Central hemodynamic estimation

1	Word count main text: 3,915
2	Word count abstract: 249
3	Number of References: 40
4	Figures: 1
5	Tables: 4
6	Supplementary Files: 0
7	
8	The impact of upper-limb position on estimated central blood pressure waveforms
9	
10	Running Title: Central hemodynamic estimation
11	
12	Lee STONER PhD MPH ^{1*} , Keeron STONE MSc ² , Gabriel ZIEFF MA ¹ , EriK D. HANSON PhD ¹ , Daniel CREDEUR
13	PhD ³ , James FAULKNER PhD ⁴ , Anna KUCHARSKA-NEWTON PhD ⁵ , Simon FRYER PhD ²
14	
15	¹ Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC,
16	27599, USA.
17	² School of Sport and Exercise, University of Gloucestershire, Gloucester, UK.
18	³ School of Kinesiology, University of Southern Mississippi, Hattiesburg, MS, USA.
19	⁴ Department of Sport & Exercise, University of Winchester, UK.
20	⁵ Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
21	* Corresponding Author: E: dr.l.stoner@gmail.com, T: +1.919.962.0534
22	
23	Type of article: Original
24	Source of funding: NONE
25	

1

Central hemodynamic estimation

27 ABSTRACT

28 Pulse wave analysis (PWA) utilizes arm blood pressure (BP) waveforms to estimate aortic 29 waveforms. The accuracy of central BP waveform estimation may be influenced by 30 assessment site local hemodynamics. This study investigated whether local hemodynamic 31 changes, induced via arm tilting +/-30° relative to heart level, affect estimated central 32 systolic BP (cSBP) and arterial wave reflection (central augmentation index, cAIx; aortic 33 backward pressure wave, Pb). In 20 healthy adults (26.7 y [SD 5.2], 10 F) brachial BP 34 waveforms were simultaneously recorded on experimental and control arms. The 35 experimental arm was randomly repositioned three times (heart level, -30° heart level, 36 +30° heart level), while the control arm remained fixed at heart level. For the experimental arm, arm repositioning resulted in a large (partial eta-squared >0.14) effect 37 38 size (ES) change in SBP (ES=0.75, P<0.001), cSBP (ES =0.81, P<0.001), and cAIx (ES =0.75, 39 P=0.002), but not Pb (ES =0.06, P=0.38). In the control arm, cAIx (ES =0.22, P=0.013) but 40 not SBP or cSBP significantly changed. Change in experimental arm cSBP was partially explained by brachial systolic blood velocity (P=0.026) and mean diameter (P=0.012), 41 42 while change in cAlx was associated with brachial retrograde blood velocity (P=0.020) and 43 beta stiffness (P=0.038). In conclusion, manipulation of assessment site local 44 hemodynamics, including the blood velocity profile and local arterial stiffness, had a large effect on estimated cSBP and cAIx, but not Pb. These findings do not invalidate PWA 45 46 devices but do suggest that the accuracy of the estimated aortic pressure waveform is dependent on stable peripheral hemodynamics. 47

3

- 48 **KEY WORDS**: posture; arterial stiffness; pulse wave analysis; central blood pressure;
- 49 arterial wave reflection

50 **INTRODUCTION**

51	Pulse wave analysis (PWA) devices permit the estimation of central hemodynamic
52	properties, including arterial wave reflection (central augmentation index [cAlx], aortic
53	backward pressure wave [Pb]), and central systolic blood pressure (cSBP). Considering that
54	cSBP more closely reflects left ventricular and cerebrovascular load than brachial
55	pressure, ^{1,2} and is a more accurate marker of cardiovascular risk, ² PWA is increasingly
56	attractive to epidemiologists and clinicians. However, the accuracy of central
57	hemodynamic estimates may be influenced by local hemodynamic changes.
58	
59	Local pressure hemodynamics are influenced by gravitational changes, including small
60	variation in the assessment site level relative to the heart. Such variation may occur with
61	incorrect positioning of the arm, change in posture, or while using ambulatory devices.
62	Pucci <i>et al.</i> ³ examined the importance of gravitational changes by tilting the upper-limb
63	30° above and 30° below heart level during supine PWA assessments. This experimental
64	model is simple yet effective in that local hemodynamics are likely to be manipulated in
65	the absence of central hemodynamic changes. Pucci <i>et al.</i> ³ observed that peripherally
66	derived indexes of cSBP and cAIx appeared 'older' when the upper arm was raised and
67	'younger' when the upper arm was lowered. These changes occurred in the experimental
68	arm despite no observable change in the fixed position (heart level) control arm,
69	suggesting that 'changes' to the estimated central waveform were likely an artifact of local
70	hemodynamic manipulation.

5

72	Unfortunately, Pucci et al. ³ did not measure important local hemodynamic properties,
73	such as blood flow and local arterial stiffness. Further, cAIx but not Pb was measured. cAIx
74	is known to be affected by the reflected wave transit time, ⁴ whereas Pb is thought to be
75	independent of the transit time ⁵ and has been demonstrated to be more resistant to
76	changes in posture. ^{6–9} Therefore, the primary objective of this study was to investigate the
77	effects of local hemodynamic manipulation, induced by tilting the arm +/-30 degrees
78	relative to heart level, on PWA estimated cSBP, cAIx and Pb. The secondary objective was
79	to determine the association between change in estimated cSBP, cAIx and Pb and change
80	in local hemodynamic properties (arterial stiffness, blood velocity/flow).
81	
82	METHODS
82 83	METHODS This study is reported in accordance with STROBE (Strengthening the Reporting of
82 83 84	METHODS This study is reported in accordance with STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. ¹⁰
82 83 84 85	METHODS This study is reported in accordance with STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. ¹⁰
82 83 84 85 86	METHODS This study is reported in accordance with STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. ¹⁰ PARTICIPANTS
82 83 84 85 86 87	METHODS This study is reported in accordance with STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. ¹⁰ PARTICIPANTS Twenty young (18 – 40 y), healthy women (n=10) and men were recruited from a large
82 83 84 85 86 87 88	METHODS This study is reported in accordance with STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. ¹⁰ PARTICIPANTS Twenty young (18 – 40 y), healthy women (n=10) and men were recruited from a large state university. A healthy population sample was recruited to mitigate the risk of age- or
82 83 84 85 86 87 88 88	METHODS This study is reported in accordance with STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. ¹⁰ Observational Studies in Epidemiology) guidelines. ¹⁰ PARTICIPANTS Twenty young (18 – 40 y), healthy women (n=10) and men were recruited from a large state university. A healthy population sample was recruited to mitigate the risk of age- or disease-related influences on BP. Participants were excluded if they reported any known
82 83 84 85 86 87 88 88 89 90	METHODS This study is reported in accordance with STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. ¹⁰ Observational Studies in Epidemiology) guidelines. ¹⁰ PARTICIPANTS Twenty young (18 – 40 y), healthy women (n=10) and men were recruited from a large state university. A healthy population sample was recruited to mitigate the risk of age- or disease-related influences on BP. Participants were excluded if they reported any known cardio-metabolic disorders, were taking medications known to affect cardiovascular

