \times \mathbf{I}_{\mathbf{r}} \times \mathbf{I}_{\mathbf{FL}}) \tag{15}$$

The empirical constant  $A_0$  used is to increase or decrease the magnitude of the resulting numbers for the calculation of PSI. For this work,  $A_0$  is chosen as 10 and the units of heating value, pressure, density, and  $\Delta$ FL are (kcal/kg), (kPa), (kg/m<sup>3</sup>), and volume %, respectively. Table 15**Error! Reference source not found.** and Table 16 show the PSI value calculations for the streams in Base Case and Integrated Case with Intensification respectively.

|            |                           | 5    |                |                   |       |
|------------|---------------------------|------|----------------|-------------------|-------|
| Stream No. | $\mathbf{I}_{\mathbf{e}}$ | Ip   | $\mathbf{I_r}$ | $\mathbf{I_{fl}}$ | PSI   |
| 119        | 0.86                      | 1.71 | 5.41           | 0.70              | 55.49 |
| 114        | 0.91                      | 2.53 | 2.30           | 0.95              | 50.56 |
| 113        | 0.91                      | 2.58 | 1.76           | 1.07              | 44.37 |
| 122        | 2.23                      | 1.43 | 0.10           | 2.39              | 7.72  |
| 105        | 0.89                      | 0.88 | 0.98           | 0.64              | 4.86  |
| 118        | 0.89                      | 0.82 | 1.08           | 0.56              | 4.42  |
| 112        | 0.91                      | 0.74 | 0.49           | 0.81              | 2.67  |
| 106        | 0.89                      | 0.70 | 0.26           | 1.09              | 1.76  |
| 107        | 0.90                      | 0.55 | 0.19           | 1.11              | 1.03  |
| 108        | 0.90                      | 0.40 | 0.13           | 1.12              | 0.52  |
| 109        | 0.90                      | 0.25 | 0.08           | 1.10              | 0.19  |
| 110        | 0.91                      | 0.23 | 0.07           | 1.09              | 0.16  |
| 111        | 0.91                      | 0.18 | 0.15           | 0.43              | 0.11  |
|            |                           | -    |                |                   | -     |

Table 15: PSI Values for streams in the Base Case

| Stream No. | Ie  | Ip  | $\mathbf{I}_{\mathbf{r}}$ | $\mathbf{I}_{\mathrm{fl}}$ | PSI  |
|------------|-----|-----|---------------------------|----------------------------|------|
| 135        | 0.9 | 2.3 | 3.0                       | 0.9                        | 55.7 |
| 132        | 0.9 | 2.0 | 2.7                       | 0.9                        | 43.1 |
| 134        | 0.9 | 2.0 | 2.7                       | 0.9                        | 43.1 |
| 119        | 0.9 | 1.5 | 3.4                       | 0.8                        | 34.6 |
| 129        | 1.0 | 2.2 | 1.2                       | 1.1                        | 29.1 |
| 128        | 1.0 | 2.2 | 1.1                       | 1.2                        | 27.7 |
| 130        | 0.9 | 1.3 | 1.8                       | 0.8                        | 15.2 |
| 131        | 0.9 | 1.2 | 1.7                       | 0.7                        | 14.3 |
| 114        | 1.0 | 0.6 | 1.5                       | 0.9                        | 7.9  |
| 122        | 2.3 | 1.2 | 0.1                       | 2.6                        | 4.8  |
| 105        | 0.9 | 0.7 | 0.6                       | 0.7                        | 3.0  |
| 118        | 0.9 | 0.7 | 0.7                       | 0.6                        | 2.8  |
| 123        | 0.9 | 0.7 | 0.2                       | 1.2                        | 1.7  |
| 126        | 1.0 | 0.6 | 0.3                       | 0.9                        | 1.6  |
| 127        | 1.0 | 0.6 | 0.3                       | 0.8                        | 1.5  |
| 106        | 0.9 | 0.6 | 0.2                       | 1.2                        | 1.1  |
| 107        | 0.9 | 0.5 | 0.1                       | 1.2                        | 0.6  |
| 108        | 0.9 | 0.3 | 0.1                       | 1.2                        | 0.3  |
| 109        | 1.0 | 0.2 | 0.0                       | 1.2                        | 0.1  |
| 110        | 1.0 | 0.2 | 0.0                       | 1.2                        | 0.1  |
| 124        | 1.0 | 0.2 | 0.1                       | 0.6                        | 0.1  |
| 125        | 1.0 | 0.2 | 0.1                       | 0.4                        | 0.1  |

Table 16: PSI values for streams in Integrated Case with Intensification

Figure 11 shows the Integrated case with Intensification flowsheet with the high-risk streams highlighted in red based on their relative PSI values. As can be seen from the figure, the heat pump compressor system in the PP Splitter section has effectively introduced the highest risk streams within the process. This makes logical sense as these streams have very high flow rates (due to high reflux ratios required in the PP Splitter) and are at high pressures (due to the heat pump compressor). In addition, the Hydrogen streams are also classified as high risk due to

the large range of flammability limits. Some of the vapor streams in the Reactor Effluent Compressor sections (second stage discharge) also have to be paid attention. It is to be noted that the PSI numbers represent the Inherent Safety values of each of the streams highlighted. However, additional PSM mitigation techniques such as LOPA and HAZOP analysis can lead to identifying advanced control measures to minimize the risk associated with these streams. Some observations made based on the PSI method are:

- PSI does account for the high pressure streams, but fails to account for streams with pressure lower than atmospheric (vacuum) which could lead to air ingress and cause explosion
- In the current case study, Reactor Effluent is very low pressure (potentially vacuum) stream at very high temperature which can be hazardous
- Temperature accounted for only indirectly through the UFL and LFL corrections and note direct measurements. Small ranges of UFL/LFL values can potentially offset the risk of high temperature streams

Finally, it should be noted that PSI is only a measurement of relative safety between several process streams. There may be a scenario that we are comparing streams within an extremely hazardous process flow-scheme which should not be implemented. Therefore, it should be used in conjunction with other safety indices which provide more insight into the inherent safety of the overall process, and not independently.

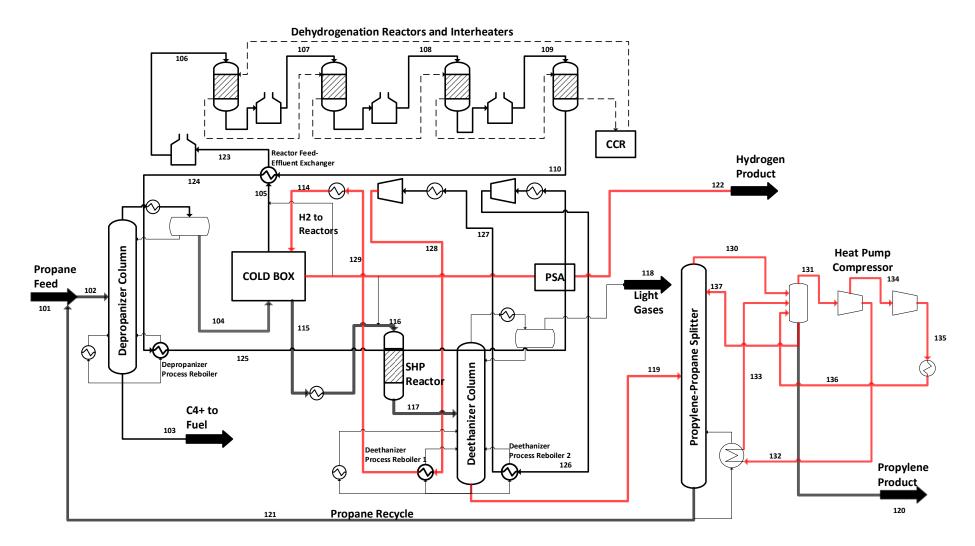



Figure 11: Simplified PFD of the Integrated Case with Intensification highlighting the High Risk streams in Red

#### 5. CONCLUSIONS

This paper provided a systematic way of developing a sustainable process design with illustration of on-purpose propylene production. Starting with two gross economic metrics, a quick economic profitability calculation provided information to select a competitive process option for on-purpose propylene production. Then, a base case design provides the economic, energy, and emissions profile for the selected PDH process. Following this, a thorough process analysis provided the energy hotspots. An initial thermal pinch analysis identified the potential heat exchanges, and where they should be implemented. The entire process flowsheet was changed from the base case to the integrated case to include four heat exchangers and associated changes for reduced external utility consumption. After this, the process still demonstrated significant energy consumption for the propane-propylene splitter since the boiling points are very close for the two components. A process intensification scheme using a heat pump compression system was utilized and subsequent changes in splitter configuration (number of trays, operating pressure etc.) were implemented for an integrated and intensified case. It was noticed at this stage that significant reduction in both capital and operating costs were achieved through implementing these design changes. The water consumption in the process was significantly reduced, leading to a lower water footprint.

The next step was the emissions analysis whereby each source of emission was analyzed. Emission factors for electricity generation, boilers, and furnaces were considered from EPA AP 42 standards and other published sources to estimate the total emission for all the design cases. It was observed that a significant amount of heat was being wasted in the fired heaters, which could be further utilized to generate steam, thereby reducing the steam consumption in the process. Another source of energy through the offgas recovery system was also identified through the emissions analysis. These were included in the process analysis. It was observed that through the utilization of the waste heat and off gas recovery addition, the overall utility consumption in the process was reduced, thereby saving in purchased utility costs and resulting emissions. An economic study revealed the most profitable options. The impact of all these case studies on the sustainability metrics was determined by calculating the SWROI for all individual cases to select the most desirable flowsheet configuration.

Finally, inherent safety metrics (PRI and PSI) were evaluated for all the process flowsheets and the high-risk areas in the process were identified. Suggestions to improve inherent safety of the process were derived.

#### REFERENCES

- AGARWAL, A., SENGUPTA, D. & EL-HALWAGI, M. 2018. Sustainable Process Design Approach for On-Purpose Propylene Production and Intensification. *ACS Sustainable Chemistry & Engineering*, 6, 2407-2421.
- AL-DOURI, A., SENGUPTA, D. & EL-HALWAGI, M. M. 2017. Shale gas monetization A review of downstream processing to chemicals and fuels. *Journal of Natural Gas Science and Engineering*, 45, 436-455.
- ALLEN, D. T. & SHONNARD, D. R. 2001. *Green Engineering: Environmentally Conscious* Design of Chemical Processes, Pearson Education.
- ANASTAS, P. T. & ZIMMERMAN, J. B. 2003. Peer Reviewed: Design Through the 12 Principles of Green Engineering. *Environmental Science & Technology*, 37, 94A-101A.
- ANNAKOU, O. & MIZSEY, P. 1995. Rigorous Investigation of Heat-Pump Assisted Distillation. *Heat Recovery Systems & Chp*, 15, 241-247.
- BANACH, M. Take the Profitable Path to Olefins using UOP Technologies. Egypt Downstream Summit & Exhibition, 2016 Cairo, Egypt.
- CROWL, D. A. & LOUVAR, J. F. 2002. *Chemical Process Safety: Fundamentals with Applications*, Prentice Hall PTR.
- DUMONT, Y., AUJOLLET, P. & FERRASSE, J.-H. 2010. Use of a Heat Pump to Supply Energy to the Iodine-Sulphur Thermochemical Cycle for Hydrogen Production. *International Journal of Chemical Reactor Engineering*.
- EDWARDS, D. W. & LAWRENCE, D. 1993. Assessing the inherent safety of chemical process routes: is there a relation between plant costs and inherent safety?

- EL-HALWAGI, M. M. 1997. CHAPTER ONE Introduction. *Pollution Prevention through Process Integration.* San Diego: Academic Press.
- EL-HALWAGI, M. M. 2017a. Chapter 1 Introduction to Sustainability, Sustainable Design, and Process Integration. Sustainable Design Through Process Integration (Second Edition). Butterworth-Heinemann.
- EL-HALWAGI, M. M. 2017b. Chapter 2 Overview of Process Economics. *Sustainable Design Through Process Integration (Second Edition).* Butterworth-Heinemann.
- EL-HALWAGI, M. M. 2017c. Chapter 3 Benchmarking Process Performance Through Overall Mass Targeting. Sustainable Design Through Process Integration (Second Edition).
   Butterworth-Heinemann.
- EL-HALWAGI, M. M. 2017d. Chapter 8 Integration of Combined Heat and Power Systems. *Sustainable Design Through Process Integration (Second Edition).* Butterworth-Heinemann.
- EL-HALWAGI, M. M. 2017e. A return on investment metric for incorporating sustainability in process integration and improvement projects. *Clean Techn Environ Policy* 19, 611-617.
- EL-HALWAGI, M. M. & YEE FOO, D. C. 2000. Process Synthesis and Integration. *Kirk-Othmer Encyclopedia of Chemical Technology*. John Wiley & Sons, Inc.
- FARJOO, A., KHORASHEH, F., NIKNADDAF, S. & SOLTANI, M. 2011. Kinetic modeling of side reactions in propane dehydrogenation over Pt-Sn/gamma-Al2O3 catalyst. *Scientia Iranica*, 18, 458-464.
- FOO, D. C. Y., EL-HALWAGI, M. M. & TAN, R. R. 2012. *Recent Advances in Sustainable Process Design and Optimization*, World Scientific.

FUNK, G. A., MYERS, D. & VORA, B. 2013. A different game plan. Hydrocarbon Engineering.

GAO, J. & YOU, F. 2015. Shale Gas Supply Chain Design and Operations toward Better
 Economic and Life Cycle Environmental Performance: MINLP Model and Global
 Optimization Algorithm. ACS Sustainable Chemistry & Engineering, 3, 1282-1291.

GREGOR, J. & WEI, D. 2005. UOP OLEFLEX Process. Handbook of Petrochemicals
 Production Processes. McGraw-Hill Education: New York, Chicago, San Francisco,
 Athens, London, Madrid, Mexico City, Milan, New Delhi, Singapore, Sydney, Toronto.

GUILLEN-CUEVAS, K., ORTIZ-ESPINOZA, A. P., OZINAN, E., JIMÉNEZ-GUTIÉRREZ,
 A., KAZANTZIS, N. K. & EL-HALWAGI, M. M. 2018. Incorporation of Safety and
 Sustainability in Conceptual Design via a Return on Investment Metric. ACS Sustainable
 Chemistry & Engineering, 6, 1411-1416.

- HASANEEN, R. & EL-HALWAGI, M. M. 2017. Using integrated process and microeconomic analyses to enable effective environmental policy for shale gas in the USA. *Clean Technologies and Environmental Policy*, 19, 1775-1789.
- HE, C. & YOU, F. 2016. Deciphering the true life cycle environmental impacts and costs of the mega-scale shale gas-to-olefins projects in the United States. *Energy and Environmental Science*, 9, 820-840.
- HEIKKILÄ, A.-M. 1999. Inherent safety in process plant design : an index-based approach. Doctorate, Kemian tekniikan osasto.
- IBRAHIM, H. A. & AL-QASSIMI, M. 2010. Simulation of heat transfer in the convection section of fired process heaters. *Periodica Polytechnica-Chemical Engineering*, 54, 33-40.

- ICIS. 2012. On-purpose technologies ready to fill propylene gap [Online]. Available: <u>https://www.icis.com/resources/news/2012/04/16/9549968/on-purpose-technologies-</u> <u>ready-to-fill-propylene-gap/</u> [Accessed].
- ICIS. 2017a. *China methanol import prices surpass \$300/tonne mark* [Online]. Available: <u>https://www.icis.com/resources/news/2017/08/25/10136944/china-methanol-import-</u> <u>prices-surpass-300-tonne-mark/</u> [Accessed October, 17 2017].
- ICIS. 2017b. US July ethylene contracts settle down 1.25 cents/lb, not market-wide [Online]. Available: <u>https://www.icis.com/resources/news/2017/08/03/10062158/us-july-ethylene-</u> contracts-settle-down-1-25-cents-lb-not-market-wide/ [Accessed October, 22 2017].
- IZADI, M. 2011. A Comparative Evaluation Of On Purpose Propylene Production Schemes 20th World Petroleum Congress. Doha, Qatar.
- JASPER, S. & EL-HALWAGI, M. M. 2015. A Techno-Economic Comparison between Two Methanol-to-Propylene Processes. *Processes*, 3.
- LEONG, C. T. & SHARIFF, A. M. 2009. Process route index (PRI) to assess level of explosiveness for inherent safety quantification. *Journal of Loss Prevention in the Process Industries*, 22, 216-221.
- MACKENZIE, W. 2014. *Global propylene long-term outlook 2H 2014* [Online]. Wood Mackenzie. Available:

https://www.woodmac.com/content/portal/energy/highlights/wk3\_14/Download%20Glo bal%20propylene%20long-term%20outlook%202H%202014.pdf [Accessed].

MARCH, L. 1998. Introduction to Pinch Technology.

METHANEXCORPORATION. 2017. Pricing | Methanex Corporation [Online]. Available:

https://www.methanex.com/our-business/pricing [Accessed October 17 2017].

