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The Microbe 

 

The Microbe is so very small 

You cannot make him out at all, 

But many sanguine people hope 

To see him through a microscope. 

His jointed tongue that lies beneath 

A hundred curious rows of teeth; 

His seven tufted tails with lots 

Of lovely pink and purple spots, 

On each of which a pattern stands, 

Composed of forty separate bands; 

His eyebrows of a tender green; 

All these have never yet been seen – 

But Scientists, who ought to know, 

Assure us that they must be so… 

Oh! Let us never, never doubt 

What nobody is sure about 

 

 – Hilaire Belloc 

  



 

 

Abstract 

Treating municipal wastewater is necessary to limit the impact carbonaceous, nitrogenous and 

phosphorus matter present in spent water may have on receiving aquatic systems.  Conventional 

wastewater treatment systems employing the activated sludge or biological nutrient removal process as 

the main phase of treatment, demonstrate a high proficiency at removing these contaminants.  Despite 

this, these processes are described as problem shifting, simply causing secondary pollution because of 

high energy consumed, production of waste sludge and greenhouse gases.  To improve the 

environmental impact of wastewater treatment, particularly in light of stricter effluent discharge 

standards, treatment processes that have low energy consumption without affecting performance are 

needed.  A potential, more sustainable biological treatment process to remediate the contaminants 

from wastewater is by using microalgae.  Although this concept has been extensively researched, limited 

commercial development has been achieved.  A major hindrance to the implementation of microalgae 

to treat wastewater is the cultivation process, which is one of the main cost and energy burdens, and as 

such would not result in the much-desired reduction in overall energy consumption of wastewater 

treatment.  This thesis evaluated the performance of a microalgae treatment process for primary settled 

municipal wastewater (PSW) in a laboratory setting under static culturing conditions, to examine the 

feasibility of a low energy treatment process.  Initial experiments assessed three freshwater microalga 

to treat PSW under both optimal (aerated) and static (non-aerated) culture conditions.  From these 

results, Chlorella vulgaris identified itself as the most promising species, exhibiting high inorganic 

nitrogen and phosphorus removal.  The availability of a suitable carbon substrate was determined to be 

the main limiting-factor affecting the algal treatment performance under static cultivation.  To 

investigate this, initial experiments of PSW enriched with glucose (<300 mg L−1) as an organic carbon 

source to facilitate the bioremediation by C. vulgaris was performed.  Characterisation of the 

wastewater revealed significant reductions in NH3-N (from 28.9 to 0.1 mg L−1) and PO4-P (from 3.2 to 0.1 

mg L−1) in just 2 days.  Additionally, the exogenous glucose appeared completely removed from the 

wastewater after the first day.  These achieved levels of treatment in respect of both the NH3-N and 

PO4-P were much higher than those recorded without C. vulgaris treatment with or without glucose 

enrichment.  The reliability of this process was evaluated across a further three independent batches of 

PSW with varying compositions and organic carbon sources.  The efficiency of the microalgae treatment 

process at reducing NH3-N and PO4-P was consistent in PSW enriched with organic carbon, resulting in > 

90% reduction of the inorganic compounds in each batch.  Lastly, to overcome the material cost of 

applying commercial sources of organic carbon, experiments were conducted to evaluate the use of the 

carbohydrate rich by-product, pot ale, from the production of malt whiskey as a carbon substrate to 

promote microalgae growth and remediation in PSW.   In batch experiments, repeated three times with 

wastewater collected and treated separately and sequentially, the efficiency of the microalgae in pot ale 

enriched PSW demonstrated a high variability at reducing NH3-N and PO4-P, between 99 to 58% and 94 

to 58% respectively.  When operated under semi-continuous mode the microalgae demonstrated to be 

reliable in treating pot ale enriched PSW however, the removal efficiency in NH3-N, PO4-P and COD 

declined slightly in each subsequent cycle following the replenishment of PSW.  The results of the pot 

ale enriched experiments highlight future research needs, such as the optimisation of nutrient ratios in 

the PSW and control over pH, to ensure a consistent and reliable treatment performance.  Overall the 

application of C. vulgaris to treat enriched PSW, without aeration, offers a key area to develop as an 

alternative low energy, biological wastewater treatment option.  
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1 