- 92 of North Carolina at Chapel Hill institutional review board, and all participants provided
- 93 written informed consent prior to participating in the study.
- 94

95 EXPERIMENTAL DESIGN

96 Participants were familiarized with all experimental procedures. Subsequently, all 97 measures were collected on a single occasion in a quiet, dimly lit and environmentally 98 controlled room between 7am and 10am. Participants fasted for 12h, consuming only 99 water, and refraining from supplement intake that morning. Participants also avoided 100 strenuous physical activity and alcohol for 24 h prior to experimentation. Prior to 101 measurement commencement, participants rested quietly in the supine position for 20-102 min, with both arms at heart level and stretched at a right angle.¹¹ The experimental arm 103 was supported on a table with an adjustable height and tilting surface, and the control 104 arm was fixed at heart level. 105 106 The experimental timeline is depicted in **Figure 1**. For each participant, measurements 107 were made with the experimental arm in three positions: heart level (0°), -30° heart level, 108 and +30° heart level, separated by 5 min rest prior to measurements. Re-positioning to +/-109 30 heart level was randomized, using two sets of 10 unique numbers generated from a 110 number range of 1-20 (www.randomizer.org). At each experimental arm position PWA 111 assessments were simultaneously made on both arms. A control arm was used to 112 determine whether any changes in the estimated central BP waveform were real or an

This is an accepted manuscript of an article published by Springer Nature in Journal of Human Hypertension, available online at <u>https://www.nature.com/articles/s41371-019-0179-x</u>. It is not the copy of record. Copyright © 2019, Springer Nature.

7

113	artifact of local hemodynamic manipulation. Experimental arm local hemodynamic
114	changes were measured using Duplex Doppler ultrasound. Lastly, to confirm central
115	hemodynamic stability, continuous wave ultrasound was used to obtain trans-aortic
116	Doppler flow profiles. All measurements were made in triplicate, with one min rest
117	between readings, and the closest two recordings were averaged.

119 PULSE WAVE ANALYSIS: EXPERIMENTAL ARM

120 Oscillometric pressure waveforms were recorded by a single operator using a SphygmoCor 121 XCEL device (AtCor Medical, Sydney, Australia). An appropriately sized cuff was selected 122 according to manufacturer guidelines (small adult 17–25 cm, adult 23–33 cm, large adult 123 31–40 cm) and placed around the left upper arm. Each measurement cycle lasted ~60 s. 124 The upper arm cuff was initially inflated to measure brachial systolic (SBP) and diastolic 125 (DBP) blood pressure, and then reinflated 5 s later to 10 mmHg below DBP to acquire a 126 volumetric displacement signal for 10 s.¹² The brachial waveforms were calibrated using 127 the cuff-measured SBP and DBP, and mean arterial pressure (MAP) was derived by 128 integrating the area under the curve. A corresponding aortic pressure waveform was 129 generated using a validated proprietary transfer function and calibrated using DBP and 130 MAP.¹² The aortic waveform was used to derive central: cSBP, diastolic BP (cDBP), pulse 131 pressure (cPP), pulse pressure amplitude (PPamp), augmentation pressure (cAP), cAlx, 132 cAlx normalized to a heart rate of 75 bpm (cAlx@75), aortic backward pressure wave (Pb), 133 aortic forward pressure wave (Pf), and reflection magnitude (RM).

135	The PPamp is the ratio of peripheral pulse pressure to cPP multiplied by 100. The cAIx is
136	defined as the cAP expressed as a percentage of cPP, where cAP is defined as the
137	maximum cSBP minus the pressure at the inflection point. The Pf and Pb wave pressures
138	were determined by assuming a triangular flow wave. ¹³ This method creates a triangular-
139	shaped flow wave by matching the start, peak, and end of the flow wave to the timings of
140	the foot, inflection point, and incisura of the aortic pressure wave. The RM was calculated
141	as Pb/Pf.
142	
143	PULSE WAVE ANALYSIS: CONTROL ARM
144	Oscillometric pressure waveforms were recorded on the upper arm using an Oscar 2
145	(SunTech Medical, Morrisville, USA) and a cuff identical in size to the one used for the
146	XCEL device. The Oscar 2 incorporates the same patented BP model as the XCEL, and has
147	been validated according to the British Hypertension Society and the European Society of
148	Hypertension International Protocol. ^{14,15} Measurements included cSBP, cDBP, cPP, PPamp,
149	cAP, cAIx, and cAIx@75. The Oscar 2 does not currently measure Pb, Pf or RM.
150	
151	DUPLEX DOPPLER ULTRASOUND: EXPERIMENTAL ARM
152	A 11-2 mHz linear array probe (LOGIQ P6, GE Healthcare, Wauwatosa, USA) was used to
153	record brachial artery brightness-mode images and pulsed doppler waveforms. ^{16,17} The
154	ultrasound probe was placed on the brachial artery, 5-10 cm proximal to the antecubital
	0

This is an accepted manuscript of an article published by Springer Nature in Journal of Human Hypertension, available online at <u>https://www.nature.com/articles/s41371-019-0179-x</u>. It is not the copy of record. Copyright © 2019, Springer Nature.

9

fossa. The isonation angle was kept constant between 45° and 60° and the sample volume
included most of the vessel. Three 10 s video recordings were taken at 30 Hz using an
external video capture system (AV.io HD Frame Grabber, Epiphan Video, CA), during which
the participant was asked to hold their breath without prior inhalation.

160 The captured videos were analysed offline using specialized image analysis software (FMD Studio[®], QUIPU, Italy), which outsourced (30 Hz) brachial artery diameters as well as 161 162 antegrade and retrograde blood velocities. Blood velocities were analysed by tracing the peak envelope of the spectral waveform. Subsequently, custom-written Visual Basic code 163 164 was used to fit peaks and troughs to the diameter waveforms to calculate diastolic (Dd), systolic (Ds), mean diameters (D_{mean}), and distention (Dist.).^{18,19} The Visual Basic software 165 166 also automated the calculation of study outcomes: mean blood velocity (V_{mean}), diastolic 167 blood velocity (V_{dia}), systolic blood velocity (V_{sys}), retrograde blood velocity (V_{neg}), mean 168 blood flow (BF_{mean}), change in blood flow over the cardiac cycle (Δ BF), shear rate, 169 oscillatory index (OI), conductance, and local arterial stiffness (beta-stiffness index $[\beta]$). 170 Shear rate (s⁻¹) was calculated as 4*mean velocity/diameter, blood flow as mean vessel 171 area*mean blood velocity*60, conductance (ml·min·mmHg) as mean blood flow/MAP, and OI as retrograde shear rate / (antegrade shear rate + retrograde shear) $*100.^{20}$ The 172 173 values for OI range from 0 to 50, where zero is strictly antegrade shear and 50 is purely 174 oscillatory. The ß was calculated as ln(SBP/DBP)/[(Ds-Dd)/Dd].