- MOLE, T., ANDERSON, J. R. & CREER, G. 1985. The reacton of propane over ZSM-5-H and ZSM-5-Zn catalysts. *Applied Catalysis*, 17, 141-154.
- MUKHERJEE, R., SENGUPTA, D. & SIKDAR, S. K. 2015. Sustainability in the context of process engineering. *Clean Technologies and Environmental Policy*, 17, 833-840.
- NAWAZ, Z. 2015. Light alkane dehydrogenation to light olefin technologies: a comprehensive review. *Reviews in Chemical Engineering*, 31, 413-436.
- O'BRIEN, J. V. 2001. Cryogenic separation process for the recovery of components from the products of a dehydrogenation reactor. Google Patents.
- OLUJIC, Z., SUN, L., DE RIJKE, A. & JANSENS, P. J. 2006. Conceptual design of an internally heat integrated propylene-propane splitter. *Energy*, 31, 3083-3096.
- ORTIZ-ESPINOZA, A. P., JIMÉNEZ-GUTIÉRREZ, A. & EL-HALWAGI, M. M. 2017a. Including Inherent Safety in the Design of Chemical Processes. *Industrial & Engineering Chemistry Research*, 56, 14507-14517.
- ORTIZ-ESPINOZA, A. P., NOURELDIN, M. M. B., EL-HALWAGI, M. M. & JIMÉNEZ-GUTIÉRREZ, A. 2017b. Design, simulation and techno-economic analysis of two processes for the conversion of shale gas to ethylene. *Computers & Chemical Engineering*.
- PALANIAPPAN, C., SRINIVASAN, R. & TAN, R. 2004. Selection of inherently safer process routes: a case study. *Chemical Engineering and Processing: Process Intensification*, 43, 641-647.
- PLATTS, S. P. G. 2017a. *Global Polymer Pricing Analysis* [Online]. Available: <u>https://www.platts.com/news-feature/2016/petrochemicals/global-polymer-pricing-</u> analysis/lldpe [Accessed October 22 2017].

- PLATTS, S. P. G. 2017b. S&P Global Platts Petrochemical Pricing Index (PGPI) [Online]. Available: <u>https://www.platts.com/news-feature/2015/petrochemicals/pgpi/index</u> [Accessed October, 08 2017].
- QUADRI, G. P. 1981. Use of Heat Pump for P-P Splitter. *Hydrocarbon Processing*, 60, 119-126, 147-151.
- ROY, N., ELJACK, F., JIMÉNEZ-GUTIÉRREZ, A., ZHANG, B.,

THIRUVENKATASWAMY, P., EL-HALWAGI, M. & MANNAN, M. S. 2016. A review of safety indices for process design. *Current Opinion in Chemical Engineering*, 14, 42-48.

- RUIZ-MERCADO, G. & CABEZAS, H. 2016. Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes, Elsevier Science & Technology.
- SENGUPTA, D. 2017. Incorporating low grade energy recovery in process integrated systems. *Current Opinion in Chemical Engineering*, 17, 54-60.
- SENGUPTA, D. & EL-HALWAGI, M. M. 2017. Incorporating Systems Thinking in the Engineering Design Curriculum: Path Forward for Sustainability Education A2 -Abraham, Martin A. *Encyclopedia of Sustainable Technologies*. Oxford: Elsevier.
- SHARIFF, A. M., LEONG, C. T. & ZAINI, D. 2012. Using process stream index (PSI) to assess inherent safety level during preliminary design stage. *Safety Science*, 50, 1098-1103.
- SIIROLA, J. J. 2014. The impact of shale gas in the chemical industry. *AIChE Journal*, 60, 810-819.
- SIKDAR, S. 2001. Process Design Tools for the Environment, Taylor & Francis.
- SIKDAR, S. K. 2003. Sustainable development and sustainability metrics. *AIChe Journal*, 49, 1928-1932.

SIKDAR, S. K., SENGUPTA, D. & MUKHERJEE, R. 2017. *Measuring Progress Towards Sustainability*, Springer International Publishing.

SUPRANTO, S., CHANDRA, I., UNDE, M. B., DIGGORY, P. J. & HOLLAND, F. A. 1986. Heat pump assisted distillation. I: Alternative ways to minimize energy consumption in fractional distillation. *International Journal of Energy Research*, 10, 145-161.

THIRUVENKATASWAMY, P., ELJACK, F. T., ROY, N., MANNAN, M. S. & EL-

HALWAGI, M. M. 2016. Safety and techno-economic analysis of ethylene technologies. Journal of Loss Prevention in the Process Industries, 39, 74-84.

- TOWLER, G. & SINNOTT, R. 2013. Chapter 9 Economic Evaluation of Projects. *Chemical Engineering Design (Second Edition).* Boston: Butterworth-Heinemann.
- U.S.EIA. 2017a. Wholesale Propane Weekly Heating Oil and Propane Prices (October-March) [Online]. Available:

https://www.eia.gov/dnav/pet/pet\_pri\_wfr\_a\_EPLLPA\_PWR\_dpgal\_w.htm [Accessed October 22 2017].

- U.S.EIA, U. S. E. I. A. 2017b. *Annual Energy Outlook 2017* [Online]. Available: https://www.eia.gov/outlooks/aeo/pdf/0383(2017).pdf [Accessed].
- U.S.EPA. 2016. AP-42: Compilation of Air Emission Factors / Air Emissions Factors and Quantification [Online]. Available: <u>https://www.epa.gov/air-emissions-factors-and-</u> <u>quantification/ap-42-compilation-air-emission-factors#Proposed/</u> [Accessed October 08 2017].
- U.S.EPA. 2017a. eGRID2014v2 [Online]. Available:

https://www.epa.gov/sites/production/files/2017-

02/documents/egrid2014\_summarytables\_v2.pdf [Accessed October 08 2017].

U.S.EPA. 2017b. Natural Gas Combustion [Online]. Available:

https://www3.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf [Accessed October 08 2017].

- VORA, B. V. 2012. Development of Dehydrogenation Catalysts and Processes. *Topics in Catalysis*, 55, 1297-1308.
- YANG, M. & YOU, F. 2017. Comparative Techno-Economic and Environmental Analysis of Ethylene and Propylene Manufacturing from Wet Shale Gas and Naphtha. *Industrial & Engineering Chemistry Research*, 56, 4038-4051.

YOU, F. 2015. Preface. In: FENGQI, Y. (ed.) Computer Aided Chemical Engineering. Elsevier.

ZHANG, C. & EL-HALWAGI, M. M. 2017. Estimate the Capital Cost of Shale-Gas Monetization Projects. *Chemical Engineering Progress*, 113, 28-32.

#### APPENDIX

#### A.1. MISR and GVM Background Calculations

#### A.1.1. Propane Dehydrogenation

|           | Propane Dehydrogenation |            |             |                      |                   |      |                   |  |  |  |  |  |
|-----------|-------------------------|------------|-------------|----------------------|-------------------|------|-------------------|--|--|--|--|--|
|           |                         |            |             |                      |                   |      |                   |  |  |  |  |  |
|           |                         |            | C3          | $H8 \rightarrow C3H$ | 6 + <i>H</i> 2    |      |                   |  |  |  |  |  |
|           |                         |            | Selectivity | 100%                 |                   |      |                   |  |  |  |  |  |
|           | Stoich. Coeff.          | Mol Weight | Flow Rates  |                      | Rates Unit Prices |      | GVM Calc          |  |  |  |  |  |
|           |                         | kg/kgmole  | KMTA        | kmol*10^3/yr         | \$/Ib             |      | \$/KMTA Propylene |  |  |  |  |  |
| Reactants |                         |            |             |                      |                   |      |                   |  |  |  |  |  |
| Propane   | -1                      | 44         | -628.57     | -14.286              | 0.217             |      |                   |  |  |  |  |  |
| Products  |                         |            |             |                      |                   | 2.07 | 0.535             |  |  |  |  |  |
| Propylene | 1                       | 42         | 600         | 14.286               | 0.431             |      |                   |  |  |  |  |  |
| Hydrogen  | 1                       | 2          | 28.57       | 14.286               | 0.817             |      |                   |  |  |  |  |  |

### A.1.2. Methanol to Olefins

|           | <u>MTO</u>     |                     |               |                          |             |      |                   |  |  |  |  |  |
|-----------|----------------|---------------------|---------------|--------------------------|-------------|------|-------------------|--|--|--|--|--|
|           |                | -                   |               | 2H4 + 2H2O<br>→ C3H8 + H |             |      |                   |  |  |  |  |  |
|           |                | Selectivity to olef | in production | 100%                     | P/E Ratio   | 1.8  |                   |  |  |  |  |  |
|           | Stoich. Coeff. | Mol Weight Flow     |               | / Rates                  | Unit Prices | MISR | GVM Calc          |  |  |  |  |  |
|           |                | kg/kgmole           | KMTA          | kmol*10^3/yr             | \$/Ib       |      | \$/KMTA Propylene |  |  |  |  |  |
| Reactants |                |                     |               |                          |             |      |                   |  |  |  |  |  |
| Methanol  | -7.25          | 32                  | -1841.27      | -57.540                  | 0.136       |      |                   |  |  |  |  |  |
| Products  |                |                     |               |                          |             | 1.29 | 0.268             |  |  |  |  |  |
| Propylene | 1.8            | 42                  | 600           | 14.286                   | 0.431       | 1.29 | 0.208             |  |  |  |  |  |
| Ethylene  | 1              | 28                  | 222.22        | 7.937                    | 0.293       |      |                   |  |  |  |  |  |
| Water     | 7.25           | 18                  | 1035.71       | 57.540                   | 0.000       |      |                   |  |  |  |  |  |

### A.1.3. Olefin Metathesis

|           | Olefin Metathesis |            |             |                       |             |      |                   |  |  |  |  |  |
|-----------|-------------------|------------|-------------|-----------------------|-------------|------|-------------------|--|--|--|--|--|
|           |                   | <i>C</i> 2 | H4 + C4H    | $8 \rightarrow 2C3H6$ |             |      |                   |  |  |  |  |  |
|           |                   |            | Selectivity | 100%                  |             |      |                   |  |  |  |  |  |
|           | Stoich. Coeff.    | Mol Weight | Flow        | v Rates               | Unit Prices | MISR | GVM Calc          |  |  |  |  |  |
|           |                   | kg/kgmole  | KMTA        | kmol*10^3/yr          | \$/Ib       |      | \$/KMTA Propylene |  |  |  |  |  |
| Reactants |                   |            |             |                       |             |      |                   |  |  |  |  |  |
| Ethylene  | -1                | 28         | -200.00     | -7.143                | 0.293       |      |                   |  |  |  |  |  |
| Butylene  | -1                | 56         | -400.00     | -7.143                | 0.531       | 0.95 | -0.045            |  |  |  |  |  |
| Products  |                   |            |             |                       |             |      |                   |  |  |  |  |  |
| Propylene | 2                 | 42         | 600         | 14.286                | 0.431       |      |                   |  |  |  |  |  |

# A.2. Capital Costs Estimation (Equipment Wise)

# A.2.1. Columns, Vessels and Reactors

| List of Equipments | Tag No. | Equipment Name                       |                |             |                    |                      |       |       |      | Hand Calo  | culations for C    | Cost                 |      |             |            |                       |                                  |
|--------------------|---------|--------------------------------------|----------------|-------------|--------------------|----------------------|-------|-------|------|------------|--------------------|----------------------|------|-------------|------------|-----------------------|----------------------------------|
|                    |         |                                      | Size Parameter |             | S Value            |                      | а     | b     | n    | Prchased   | Equipment C        | ost (2016)           | Fm   | Hand Factor |            | Installed Cost (2016) |                                  |
|                    |         |                                      |                | Base Case   | Integrated<br>Case | Integration +<br>HPC |       |       |      | Base Case  | Integrated<br>Case | Integration<br>+ HPC |      |             | Base Case  | Integrated Case       | Integration +<br>Intensification |
|                    | 1301    | Depropanizer Column                  | Shell Mass, kg | 398163      | 398163             | 398163               | 11600 | 34    | 0.85 | 2,018,931  | 2,018,931          | 2,018,931            | 1    | 4           | 8,075,723  | 8,075,723             | 8,075,723                        |
|                    |         | DeC3 Trays                           | Diameter, m    | 3.66        | 3.66               | 3.66                 | 130   | 440   | 1.8  | 575,258    | 575,258            | 575,258              | 1    | 1           | 575,258    | 575,258               | 575,258                          |
|                    | 1360    | Deethanizer Column                   | Shell Mass, kg | 1274121     | 1274121            | 1274121              | 11600 | 34    | 0.85 | 5,406,158  | 5,406,158          | 5,406,158            | 1    | 4           | 21,624,633 | 21,624,633            | 21,624,633                       |
|                    |         | DeC2 Trays                           | Diameter, m    | 6.71        | 6.71               | 6.71                 | 130   | 440   | 1.8  | 1,499,000  | 1,499,000          | 1,499,000            | 1    | 1           | 1,499,000  | 1,499,000             | 1,499,000                        |
| Columns            | 1370    | PP Splitter                          | Shell Mass, kg | 3243217     | 3243217            | 1900322              | 11600 | 34    | 0.85 | 11,947,173 | 11,947,173         | 7,589,051            | 1    | 4           | 47,788,691 | 47,788,691            | 30,356,202                       |
|                    |         | PP Splitter Trays                    | Diameter, m    | 12.2        | 12.2               | 11.4                 | 130   | 440   | 1.8  | 10,208,739 | 10,208,739         | 9,092,746            | 1    | 1           | 10,208,739 | 10,208,739            | 9,092,746                        |
|                    |         |                                      |                |             |                    |                      |       |       |      |            |                    |                      |      |             | 89,772,044 | 89,772,044            | 71,223,562                       |
|                    | 1302    | Depropanizer Receiver                | Shell Mass, kg | 27297       | 27297              | 27297                | 10200 | 31    | 0.85 | 198,000    | 198,000            | 198,000              | 1    | 4           | 792,000    | 792,000               | 792,000                          |
|                    | 1320    | Reactor Effluent                     | Shell Mass, kg | 18406       | 18406              | 18406                | 11600 | 34    | 0.85 | 159,034    | 159,034            | 159,034              | 1    | 4           | 636,135    | 636,135               | 636,135                          |
|                    | 1321    | REC Interstage Drum                  | Shell Mass, kg | 22170       | 22170              | 22170                | 11600 | 34    | 0.85 | 184,248    | 184,248            | 184,248              | 1    | 4           | 736,992    | 736,992               | 736,992                          |
|                    | 1322    | REC Discharge Drum                   | Shell Mass, kg | 37261       | 37261              | 37261                | 11600 | 34    | 0.85 | 279,855    | 279,855            | 279,855              | 1.07 | 4           | 1,197,778  | 1,197,778             | 1,197,778                        |
|                    | 1330    | High pressure Separator              | Shell Mass, kg | 67902       | 67902              | 67902                | 11600 | 34    | 0.85 | 458,175    | 458,175            | 458,175              | 1.07 | 4           | 1,960,988  | 1,960,988             | 1,960,988                        |
| Vessels            | 1331    | Intermediate Pressure                | Shell Mass, kg | 9782        | 9782               | 9782                 | 11600 | 34    | 0.85 | 97,873     | 97,873             | 97,873               | 1.07 | 4           | 418,895    | 418,895               | 418,895                          |
|                    | 1332    | LP Separator (Cold Box)              | Shell Mass, kg | 8333        | 8333               | 8333                 | 11600 | 34    | 0.85 | 86,916     | 86,916             | 86,916               | 1.07 | 4           | 372,001    | 372,001               | 372,001                          |
|                    | 1333    | Flash Drum (Cold Box)                | Shell Mass, kg | 2291        | 2291               | 2291                 | 11600 | 34    | 0.85 | 36,936     | 36,936             | 36,936               | 1.07 | 4           | 158,087    | 158,087               | 158,087                          |
|                    | 1361    | Deethanizer Receiver                 | Shell Mass, kg | 83139       | 83139              | 83139                | 11600 | 34    | 0.85 | 541,973    | 541,973            | 541,973              | 1    | 4           | 2,167,893  | 2,167,893             | 2,167,893                        |
|                    | 1371    | Heat Pump Compressor<br>Suction Drum | Shell Mass, kg | 241436      | 241436             | 241436               | 11600 | 34    | 0.85 | 1,323,749  | 1,323,749          | 1,323,749            | 1    | 4           | 5,294,997  | 5,294,997             | 5,294,997                        |
| · · · ·            |         |                                      |                |             |                    |                      |       |       |      |            |                    |                      |      |             | 13,735,767 | 13,735,767            | 13,735,767                       |
|                    | 1310    | Reactor 1                            | Volume, m3     | 241.3245464 | 241.3245464        | 241.3245464          | 61500 | 32500 | 0.8  | 2,748,354  | 2,748,354          | 2,748,354            | 1    | 4           | 10,993,417 | 10,993,417            | 10,993,417                       |
|                    | 1311    | Reactor 2                            | Volume, m3     | 241.3245464 | 241.3245464        | 241.3245464          | 61500 | 32500 | 0.8  | 2,748,354  | 2,748,354          | 2,748,354            | 1    | 4           | 10,993,417 | 10,993,417            | 10,993,417                       |
| Reactors           | 1312    | Reactor 3                            | Volume, m3     | 241.3245464 | 241.3245464        | 241.3245464          | 61500 | 32500 | 0.8  | 2,748,354  | 2,748,354          | 2,748,354            | 1    | 4           | 10,993,417 | 10,993,417            | 10,993,417                       |
|                    | 1313    | Reactor 4                            | Volume, m3     | 241.3245464 | 241.3245464        | 241.3245464          | 61500 | 32500 | 0.8  | 2,748,354  | 2,748,354          | 2,748,354            | 1    | 4           | 10,993,417 | 10,993,417            | 10,993,417                       |
| I I                | 1399    | SHP Reactor                          | Volume, m3     | 28.35920724 | 28.35920724        | 28.35920724          | 61500 | 32500 | 0.8  | 547,323    | 547,323            | 547,323              | 1    | 4           | 2,189,293  | 2,189,293             | 2,189,293                        |
| · · · · ·          |         |                                      |                |             |                    |                      |       |       |      |            |                    |                      |      |             | 46,162,960 | 46,162,960            | 46,162,960                       |