Chapter 1 – Introduction 

1.1 Background to the problem 

The main aim of wastewater treatment is to significantly reduce the quantity of carbonaceous (organic; 

predominantly determined as biological oxygen demand (BOD)) materials and, where sensitive waters 

are involved, nitrogen (N) and phosphorus (P) compounds prior to being discharged into receiving 

systems [1, 2].  This is because the presence of these materials in large concentrations can have 

deleterious effects on dissolved oxygen (O2) concentration levels, the trophic state and ultimately the 

well-being of the fauna and flora in the water [3–5].  Achieving improved ecological status of water 

sources is a growing focus for many developed and developing nations, in particular with reducing N and 

P in wastewater effluent [6–9].  Nitrogen and P are critical to the ecological health of aquatic 

ecosystems, but excess availability, particularly in inorganic forms can result in undesirable 

consequences such as eutrophication [3, 10].  Characterised by the increase in phytoplankton growth, 

blooms of toxic and non-toxic algae associated with eutrophication reduce water transparency resulting 

in attenuated light levels to submerged aquatic vegetation and hence reduced dissolved O2 generation 

via photosynthesis [11–13].  The concentration of dissolved O2 is further reduced during the decay of 

the formed biomass following nutrient deprivation, as heterotrophic bacteria digest the biodegradable 

organic matter (i.e. dead phytoplankton).  It is estimated that the organic material of phytoplankton 

biomass produced from the discharge of 1 kg of P can exert 100 kg of O2 demand, while that produced 

from the discharge of 1 kg of N can exert 14 kg of O2 demand [2].  Consequently, hypoxic or anoxic 

conditions form and that can adversely affect the indigenous fauna and flora, causing loss of species 

diversity and ecosystem function in water bodies. 

In Europe the Urban Wastewater Treatment Directive (UWTD) sets effluent discharge limits for chemical 

oxygen demand (COD) at 125 mg L-1 O2, and for total phosphorus (TP) at 1 or 2 mg L-1 and total nitrogen 

(TN) at 10 or 15 mg L-1 for population equivalence (PE) of >100k or <100k, respectively [14].  

Conventional wastewater treatment systems subject the wastewater to two main treatment phases: 

primary and secondary treatment.  In brief, primary treatment aims to reduce the insoluble suspended 

solids concentration by facilitating the separation from the water, either by gravity settlement (i.e. 

sedimentation) or flotation.  Thereafter, the wastewater flows into the secondary treatment stage.  The 

objective of the secondary treatment stage is to reduce the residual organic and, to an extent also 

inorganic material from the water.  This is achieved by indigenous, wastewater-borne microorganisms 

that are selectively cultivated and maintained in an aerobic environment.  The microorganisms help to 

eliminate the O2-demanding materials either by digesting them into an innocuous form such as carbon 

dioxide (CO2) or nitrogen gas (N2), and forming new biomass which is particulate in form and can be 

separated by further sedimentation, resulting in water free of polluting material [2].  In essence, the 

secondary stage of the treatment train condenses the self-purification process seen in nature, and 

expedited by the configurations of the reactor which maintains an optimal environment for microbial 

growth.  The provision of O2 is essential at this stage to enable the microorganisms to digest and 
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mineralise the materials into a form that is resistant to further biological activity.  Biodegradable 

carbonaceous matter in wastewater is estimated to have an O2 demand in the order of 2 kg O2 kg-1 COD 

[2].  Maintaining this level of dissolved O2 concentration during conventional secondary wastewater 

treatment is energy intensive and hence expensive.  As for the nutrients, the quantity of N and P in 

wastewater is in excess of the microbial community’s requirements, with only a small fraction 

sequestered for growth [1, 15].  To achieve TN and TP concentrations in wastewater effluent that is in 

compliance with the provisions of the UWTD, biological nutrient removal (BNR) systems are extensively 

used based on the processes of autotrophic nitrification, heterotrophic denitrification and enhanced 

biological phosphorus removal; performed in, for example, an anaerobic-anoxic-oxic reactor (A2O), a 

Bardenpho sequence batch reactor or a DEPHANOX reactor configuration [1, 2].  Nitrification is also an 

aerobic process, and providing the required O2 in conventional systems is equally expensive. 