175

This is an accepted manuscript of an article published by Springer Nature in Journal of Human Hypertension, available online at <u>https://www.nature.com/articles/s41371-019-0179-x</u>. It is not the copy of record. Copyright © 2019, Springer Nature.

10

176 CONTINUOUS-WAVE ULTRASOUND: TRANS-AORTIC

177	Stroke volume (SV), cardiac output (CO) and systemic vascular resistance (SVR) were
178	measured at each arm position using continuous-wave Doppler ultrasound (USCOM 1A,
179	Uscom, Sydney, Australia). A single operator placed a 3.3MHz continuous-wave probe
180	over the acoustic window at the level of the sternal notch to obtain trans-aortic Doppler
181	flow profiles. Three 12 s recordings were taken for each arm position and the closest two
182	were averaged. The BPs from the control arm were used to calculate SVR.
183	
184	SAMPLE SIZE
185	Sample size calculations were based on cAIx, which has lower between-day reliability than
186	the primary outcome, cSBP, ⁶ and is similarly reliable to Pb. ⁷ The mean change in derived
187	cAlx reported following upper-limb tilt (+30° or -30°) from heart level is approximately
188	10% (data estimated from pooled data), but the smallest change reported is
189	approximately 5%. ³ The typical error of cAIx measurement using the SpygmoCor XCEL is
190	5.2% for uncontrolled conditions. ⁶ Using a conservative typical change during arm tilt of
191	5% and a conservative typical error of 5.2%, with the maximum chances of a Type I error
192	set at 5%, and a Type II error of 20%, we estimated the approximate number of
193	participants required at 19. ²¹ To permit even distribution by sex, the sample size was
194	inflated to 20.
195	

196 STATISTICS

11

197	Statistical analyses were performed using Statistical Package for Social Sciences version 25
198	(SPSS, Inc., Chicago, Illinois) and Hierarchical Linear Modelling-6 (Scientific Software
199	International, Inc., Lincolnwood, Illinois). Statistical significance was defined as p <0.05
200	(two tailed). To test for the main effect of arm position on each outcome analysis of
201	variance (ANOVA) for repeated measurement was used, after verification of the normality
202	of distributions. Homogeneity of variance was evaluated using Mauchly's test of sphericity
203	and, when violated, the Greenhouse-Geisser adjustment was used. In the event of a
204	significant main effect, pairwise comparisons against heart level measurements were
205	conducted. Effect sizes (ES) are reported using partial eta-squared (η^2_p), where 0.01, 0.06,
206	and 0.14 represent a small, medium, and large effect, respectively. ²²
207	
208	Hierarchical Linear Modelling (HLM) was used to address the final objective, i.e.,
209	associations between change in estimated cSBP and arterial wave reflection and change in
210	local artery hemodynamics. Three models were run for each analysis. Model 1 specified
211	arm tilting (arm position relative to heart level), and was used to estimate measurement
212	reliability. ²³ Model 2 specified the predictor which most strongly associated with outcome,
213	as a group-centered to determine whether change in this variable helps to explain within-
214	subject variation for change in the outcome. Model 3 specified the next strongest
245	
215	predictor variable as a group-centered covariate.

217 **RESULTS**

12

218	Local and central hemodynamic data for the experimental arm were successfully collected
219	from all 20 participants (26.7 y [SD 5.2], 50% women, BMI 24.0 kg/m ² [SD 2.8]). For the
220	control arm, PWA measurements were unsuccessful for one participant for an unknown
221	reason. Additionally, ultrasound measures were unsuccessful on one participant due to
222	poor video quality. These two participants were similar to the remainder of the population
223	in terms of demographics and baseline hemodynamic measures.
224	
225	EXPERIMENTAL ARM MEASUREMENTS

226 Pulse Wave Analysis

227 All measurements are reported in Table 1. We observed no significant main effects of arm

tilting on HR, PPamp, Pb, Pf or RM. However, there were large (ES=0.27-0.82), significant

229 main effects of arm tilting on MAP, DBP, SBP, cSBP, cAP, cAIx, and cAIx75. Pairwise

230 contrasts indicate that maneuvering the arm 30° above heart level resulted in significantly

decreased MAP, DBP, SBP, cSBP, but non-significant changes in cAP, cAIx, and cAIx75.

232 Conversely, positioning the arm 30° below heart level led to significantly increased MAP,

233 DBP, SBP, cSBP, significantly decreased cAP and cAIx, and resulted in a non-significant

decrease in cAlx75.

235

236 <u>Ultrasound</u>

237 We observed non-significant main effects for V_{mean}, BF_{mean}, conductance, and shear rate.

However, there were large (ES=0.20-0.60), significant main effects for distension, β , V_{dia},

13

239	$V_{sys},V_{neg},\Delta BF$ and OI. Pairwise contrasts indicate that maneuvering the arm 30° above
240	heart level resulted in significantly increased V_{dia} ,OI and V_{neg} , and a non-significant change
241	in $m{ heta}$, Dist, V _{sys} , and Δ BF. Conversely, positioning the arm 30° below heart level led to
242	significantly increased $m{ heta}$, significantly decreased V _{sys} and Δ BF, and had a non-significant
243	effect on distention, V_{mean} , and V_{neg} .
244	
245	CONTROL MEASUREMENTS: CONTROL ARM AND TRANS-AORTIC
246	All measurements are reported in Table 2. When the experimental arm was repositioned,
247	we observed no significant main effects for HR, SBP, cSBP, PP_{amp} , or cAP. However, there
248	were large (ES=0.19-0.32) and significant main effects for MAP, DBP, cAIx and cAIx75.
249	Pairwise contrasts indicate that maneuvering the experimental arm 30° above heart level
250	resulted in significantly increased MAP and DBP and significantly decreased cAIx and
251	cAIx75 in the control arm. Positioning the experimental arm 30° below heart level also led
252	to significantly increased MAP and DBP in the control arm but had a non-significant effect
253	on cAlx and cAlx75.
254	
255	We observed no significant main effects for CO, SV or HR. However, there was a large
256	(ES=0.25) and significant main effect for SVR. Pairwise contrasts indicate that maneuvering
257	arm 30° above heart level significantly increased SVR, whereas positioning the arm 30°
258	below heart level had a non-significant effect on SVR.
259	