# A.2.2. Exchangers

| List of Equipments | Tag No. | Equipment Name                                 |                |           |                    |                      |       |     |      | Hand Calo  | culations for C    | ost                  |      |             |             |                       |                                  |
|--------------------|---------|------------------------------------------------|----------------|-----------|--------------------|----------------------|-------|-----|------|------------|--------------------|----------------------|------|-------------|-------------|-----------------------|----------------------------------|
|                    |         |                                                | Size Parameter |           | S Value            |                      | а     | b   | n    | Prchased   | Equipment Co       | ost (2016)           | Fm   | Hand Factor |             | Installed Cost (2016) |                                  |
|                    |         |                                                |                | Base Case | Integrated<br>Case | Integration +<br>HPC |       |     |      | Base Case  | Integrated<br>Case | Integration<br>+ HPC |      |             | Base Case   | Integrated Case       | Integration +<br>Intensification |
|                    | 1401    | Depropanizer<br>Condenser                      | Area, m2       | 4759.47   | 4759.47            | 4759.47              | 32000 | 70  | 1.2  | 1,891,452  | 1,891,452          | 1,891,452            | 1    | 3.5         | 6,620,081   | 6,620,081             | 6,620,081                        |
|                    | 1420    | Reactor Effluent Cooler                        | Area, m2       | 2005.84   | 620.39             | 620.39               | 32000 | 70  | 1.2  | 691,812    | 194,006            | 194,006              | 1    | 3.5         | 2,421,342   | 679,021               | 679,021                          |
|                    | 1421    | REC Interstage Cooler                          | Area, m2       | 1093.92   | 868.19             | 868.19               | 32000 | 70  | 1.2  | 351,174    | 274,069            | 274,069              | 1    | 3.5         | 1,229,109   | 959,240               | 959,240                          |
|                    | 1422    | REC Discharge Cooler                           | Area, m2       | 1088.93   | 893.67             | 893.67               | 32000 | 70  | 1.2  | 349,432    | 282,590            | 282,590              | 1    | 3.5         | 1,223,011   | 989,066               | 989,066                          |
|                    | 1476    | Propylene Trim<br>Condenser (Integrated        | Area, m2       | 0.00      | 0.00               | 1917.02              | 32000 | 70  | 1.2  | 0          | 0                  | 656,950              | 1    | 3.5         | 0           | 0                     | 2,299,326                        |
|                    | 1481    | PP Splitter Condenser<br>(Base case)           | Area, m2       | 33323.86  | 33323.86           | 0.00                 | 32000 | 70  | 1.2  | 19,238,444 | 19,238,444         | 0                    | 1    | 3.5         | 67,334,553  | 67,334,553            | 0                                |
|                    | 1402    | Depropanizer Reboiler                          | Area, m2       | 377.46    | 209.56             | 209.56               | 30400 | 122 | 1.1  | 116,678    | 75,934             | 75,934               | 1    | 3.5         | 408,373     | 265,769               | 265,769                          |
| Exchangers         |         | Depropanizer Process<br>Reboiler               | Area, m2       | 0.00      | 1047.21            | 1047.21              | 30400 | 122 | 1.1  | 0          | 293,858            | 293,858              | 1    | 3.5         | 0           | 1,028,504             | 1,028,504                        |
|                    | 1440    | SHP Feed Heater                                | Area, m2       | 85.80     | 85.80              | 85.80                | 28000 | 54  | 1.2  | 40,298     | 40,298             | 40,298               | 1    | 3.5         | 141,042     | 141,042               | 141,042                          |
|                    | 1461    | Deethanizer Steam<br>Reboiler                  | Area, m2       | 527.92    | 211.97             | 211.97               | 30400 | 122 | 1.1  | 154,836    | 76,501             | 76,501               | 1    | 3.5         | 541,926     | 267,755               | 267,755                          |
|                    | 1461A   | Deethanizer Process<br>Reboiler-REC Interstage | Area, m2       | 0.00      | 1416.32            | 1416.32              | 30400 | 122 | 1.1  | 0          | 397,333            | 397,333              | 1    | 3.5         | 0           | 1,390,665             | 1,390,665                        |
|                    | 1461B   | Deethanizer Process<br>Reboiler-REC Discharge  | Area, m2       | 0.00      | 1403.12            | 1403.12              | 30400 | 122 | 1.1  | 0          | 393,580            | 393,580              | 1    | 3.5         | 0           | 1,377,530             | 1,377,530                        |
|                    |         |                                                | Area, m2       | 2997.16   | 2997.16            | 0.00                 | 30400 | 122 | 1.1  | 866,331    | 866,331            | 0                    | 1    | 3.5         | 3,032,157   | 3,032,157             | 0                                |
|                    | 1415    | Hot Combined Feed<br>Exchanger                 | Area, m2       | 0.00      | 5433.13            | 5433.13              | 32000 | 70  | 1.2  | 0          | 2,211,445          | 2,211,445            | 1    | 3.5         | 0           | 7,740,056             | 7,740,056                        |
|                    | 1/130   | Cold Combined Feed<br>Exchanger (Cold Box)     | Area, m2       | 26090.51  | 26090.51           | 26090.51             | 1600  | 210 | 0.95 | 3,381,524  | 3,381,524          | 3,381,524            | 1.07 | 3.5         | 12,663,806  | 12,663,806            | 12,663,806                       |
|                    |         | Feed Chiller (Cold Box)                        | Area, m2       | 4130.68   | 4130.68            | 4130.68              | 1600  | 210 | 0.95 | 588,406    | 588,406            | 588,406              | 1.07 | 3.5         | 2,203,580   | 2,203,580             | 2,203,580                        |
|                    | 1475    | PP Splitter Reboiler<br>Condenser              | Area, m2       | 0.00      | 0.00               | 11730.33             | 30400 | 122 | 1.1  | 0          | 0                  | 3,777,675            | 1    | 3.5         | 0           | 0                     | 13,221,861                       |
|                    | 1460    | Deethanizer Condenser                          | Area, m2       | 1876.40   | 1876.40            | 1876.40              | 32000 | 70  | 1.2  | 641,113    | 641,113            | 641,113              | 1    | 3.5         | 2,243,897   | 2,243,897             | 2,243,897                        |
|                    |         |                                                | -              |           |                    |                      |       |     |      |            |                    |                      |      |             | 100,062,877 | 108,936,722           | 54,091,199                       |

| A.2.3. | <b>Fired Heate</b> | ers, Pumps | <b>Compressors</b> | , Packages and | Totals |
|--------|--------------------|------------|--------------------|----------------|--------|
|        |                    |            |                    | ,              |        |

| List of Equipments | Tag No. | Equipment Name                             |                  |             |                    |                      |        |        |      | Hand Calo | ulations for C     | Cost                 |    |             |                       |                                         |                                  |
|--------------------|---------|--------------------------------------------|------------------|-------------|--------------------|----------------------|--------|--------|------|-----------|--------------------|----------------------|----|-------------|-----------------------|-----------------------------------------|----------------------------------|
|                    | •       |                                            | Size Parameter   |             | S Value            |                      | а      | b      | n    | Prchased  | Equipment Co       | ost (2016)           | Fm | Hand Factor | Installed Cost (2016) |                                         |                                  |
|                    |         |                                            |                  | Base Case   | Integrated<br>Case | Integration +<br>HPC |        |        |      | Base Case | Integrated<br>Case | Integration<br>+ HPC |    |             | Base Case             | Integrated Case                         | Integration +<br>Intensification |
|                    | 1201    | Charge Heater                              | Duty, MW         | 127.52      | 23.07              | 23.07                | 43000  | 111000 | 0.8  | 5,549,805 | 1,446,252          | 1,446,252            | 1  | 2           | 11,099,609            | 2,892,503                               | 2,892,503                        |
| Fired Heaters      | 1202    | Interheater 1                              | Duty, MW         | 21.32       | 21.32              | 21.32                | 43000  | 111000 | 0.8  | 1,360,604 | 1,360,604          | 1,360,604            | 1  | 2           | 2,721,207             | 2,721,207                               | 2,721,207                        |
|                    | 1203    | Interheater 2                              | Duty, MW         | 21.36       | 21.36              | 21.36                | 43000  | 111000 | 0.8  | 1,362,688 | 1,362,688          | 1,362,688            | 1  | 2           | 2,725,376             | 2,725,376                               | 2,725,376                        |
|                    | 1204    | Interheater 3                              | Duty, MW         | 21.01       | 21.01              | 21.01                | 43000  | 111000 | 0.8  | 1,345,121 | 1,345,121          | 1,345,121            | 1  | 2           | 2,690,242             | 2,690,242                               | 2,690,242                        |
|                    |         |                                            |                  |             |                    |                      |        |        |      |           |                    |                      |    |             | 19,236,434            | 11,029,328                              | 11,029,328                       |
|                    | 1501    | Depropanizer Overhead                      | Flow, litres/sec | 183.37      | 183.37             | 183.37               | 8000   | 240    | 0.9  | 35,011    | 35,011             | 35,011               | 1  | 4           | 140,044               | 140,044                                 | 140,044                          |
|                    |         | Flash Drum Pumps                           | Flow, litres/sec | 107.28      | 107.28             | 107.28               | 8000   | 240    | 0.9  | 24,752    | 24,752             |                      | 1  | 4           | 99,007                | 99,007                                  | 99,007                           |
| _                  |         |                                            | Flow, litres/sec | 186.77      | 186.77             | 186.77               | 8000   | 240    | 0.9  | 35,459    | 35,459             | 35,459               | 1  | 4           | 141,835               | 141,835                                 | 141,835                          |
| Pumps              | 1580    | Propylene Product<br>Pumps                 | Flow, litres/sec | 1577.26     | 1577.26            | 75.20                | 8000   | 240    | 0.9  | 194,135   |                    | -                    | 1  | 4           | 776,538               | 776,538                                 | 80,897                           |
|                    | 1578    | Propane Recycle Pumps                      | Flow, litres/sec | 45.83       | 45.83              | 45.83                | 8000   | 240    | 0.9  | 15.902    | 15.902             | 15,902               | 1  | 4           | 63.609                | 63,609                                  | 63,609                           |
|                    |         | · · · · · · · · · · · · · · · · · · ·      |                  |             |                    |                      |        |        |      | - /       |                    |                      |    |             | 1,221,034             | 1,221,034                               | 525,392                          |
|                    | 1531    | HP Expander (Cold Box)                     | Flow, m3/hr      | 7054,292925 | 7054.292925        | 7054,292925          | 4450   | 57     | 0.8  | 74,655    | 74,655             | 74,655               | 1  | 2.5         | 186,638               | 186,638                                 | 186,638                          |
|                    |         | 1 1 /                                      | Flow, m3/hr      | 6164.011255 | 6164.011255        | 6164.011255          | 4450   | 57     | 0.8  | 67.485    | 67.485             |                      | 1  | 2.5         | 168,711               | 168,711                                 | 168,711                          |
|                    |         | Reactor Effluent                           | Power, kW        | 13621.32    | 13621.32           | 13621.32             | 580000 | 20000  | 0.6  | 6,797,678 | 6,797,678          | 6,797,678            | 1  | 2.5         | 16,994,196            | 16,994,196                              | 16,994,196                       |
|                    |         | Reactor Effluent                           | Power, kW        | 12012.44    | 12012.44           | 12012.44             | 580000 | 20000  | 0.6  | 6,347,092 | 6,347,092          | 6,347,092            | 1  | 2.5         | 15,867,731            | 15,867,731                              | 15,867,731                       |
|                    |         | SHP Hydrogen                               | Power, kW        | 36.96       | 36.96              | 36.96                | 260000 | 2700   | 0.75 | 308,194   | 308.194            | 308,194              | 1  | 2.5         | 770,484               | 770,484                                 | 770,484                          |
| Compressors        |         |                                            | Power, kW        | 0.00        | 0.00               | 14407.43             | 580000 | 20000  | 0.6  | 000,151   | 000,101            | 7.010.047            | 1  | 2.5         | 0                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 17,525,117                       |
|                    |         |                                            | Power, kW        | 0.00        | 0.00               | 128.20               | 580000 | 20000  | 0.6  | 0         | 0                  | 972,298              | 1  | 2.5         | 0                     | 0                                       | 2,430,745                        |
|                    |         | Turbine for REC Stage 1                    | FOWEI, KW        | 0.00        | 0.00               | 120.20               | 380000 | 20000  | 0.0  | 0         | 0                  | 572,250              | 1  | 2.5         | 0                     | 0                                       | 2,430,743                        |
|                    |         | Turbine for REC Stage 2                    |                  |             |                    |                      |        |        |      |           |                    |                      |    |             |                       |                                         |                                  |
|                    |         | Turbine for HPC                            |                  |             |                    |                      |        |        |      |           |                    |                      |    |             |                       |                                         |                                  |
|                    | 13      | Turbine for the c                          |                  |             |                    |                      |        |        |      |           |                    |                      |    |             | 33,987,760            | 33,987,760                              | 53,943,623                       |
|                    | 01      | PSA                                        |                  |             |                    |                      |        |        |      |           |                    |                      |    |             |                       |                                         |                                  |
|                    | 02      | RED's and Feed<br>Pretreatment             |                  |             |                    |                      |        |        |      |           |                    |                      |    |             |                       |                                         |                                  |
| Packages           | 03      | Propyelene Refrigerant<br>(DeC2 Condenser) |                  |             |                    |                      |        |        |      |           |                    |                      |    |             | 17,148,895            | 17,148,895                              | 17,148,895                       |
|                    |         | Refrigerant Compressor                     | Power, kW        | 8862.00     | 8862.00            | 8862.00              | 580000 | 20000  | 0.6  | 5,387,530 | 5,387,530          | 5,387,530            | 1  | 2.5         | 13,468,826            | 13,468,826                              | 13,468,826                       |
|                    |         | Condenser (CW)                             | Area, m2         | 2883.44     | 2883.44            | 2883.44              | 32000  | 70     | 1.2  | 1,051,448 | 1,051,448          | 1,051,448            | 1  | 3.5         | 3,680,070             | 3,680,070                               | 3,680,070                        |

| Total Costs of Equipment (Installed | Total Costs of Equipment (Installed, (\$2016)) |       |       | 267,860,726 |  |
|-------------------------------------|------------------------------------------------|-------|-------|-------------|--|
|                                     | OSBL%                                          |       | 30%   |             |  |
|                                     | DEC%                                           |       | 30%   |             |  |
|                                     | Contingency                                    | 10%   |       |             |  |
| Total Fixed Capital Costs (MMS      | 5, 2016)                                       | 584.8 | 586.0 | 487.5       |  |

# A.3. Utility Costs

# A.3.1. Cooling Water and LP Steam

|      | Cooling Water                         |            |                 |                    |                 |                  |         |  |  |  |  |  |
|------|---------------------------------------|------------|-----------------|--------------------|-----------------|------------------|---------|--|--|--|--|--|
|      |                                       |            |                 |                    |                 |                  |         |  |  |  |  |  |
|      |                                       |            | CW Flow         |                    |                 | CW Price         |         |  |  |  |  |  |
|      |                                       | Base Case  | Integrated Case | Base Case          | Integrated Case | Integration +HPC |         |  |  |  |  |  |
|      |                                       |            | lb/hr           |                    |                 | \$/yr            |         |  |  |  |  |  |
| 1401 | Depropanizer Condenser                | 3,193,104  | 3,121,637       | 3,121,637          | 271,823         | 265,739          | 265,7   |  |  |  |  |  |
| 1420 | Reactor Effluent Cooler               | 48,833,905 | 1,181,946       | 1,181,946          | 4,157,143       | 100,617          | 100,    |  |  |  |  |  |
| 1421 | REC Interstage Cooler                 | 6,771,749  | 3,149,893       | 3,149,893          | 576,467         | 268,145          | 268,    |  |  |  |  |  |
| 1422 | REC Discharge Cooler                  | 6,290,712  | 3,242,343       | 3,242,343          | 535,517         | 276,015          | 276,    |  |  |  |  |  |
| 1476 | Propylene Trim Condenser              | 0          | 0               | 2,862,219          | 0               | 0                | 243,    |  |  |  |  |  |
| 1481 | PP Splitter Condenser                 | 32,869,591 | 31,042,550      | 0                  | 2,798,129       | 2,642,597        |         |  |  |  |  |  |
|      | · · · · · · · · · · · · · · · · · · · |            | Total Co        | ooling Water Costs | 8,339,079       | 3,553,112        | 1,154,1 |  |  |  |  |  |
|      |                                       |            |                 | -                  | 0.8341          |                  |         |  |  |  |  |  |

| LP | Steam |
|----|-------|
|----|-------|

|       |                                     |                      | LPS Flow        |                  | LPS_Cost   |                 |                  |  |  |
|-------|-------------------------------------|----------------------|-----------------|------------------|------------|-----------------|------------------|--|--|
|       |                                     | Base Case            | Integrated Case | Integration +HPC | Base Case  | Integrated Case | Integration +HPC |  |  |
|       |                                     |                      | lb/hr           |                  | \$/yr      |                 |                  |  |  |
| 1402  | Depropanizer Reboiler               | 86,340               | 49,605          | 49,605           | 3,461,277  | 1,988,595       | 1,988,61         |  |  |
| 1440  | SHP Feed Heater                     | 15,637               | 15,622          | 15,622           | 626,856    | 626,254         | 626,27           |  |  |
| 1461  | Deethanizer Reboiler                | 85,499               | 34,527          | 34,527           | 3,427,570  | 1,384,161       | 1,384,15         |  |  |
| 1480  | PP Splitter Reboiler                | 697,095              | 696,675         | 0                | 27,945,859 | 27,928,992      | (                |  |  |
| 1531  | Reactor Effluent Compressor Stage 1 | 0                    | 0               | 0                | 0          | 0               |                  |  |  |
| 1532  | Reactor Effluent Compressor Stage 2 | 0                    | 0               | 0                | 0          | 0               |                  |  |  |
| 1575A | Heat Pump Compressor Stage 1        | 0                    | 0               | 0                | 0          | 0               |                  |  |  |
| 1575B | Heat Pump Compressor Stage 2        | 0                    | 0               | 0                | 0          | 0               |                  |  |  |
|       |                                     | Total LP steam Costs |                 |                  | 35,461,561 | 31,928,002      | 3,999,038        |  |  |