Despite these systems achieving significant reductions in carbonaceous, nitrogenous and phosphorus 

materials, there is growing concern that set discharge concentrations are not adequate enough to limit 

the effects of eutrophication, especially in small inland rivers.  Wastewater effluent is estimated to hold 

N and/or P concentration three orders of magnitude or more than receiving systems [16–18].  For 

example, Andersen et al., (2004) [19] reported considerably higher nitrate (NO3) and soluble reactive 

phosphorus (SRP) concentrations in a South Carolina stream downstream from the discharge point of 

two wastewater treatment facilities (NO3-N: 50.5 mg L-1 and SRP: 3.7 mg L-1) compared to the ambient 

concentrations measured upstream (NO3-N: 1.6 mg L-1 and SRP: 0.3 mg L-1).  This is not surprising given 

that the two effluent discharges combined accounted for over 70% of the total measured flow at the 

downstream river location.  Chambers et al., (2012) [20] evaluated the threshold of TN and TP 

concentration at which eutrophication in streams occurs to range between 0.21 to 1.2 mg L-1 and 0.01 

and 0.1 mg L-1, respectively.  With regards to regulation concerning water quality, considerations are 

being put forward to lower the required TN and TP concentrations in the effluent before the water can 

be discharged, with P the main focus [21–24].  In most ecosystems, P is the rate limiting nutrient for 

phytoplankton growth; therefore, reducing inputs of P to receiving systems is considered key to 

reducing eutrophication [23, 25].  In the United Kingdom for example, revised effluent P concentrations 

based on site-specific standards are currently under consideration [26].  In this situation, a holistic 

approach is applied to determine effluent P concentrations that reflect the natural ecological P 

concentration of the water body, which include an account of the site’s alkalinity and altitude.  In other 

countries more stringent effluent P standards are set to all point source discharges regardless of 

population numbers served.  For example, in Denmark a TP effluent concentration of 0.3 mg L-1 is 

applied to all municipal treatment facilities, whereas in Sweden a 90% reduction is required (compared 

to 80% reduction in relation to the load of the influent stated by the UWTD) [14, 26, 27]. 

In view of achieving more stringent effluent standards to improved water quality, concern has grown 

over the sustainability of conventional wastewater treatment systems in terms of economic feasibility 

and environmental impact.  Energy consumption and greenhouse gas emissions from wastewater 
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treatment are among the aspects that have become key-factors concerning the overall performance of a 

wastewater treatment system [28, 29].  It is estimated that between 0.6 to 3% of the total electricity 

generated in developed nations is expended on treating wastewater, and depending on the source of 

energy, the associated carbon emissions can be substantial [30–32].  For example, the per annum CO2 

emission from electricity consumed for wastewater treatment in Germany was estimated to be 2.2 

million tonnes, approximately 2.1 million tonnes in the United Kingdom, and approximately 11.5 million 

tonnes in the United States [33–36].  Of the energy consumed, it is estimated that 50% or more is 

expended on the O2 transfer equipment in the biological secondary stage of the wastewater treatment 

train (Figure 1) [30, 31, 37, 38]. 

In regards to N and P, the complexity of the process through which removal is achieved increases the 

energy requirements substantially resulting in an increase in the overall cost of treatment.  For example, 

in the A2O system the wastewater transitions between anaerobic, anoxic and aerobic environments in 

sequence.  Removal of N, P and carbonaceous materials is accomplished in the separate environments: 

inorganic N is removed by nitrifiers and denitrifiers in the aerobic and anoxic environments, 

respectively; inorganic P in the anaerobic and anoxic environments by phosphate-accumulating 

organisms; and carbonaceous material in the aerobic and anoxic environments by heterotrophic and 

denitrifying organisms respectively [2].  The separation of the different environments in space and time 

increases the complexity of the treatment process, while a higher quantity of O2 is consumed for 

inorganic P and N removal by the respective organisms to facilitate assimilation or conversion.  For 

example, based on the stoichiometric equation of the nitrification reaction, approximately 4.33 g O2 is 

consumed per g N oxidised [1].  Maurer et al., (2003) [39]reported that the integration of nitrification 

alone into a conventional activated sludge system increases the energy consumption by approximately 