260 ASSOCIATIONS BETWEEN CENTRAL AND LOCAL HEMODYNAMIC

261 <u>MEASURES</u>

- 262 Data from 19 participant, for a total of 57 data points were available for the HLM models.
- 263 Only cSBP and cAIx were modelled as these outcomes were influenced by arm tilting,
- 264 whereas Pb was not. The ultrasound-derived local hemodynamic measures, which
- significantly changed in response to arm tilting, were considered for HLM analysis. Initially,
- 266 each local hemodynamic variable was independently associated with cSBP and cAIx, using
- 267 HLM. The variables which were significantly associated with cSBP or cAIx were specified as
- subject-centered in order of strength of association. V_{sys} and $D_{mean,}$ and V_{neg} and θ were
- 269 found to be significant independent predictors of cSBP and cAIx, respectively. The HLM
- 270 models for cSBP are reported in Table 3. Model 3 shows that, after controlling for V_{sys} and
- 271 V_{mean}, each 10° elevation in arm position, beginning at -30°, resulted in a 2.05 mmHg
- decrease in cSBP. The HLM models for cAIx are reported in **Table 4**. After controlling for
- 273 V_{neg} and β , each 10° elevation in arm position, beginning at -30°, resulted in a 0.16%
- increase in cAlx.
- 275

276 **DISCUSSION**

- 277 Non-invasive PWA devices have been demonstrated to provide reliable^{6–8} and valid^{24,25}
- estimates of central hemodynamic properties, and the prognostic value of cSBP has been
- 279 recognized by expert consensus.^{2,26,27} The current findings do not invalidate PWA devices
- but do suggest that the accuracy of the estimated aortic pressure waveform is dependent

281 on stable local hemodynamics at the assessment site. Local hemodynamic manipulation,

induced through arm tilting, had a large effect on estimated cSBP and cAIx, but not Pb. We

further add to the extant literature by observing a direct association of cSBP and cAIx with

local hemodynamic factors. These findings provide mechanistic insight into the factorsinfluencing the accuracy of PWA.

286

287 STRENGTHS AND LIMITATIONS

288 The strengths and limitations of this study need to be addressed to best contextualize the 289 findings. A major strength is the simultaneous measurement of peripheral and central 290 hemodynamic variables. Additionally, the homogenous group of young, healthy 291 participant permitted measurement of sensitive changes in hemodynamic variables 292 without the confounding influence of age or disease-status. However, there were some 293 limitations. While our sample population did permit optimal signal to noise, further study 294 with older and clinical populations is required to better generalize the findings. For 295 example, in older participant sarterial wave reflection has been demonstrated to be less sensitive to change with arm tilting,³ in hypertensive participants the relationship 296 between BP and arterial stiffness may be different,²⁸ and the effects of sex are unknown. 297 298 Additionally, we did not control for vasomotor changes resulting from arm movement.²⁹ 299 However, the arm was moved slowly and was fully supported at all times, we did allow a 300 5-min rest interval, and measurements were taken in triplicate. Lastly, the current study 301 utilized an oscillometric device (XCEL) to estimate the aortic pressure waveform from the

16

brachial artery, and SphygmoCor originally developed a proprietary transfer function for
use with radial artery tonometry. However, a proprietary transfer function has been
developed specifically for the XCEL,¹² and central hemodynamic outcomes derived from
the XCEL have been validated using both radial artery tonometry^{12,30,31} and high-fidelity
invasive catheterization.^{24,25}

307

308 CENTRAL SYSTOLIC BLOOD PRESSURE

309 The overall displacement in peripheral SBP in the experimental arm was 15 mmHg, which

310 is comparable to the 20 mmHg displacement reported by Pucci *et al.*³ Of particular

311 interest, the PP amplification (ratio of central to peripheral PP) did not change with arm

312 tilting for either study, suggesting that local pressure wave transmission directly

313 influences the estimated central waveform. The estimated central waveform was similarly

affected in both studies despite Pucci et al³ recording the peripheral waveform at the

radial artery with tonometry, and the current study estimating the peripheral waveform at

- the brachial artery with oscillometry. Further, the changes to local and estimated cSBP
- 317 occurred despite no changes to SBP or cSBP estimated from the control arm. Herein, we
- extend the findings of Pucci *et al*³ by reporting that change in cSBP was found to be
- 319 associated with local hemodynamic changes, including brachial artery systolic blood
- 320 velocity and mean diameter.

321

322	Brachial artery systolic blood velocity was particularly susceptible to the arm being
323	lowered, whereas brachial artery mean diameter was most susceptible to raising the arm.
324	When lowering the arm, systolic blood velocity decreased despite no change in mean
325	velocity, indicating that the shape of the velocity profile was altered rather than the
326	overall volume of blood velocity. The change in systolic blood velocity shape may have
327	been indicative of decreased downstream resistance as a result of blood pooling. ^{19,32} The
328	decreased downstream resistance may have directly influenced cSBP; however, decreased
329	peripheral resistance would be expected to decrease cSBP. ³³ Alternatively, the altered
330	systolic blood velocity may indicate mismatched pulsatile-pressure-flow relations. ^{33,34} In
331	turn, mean diameter is an indicator of the tone of the vessel, and a major determinant of
332	local BP. ³³ However, mean diameter also plays an important general role in the local
333	hemodynamic environment, including arterial stiffness and the blood velocity profile, and
334	change in this variable may be indicative of more general change to the local
335	environment. This may explain why, despite being associated with change in cSBP,
336	specifying mean diameter in the hierarchical linear model did not reduce the change in
337	cSBP with arm tilting.
338	

339 ARTERIAL WAVE REFLECTION

340 In line with our BP findings, cAIx in the experimental arm changed similarly to that of Pucci

- 341 *et al.*³ cAlx increased when the arm was raised (albeit not significantly in the current
- 342 study), and decreased when the arm was lowered. Contrary to Pucci *et al*,³ we found that

18

343	cAlx significantly decreased (-4.7%) in the contralateral arm, predominantly when the
344	experimental arm was raised. We further extend the findings of Pucci et al ³ by reporting
345	that (i) change in experimental arm cAlx was found to be associated with change in
346	brachial artery retrograde blood velocity and brachial arterial stiffness, and (ii) Pb did not
347	significantly change with arm tilting.