#### A.3.2. Natural Gas and Power Costs

|      | Natural Gas   |             |                     |            |                 |                  |  |  |  |  |  |  |
|------|---------------|-------------|---------------------|------------|-----------------|------------------|--|--|--|--|--|--|
|      |               |             |                     |            |                 |                  |  |  |  |  |  |  |
|      |               |             | NG_Flow             |            | NG_Cost         |                  |  |  |  |  |  |  |
|      |               |             | Base Case           | Base Case  | Integrated Case | Integration +HPC |  |  |  |  |  |  |
|      |               |             | SCFH                | -          | \$/yr           |                  |  |  |  |  |  |  |
| 1201 | Charge Heater |             | 411,765             | 10,480,420 | 1,896,072       | 1,896,072        |  |  |  |  |  |  |
| 1202 | Interheater 1 |             | 68,851              | 1,752,421  | 1,752,421       | 1,752,421        |  |  |  |  |  |  |
| 1203 | Interheater 2 |             | 68,987              | 1,755,889  | 1,755,889       | 1,755,889        |  |  |  |  |  |  |
| 1204 | Interheater 3 |             | 67,840              | 1,726,697  | 1,726,697       | 1,726,697        |  |  |  |  |  |  |
|      |               | Total Natur | al Gas Firing Costs | 15,715,427 | 7,131,079       | 7,131,079        |  |  |  |  |  |  |

|       |                                     |           | Ро              | wer                 |            |                 |                  |
|-------|-------------------------------------|-----------|-----------------|---------------------|------------|-----------------|------------------|
|       |                                     |           |                 |                     |            |                 |                  |
|       |                                     |           |                 |                     |            |                 |                  |
|       |                                     |           | Shaft Power     |                     |            | Cost            |                  |
|       |                                     | Base Case | Integrated Case | Integration +HPC    | Base Case  | Integrated Case | Integration +HPC |
|       |                                     |           | hP              |                     |            | \$/yr           |                  |
| 1501  | Depropanizer Overhead Pumps         | 77        | 77              | 77                  | 30,842     | 30,842          | 30,842           |
| 1540  | Flash Drum Pumps (Cold Box)         | 728       | 728             | 728                 | 293,045    | 293,045         | 293,045          |
| 1560  | Deethanizer Reflux Pumps            | 116       | 116             | 116                 | 46,695     | 46,695          | 46,695           |
| 1578  | Propane Recycle Pumps               | 121       | 121             | 121                 | 48,656     | 48,656          | 48,656           |
| 1580  | Propylene Product Pumps             | 78        | 78              | 78                  | 31,256     | 31,256          | 31,256           |
|       |                                     |           |                 |                     | 450,495    | 450,495         | 450,495          |
|       |                                     |           | Shaft Power     |                     |            | Cost            |                  |
|       |                                     | Base Case | Integrated Case | Integration +HPC    | Base Case  | Integrated Case | Integration +HPC |
|       |                                     |           | hP              |                     |            | \$/yr           |                  |
| 1520A | Reactor Effluent Compressor Stage 1 | 18,399    | 18,399          | 18,399              | 7,401,987  | 7,401,987       | 7,401,987        |
| 1520B | Reactor Effluent Compressor Stage 2 | 16,325    | 16,325          | 16,325              | 6,567,559  | 6,567,559       | 6,567,559        |
| 1540  | SHP Hydrogen Compressor             | 49        | 49              | 49                  | 19,880     | 19,880          | 19,880           |
| 1575A | Heat Pump Compressor Stage 1        | 0         | 0               | 19,321              | 0          | 0               | 7,772,809        |
| 1575B | Heat Pump Compressor Stage 2        | 0         | 0               | 172                 | 0          | 0               | 69,156           |
|       |                                     | 35,893    | 35,893          | 55,386              | 13,989,426 | 13,989,426      | 21,831,391       |
|       |                                     |           | Total Electr    | icity Costs (\$/yr) | 14,439,921 | 14,439,921      | 22,281,886       |

# A.3.3. Refrigeration Equipment and Totals

|                             |           | Refrigera        | int Section      |           |                 |                  |
|-----------------------------|-----------|------------------|------------------|-----------|-----------------|------------------|
|                             |           |                  |                  |           |                 |                  |
|                             |           |                  |                  |           |                 |                  |
|                             | S         | Shaft Power/CW F | low              |           | Cost            |                  |
|                             | Base Case | Integrated Case  | Integration +HPC | Base Case | Integrated Case | Integration +HPC |
|                             |           | hP/lb/hr         |                  |           | \$/yr           |                  |
| 1460 Refrigerant Compressor | 11,884    | 11,884           | 11,884           | 4,781,013 | 4,781,013       | 4,781,013        |
| Refrogerant Condenser (CW)  | 505,448   | 505,448          | 505,448          | 43,028    | 43,028          | 43,028           |
|                             | 47,777    | ,                |                  |           |                 |                  |

| 47, | 77 |  |
|-----|----|--|
|-----|----|--|

|                                 | Base Case  | Integrated Case | Integration + HPC |
|---------------------------------|------------|-----------------|-------------------|
| Total Utility Costs (\$/yr)     | 78,780,029 | 61,876,155      | 39,390,215        |
| Total Cooling Water Costs       | 8,382,107  | 3,596,140       | 1,197,199         |
| Total LP steam Costs            | 35,461,561 | 31,928,002      | 3,999,038         |
| Total Natural Gas Firing Costs  | 15,715,427 | 7,131,079       | 7,131,079         |
| Total Electricity Costs (\$/yr) | 19,220,934 | 19,220,934      | 27,062,899        |

## A.4. Pinch Analysis Data

#### A.4.1. Streams extracted for Base Case

| Stream Name       | Supply<br>Temperature | Target<br>Temperature | Heat Duty  | Heat Flow | Stream<br>Type | Supply<br>Shift | Target<br>Shift |
|-------------------|-----------------------|-----------------------|------------|-----------|----------------|-----------------|-----------------|
|                   | °F                    | °F                    | kW         | kW        |                | °C              | °C              |
| DeC3_Cond_S1      | 113.1                 | 111.8                 | 93.000     | 93.0      | HOT            | 38.1            | 37.4            |
| DeC3_Cond_S2      | 111.8                 | 110.2                 | 16340.000  | 16340.0   | HOT            | 37.4            | 36.5            |
| DeC3_Cond_S3      | 110.2                 | 108.6                 | 5043.000   | 5043.0    | HOT            | 36.5            | 35.6            |
| REC_Cooler_S1     | 1054                  | 92                    | 99964.000  | 99964.0   | HOT            | 560.8           | 26.4            |
| REC_Int_Cooler_S1 | 267.39                | 92                    | 13862.000  | 13862.0   | HOT            | 123.8           | 26.4            |
| REC_Dis_Cooler_S1 | 252.1                 | 92                    | 12878.000  | 12878.0   | HOT            | 115.3           | 26.4            |
| PP_Cond_S1        | 106.7                 | 106                   | 122705.000 | 122705.0  | HOT            | 34.6            | 34.2            |
| PP_Cond_S2        | 106                   | 105.4                 | 41017.000  | 41017.0   | HOT            | 34.2            | 33.8            |
| PP_Cond_S3        | 105.4                 | 104.4                 | 18915.000  | 18915.0   | HOT            | 33.8            | 33.3            |
| DeC2_Cond_S1      | 35.6                  | 26.6                  | 11057.000  | 11057.0   | HOT            | -4.9            | -9.9            |
| DeC2_Cond_S2      | 26.6                  | 11                    | 7264.000   | 7264.0    | HOT            | -9.9            | -18.6           |
| DeC3_Reb_S1       | 123.8                 | 124.5                 | 23173.000  | 23173.0   | COLD           | 57.9            | 58.3            |
| SHP_Htr_S1        | 98.3                  | 140                   | 4195.000   | 4195.0    | COLD           | 43.8            | 66.9            |
| DeC2_Reb_S1       | 176.7                 | 176.8                 | 23081.000  | 23081.0   | COLD           | 87.3            | 87.4            |
| PP_Reb_S1         | 127.4                 | 127.5                 | 143874.000 | 143874.0  | COLD           | 59.9            | 60.0            |
| PP_Reb_S2         | 127.5                 | 127.7                 | 43228.000  | 43228.0   | COLD           | 60.0            | 60.1            |
| CH_S1             | 84.3                  | 1112                  | 106261.000 | 106261.0  | COLD           | 36.0            | 606.9           |
| IH1_S1            | 994.3                 | 1130                  | 17768.000  | 17768.0   | COLD           | 541.6           | 616.9           |
| IH2_S1            | 1012.9                | 1148                  | 17805.000  | 17805.0   | COLD           | 551.9           | 626.9           |
| IH3_S1            | 1034                  | 1166                  | 17509.000  | 17509.0   | COLD           | 563.6           | 636.9           |

## A.4.2. Streams Extracted for Integrated Case with Intensification

| Stream Name       | Supply<br>Temperature | Target<br>Temperature | Heat Duty | Heat Flow  | Stream<br>Type | Supply<br>Shift | Target<br>Shift |
|-------------------|-----------------------|-----------------------|-----------|------------|----------------|-----------------|-----------------|
|                   | °F                    | °F                    | kW        | kW         |                | °C              | °C              |
| DeC3_Cond_S1      | 113.1                 | 111.8                 | 92.724    | 92.724     | HOT            | 38.1            | 37.4            |
| DeC3_Cond_S2      | 111.8                 | 110.2                 | 16339.681 | 16339.6808 | HOT            | 37.4            | 36.5            |
| DeC3_Cond_S3      | 110.2                 | 108.6                 | 5042.764  | 5042.7642  | HOT            | 36.5            | 35.6            |
| REC_Cooler_S1     | 125                   | 92                    | 2415.650  | 2415.6502  | HOT            | 44.7            | 26.4            |
| REC_Int_Cooler_S1 | 176.8                 | 92                    | 6423.729  | 6423.729   | HOT            | 73.5            | 26.4            |
| REC_Dis_Cooler_S1 | 176.8000001           | 92                    | 6612.265  | 6612.2654  | HOT            | 73.5            | 26.4            |
| DeC2_Cond_S1      | 35.59617729           | 26.56208644           | 11057.428 | 11057.4283 | HOT            | -4.9            | -10.0           |
| DeC2_Cond_S2      | 26.56208644           | 10.95774771           | 7264.376  | 7264.3756  | HOT            | -10.0           | -18.6           |
| DeC3_Reb_S1       | 123.7956395           | 124.5819285           | 13329.568 | 13329.5685 | COLD           | 57.9            | 58.4            |
| SHP_Htr_S1        | 98.30367719           | 140                   | 4195.415  | 4195.4146  | COLD           | 43.8            | 66.9            |
| DeC2_Reb_S1       | 176.7200928           | 177                   | 9272.322  | 9272.3218  | COLD           | 87.3            | 87.5            |
| CH_S1             | 963.7653556           | 1112                  | 19224.239 | 19224.239  | COLD           | 524.6           | 606.9           |
| IH1_S1            | 994.2503082           | 1130                  | 17768.012 | 17768.0124 | COLD           | 541.5           | 616.9           |
| IH2_S1            | 1012.8704             | 1148                  | 17804.911 | 17804.9109 | COLD           | 551.9           | 626.9           |
| IH3_S1            | 1034.014554           | 1166                  | 17508.994 | 17508.9938 | COLD           | 563.6           | 636.9           |

#### A.5. Emissions Calculations

## A.5.1. Base Case

|                                          |                       | Emission Calculations - Base Ca | se              |                       |
|------------------------------------------|-----------------------|---------------------------------|-----------------|-----------------------|
|                                          |                       | Base Case                       | Base Case + WHR | Base Case + WHR + OGR |
|                                          | Metric for Estimation | Metric Value                    | Metric Value    | Metric Value          |
| Natural Gas Combustion                   | Natural Gas           | 1.581                           | 1.357           | 1.357                 |
| Steam Boiler (Offsites)                  | consumption, MMSCFH   | 0.998                           | 0.774           | 0.774                 |
| Fired Heater (Reactor Section)           | consumption, wivisern | 0.583                           | 0.583           | 0.583                 |
| Electricity Consumption                  | Power, MW             | 26.77                           | 26.77           | 26.77                 |
| Product Stream Flaring (100% Combustion) |                       | 48689                           | 48689           | 5309                  |
| Deethanizer Off Gas                      | CO2 Flow Rate, lbhr   | 43380                           | 43380           | 0                     |
| Flash Gas from Cold Box                  | CO2 FIOW Rate, IDIII  | 3498                            | 3498            | 3498                  |
| DeC3 Bottoms                             |                       | 1811                            | 1811            | 1811                  |
|                                          |                       |                                 |                 |                       |
|                                          | Pollutant             | Base Case                       | Base Case + WHR | Base Case + WHR + OGR |
|                                          |                       | lb/yr                           | lb/hr           | lb/hr                 |
|                                          | CO2                   | 2,232,770,283                   | 2,009,267,883   | 1,649,213,883         |
|                                          | Methane               | 48355                           | 44071           | 44071                 |
|                                          | SO2                   | 7874                            | 6756            | 6756                  |
|                                          | TOC                   | 144354                          | 123867          | 123867                |
|                                          | VOC                   | 72177                           | 61933           | 61933                 |
| Assume Low Nox Burners in Heaters        | N2O                   | 10976                           | 9784            | 9784                  |

## A.5.2. Integrated Case

|                                          | Em                    | ission Calculations - Integrated | Case                     |                          |
|------------------------------------------|-----------------------|----------------------------------|--------------------------|--------------------------|
|                                          |                       | Integrated Case                  | Integrated Case with WHR | Integrated case +WHR+OGR |
|                                          | Metric for Estimation | Metric Value                     | Metric Value             | Metric Value             |
| Natural Gas Combustion                   | Natural Gas           | 1.156                            | 1.057                    | 1.057                    |
| Steam Boiler (Offsites)                  | consumption, MMSCFH   | 0.891                            | 0.792                    | 0.792                    |
| Fired Heater (Reactor Section)           | consumption, wiwiscen | 0.265                            | 0.265                    | 0.265                    |
| Electricity Consumption                  | Power, MW             | 26.77                            | 26.77                    | 26.77                    |
| Product Stream Flaring (100% Combustion) |                       | 48689                            | 48689                    | 5309                     |
| Deethanizer Off Gas                      | CO2 Flow Rate, lbhr   | 43380                            | 43380                    | 0                        |
| Flash Gas from Cold Box                  |                       | 3498                             | 3498                     | 3498                     |
| DeC3 Bottoms                             |                       | 1811                             | 1811                     | 1811                     |
|                                          |                       |                                  |                          |                          |
|                                          | Pollutant             | Integrated Case                  | Integrated Case with WHR | Integrated case +WHR+OGR |
|                                          |                       | lb/yr                            | lb/hr                    | lb/hr                    |
|                                          | CO2                   | 1,808,872,683                    | 1,710,467,883            | 1,350,413,883            |
|                                          | Methane               | 40231                            | 38344                    | 38344                    |
|                                          | SO2                   | 5754                             | 5262                     | 5262                     |
|                                          | тос                   | 105497                           | 96477                    | 96477                    |
|                                          | VOC                   | 52749                            | 48238                    | 48238                    |
| Assume Low Nox Burners in Heaters        | N2O                   | 8715                             | 8190                     | 8190                     |

## A.5.3. Integrated Case with Intensification

|                                          | Emission C            | alculations - Integrated and Int | tensified Case                 |                               |  |
|------------------------------------------|-----------------------|----------------------------------|--------------------------------|-------------------------------|--|
|                                          |                       | Integrated +HPC Case             | Integrated + HPC Case with WHR | Integrated +HPC case +WHR+OGR |  |
|                                          | Metric for Estimation | Metric Value                     | Metric Value                   | Metric Value                  |  |
| Natural Gas Combustion                   | Natural Gas           | 0.377                            | 0.265                          | 0.265                         |  |
| Steam Boiler (Offsites)                  | consumption, MMSCFH   | 0.113                            | 0.000                          | 0.000                         |  |
| Fired Heater (Reactor Section)           |                       | 0.265                            | 0.265                          | 0.265                         |  |
| Electricity Consumption                  | Power, MW             | 41.30                            | 41.30                          | 41.30                         |  |
| Product Stream Flaring (100% Combustion) |                       | 48689                            | 48689                          | 5309                          |  |
| Deethanizer Off Gas                      | CO2 Flow Rate, lbhr   | 43380                            | 43380                          | 0                             |  |
| Flash Gas from Cold Box                  |                       | 3498                             | 3498                           | 3498                          |  |
| DeC3 Bottoms                             |                       | 1811                             | 1811                           | 1811                          |  |
|                                          |                       |                                  |                                |                               |  |
|                                          | Pollutant             | Integrated +HPC Case             | Integrated + HPC Case with WHR | Integrated +HPC case +WHR+OGR |  |
|                                          |                       | lb/yr                            | lb/hr                          | lb/hr                         |  |
|                                          | CO2                   | 1,171,659,267                    | 1,059,410,067                  | 699,356,067                   |  |
|                                          | Methane               | 35244                            | 33092                          | 33092                         |  |
|                                          | SO2                   | 1879                             | 1318                           | 1318                          |  |
|                                          | TOC                   | 34447                            | 24158                          | 24158                         |  |
|                                          | VOC                   | 17224                            | 12079                          | 12079                         |  |
| Assume Low Nox Burners in Heaters        | N2O                   | 5981                             | 5382                           | 53                            |  |