60 to 80%.  In a recent analysis by the Enerwater Research consortium, a more conclusive account of 

energy consumption for wastewater treatment is presented [40] 1.  Meta-analysis from 50 wastewater 

treatment plants based across Germany, Spain and Italy ranging between 1,000 and 100,000 PE 

capacity, reported average energy consumption of 0.49 kWh kg-1 COD, while the removal of TN and TP 

to permissible discharge concentrations amounted to 6.74 kWh kg-1 N and 8.26 kWh kg-1 P, respectively.  

While improving effluent quality is essential to safeguard water sources for future use, it is clear that 

lowering discharge standards drastically increases energy consumption, and unless sourced from 

renewable sources, a direct increase in carbon emissions.  Based on an electricity generation carbon 

footprint of 0.421 kg CO2eq kWh-1 (global OECD emission factor), the energy consumed to remove 1 kg 

N and P from the wastewater would generate 2.8 and 3.4 kg CO2 equivalent respectively [41]. 

Other gases that are emitted from wastewater which contribute to the greenhouse effect are methane 

and hydrogen sulphide in the sewers and nitrous oxide (N2O) in the treatment process [42–44].  The 

release of N2O is of a particular concern as it has an approximate 320-fold stronger effect than CO2, and 

therefore even low emission levels are undesirable [45].  Nitrogen oxides catalytically react with ozone 

                                                           
1 Data from ENERWATER appendix data sheet D2.2 
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of the stratosphere, reducing the ozone layer by generating O2 [46].  The Intergovernmental Panel on 

Climate Change (IPCC) reports that N2O emissions from wastewater treatment account for 

approximately 2.8% of the total anthropogenic sources, and are expected to increase by approximately 

13% between 2005 and 2020 [45, 47].  The emission of N2O in the treatment process of wastewater is a 

consequence of the environmental conditions under which N-removal proceeds.  During the biological 

nitrification reaction, ammonia (NH3) is oxidised to nitrate and nitrite (NO3 & NO2) and in the 

denitrification reaction the formed NO2 is reduced to N2 [2, 48, 49].  Whilst during these biological 

reactions N2O is formed as an intermediate, incomplete oxidation to NO2 or reduction to N2 is caused by 

non-optimal cultivation conditions (e.g. dissolved O2 concentration, pH and temperature) that inhibit 

the completion of the reaction [47, 50].  Overall, it is estimated that conventional wastewater treatment 

systems contribute approximately 3% to the total global anthropogenic greenhouse gas emissions [45, 

51]. 

A further drawback of conventional wastewater treatment systems, especially the activated sludge 

technology, is the high production of sludge.  Between 2006 and 2007, the total quantity of sludge 

produced by 27 member states of the European Union was estimated at 10.1 million tonnes of dry 

solids, an amount which is expected to rise to 13 million tonnes by 2020 [52].  In the United States it is 

approximated that a total of 13.8 million tonnes of dry solids are generated annually from the estimated 

15,000 public owned treatment works alone [53].  The handling and disposal of sewage sludge not only 

presents a significant challenge in wastewater management, but further adds to direct and indirect 

emissions of greenhouse gases and environmental problems.  Although the disposal of sludge by direct 

application to land (agricultural use) is a feasible option, as the high N and P content serve as a fertiliser, 

the introduction of various regulations has made this an unacceptable operation in dealing with sludge 

(e.g. European Commission, 1986 [54]).  High concentrations of toxic metals and persistent chemicals 

(e.g. polychlorinated biophenyls) that accumulate in the sludge can restrict the application on 

agriculture land, whilst to reduce the risks of contamination from residual pathogens, the sludge must 

be itself treated before being applied to soil in which crops are grown [55, 56].  At present, the most 

common disposal methods are either by incineration or landfill.  Although sludge disposal by landfilling 

has been decreasing continuously in European member states (from 33% to 15% between 1992 and 

2005), the method results in uncontrollable high methane and CO2 emissions following decomposition 

of the organic material [57–59].  Furthermore, application of sewage sludge or ash (after incineration) to 

landfills can cause secondary pollution by the leaching of toxic metals and organic pollutants into 

surround soils and surface or groundwater systems [60]. 