349 Antegrade blood velocity was particularly susceptible to the arm being raised, whereas 350 brachial arterial stiffness was specifically susceptible to the arm being lowered. Antegrade 351 blood velocity may have directly influenced the shape of the local pressure waveform, or may have simply been the consequence of increased downstream vascular resistance.³² 352 353 Considering the changes in antegrade blood velocity were small, the later explanation is 354 more likely. Interestingly, brachial arterial stiffness increased with arm lowering while the 355 cAlx decreased, which is opposite to what was expected. As such, perhaps it is not 356 surprising that while both antegrade blood velocity and brachial arterial stiffness did 357 decrease the hierarchical linear modelling estimate for change in cAIx with arm tilting, the 358 standard error for the estimate did not decrease and nor did the residual (within-subject) 359 variance. This indicates that while antegrade blood velocity and brachial arterial stiffness 360 are associated with cAIx, other factors do contribute to a change in cAIx. One explanation 361 is that at least part of the cAIx change is not artificial, and that arm tilting does have a 362 small systemic effect. Indeed, contrary to Pucci *et al*,³ we observed changes to cAlx in the 363 contralateral arm, and these changes are supported by small but robust changes in

¹⁹

- 364 systemic vascular resistance. Pucci *et al*³ may not have observed changes to cAlx in the
 365 contralateral arm as a result of the wide age range of study subjects.
- 366

367	In contrast to cAIx, Pb did not significantly change in response to arm tilting. This finding
368	supports previous work from our group indicating that, when compared to Pb, cAlx is
369	more prone to error with change in body posture. ^{6–8} Two potential sources of error may
370	have limited the estimation of arterial wave reflections using cAIx: (i) the reflected wave
371	transit time, and (ii) the generalized transfer function used to generate the aortic pressure
372	waveform. (i) The cAIx is affected by the reflected wave transit time, which is influenced
373	by the reflected wave timing, amplitude, and ventricular function, and which are known to
374	be influenced by a number of factors, including heart rate. ⁴ However, heart rate was not
375	significantly affected by arm tilting. Alternatively, (ii) the generalized transfer function may
376	less truly reproduce the high-frequency components required for cAIx computation than it
377	does the low-frequency pressure harmonics required for Pb and Pf computation. ³⁵
378	
379	IMPLICATIONS
380	Central BP measurement prognostic value has been recognized by expert consensus, and
381	is gaining traction as a clinical outcome. ^{2,26,27} The traction is supported by the validation
382	of diagnostic thresholds, ³⁶ and evidence demonstrating that monitoring central BP, as
383	opposed to conventional peripheral BP, aided in the management of hypertension,
384	leading to decreased medication use without adverse effects on left ventricular mass. ³⁷

However, as with peripheral BP measures, central BP and arterial wave reflection are currently measured in both supine and seated positions, with the arm resting at various heights.³⁸ Findings from the current study, along with previous work from our group and others, ^{3,6–9} suggest that lack of procedural standardization may have meaningful implications for patient management.

390

391 Our findings may have particular relevance to 24-h ambulatory central BP devices, as 392 changes in body posture and arm position may confound the accuracy of readings. As 393 such, it is recommended that participants are instructed to remain supine during key 394 measurement periods. Additionally, the current findings do indicate that Pb may be a 395 more robust measure of arterial wave reflection than cAIx. Two large prospective studies^{39,40} suggest that wave separation analysis may be superior to cAIx as a subclinical 396 397 marker of cardiovascular disease – one reporting that Pb better predicts 15-year 398 cardiovascular mortality than cAlx,³⁹ the other that reflection magnitude (Pb/Pf) better 399 predicts cardiovascular events than cAIx.⁴⁰ Whether or not Pb is a superior ambulatory 400 measure than cAIx warrants further attention.

401

402 CONCLUSIONS

403 This study investigated whether changes to the local hemodynamic environment, induced

- 404 through arm tilting, affect estimated cSBP and indices of arterial wave reflection. Arm
- 405 tilting had no effect on Pb. However, arm tilting did have a large effect on estimated cSBP

21

406	and cAIx in the experimental arm, but not in the control arm.	The changes in cSBP and
-----	---	-------------------------

- 407 cAlx were partially explained by changes in local hemodynamic factors. These findings do
- 408 not invalidate PWA devices but do suggest that the accuracy of the estimated aortic
- 409 pressure waveform is dependent on stable peripheral hemodynamics at the measurement
- 410 site.
- 411
- 412 ACKNOWLEDGEMENTS
- 413 None.
- 414 CONFLICT OF INTEREST
- 415 The authors declare that they have no conflict of interest

This is an accepted manuscript of an article published by Springer Nature in Journal of Human Hypertension, available online at <u>https://www.nature.com/articles/s41371-019-0179-x</u>. It is not the copy of record. Copyright © 2019, Springer Nature.

416 **REFERENCES**

- 417 1 Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T *et al.* Central pressure more strongly
 418 relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study.
 419 *Hypertension* 2007; **50**: 197–203.
- 420 2 McEniery CM, Cockcroft JR, Roman MJ, Franklin SS, Wilkinson IB. Central blood pressure: current
 421 evidence and clinical importance. *Eur Hear J* 2014; **35**: 1719–1725.
- Pucci G, Battista F, Anastasio F, Sanesi L, Gavish B, Butlin M *et al.* Effects of gravity-induced upperlimb blood pressure changes on wave transmission and arterial radial waveform. *J Hypertens* 2016;
 34: 1091–1098.
- 425 4 Stoner L, Faulkner J, Lowe A, D ML, J MY, Love R *et al.* Should the augmentation index be normalized
 426 to heart rate? *J Atheroscler Thromb* 2014; **21**: 11–16.
- 4275Westerhof BE, Guelen I, Westerhof N, Karemaker JM, Avolio A. Quantification of wave reflection in428the human aorta from pressure alone: a proof of principle. *Hypertension* 2006; **48**: 595–601.
- 429 6 Young Y, Abdolhosseini P, Brown F, Faulkner J, Lambrick D, Williams MA *et al.* Reliability of
 430 oscillometric central blood pressure and wave reflection readings: Effects of posture and fasting. *J*431 *Hypertens* 2015; **33**: 1588–1593.
- 432 7 Stoner L, Credeur D, Fryer S, Faulkner J, Lambrick D, Gibbs BB. Reliability of pulse waveform
 433 separation analysis: Effects of posture and fasting. *J Hypertens* 2017; **35**: 501–505.
- 434 8 Stoner L, Stone K, Hanson ED, Faulkner J, Fryer S, Credeur D. Reliability of pulse waveform
 435 separation analysis responses to an orthostatic challenge. *Hypertens Res* 2018; 41: 176–182.
- 436 9 Mitchelmore A, Stoner L, Lambrick D, Sykes L, Eglinton C, Jobson S *et al.* Oscillometric central blood
 437 pressure and central systolic loading in stroke patients: Short-term reproducibility and effects of
 438 posture and fasting state. *PLoS One* 2018; **13**: e0206329.
- 439 10 von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP *et al.* The Strengthening
 440 the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting
 441 observational studies. *Lancet* 2007; **370**: 1453–1457.
- 44211Stoner L, Lambrick DM, Faulkner J, Young J. Guidelines for the Use of Pulse Wave Analysis in Adults443and. J Atheroscler Thromb 2012; 5: 1–3.
- Butlin M, Qasem A, Avolio AP. Estimation of central aortic pressure waveform features derived from
 the brachial cuff volume displacement waveform. *Conf Proc IEEE Eng Med Biol Soc* 2012; **2012**:
 2591–2594.
- 44713Qasem A, Avolio A. Determination of aortic pulse wave velocity from waveform decomposition of448the central aortic pressure pulse. *Hypertension* 2008; **51**: 188–195.
- Jones SC, Bilous M, Winship S, Finn P, Goodwin J. Validation of the OSCAR 2 oscillometric 24-hour
 ambulatory blood pressure monitor according to the International Protocol for the validation of
 blood pressure measuring devices. *Blood Press Monit* 2004; **9**: 219–223.
- 452 15 Goodwin J, Bilous M, Winship S, Finn P, Jones SC. Validation of the Oscar 2 oscillometric 24-h
 453 ambulatory blood pressure monitor according to the British Hypertension Society protocol. *Blood*454 *Press Monit* 2007; **12**: 113–117.
- 455 16 Stoner L, Sabatier MJ. Use of ultrasound for non-invasive assessment of flow-mediated dilation. J
 456 Atheroscler Thromb 2012; 19: 407–421.
- 457 17 Stoner L, Sabatier M. Assessments of endothelial function using ultrasound. *Applied aspects of ultrasonography in humans*, 2012.http://cdn.intechopen.com/pdfs/35863/InTech459 Assessment_of_endothelial_function_using_ultrasound.pdf.
- 46018Stoner L, McCully KK. Peak and time-integrated shear rates independently predict flow-mediated461dilation. J Clin Ultrasound 2012; **40**: 341–351.
- 462 19 Stoner L, McCully KK. Velocity Acceleration as a Determinant of Flow-Mediated Dilation. *Ultrasound*463 *Med Biol* 2012; **38**: 580–592.