### A.6. Economic Calculations

#### A.6.1. DCFROR - Base Case

| Plant Location<br>Case Description         Units<br>ON STORM<br>8,200 HVr         Construction Storm<br>8,300 HVr         Metric<br>8,30 HVr         Metric<br>8,30 HVr           EVENUES AND PRODUCTION COSTS         CAPITAL COSTS         CONSTRUCTION SCHEDULE         \$8,18,3 day/r           Main product revenue<br>Byproduct revenue<br>47,1         SSB. Capital Cost         \$21.0         Year         % FC         % WC         % FC         % WC           Byproduct revenue<br>Byproduct revenue<br>Aram materials cost         32.1         Cost of Gapital         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00% </th <th>Owner's Name</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Conital Coat</th> <th>Decia Veer</th> <th>2006</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Owner's Name                  |                            |           |               |            |          |           | Conital Coat | Decia Veer | 2006     |          |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------|-----------|---------------|------------|----------|-----------|--------------|------------|----------|----------|----------|
| Case Description         On Situe         5.301         h/y/r         345.83 day/r           EVENUES AND PRODUCTION COSTS         CAPTAL COSTS         CONSTRUCTION SCHEDULE           Main product revenue         54.4         OR         64.7         1         25.00%         %         % FC         % VC         % FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                            |           |               |            |          |           |              |            |          | Madria   |          |
| EVENUES AND PRODUCTION COSTS         CAPITAL COSTS         CONSTRUCTION SCHEDULE           Main product revenue         47.1         SMM         SMM         SMM           Byroduct revenue         47.1         BSL Capital Cost         96.3         275.00%         100.00%           Byroduct revenue         47.1         Expresentation         96.3         275.00%         100.00%         50.00%           Verser materials cost         92.21         Expresentation         94.2         75.00%         100.00%         50.00%           Salary and cwrtheads         95.3         100.00%         96.00%         60.00%         60.00%         60.00%         60.00%         60.00%         60.00%         60.00%         60.00%         60.00%         60.00%         60.00%         60.00%         60.00%         60.00%         60.00%         7         900.00%         100.00%         60.00%         60.00%         7         900.00%         100.00%         60.00%         7         900.00%         7         900.00%         7         900.00%         7         900.00%         7         900.00%         7         900.00%         7         900.00%         7         900.00%         7         900.00%         7         900.00%         7         900.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                            |           |               |            |          |           |              |            |          |          |          |
| Main product revenue<br>Byproduct revenue<br>Byproduct revenue<br>Raw materials cost         SMM<br>47.1         SMM<br>0SBL Capital Cost         Year         % FC         % WC         % FC         % WC           1         25.00%         321.0         0.00%         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0         321.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                            |           |               | -          |          |           |              |            |          | 345.83 0 | lay/yr   |
| Main porduct revenue         S54.4         USBL Capital Cost         S21.0         1         2.500%           Raw materials cost         322.1         SBL Capital Cost         98.3         3         100.00%         500.0%           Consumables cost         10.0         78.8         Confingency         11.7         4         100.00%         500.0%           Consumables cost         10.0         78.8         Confingency         11.7         4         100.00%         500.0%           Salary and overheads         15.0         Maintenance         20.0         6         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REVENUES AND PRODUCTION C     | OSIS                       |           | CAPITAL COST  | S          |          |           | CONSTRUC     | TION SCHED | ULE      |          |          |
| Main porduct revenue         S54.4         USBL Capital Cost         S21.0         1         2.500%           Raw materials cost         322.1         SBL Capital Cost         98.3         3         100.00%         500.0%           Consumables cost         10.0         78.8         Confingency         11.7         4         100.00%         500.0%           Consumables cost         10.0         78.8         Confingency         11.7         4         100.00%         500.0%           Salary and overheads         15.0         Maintenance         20.0         6         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                            |           |               |            |          |           |              |            |          |          |          |
| Bypcoluterwenue         47.1         OSBL Capital Cost         98.3         2         75.0%         100.00%         50.00%           Lutilies cost         78.8         Contingency         41.7         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                            |           |               |            |          |           |              |            | % WC     | % FC     | %VC      |
| Rew materials cost         322.1         Engineering Costs         125.2         3         100.00%         50.00%           Consumbles cost         10.0         78.8         Consumbles cost         58.4         100.00%         50.00%           Salary and ownheads         15.0         Maintenance         20.0         6         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Main product revenue          |                            |           |               |            |          |           |              |            |          |          |          |
| Utilities cost         78.8<br>(comunables cost         Confirmancy<br>38.3.8<br>(altay and overheads<br>Maintenance         78.8<br>(altay and overheads<br>3.3.0         Confirmancy<br>100.00%         41.7<br>(bit all Fixed Capital Cost         584.2<br>(bit all Fixed Capital Cost         4<br>(bit all Fixed Capital Cost         584.2<br>(bit all fixed Capital Cost         4<br>(bit all fixed Capital Cost         5<br>(bit all fixed Capital Cost         6<br>(bit all fixed Capital Cost         6<br>(bit all fixed Capital Cost         7<br>(bit all fixed Capital Cost                                                                                                                                                                                                                                                          | Byproduct revenue             | 47.1                       |           | OSBL Capital  | Cost       | 96.3     |           | 2            | 75.00%     | 100.00%  |          |          |
| Consumalises cost         100         MC         383.8         Total Fixed Capital Cost         584.2         5         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Raw materials cost            | 322.1                      |           | Engineering C | osts       | 125.2    |           | 3            |            |          | 100.00%  | 50.00%   |
| Consumalises cost.         10.0         Total Fixed Capital Cost.         584.2         5         100.00%         100.00%           Salay and overheads.         15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Utilities cost                | 78.8                       |           | Contingency   |            | 41.7     |           | 4            |            |          | 100.00%  | 100.00%  |
| VC         363.8         363.8         Vorking Capital         58.4         6         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Consumables cost              | 10.0                       |           |               | pital Cost | 584.2    |           | 5            |            |          | 100.00%  |          |
| Satesy and overheads<br>haritemance<br>hteress 1:<br>Novalities         15.0         Working Capital         58.4         7+         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100.00%         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                            |           |               |            |          |           |              |            |          |          |          |
| Maintenance         20.0         0.0           Royalinis         0.0         0.0         0.0           CONSIGNATIONS         Debt ratio         Tax rate         0.4           Cost of equily         0.07         Debt ratio         Marce           Cost of equily         0.07         Debt ratio         Marce           Cost of equily         0.07         Debt ratio         Tax rate         0.4           Cost of equily         0.07         Debt ratio         Tax rate         0.4           Cost of equily         0.07         Debt ratio         Tax rate         0.4           Cost of equily         0.07         Debt ratio         Tax rate         0.4           Cost of equily         0.07         Total Costs         Gr. Profit         Depreciation method         Y           2         496.6         0.0         0.0         0.0         0.0         4.2         2.51.0           3         0.0         277.2         216.9         90.3         82.5         7.30         4.48.2         2.51.0           4         0.0         564.4         398.8         155.6         5.0         16.6         2.06.3           5         0.0         564.4         398.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                            |           | Working Capit | al         | 58.4     |           |              |            |          |          |          |
| Interest<br>Royalities         0.0<br>35.0           CONDMIC ASSUMPTIONS           Cost of equity<br>Cost of debt         Debt ratio         Tax rate<br>Depreciation method         0.4<br>MACRS<br>Depreciation method         0.4<br>MACRS           Cost of equity<br>Cost of debt         0.07         Debt ratio         Tax rate<br>Depreciation method         0.4<br>MACRS           Cost of equity<br>Cost of debt         0.07         Depreciation method         MACRS           All figures in SMM unless indicated         Froject year         Tax faile         0.0         0.0         0.0         0.0         0.0         -146.1         -136.5         136.5           2         496.6         0.0         0.0         0.0         0.0         -146.1         -136.5         136.5           3         0.0         277.2         216.9         60.3         82.5         -23.2         0.0         60.3         49.2         -27.10           4         0.0         554.4         398.8         155.6         52.2         103.4         114.4         114.2         7.1         -155.2           6         0.0         554.4         398.8         1556.6         52.2         103.4         41.4         114.2         66.5         68.7         10         66.5         60.2 <td></td> <td></td> <td></td> <td>working capit</td> <td>ai</td> <td>50.4</td> <td></td> <td>7+</td> <td></td> <td></td> <td>100.0078</td> <td>100.0078</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                            |           | working capit | ai         | 50.4     |           | 7+           |            |          | 100.0078 | 100.0078 |
| Boy         0.0<br>35.0           CONCMIC ASSUMPTIONS           Cost of depuity         Debt ratio         Tax rate 0.4<br>Depreciation method MACRS<br>Depreciation method MACRS           Cost of depuity         Debt ratio         Dept ratio         Depreciation method MACRS<br>Depreciation method MACRS           Cost of dept costs         OV OF MV V OF MV V           Cost of capital         0.07           AME FLOW ANALYSIS           Project year         Cap Ex Revenue         Total Costs         Gr. Profit         Depreciation period         PV of CF         NPV           1         Cap Ex Revenue         Total Costs         Gr. Profit         Depreciation period         Project year           2         All figures in SMM unless indicated           Project year         Total Costs         Gr. Profit         Depreciation period         PV of CF         NPV           2         All figures in SMM unless indicated           Project year         Total Costs         Gr. Provit         Cost Flow <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                            |           |               |            |          |           |              |            |          |          |          |
| IPC         35.0           CONOMIC ASSUMPTIONS           Cost of dequity<br>Cost of dequity<br>Cost of depuit<br>Cost of debt           Cost of depuity<br>Cost of depuit         Debt ratio         Tax rate<br>Depreciation method<br>Depreciation petiod         0.4<br>MACRS<br>7           ASH FLOW ANALYSIS           All figures in SMM unless indicated<br>Ted 6           Project year         Cap Ex         Revenue         Total Costs         Gr. Profit         Depreciation method<br>0.0         0.0         -146.1         -136.5         -136.5           2         496.6         0.0         0.0         0.0         0.0         -496.6         -433.7         -670.2           4         0.0         554.4         398.8         155.6         73.0         82.6         5.0         150.6         173.2         227.9         6         -33.0         122.5         81.6         -2287.9           6         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         66.5         -68.7           9         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         66.5         -68.7           10         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                            |           |               |            |          |           |              |            |          |          |          |
| Convertice of the second secon |                               |                            |           |               |            |          |           |              |            |          |          |          |
| Cost of equily<br>Cost of debt         Debt ratio         Tax rate<br>Depreciation period         0.4<br>MACRS<br>7         years           XSH FLOW ANALYSIS           All figures in \$MM unless indicated<br>Cap Ex           Project year         All figures in \$MM unless indicated<br>Cap Ex         Free revenue         Tax bl         Tax Paid         Cash Flow         PV of CF         NPV           1         146.1         0.0         0.0         0.0         0.0         0.0         -146.1         -136.5         -137.5           2         496.6         0.0         0.0         0.0         0.0         0.0         -446.6         -433.7         -570.2           3         0.0         277.2         216.9         60.3         83.5         -23.2         0.0         60.3         49.2         -521.0           4         0.0         554.4         398.8         155.6         13.1         12.5         9.3         164.8         125.8         -395.3           5         0.0         554.4         398.8         155.6         52.1         103.4         41.4         114.2         62.1         -66.           10         0.0         554.4         398.8         155.6         0.0         155.6         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FC                            | 35.0                       |           |               |            |          |           |              |            |          |          |          |
| Cost of equily<br>Cost of debt         Debt ratio         Tax rate<br>Depreciation period         0.4<br>MACRS<br>7         years           XSH FLOW ANALYSIS           All figures in \$MM unless indicated<br>Cap Ex           Project year         All figures in \$MM unless indicated<br>Cap Ex         Free revenue         Tax bl         Tax Paid         Cash Flow         PV of CF         NPV           1         146.1         0.0         0.0         0.0         0.0         0.0         -146.1         -136.5         -137.5           2         496.6         0.0         0.0         0.0         0.0         0.0         -446.6         -433.7         -570.2           3         0.0         277.2         216.9         60.3         83.5         -23.2         0.0         60.3         49.2         -521.0           4         0.0         554.4         398.8         155.6         13.1         12.5         9.3         164.8         125.8         -395.3           5         0.0         554.4         398.8         155.6         52.1         103.4         41.4         114.2         62.1         -66.           10         0.0         554.4         398.8         155.6         0.0         155.6         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                            |           |               |            |          |           |              |            |          |          |          |
| Cost of capital         0.07         Depreciation method         MACRS<br>7         years           XASH FLOW ANALYSIS         All figures in \$MM unless indicated         Total Costs         Gr. Profit         Depreciation period         7         NPV           1         Cap Ex         Revenue         Total Costs         Gr. Profit         Depreciation period         0.0         -146.1         -136.5         -136.5           2         496.6         0.0         0.0         0.0         0.0         0.0         -146.1         -136.5         -136.5           3         0.0         277.2         216.9         60.3         83.5         -23.2         0.0         0.0         442.         -570.2           4         0.0         554.4         398.8         155.6         133.1         122.5         9.3         164.8         125.8         395.3           6         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         7.1         -1.35.2           8         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         26.5         66.8           10         0.0         554.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ECONOMIC ASSUMPTIONS          |                            |           |               |            |          |           |              |            |          |          |          |
| Cost of capital         0.07         Depreciation method         MACRS<br>7         years           XASH FLOW ANALYSIS         All figures in \$MM unless indicated         Total Costs         Gr. Profit         Depreciation period         7         NPV           1         Cap Ex         Revenue         Total Costs         Gr. Profit         Depreciation period         0.0         -146.1         -136.5         -136.5           2         496.6         0.0         0.0         0.0         0.0         0.0         -146.1         -136.5         -136.5           3         0.0         277.2         216.9         60.3         83.5         -23.2         0.0         0.0         442.         -570.2           4         0.0         554.4         398.8         155.6         133.1         122.5         9.3         164.8         125.8         395.3           6         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         7.1         -1.35.2           8         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         26.5         66.8           10         0.0         554.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                            |           |               |            |          |           |              |            |          |          |          |
| Cost of capital<br>Cost of capital         0.07         Depreciation method<br>Depreciation method         MACRS<br>7         years           XSH FLOW ANALYSIS           All figures in \$MM unless indicates           Project year         Cap Ex<br>1         Revenue<br>Cap Ex<br>4         Total Costs<br>0         Graf Costs<br>0         Graf Costs<br>0         Graf Costs<br>0         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O <td>Cost of equity</td> <td></td> <td></td> <td>Debt ratio</td> <td></td> <td></td> <td></td> <td>Tax rate</td> <td></td> <td>0.4</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cost of equity                |                            |           | Debt ratio    |            |          |           | Tax rate     |            | 0.4      |          |          |
| Cost of capital         0.07         Depreciation period         7         years           XASH FLOW ANALYSIS         All figures in \$MM unless indicated<br>Cap Ex         Revenue         Total Costs.         Gr. Profit.         Tax bin for         Tax Paid         Cash Flow         PV of CF         NPV           2         496.6         0.0         0.0         0.0         0.0         446.1         -136.5         -136.5           2         496.6         0.0         0.0         0.0         0.0         0.0         445.1         -136.5         -136.5           3         0.0         277.2         216.9         60.3         83.5         -23.2         0.0         60.3         44.2         -521.0           5         0.0         554.4         398.8         155.6         132.1         125.5         81.6         -206.3           7         0.0         554.4         398.8         155.6         52.1         103.4         41.4         114.2         66.5         66.7           9         0.0         554.4         398.8         155.6         62.1         129.5         41.4         114.2         66.5         66.7           10         0.0         554.4         398.8         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                            |           |               |            |          |           | Depreciation | method     | MACRS    |          |          |
| All figures in \$MM unless indicated           Cap Ex         Revenue         Total Costs         Gr. Profit         Depron         Tax bl Inc         Tax Paid         Cash Flow         PV of CF         NPV           1         146.1         0.0         0.0         0.0         0.0         0.0         -146.1         -136.5         -136.5           2         496.6         0.0         0.0         0.0         0.0         0.0         -446.1         -136.5         -136.5           3         0.0         277.2         216.9         60.3         83.5         -23.2         0.0         60.3         49.2         -521.0           4         0.0         554.4         398.8         155.6         143.1         12.5         81.6         -206.3           7         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         66.5         -68.7           9         0.0         554.4         398.8         155.6         52.1         103.4         41.4         114.2         66.5         -68.7           9         0.0         554.4         398.8         155.6         0.0         155.6         51.8         103.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | 0.07                       |           |               |            |          |           |              |            |          | /ears    |          |
| All figures in \$MM unless indicated           Project year         Cap Ex         Revenue         Total Costs         Gr. Profit         Depron         Taxbl Inc         Tax Paid         Cash Flow         PV of CF         NPV           1         146.1         0.0         0.0         0.0         0.0         0.0         0.0         -146.1         -136.5         -136.5           2         496.6         0.0         0.0         0.0         0.0         -496.6         -433.7         -570.2           3         0.0         254.4         398.8         155.6         13.0         12.5         -9.3         164.8         125.8         -396.3           5         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         66.5         -68.7           7         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         66.5         -68.7           9         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         44.3         90.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                            |           |               |            |          |           |              |            |          |          |          |
| All figures in \$MM unless indicated           Project year         Cap Ex         Revenue         Total Costs         Gr. Profit         Depron         Taxbl Inc         Tax Paid         Cash Flow         PV of CF         NPV           1         146.1         0.0         0.0         0.0         0.0         0.0         0.0         -146.1         -136.5         -136.5           2         496.6         0.0         0.0         0.0         0.0         -496.6         -433.7         -570.2           3         0.0         254.4         398.8         155.6         13.0         12.5         -9.3         164.8         125.8         -396.3           5         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         66.5         -68.7           7         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         66.5         -68.7           9         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         44.3         90.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CASH FLOW ANALYSIS            |                            |           |               |            |          |           |              |            |          |          |          |
| Project year         Cap Ex         Revenue         Total Costs         Gr. Profit         Depron         Tax bl Inc         Tax Paid         Cash Flow         PV of CF         NPV           1         146.1         0.0         0.0         0.0         0.0         0.0         -146.1         -136.5         -136.5         -136.5           2         496.6         0.0         0.0         0.0         0.0         -0.0         -446.1         -136.5         -136.5           3         0.0         277.2         216.9         60.3         83.5         -23.2         0.0         66.3         49.2         -521.0           4         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         71.1         -135.2           6         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         66.5         -68.7           9         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         44.3         90.5           11         0.0         554.4         398.8         155.6         0.0         155.6         62.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                            |           |               |            |          |           |              |            |          |          |          |
| Project year         Cap Ex         Revenue         Total Costs         Gr. Profit         Depron         Tax bl Inc         Tax Paid         Cash Flow         PV of CF         NPV           1         146.1         0.0         0.0         0.0         0.0         0.0         -146.1         -136.5         -136.5         -136.5           2         496.6         0.0         0.0         0.0         0.0         -0.0         -446.1         -136.5         -136.5           3         0.0         277.2         216.9         60.3         83.5         -23.2         0.0         66.3         49.2         -521.0           4         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         71.1         -135.2           6         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         66.5         -68.7           9         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         44.3         90.5           11         0.0         554.4         398.8         155.6         0.0         155.6         62.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | All figures in \$MM uplose | indicated |               |            |          |           |              |            |          |          |          |
| 1         146.1         0.0         0.0         0.0         0.0         -146.1         -136.5         -136.5           2         496.6         0.0         0.0         0.0         0.0         0.0         496.6         -433.7         -570.2           3         0.0         277.2         216.9         60.3         83.5         -23.2         0.0         60.3         49.2         -521.0           4         0.0         554.4         398.8         155.6         73.0         82.6         5.0         150.6         107.3         -287.9           6         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         71.1         -135.2           8         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         66.5         -68.7           9         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         66.5         -68.7           10         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         34.3         90.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Broject year                  |                            |           | Total Costa   | Cr. Brofit | Doprop   | Taybl Inc | Toy Doid     | Coch Flow  | DV of CE | ND\/     |          |
| 2       496.6       0.0       0.0       0.0       0.0       0.0       406.6       -433.7       -570.2         3       0.0       277.2       216.9       60.3       83.5       -23.2       0.0       60.3       492.       -521.0         4       0.0       554.4       398.8       155.6       143.1       12.5       -9.3       164.8       125.8       -395.3         5       0.0       554.4       398.8       155.6       52.2       103.4       33.0       122.5       81.6       -206.3         7       0.0       554.4       398.8       155.6       52.2       103.4       41.4       114.2       66.5       -68.7         9       0.0       554.4       398.8       155.6       52.2       103.4       41.4       114.2       62.1       -6.6         10       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       44.3       90.5         12       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       34.6       206.8         15       0.0       554.4       398.8       155.6       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                            |           |               |            |          |           |              |            |          |          |          |
| 3       0.0       277.2       216.9       60.3       83.5       -23.2       0.0       60.3       49.2       -521.0         4       0.0       554.4       398.8       155.6       143.1       12.5       -9.3       164.8       125.8       -395.3         6       0.0       554.4       398.8       155.6       52.2       103.4       33.0       122.5       81.6       -206.3         7       0.0       554.4       398.8       155.6       52.2       103.4       41.4       114.2       66.5       -68.7         9       0.0       554.4       398.8       155.6       52.2       103.4       41.4       114.2       66.5       -68.7         9       0.0       554.4       398.8       155.6       0.0       155.6       51.8       103.8       52.7       46.1         11       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       41.4       131.9         12       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.7       170.7         14       0.0       554.4       398.8       155.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                            |           |               |            |          |           |              |            |          |          |          |
| 4       0.0       554.4       398.8       155.6       143.1       12.5       -9.3       164.8       125.8       -395.3         5       0.0       554.4       398.8       155.6       73.0       82.6       5.0       150.6       107.3       -287.9         6       0.0       554.4       398.8       155.6       52.2       103.4       41.4       114.2       71.1       -135.2         7       0.0       554.4       398.8       155.6       52.2       103.4       41.4       114.2       66.5       -68.7         9       0.0       554.4       398.8       155.6       62.1       129.5       41.4       114.2       66.5       -68.7         10       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       44.3       90.5         11       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       34.1       131.9         13       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.8       240.7         14       0.0       554.4       398.8       155.6 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                            |           |               |            |          |           |              |            |          |          |          |
| 5         0.0         554.4         398.8         155.6         73.0         82.6         5.0         150.6         107.3         -287.9           6         0.0         554.4         398.8         155.6         52.2         103.4         33.0         122.5         81.6         -206.3           7         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         71.1         -135.2           8         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         66.5         -68.7           9         0.0         554.4         398.8         155.6         0.0         155.6         61.8         103.8         52.7         46.1           11         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         44.3         90.5           12         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         38.7         170.7           14         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                            |           |               |            |          |           |              |            |          |          |          |
| 6       0.0       554.4       398.8       155.6       52.2       103.4       33.0       122.5       81.6       -206.3         7       0.0       554.4       398.8       155.6       52.1       103.4       41.4       114.2       71.1       -135.2         8       0.0       554.4       398.8       155.6       52.2       103.4       41.4       114.2       66.5       -66.         9       0.0       554.4       398.8       155.6       0.0       155.6       51.8       103.8       52.7       46.1         10       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       44.3       90.5         12       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.7       170.7         13       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.7       206.8         14       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       31.6       272.3         16       0.0       554.4       398.8       155.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                            |           |               |            |          |           |              |            |          |          |          |
| 7       0.0       554.4       398.8       155.6       52.1       103.4       41.4       114.2       71.1       -135.2         8       0.0       554.4       398.8       155.6       52.2       103.4       41.4       114.2       66.5       -68.7         9       0.0       554.4       398.8       155.6       26.1       129.5       41.4       114.2       66.5       -66.5         10       0.0       554.4       398.8       155.6       0.0       155.6       51.8       103.8       52.7       46.1         11       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       44.3       90.5         12       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.7       170.7         14       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       31.6       272.3         16       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       31.6       272.3         17       0.0       554.4       398.8       155.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                             | 0.0                        | 554.4     | 398.8         | 155.6      | 73.0     | 82.6      | 5.0          | 150.6      | 107.3    | -287.9   |          |
| 8         0.0         554.4         398.8         155.6         52.2         103.4         41.4         114.2         66.5         -68.7           9         0.0         554.4         398.8         155.6         26.1         129.5         41.4         114.2         62.1         -6.6           10         0.0         554.4         398.8         155.6         0.0         155.6         51.8         103.8         52.7         46.1           11         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         44.3         90.5           12         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         38.7         170.7           13         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         38.7         170.7           14         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         38.6         206.8           15         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                             | 0.0                        | 554.4     | 398.8         | 155.6      | 52.2     | 103.4     | 33.0         | 122.5      | 81.6     | -206.3   |          |
| 9         0.0         554.4         398.8         155.6         26.1         129.5         41.4         114.2         62.1         -6.6           10         0.0         554.4         398.8         155.6         0.0         155.6         51.8         103.8         52.7         46.1           11         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         44.3         90.5           12         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         44.3         90.5           13         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         38.7         170.7           14         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         38.6         206.8           15         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         31.6         272.3           16         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                             | 0.0                        | 554.4     | 398.8         | 155.6      | 52.1     | 103.4     | 41.4         | 114.2      | 71.1     | -135.2   |          |
| 9       0.0       554.4       398.8       155.6       26.1       129.5       41.4       114.2       62.1       -6.6         10       0.0       554.4       398.8       155.6       0.0       155.6       51.8       103.8       52.7       46.1         11       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       44.3       90.5         12       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       44.3       90.5         13       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.7       170.7         14       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.2       206.8         15       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       31.6       272.3         16       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       20.5       301.8         18       0.0       554.4       398.8       155.6       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                             | 0.0                        | 554.4     | 398.8         | 155.6      | 52.2     | 103.4     | 41.4         | 114.2      | 66.5     | -68.7    |          |
| 10       0.0       554.4       398.8       155.6       0.0       155.6       51.8       103.8       52.7       46.1         11       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       44.3       90.5         12       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       41.4       131.9         13       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.7       170.7         14       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.7       206.8         15       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       31.6       272.3         16       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       29.5       301.8         17       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       27.6       329.5         18       0.0       554.4       398.8       155.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                             |                            |           |               | 155.6      | 26.1     | 129.5     | 41.4         |            | 62.1     |          |          |
| 11       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       44.3       90.5         12       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       41.4       131.9         13       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       34.7       170.7         14       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.2       206.8         15       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       31.6       272.3         16       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       31.6       272.3         17       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       27.6       329.5         18       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       25.8       355.3         20       -58.4       554.4       398.8       155.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                            |           |               |            |          |           |              |            |          |          |          |
| 12       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       41.4       131.9         13       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.7       170.7         14       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.7       170.7         14       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.7       206.8         15       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       31.6       272.3         16       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       21.6       272.3         17       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       27.6       329.5         19       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       25.8       355.3         20       -58.4       554.4       398.8       155.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                            |           |               |            |          |           |              |            |          |          |          |
| 13       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.7       170.7         14       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.7       206.8         15       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       38.7       206.8         16       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       31.6       272.3         17       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       29.5       301.8         18       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       22.5       355.3         20       -58.4       554.4       398.8       155.6       0.0       155.6       62.2       93.3       28.5       355.3         20       -58.4       554.4       398.8       155.6       0.0       155.6       62.2       151.8       39.2       394.5         CONOMIC ANALYSIS         Average cash fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                            |           |               |            |          |           |              |            |          |          |          |
| 14       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       36.2       206.8         15       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       33.8       240.7         16       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       31.6       272.3         17       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       29.5       301.8         18       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       27.6       329.5         20       -58.4       554.4       398.8       155.6       0.0       155.6       62.2       93.3       27.6       329.5         20       -58.4       554.4       398.8       155.6       0.0       155.6       62.2       93.3       25.8       355.3         20       -58.4       554.4       398.8       155.6       0.0       155.6       62.2       93.3       25.8       355.3         20       -58.4       554.4       398.8       155.6 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                            |           |               |            |          |           |              |            |          |          |          |
| 15       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       33.8       240.7         16       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       31.6       272.3         17       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       29.5       301.8         18       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       29.5       301.8         19       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       25.8       355.3         20       -58.4       554.4       398.8       155.6       0.0       155.6       62.2       93.3       25.8       355.3         20       -58.4       554.4       398.8       155.6       0.0       155.6       62.2       93.3       25.8       355.3         20       -58.4       554.4       398.8       155.6       0.0       155.6       62.2       151.8       39.2       394.5         CONOMIC ANALYSIS         Average cash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                            |           |               |            |          |           |              |            |          |          |          |
| 16       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       31.6       272.3         17       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       29.5       301.8         18       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       27.6       329.5         19       0.0       554.4       398.8       155.6       0.0       155.6       62.2       93.3       27.6       329.5         20       -58.4       554.4       398.8       155.6       0.0       155.6       62.2       93.3       27.6       329.5         20       -58.4       554.4       398.8       155.6       0.0       155.6       62.2       151.8       39.2       394.5         CONOMIC ANALYSIS         Average cash flow       110.4 \$MM/yr       NPV       10 years       46.1       \$MM       15 years       13.9%         Simple pay-back period       5.823516017       yrs       15 years       20 years       394.5       \$MM       15 years       13.9%         Returm on investment (10 yrs)       10.38%<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                            |           |               |            |          |           |              |            |          |          |          |
| 17         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         29.5         301.8           18         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         27.6         329.5         301.8           19         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         27.6         329.5         304.8           20         -58.4         554.4         398.8         155.6         0.0         155.6         62.2         93.3         29.5         394.5           CONOMIC ANALYSIS           Average cash flow         110.4 \$MM/yr         NPV         10 years         46.1         \$MM         IRR         10 years         8.9%           Simple pay-back period         5.823516017         yrs         15 years         240.7         \$MM         15 years         13.9%           Return on investment (10 yrs)         10.38%         20 years         394.5         \$MM         20 years         15.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                            |           |               |            |          |           |              |            |          |          |          |
| 18         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         27.6         329.5           19         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         27.6         329.5           20         -58.4         554.4         398.8         155.6         0.0         155.6         62.2         93.3         25.8         355.3           20         -58.4         554.4         398.8         155.6         0.0         155.6         62.2         93.3         25.8         355.3           20         -58.4         554.4         398.8         155.6         0.0         155.6         62.2         151.8         39.2         394.5           CONOMIC ANALYSIS           Average cash flow         110.4 \$MM/yr         NPV         10 years         46.1         \$MM         IRR         10 years         8.9%           Simple pay-back period         5.823516017         yrs         15 years         240.7         \$MM         15 years         13.9%           Return on investment (10 yrs)         10.38%         20 years         394.5         \$MM         20 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                            |           |               |            |          |           |              |            |          |          |          |
| 19         0.0         554.4         398.8         155.6         0.0         155.6         62.2         93.3         25.8         355.3           20         -58.4         554.4         398.8         155.6         0.0         155.6         62.2         93.3         25.8         359.2           CONOMIC ANALYSIS           Average cash flow         110.4 \$MM/yr         NPV         10 years         46.1         \$MM         IRR         10 years         8.9%           Simple pay-back period         5.823516017         yrs         15 years         240.7         \$MM         15 years         13.9%           Return on investment (10 yrs)         10.38%         20 years         394.5         \$MM         20 years         15.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17                            | 0.0                        | 554.4     | 398.8         | 155.6      | 0.0      | 155.6     | 62.2         | 93.3       | 29.5     | 301.8    |          |
| 20         -58.4         554.4         398.8         155.6         0.0         155.6         62.2         151.8         39.2         394.5           CONOMIC ANALYSIS           Average cash flow         110.4 \$MM/yr         NPV         10 years         46.1         \$MM         IRR         10 years         8.9%           Simple pay-back period         5.823516017         yrs         15 years         240.7         \$MM         15 years         13.9%           Return on investment (10 yrs)         10.38%         20 years         394.5         \$MM         20 years         15.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18                            | 0.0                        | 554.4     | 398.8         | 155.6      | 0.0      | 155.6     | 62.2         | 93.3       | 27.6     | 329.5    |          |
| 20         -58.4         554.4         398.8         155.6         0.0         155.6         62.2         151.8         39.2         394.5           CONOMIC ANALYSIS           Average cash flow         110.4 \$MM/yr         NPV         10 years         46.1         \$MM         IRR         10 years         8.9%           Simple pay-back period         5.823516017         yrs         15 years         240.7         \$MM         15 years         13.9%           Return on investment (10 yrs)         10.38%         20 years         394.5         \$MM         20 years         15.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19                            | 0.0                        | 554.4     | 398.8         | 155.6      | 0.0      | 155.6     | 62.2         | 93.3       | 25.8     | 355.3    |          |
| CONOMIC ANALYSIS           Average cash flow         110.4 \$MM/yr         NPV         10 years         46.1 \$MM         IRR         10 years         8.9%           Simple pay-back period         5.823516017         yrs         15 years         240.7 \$MM         15 years         13.9%           Return on investment (10 yrs)         10.38%         20 years         394.5 \$MM         20 years         15.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                            |           |               |            |          |           |              |            |          |          |          |
| Average cash flow         110.4 \$MM/yr         NPV         10 years         46.1 \$MM         IRR         10 years         8.9           Simple pay-back period         5.823516017         yrs         15 years         240.7         \$MM         15 years         13.9%           Return on investment (10 yrs)         10.38%         20 years         394.5         \$MM         20 years         15.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                            | 50.4                       | 001.4     | 000.0         |            | 5.0      |           | 02.2         | .01.0      | 00.2     | 001.0    |          |
| Simple pay-back period         5.823516017         yrs         15 years         240.7         \$MM         15 years         13.9%           Return on investment (10 yrs)         10.38%         20 years         394.5         \$MM         20 years         15.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ECONOMIC ANALYSIS             |                            |           |               |            |          |           |              |            |          |          |          |
| Simple pay-back period         5.823516017         yrs         15 years         240.7         \$MM         15 years         13.9%           Return on investment (10 yrs)         10.38%         20 years         394.5         \$MM         20 years         15.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average each flow             | 140 4 61                   | ANA/ser   |               |            | 10 vooro | 46.4      | CNANA .      |            |          | 10 voore | 0.00/    |
| Return on investment (10 yrs)         10.38%         20 years         394.5         \$MM         20 years         15.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                            |           | ſ             |            |          |           |              |            |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | ,                          | s         |               |            |          |           |              |            |          |          |          |
| Return on investment (15 yrs)         14.99%         NPV to yr         1         -136.5         \$MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                            |           |               |            |          |           |              |            | 2        | 20 years | 15.6%    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Return on investment (15 yrs) | 14.99%                     |           | 1             | NPV to yr  | 1        | -136.5    | \$MM         |            |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                             |                            |           |               |            |          |           |              |            |          |          |          |