23

464 20 Credeur DP, Vana LM, Kelley ET, Stoner L, Dolbow DR. Effects of Intermittent Pneumatic 465 Compression on Leg Vascular Function in People with Spinal Cord Injury: A Pilot Study. J Spinal Cord 466 Med 2017; 0: 1-9. 467 21 Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports 468 medicine and exercise science. Med Sci Sport Exerc 2009; 41: 3-13. 469 22 Cohen J. Statistical power analysis for the behavioral sciences. Academic Press: New York ; London, 470 1969. 471 23 Raudenbush SW, Bryk AS. Hierarchical linear models: Applications and data analysis methods. Sage, 472 2002. 473 24 Shoji T, Nakagomi A, Okada S, Ohno Y, Kobayashi Y. Invasive validation of a novel brachial cuff-based 474 oscillometric device (Sphygmo Cor XCEL) for measuring central blood pressure. J Hypertens 2017; 35: 475 69-75. 476 25 Nakagomi A, Shoji T, Okada S, Ohno Y, Kobayashi Y. Validity of the augmentation index and pulse 477 pressure amplification as determined by the SphygmoCor XCEL device: a comparison with invasive 478 measurements. Hypertens Res 2018; 41: 27-32. 479 26 Avolio AP, Van Bortel LM, Boutouyrie P, Cockcroft JR, McEniery CM, Protogerou AD et al. Role of 480 pulse pressure amplification in arterial hypertension: experts' opinion and review of the data. 481 Hypertens (Dallas, Tex 1979) 2009; 54: 375-83. 482 27 Agabiti-Rosei E, Mancia G, O'Rourke MF, Roman MJ, Safar ME, Smulyan H et al. Central blood 483 pressure measurements and antihypertensive therapy: a consensus document. Hypertension 2007; 484 **50**: 154–160. 485 28 Gaddum NR, Keehn L, Guilcher A, Gomez A, Brett S, Beerbaum P et al. Altered dependence of aortic 486 pulse wave velocity on transmural pressure in hypertension revealing structural change in the aortic 487 wall. Hypertension 2015; 65: 362-369. 488 29 Tschakovsky ME, Hughson RL. Venous emptying mediates a transient vasodilation in the human 489 forearm. Am J Physiol Hear Circ Physiol 2000; 279: H1007-14. 490 30 Peng X, Schultz MG, Abhayaratna WP, Stowasser M, Sharman JE. Comparison of Central Blood 491 Pressure Estimated by a Cuff-Based Device With Radial Tonometry. Am J Hypertens 2016; 29: 1173-492 1178. 493 31 Hwang MH, Yoo JK, Kim HK, Hwang CL, Mackay K, Hemstreet O et al. Validity and reliability of aortic 494 pulse wave velocity and augmentation index determined by the new cuff-based SphygmoCor Xcel. J 495 Hum Hypertens 2014; 28: 475-481. 496 32 Stoner L, Young JM, Fryer S, Sabatier MJ. The importance of velocity acceleration to flow-mediated 497 dilation. Int J Vasc Med 2012; 2012: 589213. 498 33 Caro CG, Pedley TJ, Schroter RC, Seed WA. The systemic arteries. In: The mechanics of the 499 circulation. Cambridge University Press: Cambridge, UK, 2012, pp 239–242. 500 34 Adamson SL, Whiteley KJ, Langille BL. Pulsatile pressure-flow relations and pulse-wave propagation 501 in the umbilical circulation of fetal sheep. Circ Res 1992; 70: 761–772. 502 35 Segers P, Carlier S, Pasquet A, Rabben SI, Hellevik LR, Remme E et al. Individualizing the aorto-radial 503 pressure transfer function: feasibility of a model-based approach. Am J Physiol Hear Circ Physiol 504 2000; 279: H542-9. 505 36 Cheng HM, Chuang SY, Sung SH, Yu WC, Pearson A, Lakatta EG et al. Derivation and validation of 506 diagnostic thresholds for central blood pressure measurements based on long-term cardiovascular 507 risks. J Am Coll Cardiol 2013; 62: 1780–1787. 508 37 Sharman JE, Marwick TH, Gilroy D, Otahal P, Abhayaratna WP, Stowasser M et al. Randomized trial 509 of guiding hypertension management using central aortic blood pressure compared with best-510 practice care: principal findings of the BP GUIDE study. Hypertension 2013; 62: 1138–1145. 511 38 Jaccoud L, Rotaru C, Heim A, Liaudet L, Waeber B, Hohlfeld P et al. Major impact of body position on 512 arterial stiffness indices derived from radial applanation tonometry in pregnant and nonpregnant 513 women. J Hypertens 2012; 30: 1161–1168.