## A.6.2. DCFROR - Integrated Case

| Owner's Name                                                                                              |                                                                         |                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     | Capital Cost                                                 | Basis Year                                                                             | 2006                                                         |                                                                                              |         |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------|
| Plant Location                                                                                            |                                                                         |                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     | Units                                                        |                                                                                        | English ()                                                   | Metric                                                                                       |         |
| Case Description                                                                                          |                                                                         |                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     | On Stream                                                    | 8,300                                                                                  |                                                              | 345.83 (                                                                                     | lav/vr  |
| EVENUES AND PRODUCTION C                                                                                  | 2T2OS                                                                   |                                                                                            | CAPITAL COST                                                                  | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                                                                                                                     | CONSTRUCT                                                    |                                                                                        |                                                              | 040.00 (                                                                                     | aciy/yi |
| REVENUES AND PRODUCTION C                                                                                 |                                                                         |                                                                                            | CAPITAL COST                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u></u>                                                            |                                                                                                                                     |                                                              |                                                                                        |                                                              | ~ =0                                                                                         |         |
| •••                                                                                                       | <u>\$MM/vr</u>                                                          |                                                                                            |                                                                               | <b>.</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>\$MM</u>                                                        |                                                                                                                                     |                                                              |                                                                                        | % WC 🥵                                                       | % FC 9                                                                                       | %VC     |
| Main product revenue                                                                                      | 554.4                                                                   |                                                                                            | ISBL Capital C                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 322.0                                                              |                                                                                                                                     | 1                                                            | 25.00%                                                                                 |                                                              |                                                                                              |         |
| Byproduct revenue                                                                                         | 47.1                                                                    |                                                                                            | OSBL Capital                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96.6                                                               |                                                                                                                                     | 2                                                            | 75.00%                                                                                 | 100.00%                                                      |                                                                                              |         |
| Raw materials cost                                                                                        | 322.1                                                                   |                                                                                            | Engineering C                                                                 | osts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125.6                                                              |                                                                                                                                     | 3                                                            |                                                                                        |                                                              | 100.00%                                                                                      | 50.00%  |
| Utilities cost                                                                                            | 61.9                                                                    |                                                                                            | Contingency                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41.9                                                               |                                                                                                                                     | 4                                                            |                                                                                        |                                                              | 100.00%                                                                                      | 100.00% |
| Consumables cost                                                                                          | 10.0                                                                    |                                                                                            | Total Fixed Ca                                                                | apital Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 586.0                                                              |                                                                                                                                     | 5                                                            |                                                                                        |                                                              | 100.00%                                                                                      | 100.00% |
| VC                                                                                                        | 346.9                                                                   |                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     | 6                                                            |                                                                                        |                                                              | 100.00%                                                                                      | 100.00% |
| Salary and overheads                                                                                      | 15.0                                                                    |                                                                                            | Working Capit                                                                 | al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58.6                                                               |                                                                                                                                     | 7+                                                           |                                                                                        |                                                              | 100.00%                                                                                      | 100.00% |
| Maintenance                                                                                               | 20.0                                                                    |                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     |                                                              |                                                                                        |                                                              |                                                                                              |         |
| Interest                                                                                                  | 0.0                                                                     |                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     |                                                              |                                                                                        |                                                              |                                                                                              |         |
| Royalties                                                                                                 | 0.0                                                                     |                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     |                                                              |                                                                                        |                                                              |                                                                                              |         |
| FC                                                                                                        | 35.0                                                                    |                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     |                                                              |                                                                                        |                                                              |                                                                                              |         |
| CONOMIC ASSUMPTIONS                                                                                       |                                                                         |                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     |                                                              |                                                                                        |                                                              |                                                                                              |         |
| Cost of equity                                                                                            |                                                                         |                                                                                            | Debt ratio                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     | Tax rate                                                     |                                                                                        | 0.4                                                          |                                                                                              |         |
| Cost of debt                                                                                              |                                                                         |                                                                                            | DODITATIO                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     | Depreciation                                                 |                                                                                        | MACRS                                                        |                                                                                              |         |
| Cost of capital                                                                                           | 0.07                                                                    |                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     | Depreciation                                                 |                                                                                        |                                                              | vooro                                                                                        |         |
| Cost of capital                                                                                           | 0.07                                                                    |                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     | Depreciation                                                 | penoa                                                                                  | /                                                            | years                                                                                        |         |
| ASH FLOW ANALYSIS                                                                                         |                                                                         |                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     |                                                              |                                                                                        |                                                              |                                                                                              |         |
|                                                                                                           | All figures in \$MM unle                                                | ss indicated                                                                               |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     |                                                              |                                                                                        |                                                              |                                                                                              |         |
| Project year                                                                                              | Cap Ex                                                                  | Revenue                                                                                    | Total Costs                                                                   | Gr. Profit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Deprcn                                                             | Taxbl Inc                                                                                                                           | Tax Paid                                                     | Cash Flow                                                                              | PV of CF                                                     | NPV                                                                                          |         |
| 1                                                                                                         | 146.5                                                                   | 0.0                                                                                        | 0.0                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                | 0.0                                                                                                                                 | 0.0                                                          | -146.5                                                                                 | -136.9                                                       | -136.9                                                                                       |         |
| 2                                                                                                         | 498.1                                                                   | 0.0                                                                                        | 0.0                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                | 0.0                                                                                                                                 | 0.0                                                          | -498.1                                                                                 | -435.1                                                       | -572.0                                                                                       |         |
| 3                                                                                                         | 0.0                                                                     | 277.2                                                                                      | 208.4                                                                         | 68.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83.7                                                               | -15.0                                                                                                                               | 0.0                                                          | 68.7                                                                                   | 56.1                                                         | -515.9                                                                                       |         |
| 4                                                                                                         | 0.0                                                                     | 554.4                                                                                      | 381.9                                                                         | 172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 143.5                                                              | 29.0                                                                                                                                | -6.0                                                         | 178.5                                                                                  | 136.2                                                        | -379.7                                                                                       |         |
| 5                                                                                                         | 0.0                                                                     | 554.4                                                                                      | 381.9                                                                         | 172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73.2                                                               | 99.3                                                                                                                                | 11.6                                                         | 160.9                                                                                  | 114.7                                                        | -265.0                                                                                       |         |
| 6                                                                                                         | 0.0                                                                     | 554.4                                                                                      | 381.9                                                                         | 172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52.3                                                               | 120.1                                                                                                                               | 39.7                                                         | 132.8                                                                                  | 88.5                                                         | -176.5                                                                                       |         |
| 7                                                                                                         | 0.0                                                                     | 554.4                                                                                      | 381.9                                                                         | 172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52.3                                                               | 120.2                                                                                                                               | 48.1                                                         | 124.4                                                                                  | 77.5                                                         | -99.1                                                                                        |         |
| 8                                                                                                         | 0.0                                                                     | 554.4                                                                                      | 381.9                                                                         | 172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52.3                                                               | 120.1                                                                                                                               | 48.1                                                         | 124.4                                                                                  | 72.4                                                         | -26.7                                                                                        |         |
| 9                                                                                                         | 0.0                                                                     | 554.4                                                                                      | 381.9                                                                         | 172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.1                                                               | 146.3                                                                                                                               | 48.1                                                         | 124.4                                                                                  | 67.7                                                         | 41.0                                                                                         |         |
| 10                                                                                                        | 0.0                                                                     | 554.4                                                                                      | 381.9                                                                         | 172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                | 172.5                                                                                                                               | 58.5                                                         | 113.9                                                                                  | 57.9                                                         | 98.9                                                                                         |         |
| 11                                                                                                        | 0.0                                                                     | 554.4                                                                                      | 381.9                                                                         | 172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                | 172.5                                                                                                                               | 69.0                                                         | 103.5                                                                                  | 49.2                                                         | 148.1                                                                                        |         |
| 12                                                                                                        |                                                                         |                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     |                                                              |                                                                                        |                                                              | 194.0                                                                                        |         |
| 13                                                                                                        | 0.0                                                                     | 554.4                                                                                      | 381.9                                                                         | 172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                | 172.5                                                                                                                               | 69.0                                                         | 103.5                                                                                  | 45.9                                                         |                                                                                              |         |
| 13                                                                                                        | 0.0<br>0.0                                                              | 554.4<br>554.4                                                                             |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                     |                                                              | 103.5<br>103.5                                                                         | 45.9<br>42.9                                                 | 237.0                                                                                        |         |
| 14                                                                                                        |                                                                         | 554.4<br>554.4                                                                             | 381.9                                                                         | 172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                | 172.5                                                                                                                               | 69.0                                                         | 103.5<br>103.5                                                                         |                                                              |                                                                                              |         |
|                                                                                                           | 0.0                                                                     | 554.4                                                                                      | 381.9<br>381.9                                                                | 172.5<br>172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0<br>0.0                                                         | 172.5<br>172.5                                                                                                                      | 69.0<br>69.0                                                 | 103.5                                                                                  | 42.9                                                         | 237.0                                                                                        |         |
| 14<br>15<br>16                                                                                            | 0.0<br>0.0                                                              | 554.4<br>554.4                                                                             | 381.9<br>381.9<br>381.9                                                       | 172.5<br>172.5<br>172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0<br>0.0<br>0.0                                                  | 172.5<br>172.5<br>172.5                                                                                                             | 69.0<br>69.0<br>69.0                                         | 103.5<br>103.5                                                                         | 42.9<br>40.1                                                 | 237.0<br>277.1                                                                               |         |
| 14<br>15                                                                                                  | 0.0<br>0.0<br>0.0                                                       | 554.4<br>554.4<br>554.4                                                                    | 381.9<br>381.9<br>381.9<br>381.9                                              | 172.5<br>172.5<br>172.5<br>172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0<br>0.0<br>0.0<br>0.0                                           | 172.5<br>172.5<br>172.5<br>172.5                                                                                                    | 69.0<br>69.0<br>69.0<br>69.0                                 | 103.5<br>103.5<br>103.5                                                                | 42.9<br>40.1<br>37.5                                         | 237.0<br>277.1<br>314.6                                                                      |         |
| 14<br>15<br>16                                                                                            | 0.0<br>0.0<br>0.0<br>0.0                                                | 554.4<br>554.4<br>554.4<br>554.4                                                           | 381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9                            | 172.5<br>172.5<br>172.5<br>172.5<br>172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                    | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5                                                                                  | 69.0<br>69.0<br>69.0<br>69.0<br>69.0                         | 103.5<br>103.5<br>103.5<br>103.5                                                       | 42.9<br>40.1<br>37.5<br>35.1                                 | 237.0<br>277.1<br>314.6<br>349.7<br>382.4<br>413.1                                           |         |
| 14<br>15<br>16<br>17                                                                                      | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                         | 554.4<br>554.4<br>554.4<br>554.4<br>554.4                                                  | 381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9                   | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5                                                                         | 69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0                 | 103.5<br>103.5<br>103.5<br>103.5<br>103.5                                              | 42.9<br>40.1<br>37.5<br>35.1<br>32.8                         | 237.0<br>277.1<br>314.6<br>349.7<br>382.4                                                    |         |
| 14<br>15<br>16<br>17<br>18                                                                                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                  | 554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4                                | 381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9          | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5                                                                | 69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0         | 103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5                                     | 42.9<br>40.1<br>37.5<br>35.1<br>32.8<br>30.6                 | 237.0<br>277.1<br>314.6<br>349.7<br>382.4<br>413.1                                           |         |
| 14<br>15<br>16<br>17<br>18<br>19<br>20                                                                    | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                    | 554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4                       | 381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9 | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5                                                       | 69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0 | 103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5                   | 42.9<br>40.1<br>37.5<br>35.1<br>32.8<br>30.6<br>28.6         | 237.0<br>277.1<br>314.6<br>349.7<br>382.4<br>413.1<br>441.7                                  |         |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>CONOMIC ANALYSIS                                                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>-58.6                         | 554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4              | 381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9 | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5                                              | 69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0 | 103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>162.1 | 42.9<br>40.1<br>37.5<br>35.1<br>32.8<br>30.6<br>28.6<br>41.9 | 237.0<br>277.1<br>314.6<br>349.7<br>382.4<br>413.1<br>441.7<br>483.6                         | 11 00   |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>CONOMIC ANALYSIS<br>Average cash flow                           | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>-58.6<br>120.8                | 554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>\$\$\$4.4 | 381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9 | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>98.9                                      | 69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0 | 103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>162.1 | 42.9<br>40.1<br>37.5<br>35.1<br>32.8<br>30.6<br>28.6<br>41.9 | 237.0<br>277.1<br>314.6<br>349.7<br>382.4<br>413.1<br>441.7<br>483.6                         | 11.09   |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>CONOMIC ANALYSIS<br>Average cash flow<br>Simple pay-back period | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>-58.6<br>120.8<br>5.338470379 | 554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4              | 381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9 | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5 | 69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0 | 103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>162.1 | 42.9<br>40.1<br>37.5<br>35.1<br>32.8<br>30.6<br>28.6<br>41.9 | 237.0<br>277.1<br>314.6<br>349.7<br>382.4<br>413.1<br>441.7<br>483.6<br>10 years<br>15 years | 15.8%   |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>CONOMIC ANALYSIS<br>Average cash flow                           | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>-58.6<br>120.8                | 554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>\$\$\$4.4 | 381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9<br>381.9          | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>98.9                                      | 69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0<br>69.0 | 103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>103.5<br>162.1 | 42.9<br>40.1<br>37.5<br>35.1<br>32.8<br>30.6<br>28.6<br>41.9 | 237.0<br>277.1<br>314.6<br>349.7<br>382.4<br>413.1<br>441.7<br>483.6                         |         |