24

- 51439Wang KL, Cheng HM, Sung SH, Chuang SY, Li CH, Spurgeon HA *et al.* Wave reflection and arterial515stiffness in the prediction of 15-year all-cause and cardiovascular mortalities: a community-based516study. Hypertension 2010; 55: 799–805.
- 517 40 Chirinos JA, Kips JG, Jacobs Jr. DR, Brumback L, Duprez DA, Kronmal R *et al.* Arterial wave reflections
 518 and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J
 519 Am Coll Cardiol 2012; 60: 2170–2177.
- 520
- 521

523	FIGURES
524	Figure 1. Study design. The experimental arm was passively repositioned three times
525	(heart level [0°], below heart level [-30°], below heart level [+30°]), while the control arm
526	remained fixed at heart level. Following repositioning a 5 min rest preceded
527	measurements. Measurements on the experimental arm included pulse wave analysis
528	(PWA, XCEL) and duplex Doppler ultrasound (US _{DD}). On the control arm PWA (Oscar 2)
529	measures were taken at the same time as experimental arm PWA measures. Lastly, for
530	each arm position a continuous wave ultrasound (US_{CW}) probe was placed at the level of
531	the sternal notch to obtain trans-aortic Doppler flow profiles. All measurements were
532	made in triplicate.
533	
534	TABLES
535	Table 1. Hemodynamic measures on the experimental arm (n=20)
536	Abbreviations: ES, effect size (partial eta squared), where 0.01, 0.06, and 0.14 represent a small, medium,
537	and large effect, respectively; Cont., contrast; LCI, lower confidence interval (95%); UCI, upper confidence

- 538 interval (95%);
- 539 ΔBF, change in blood flow (systole diastole); cAIx, central augmentation index; cAIx75, cAIx normalize to a
- 540 heart rate of 75 bpm; cAP, central augmentation pressure; *θ*, beta index stiffness; BF_{mean}, mean blood flow;
- 541 Cond., conductance; cSBP, central systolic blood pressure; DBP, diastolic blood pressure; Dist, distention
- 542 (brachial diameter change); D_{mean}, mean arterial (brachial) diameter; MAP, mean arterial blood pressure; Pf,
- 543 aortic forward pressure wave; Pb, aortic backward pressure wave; PP_{amp}, pulse pressure amplitude; OI,
- oscillatory index; RM, reflection magnitude; SBP, systolic blood pressure; shear, shear rate; V_{dia}, diastolic
 26

- 545 blood velocity; V_{mean}, mean blood velocity; V_{neg}, negative (retrograde) blood velocity; V_{sys}, systolic blood
- 546 velocity
- 547
- 548
- 549 **Table 2.** Control measurements: contralateral arm hemodynamic measures and central
- 550 output (n=19)
- 551 Abbreviations: cAIx, central augmentation index, AIx75, cAIx normalize to a heart rate of 75 bpm; cAP,
- 552 central augmentation pressure; CO, cardiac output; cSBP, central systolic blood pressure; DBP, diastolic
- 553 blood pressure; D_{mean}, mean arterial (brachial) diameter; HR, heart rate; PP_{amp}, pulse pressure amplitude;
- 554 MAP, mean arterial blood pressure; SBP, systolic blood pressure; SV, stroke volume; SVR, systemic vascular
- 555 resistance
- 556
- 557 **Table 3.** Hierarchical linear modeling estimates for change in central systolic blood
- 558 pressure (cSBP) with arm tilting (n=57 data points)
- 559 Note: the slopes are reported as a 10°, rather than 1° or 30° change to aid interpretation. Measurements we
- only conducted at -30°, 0° and 30°.
- 561 Abbreviations: D_{mean}, brachial artery mean diameter; V_{sys}, systolic blood velocity;
- 562
- 563 **Table 4.** Hierarchical linear modeling estimates for change in central augmentation index
- 564 (cAlx) with arm tilting (n=20)
- 565 Note: the slopes are reported as a 10°, rather than 1° or 30° change to aid interpretation. Measurements we
- only conducted at -30°, 0° and 30°.
- 567 Abbreviations: *β*, beta stiffness in the brachial artery; V_{neg}, negative (retrograde), blood velocity

Central hemodynamic estimation

	30∘Ab	ove	Heart	Level	30∘ Be	30° Below Significance		3	80∘ Abo	ve Hea	rt	30° Below Heart				
	Х	SD	Х	SD	Х	SD	Р	ES	Cont.	LCI	UCI	Р	Cont.	LCI	UCI	Р
MAP (mmHg)	77.3	5.6	82.2	5.4	91.9	6.0	< 0.001	0.82	-4.64	-7.6	-1.7	0.002	9.76	12	7.2	0.000
DBP (mmHg)	61.5	6.4	66.1	5.9	74.9	6.5	< 0.001	0.80	-4.70	-7.5	-1.8	0.001	-13.3	-17	-9.9	0.000
BP (mmHg)	110	5.3	114	6.3	125	7.7	< 0.001	0.75	-4.38	-7.5	-1.3	0.005	10.4	14	6.5	0.000
SBP (mmHg)	94.5	5.7	99.5	5.7	109	6.9	<0.001	0.81	-4.90	-7.8	-2.0	0.001	9.45	12	6.4	0.000
PPamp (ratio)	1.46	0.6	1.45	0.9	1.47	0.9	0.199	0.08	0.16	-0.1	0.4	0.430	0.27	-0.1	0.7	0.301
AP (mmHg)	0.68	2.4	0.48	3.3	-1.55	4.2	0.002	0.29	0.20	-1.2	1.6	1.000	-2.15	-4.2	-0.2	0.033
Alx (%)	1.55	8.8	1.45	9.4	-4.63	12	0.002	0.27	0.10	-3.6	3.8	1.000	-6.20	-12	-0.7	0.023
Alx75 (%)	-8.05	10	-9.00	13	-15.1	15	0.005	0.27	0.56	-3.5	4.6	1.000	-6.22	-13	0.4	0.070
b (mmHg)	11.1	2.0	11.1	1.4	11.5	1.9	0.338	0.06	0.00	-0.8	0.8	1.000	0.45	-0.4	1.3	0.528
f (mmHg)	25.0	2.3	24.8	2.6	25.3	3.5	0.809	0.01	0.20	-1.5	1.9	1.000	0.50	-1.6	2.6	1.000
RM (%)	43.4	6.1	45.1	6.6	43.9	4.7	0.352	0.05	1.75	-5.9	2.4	0.840	-1.25	-4.6	2.1	1.000
IR (bpm)	52.2	8.5	52.5	9.3	51.6	7.9	0.651	0.02	0.30	-2.4	1.8	1.000	-0.88	-3.3	1.5	1.000
o _{mean} (mm)	3.68	0.7	3.58	0.8	3.61	0.8	0.075	0.26	0.11	0.0	0.2	0.105	0.01	-0.1	0.1	1.000
Dist (mm)	0.08	0.0	0.07	0.0	0.05	0.0	0.002	0.29	0.01	0.0	0.0	0.537	-0.02	0.0	0.0	0.085
3	29.3	9.2	28.5	8.0	39.0	13	0.002	0.30	0.77	-6.0	7.5	1.000	10.5	3.3	18	0.004
/ _{dia} (cm/s)	1.21	1.4	0.00	0.0	0.00	0.0	< 0.001	0.44	1.21	0.4	2.1	0.005	na			
/ _{sys} (cm/s)	84.8	15	81.7	16	62.9	14	< 0.001	0.72	3.10	-2.9	9.1	0.564	-18.8	-26	-12	0.000
/ _{mean} (cm/s)	10.0	2.5	11.1	2.8	10.9	14	0.893	0.01	-1.08	-2.3	0.2	0.111	-0.16	-7.8	7.5	1.000
/ _{neg} (cm/s)	-3.41	2.6	-1.96	1.4	-1.80	1.4	0.000	0.36	-1.45	-2.6	-0.3	0.011	0.16	-0.5	0.8	1.000
F _{mean} (ml/min)	62.3	27	63.9	23	57.5	48	0.801	0.01	-1.55	-10	7.3	1.000	-6.33	-37	24	1.000
\BF (ml/min)	546	213	510	225	386	154	< 0.001	0.60	-36.3	-19	92	0.300	-123	-187	-60.1	0.000
Cond. (ml/min/mmHg)	0.81	0	0.78	0.3	0.63	0.6	0.275	0.07	0.03	-0.1	0.1	1.000	-0.16	-0.5	0.2	0.837
hear (s ⁻¹)	117	45	131	52	138	198	0.833	0.01	-20.2	-26	-1.7	0.022	6.42	-100	113	1.000
OI (ratio)	23.8	12	14.3	6.5	15.5	9.5	0.001	0.33	9.47	2.8	16	0.005	1.20	-3.8	6.2	1.000

569 **Table 1.** Hemodynamic measures on the experimental arm (n=57 data points)

570

29

Table 2. Control measurements: contralateral arm hemodynamic measures and central output (n=19)

	30∘ Above		Heart L	evel	30∘ Be	30∘ Below		Significance			0∘ Abov	e Hear	t		30° Below Heart			
	Х	SD	Х	SD	Х	SD	Р	ES	Со	nt.	LCI	UCI	Р	Con	. LCI	UCI	Р	
MAP (mmHg)	82.1	6.8	79.9	5.8	81.9	6.3	0.002	0.32	2.2	26	0.6	3.9	0.006	1.9	0.5	3.4	0.007	
DBP (mmHg)	64.6	5.6	62.2	5.9	64.7	6.2	0.002	0.30	2.3	30	0.8	3.9	0.003	2.5	0.4	4.6	0.020	
SBP (mmHg)	117	9.7	115	8.6	117	8.6	0.166	0.10	1.5	50	-0.9	3.8	0.345	1.4	-0.3	3.2	0.139	
cSBP (mmHg)	103	9.3	102	7.4	103	8.2	0.164	0.11	1.2	26	-1.0	3.6	0.493	-1.2	-0.7	3.0	0.360	
PP _{amp} (ratio)	1.39	0.8	1.37	0.7	1.38	0.8	0.270	0.07	0.1	19	-0.0	0.5	0.274	0.0	-0.1	-0.3	0.955	
cAP (mmHg)	1.42	5.3	2.84	4.9	1.79	4.1	0.068	0.14	-1.3	37	-3.1	323	0.140	-1.1	-2.6	0.5	0.258	
cAlx (%)	2.53	15	7.21	12	3.26	11	0.013	0.22	-4.	74	-9.3	-0.2	0.041	-3.9	-7.9	0.1	0.054	
cAlx75 (%)	-8.11	17	-3.00	15	-6.55	13	0.021	0.19	-5.2	21	-10.2	-0.2	0.039	-3.7	-8.5	1.2	0.181	
HR _{Osccar} (bpm)	52.1	7.7	53.4	8.2	53.3	7.5	0.059	0.15	-1.4	47	-3.1	0.2	0.095	-0.2	-1.9	1.5	1.000	
HR _{uscoм} (bpm)	51.8	9.3	52.3	10	52.1	8.3	0.906	0.01	-0.4	43	-2.5	1.7	1.000	-0.2	-3.2	2.8	1.000	
CO (I/min)	4.30	1.3	4.46	1.3	4.41	0.9	0.344	0.06	-0.3	17	-0.4	0.0	0.044	-0.1	-0.4	0.3	1.000	
SV (mL)	83.1	20	85.3	19	85.6	19	0.171	0.09	-2.2	25	-5.8	1.3	0.335	0.2	-3.5	3.9	1.000	
SVR (d·sec·cm⁻⁵)	1653	425	1528	377	1569	331	0.004	0.25	12	25	47	202	0.001	41	-60	143	0.900	

- 0.0

- **Table 3.** Hierarchical linear modeling estimates for change in central systolic blood pressure (cSBP) with arm tilting (n=20)

	Model	1	N	Nodel	2	Model 3				
	Est. SE	Р	Est.	SE	Р	Est.	SE	Р		
Fixed Effects										

	Intercept (-30°)	6 00	103	1.3	<0.001	103	1.3	<0.001	103	1.3	<0.001	Initial cSBP, arm at -30°
	Arm Tilt (per 10°)	B 10	-2.39	0.2	<0.001	-1.82	0.3	<0.001	-2.05	0.3	<0.001	cSBP per 10° degree elevation
	V _{sys}	B 20				-0.02	0.1	0.008	-0.13	0.1	0.026	cSBP change per 1 unit V _{sys}
	D _{mean}								8.1	4.1	0.012	cSBP change per 1 unit D _{mean}
	Random Variance											
	Intercept	<i>U</i> ₀₀	5.33		< 0.001	5.38		< 0.001	5.40		< 0.001	Between-subject variance
	Residual	Ε	3.26			2.99		3.23	2.85			Within-subject variance
591												
592												
593												
594												
595												
596												
597												
598												
599												
600												
601												

- **Table 4.** Hierarchical linear modeling estimates for change in central augmentation index (AIx) with arm tilting (n=20)

			Model	1		Ν	Model	2	Model 3			
		Est.	SE	Р	Es	st.	SE	Р	Est.	SE	Р	
Fixed Effects												
Intercept (-30°)	B 00	0.91	2.22	0.686	0.9	91	2.22	0.686	0.91	2.22	0.686	Initial cAlx, arm at -30°
Arm Tilt (per 10°)	B 10	0.92	0.34	0.015	0.4	18	0.39	0.240	0.16	0.39	0.692	cAlx per 10° degree elevation
V _{neg}					-1.6	56	0.70	0.029	-1.69	0.08	0.020	cAlx change per 1 unit V _{neg}
в									-0.19	0.66	0.038	CAIX change per 1 unit $ heta$
Random Variance												
Intercept	U_{00}	9.25		< 0.001	9.2	22		<0.001	9.25		<0.001	Between-subject variance
Slope	U 10	0.97		0.030	0.9	93		0.059	0.74		0.298	Between-subject variance
Residual	Ε	4.87			5.0)4			4.93			Within-subject variance

- -
- - -

629