## A.6.3. DCGROR - Integrated Case with Intensification

| Owner's Name                                                                                                                                                                         |                                                                           |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            | Capital Cost                                                                                                                              | Basis Year                                                                                                                                                                       | 2006                                                                                                                                                                     |                                                                                                                                                                                      |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Plant Location                                                                                                                                                                       |                                                                           |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            | Units                                                                                                                                     | 0                                                                                                                                                                                | English 🔿                                                                                                                                                                |                                                                                                                                                                                      |         |
| Case Description                                                                                                                                                                     |                                                                           |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            | On Stream                                                                                                                                 | 8,300                                                                                                                                                                            |                                                                                                                                                                          | 345.83                                                                                                                                                                               | day/yr  |
| EVENUES AND PRODUCTION C                                                                                                                                                             | COSTS                                                                     |                                                                                                                                                                                | CAPITAL COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S                                                                                                                                                                                                                 |                                                                                                                          |                                                                                                                                                            | CONSTRUC                                                                                                                                  | TION SCHED                                                                                                                                                                       | ULE                                                                                                                                                                      |                                                                                                                                                                                      |         |
|                                                                                                                                                                                      | <b>CLU1</b> /1                                                            |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   | e1 41 4                                                                                                                  |                                                                                                                                                            |                                                                                                                                           | a/ E0                                                                                                                                                                            | % WC                                                                                                                                                                     | % FC                                                                                                                                                                                 | %VC     |
| • • • • • • • • • • • • • • • • • • •                                                                                                                                                | <u>\$MM/yr</u><br>554.4                                                   |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                 | <u>\$MM</u>                                                                                                              |                                                                                                                                                            | Year                                                                                                                                      | % FC                                                                                                                                                                             | % WC                                                                                                                                                                     | % FC                                                                                                                                                                                 | %VC     |
| Main product revenue                                                                                                                                                                 | •• ···                                                                    |                                                                                                                                                                                | ISBL Capital C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                   | 267.8                                                                                                                    |                                                                                                                                                            | 1                                                                                                                                         | 25.00%                                                                                                                                                                           | 400.000/                                                                                                                                                                 |                                                                                                                                                                                      |         |
| Byproduct revenue                                                                                                                                                                    | 47.1                                                                      |                                                                                                                                                                                | OSBL Capital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                   | 80.3                                                                                                                     |                                                                                                                                                            | 2                                                                                                                                         | 75.00%                                                                                                                                                                           | 100.00%                                                                                                                                                                  |                                                                                                                                                                                      |         |
| Raw materials cost                                                                                                                                                                   | 322.1                                                                     |                                                                                                                                                                                | Engineering Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | osts                                                                                                                                                                                                              | 104.4                                                                                                                    |                                                                                                                                                            | 3                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                                          | 100.00%                                                                                                                                                                              | 50.00%  |
| Utilities cost                                                                                                                                                                       | 39.4                                                                      |                                                                                                                                                                                | Contingency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                   | 34.8                                                                                                                     |                                                                                                                                                            | 4                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                                          | 100.00%                                                                                                                                                                              | 100.00% |
| Consumables cost                                                                                                                                                                     | 10.0                                                                      |                                                                                                                                                                                | Total Fixed Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pital Cost                                                                                                                                                                                                        | 487.4                                                                                                                    |                                                                                                                                                            | 5                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                                          | 100.00%                                                                                                                                                                              | 100.00% |
| VC                                                                                                                                                                                   | 324.4                                                                     |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            | 6                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                                          | 100.00%                                                                                                                                                                              | 100.00% |
| Salary and overheads                                                                                                                                                                 | 15.0                                                                      |                                                                                                                                                                                | Working Capita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al                                                                                                                                                                                                                | 48.7                                                                                                                     |                                                                                                                                                            | 7+                                                                                                                                        |                                                                                                                                                                                  |                                                                                                                                                                          | 100.00%                                                                                                                                                                              | 100.00% |
| Maintenance                                                                                                                                                                          | 20.0                                                                      |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                                                      |         |
| Interest                                                                                                                                                                             | 0.0                                                                       |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                                                      |         |
| Royalties                                                                                                                                                                            | 0.0                                                                       |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                                                      |         |
| FC                                                                                                                                                                                   | 35.0                                                                      |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                                                      |         |
| CONOMIC ASSUMPTIONS                                                                                                                                                                  |                                                                           |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                                                      |         |
| Or at a framity                                                                                                                                                                      |                                                                           |                                                                                                                                                                                | Daht antia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            | T                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                                                      |         |
| Cost of equity                                                                                                                                                                       |                                                                           | 1                                                                                                                                                                              | Debt ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            | Tax rate                                                                                                                                  | mathed                                                                                                                                                                           | 0.4<br>MACRS                                                                                                                                                             |                                                                                                                                                                                      |         |
| Cost of debt                                                                                                                                                                         | 0.07                                                                      |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            | Depreciation                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                                                      |         |
| Cost of capital                                                                                                                                                                      | 0.07                                                                      |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            | Depreciation                                                                                                                              | period                                                                                                                                                                           | 7                                                                                                                                                                        | years                                                                                                                                                                                |         |
| ASH FLOW ANALYSIS                                                                                                                                                                    |                                                                           |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                                                      |         |
|                                                                                                                                                                                      | All figures in \$MM unless                                                | indicated                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                                                      |         |
| Project year                                                                                                                                                                         | Cap Ex                                                                    | Revenue                                                                                                                                                                        | Total Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gr. Profit                                                                                                                                                                                                        | Deprcn                                                                                                                   | Taxbl Inc                                                                                                                                                  | Tax Paid                                                                                                                                  | Cash Flow                                                                                                                                                                        | PV of CF                                                                                                                                                                 | NPV                                                                                                                                                                                  |         |
|                                                                                                                                                                                      |                                                                           |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                                                      |         |
| 1                                                                                                                                                                                    | 121.8                                                                     | 0.0                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                               | 0.0                                                                                                                      | 0.0                                                                                                                                                        | 0.0                                                                                                                                       | -121.8                                                                                                                                                                           | -113.9                                                                                                                                                                   | -113.9                                                                                                                                                                               |         |
| 1<br>2                                                                                                                                                                               | 121.8<br>414.3                                                            | 0.0<br>0.0                                                                                                                                                                     | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                               | 0.0<br>0.0                                                                                                               | 0.0                                                                                                                                                        | 0.0                                                                                                                                       | -121.8<br>-414.3                                                                                                                                                                 | -113.9<br>-361.8                                                                                                                                                         | -113.9<br>-475.7                                                                                                                                                                     |         |
|                                                                                                                                                                                      |                                                                           |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                                                      |         |
| 2                                                                                                                                                                                    | 414.3                                                                     | 0.0                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0<br>80.0<br>195.0                                                                                                                                                                                              | 0.0<br>69.6<br>119.4                                                                                                     | 0.0                                                                                                                                                        | 0.0                                                                                                                                       | -414.3                                                                                                                                                                           | -361.8                                                                                                                                                                   | -475.7                                                                                                                                                                               |         |
| 2<br>3                                                                                                                                                                               | 414.3<br>0.0                                                              | 0.0<br>277.2                                                                                                                                                                   | 0.0<br>197.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0<br>80.0                                                                                                                                                                                                       | 0.0<br>69.6<br>119.4                                                                                                     | 0.0<br>10.3                                                                                                                                                | 0.0<br>0.0                                                                                                                                | -414.3<br>80.0                                                                                                                                                                   | -361.8<br>65.3                                                                                                                                                           | -475.7<br>-410.4                                                                                                                                                                     |         |
| 2<br>3<br>4                                                                                                                                                                          | 414.3<br>0.0<br>0.0                                                       | 0.0<br>277.2<br>554.4                                                                                                                                                          | 0.0<br>197.2<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0<br>80.0<br>195.0                                                                                                                                                                                              | 0.0<br>69.6<br>119.4                                                                                                     | 0.0<br>10.3<br>75.6                                                                                                                                        | 0.0<br>0.0<br>4.1                                                                                                                         | -414.3<br>80.0<br>190.8                                                                                                                                                          | -361.8<br>65.3<br>145.6                                                                                                                                                  | -475.7<br>-410.4<br>-264.8                                                                                                                                                           |         |
| 2<br>3<br>4<br>5                                                                                                                                                                     | 414.3<br>0.0<br>0.0<br>0.0                                                | 0.0<br>277.2<br>554.4<br>554.4                                                                                                                                                 | 0.0<br>197.2<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0<br>80.0<br>195.0<br>195.0                                                                                                                                                                                     | 0.0<br>69.6<br>119.4<br>60.9                                                                                             | 0.0<br>10.3<br>75.6<br>134.1                                                                                                                               | 0.0<br>0.0<br>4.1<br>30.2                                                                                                                 | -414.3<br>80.0<br>190.8<br>164.7                                                                                                                                                 | -361.8<br>65.3<br>145.6<br>117.4                                                                                                                                         | -475.7<br>-410.4<br>-264.8<br>-147.4                                                                                                                                                 |         |
| 2<br>3<br>4<br>5<br>6                                                                                                                                                                | 414.3<br>0.0<br>0.0<br>0.0<br>0.0                                         | 0.0<br>277.2<br>554.4<br>554.4<br>554.4                                                                                                                                        | 0.0<br>197.2<br>359.4<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0<br>80.0<br>195.0<br>195.0<br>195.0                                                                                                                                                                            | 0.0<br>69.6<br>119.4<br>60.9<br>43.5                                                                                     | 0.0<br>10.3<br>75.6<br>134.1<br>151.4                                                                                                                      | 0.0<br>0.0<br>4.1<br>30.2<br>53.6                                                                                                         | -414.3<br>80.0<br>190.8<br>164.7<br>141.3                                                                                                                                        | -361.8<br>65.3<br>145.6<br>117.4<br>94.2                                                                                                                                 | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2                                                                                                                                        |         |
| 2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                           | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                  | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4                                                                                                                               | 0.0<br>197.2<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0                                                                                                                                                                   | 0.0<br>69.6<br>119.4<br>60.9<br>43.5<br>43.5<br>43.5                                                                     | 0.0<br>10.3<br>75.6<br>134.1<br>151.4<br>151.5                                                                                                             | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6                                                                                                 | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4                                                                                                                               | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7                                                                                                                         | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5                                                                                                                                |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                      | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                           | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4                                                                                                                      | 0.0<br>197.2<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                                                                                                                                                          | 0.0<br>69.6<br>119.4<br>60.9<br>43.5<br>43.5<br>43.5                                                                     | 0.0<br>10.3<br>75.6<br>134.1<br>151.4<br>151.5<br>151.4                                                                                                    | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6                                                                                         | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4                                                                                                                      | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2                                                                                                                 | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7                                                                                                                       |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                 | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                    | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4                                                                                                    | 0.0<br>197.2<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                                                                                                                                                 | 0.0<br>69.6<br>119.4<br>60.9<br>43.5<br>43.5<br>43.5<br>21.7                                                             | 0.0<br>10.3<br>75.6<br>134.1<br>151.4<br>151.5<br>151.4<br>173.2                                                                                           | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6<br>60.6                                                                                 | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4<br>134.4                                                                                                             | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2<br>73.1                                                                                                         | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7<br>181.8                                                                                                              |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                                           | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0             | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4                                                                                           | 0.0<br>197.2<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                                                                                                                                                          | 0.0<br>69.6<br>119.4<br>60.9<br>43.5<br>43.5<br>43.5<br>21.7<br>0.0                                                      | 0.0<br>10.3<br>75.6<br>134.1<br>151.4<br>151.5<br>151.4<br>173.2<br>195.0                                                                                  | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6<br>60.6<br>69.3                                                                         | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4<br>134.4<br>134.4<br>125.7                                                                                           | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2<br>73.1<br>63.9                                                                                                 | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7<br>181.8<br>245.7                                                                                                     |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                                                                                                     | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4                                                                                  | 0.0<br>197.2<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                                                                                                                                        | 0.0<br>69.6<br>119.4<br>60.9<br>43.5<br>43.5<br>43.5<br>21.7<br>0.0<br>0.0                                               | 0.0<br>10.3<br>75.6<br>134.1<br>151.4<br>151.5<br>151.4<br>173.2<br>195.0<br>195.0                                                                         | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6<br>60.6<br>69.3<br>78.0                                                                 | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4<br>134.4<br>125.7<br>117.0                                                                                           | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2<br>73.1<br>63.9<br>55.6                                                                                         | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7<br>181.8<br>245.7<br>301.2                                                                                            |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                                                                               | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4                                                                         | 0.0<br>197.2<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                                                                                                                      | 0.0<br>69.6<br>119.4<br>60.9<br>43.5<br>43.5<br>21.7<br>0.0<br>0.0<br>0.0                                                | 0.0<br>10.3<br>75.6<br>134.1<br>151.4<br>151.5<br>151.4<br>173.2<br>195.0<br>195.0<br>195.0                                                                | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6<br>60.6<br>69.3<br>78.0<br>78.0                                                         | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4<br>134.4<br>125.7<br>117.0<br>117.0                                                                                  | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2<br>73.1<br>63.9<br>55.6<br>51.9                                                                                 | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7<br>181.8<br>245.7<br>301.2<br>353.2                                                                                   |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                                                                         | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4                                                                | 0.0<br>197.2<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                                                                                                             | 0.0<br>69.6<br>119.4<br>60.9<br>43.5<br>43.5<br>21.7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                  | 0.0<br>10.3<br>75.6<br>134.1<br>151.4<br>151.5<br>151.4<br>173.2<br>195.0<br>195.0<br>195.0<br>195.0                                                       | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6<br>60.6<br>69.3<br>78.0<br>78.0<br>78.0                                                 | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4<br>134.4<br>125.7<br>117.0<br>117.0<br>117.0                                                                         | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2<br>73.1<br>63.9<br>55.6<br>51.9<br>48.5                                                                         | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7<br>181.8<br>245.7<br>301.2<br>353.2<br>401.7                                                                          |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13<br>14                                                                                                             | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4                                                       | 0.0<br>197.2<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                                                                                                    | 0.0<br>69.6<br>119.4<br>60.9<br>43.5<br>43.5<br>43.5<br>21.7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                   | 0.0<br>10.3<br>75.6<br>134.1<br>151.4<br>151.5<br>151.4<br>173.2<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                                              | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6<br>69.3<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0                                         | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4<br>134.4<br>125.7<br>117.0<br>117.0<br>117.0                                                                         | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2<br>73.1<br>63.9<br>55.6<br>51.9<br>48.5<br>45.4                                                                 | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7<br>181.8<br>245.7<br>301.2<br>353.2<br>401.7<br>447.1                                                                 |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                                                       | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4                                              | 0.0<br>197.2<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                                                                         | 0.0<br>69.6<br>119.4<br>60.9<br>43.5<br>43.5<br>21.7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0             | 0.0<br>10.3<br>75.6<br>134.1<br>151.4<br>151.5<br>151.4<br>173.2<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                            | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6<br>69.3<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0                 | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4<br>125.7<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0                                                       | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2<br>73.1<br>63.9<br>55.6<br>51.9<br>48.5<br>45.4<br>42.4<br>39.6                                                 | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7<br>181.8<br>245.7<br>301.2<br>353.2<br>401.7<br>447.1<br>489.5<br>529.1                                               |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                                                 | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4                            | $\begin{array}{c} 0.0\\ 197.2\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.$ | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                                                       | $\begin{array}{c} 0.0\\ 69.6\\ 119.4\\ 60.9\\ 43.5\\ 43.5\\ 21.7\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$          | 0.0<br>10.3<br>75.6<br>134.1<br>151.4<br>151.5<br>151.4<br>173.2<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0          | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6<br>69.3<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0                 | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4<br>125.7<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0                                     | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2<br>73.1<br>63.9<br>55.6<br>51.9<br>48.5<br>45.4<br>42.4<br>39.6<br>37.0                                         | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7<br>181.8<br>245.7<br>301.2<br>353.2<br>353.2<br>353.2<br>401.7<br>447.1<br>449.5<br>5<br>29.1<br>566.1                |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                                                                           | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4                            | $\begin{array}{c} 0.0\\ 197.2\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.$ | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                                                       | 0.0<br>69.6<br>119.4<br>60.9<br>43.5<br>43.5<br>21.7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 0.0<br>10.3<br>75.6<br>134.1<br>151.4<br>151.5<br>151.4<br>173.2<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0 | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6<br>60.6<br>60.6<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0         | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4<br>134.4<br>125.7<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0          | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2<br>73.1<br>63.9<br>55.6<br>51.9<br>48.5<br>51.9<br>48.5<br>51.9<br>48.5<br>54.4<br>42.4<br>39.6<br>37.0<br>34.6 | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7<br>181.8<br>245.7<br>301.2<br>353.2<br>401.7<br>447.1<br>489.5<br>529.1<br>566.1<br>566.1<br>600.8                    |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                                                 | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4                            | $\begin{array}{c} 0.0\\ 197.2\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.4\\ 359.$ | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                                                       | $\begin{array}{c} 0.0\\ 69.6\\ 119.4\\ 60.9\\ 43.5\\ 43.5\\ 21.7\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$          | 0.0<br>10.3<br>75.6<br>134.1<br>151.4<br>151.5<br>151.4<br>173.2<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0          | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6<br>69.3<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0                 | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4<br>125.7<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0                                     | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2<br>73.1<br>63.9<br>55.6<br>51.9<br>48.5<br>45.4<br>42.4<br>39.6<br>37.0                                         | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7<br>181.8<br>245.7<br>301.2<br>353.2<br>353.2<br>353.2<br>401.7<br>447.1<br>449.5<br>5<br>29.1<br>566.1                |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                                                                               | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4                   | 0.0<br>197.2<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                                     | 0.0<br>69.6<br>119.4<br>43.5<br>21.7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0                 | 0.0<br>10.3<br>75.6<br>134.1<br>151.5<br>151.4<br>173.2<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0          | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6<br>60.6<br>69.3<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0         | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>137.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0 | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2<br>73.1<br>63.9<br>55.6<br>51.9<br>48.5<br>45.4<br>42.4<br>39.6<br>37.0<br>34.6<br>32.3                         | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7<br>181.8<br>245.7<br>301.2<br>353.2<br>401.7<br>447.1<br>449.5<br>529.1<br>566.1<br>600.8<br>633.1                    |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>CONOMIC ANALYSIS                                                           | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4          | 0.0<br>197.2<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                                              | 0.0<br>69.6<br>119.4<br>43.5<br>43.5<br>21.7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0         | 0.0<br>10.3<br>75.6<br>134.1<br>151.4<br>151.5<br>151.4<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                            | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6<br>69.3<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0                 | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>137.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0 | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2<br>73.1<br>63.9<br>55.6<br>51.9<br>48.5<br>45.4<br>42.4<br>39.6<br>37.0<br>34.6<br>32.3<br>42.8                 | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7<br>181.8<br>245.7<br>301.2<br>353.2<br>401.7<br>447.1<br>489.5<br>529.1<br>566.1<br>603.8<br>633.1<br>675.9           |         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4 | 0.0<br>197.2<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                                     | 0.0<br>69.6<br>119.4<br>43.5<br>43.5<br>21.7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0         | 0.0<br>10.3<br>75.6<br>134.1<br>151.5<br>151.4<br>173.2<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0          | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6<br>60.6<br>69.3<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0         | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>137.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0 | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2<br>73.1<br>63.9<br>55.6<br>51.9<br>48.5<br>45.4<br>42.4<br>39.6<br>37.0<br>34.6<br>32.3<br>42.8                 | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7<br>181.8<br>245.7<br>301.2<br>353.2<br>401.7<br>447.1<br>499.5<br>529.1<br>566.1<br>600.8<br>633.1<br>6075.9          | 18.29   |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>CONOMIC ANALYSIS<br>Average cash flow<br>Simple pay-back period            | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4 | 0.0<br>197.2<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0 | 0.0<br>69.6<br>119.4<br>43.5<br>43.5<br>21.7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0         | 0.0<br>10.3<br>75.6<br>134.1<br>151.4<br>151.5<br>151.4<br>173.2<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0                   | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6<br>60.6<br>60.6<br>69.3<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0 | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>137.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0 | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2<br>73.1<br>63.9<br>55.6<br>51.9<br>48.5<br>45.4<br>42.4<br>39.6<br>37.0<br>34.6<br>32.3<br>42.8                 | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7<br>181.8<br>245.7<br>301.2<br>353.2<br>401.7<br>447.1<br>489.5<br>529.1<br>5629.1<br>566.1<br>600.8<br>633.1<br>675.9 | 22.1%   |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 414.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 0.0<br>277.2<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4<br>554.4 | 0.0<br>197.2<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4<br>359.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>80.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0 | 0.0<br>69.6<br>119.4<br>43.5<br>43.5<br>21.7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0         | 0.0<br>10.3<br>75.6<br>134.1<br>151.5<br>151.4<br>173.2<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0<br>195.0          | 0.0<br>0.0<br>4.1<br>30.2<br>53.6<br>60.6<br>60.6<br>60.6<br>69.3<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0<br>78.0         | -414.3<br>80.0<br>190.8<br>164.7<br>141.3<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>134.4<br>137.0<br>117.0<br>117.0<br>117.0<br>117.0<br>117.0 | -361.8<br>65.3<br>145.6<br>117.4<br>94.2<br>83.7<br>78.2<br>73.1<br>63.9<br>55.6<br>51.9<br>48.5<br>45.4<br>42.4<br>39.6<br>37.0<br>34.6<br>32.3<br>42.8                 | -475.7<br>-410.4<br>-264.8<br>-147.4<br>-53.2<br>30.5<br>108.7<br>181.8<br>245.7<br>301.2<br>353.2<br>401.7<br>447.1<br>499.5<br>529.1<br>566.1<br>600.8<br>633.1<br>675.9           |         |