Thus, although conventional wastewater treatment systems have been applied with relative success, 

their application has been described as problem shifting by way of leading to secondary pollution 

because of high-energy consumption and the production of waste sludge and greenhouse gases [29].  In 

order to reduce the environmental impact of wastewater treatment, it is therefore necessary to develop 

and adapt processes with a substantial reduction in energy consumption and sludge production.  Key 
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criteria to achieving lower energy consumption are reducing aeration requirements and operation 

complexity without affecting performance with respect to meeting mandated effluent standards. 

Microalgae, including eukaryotic algae and cyanobacteria, have demonstrated to be an environmentally 

friendly and sustainable alternative to energy-intensive and conventional biological treatment processes 

that are widely used today [61, 62].  The rationale behind the use of mixotrophic microalgae to treat 

wastewater lies in their ability to utilise organic and inorganic carbon, as well as inorganic N and P in 

wastewater for their growth, with the desired results of a reduction in the concentration of these 

substances in the water.  The principal advantage of incorporating microalgae into wastewater 

treatment is the generation of O2 through photosynthesis, necessary for heterotrophic bacteria to 

biodegrade carbonaceous materials.  Under illuminated conditions, in situ photosynthetic aeration has 

the potential to reduce the requisite mechanical aeration and any associated costs and environmental 

impacts [63, 64].  Furthermore, wastewater treated by an algae-bacterial co-culture does not need to 

transition between different operating environments to facilitate inorganic N and P removal, requiring 

only a single-step treatment stage and thereby reducing the complexity and energy of the treatment 

process [65, 66].  This is because microalgae assimilate ammonia (NH3) and phosphate (PO4) directly and 

in concert for cell growth and metabolic function [67, 68].  As a result, microalgae treatment processes 

have a lower greenhouse gas emission rate; for instance, the majority of N is assimilated by the 

microalgae instead of being converted to nitrogen oxides.  Various studies have reported on the 

emission of N2O caused by microalgae in conjunction with associated microorganisms in wastewater 

treatment, although the quantities recorded were negligible [69, 70].  Based on the analysis of Alcántara 

et al., (2015) [71], a microalgae wastewater treatment process is estimated to have an emission factor 

of 0.0047% g N2O-N g-1 N-input.  Overall, furnishing wastewater with dissolved O2 through microalgae 

photosynthesis without any energy consumption can therefore lead to reductions in terms of energy 

demand and associated greenhouse gas emissions. 

Despite these advantages, several practical and economic challenges still hinder the implementation of 

microalgae to treat wastewater and would need to be addressed in order for it to reach industrial 

application.  One such challenge relates to the energy consumed in the cultivation process.  As with 

most conventional wastewater treatment operations, aeration and pumping systems are often used in 

microalgae culturing to generate turbulent flow that improve the exchange of O2 and CO2 to maintain an 

optimal environment for their performance.  Life-cycle analyses by Stephenson et al., (2010) [72] and 

Jorquera et al., (2010) [73] on microalgae biomass production determined that the majority of the 

operational energy was consumed in the cultivation stage.  The results suggest that mixing in 

photobioreactors (PBR) by means of pumping and/or aeration required approximately 10 times more 

energy than mixing by paddlewheels in high rate algae ponds (HRAP).  In a case study carried out in 

Almeria, Spain, analysing the cost of operating a 30 m3 PBR plant found that the use of recirculation 

pumps and aeration pumps to be, respectively, the first and second highest energy expenders in the 

operation [74].  The study also showed that the recorded power consumption of the recirculation 
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pumps and aeration pumps per unit were 24 and 96 kWh d-1 respectively; the reason the recirculation 

pumps accounted for the highest energy consumption is because ten units were employed and only one 

aeration pump.  The overall rate of energy consumption was 15 kWh m-3, which is a 100-fold higher in 

the energy consumption rate compared to mechanical and/or aerated mixing in conventional 

wastewater treatment systems (between 0.15 and 0.62 kWh m-3; [31].  A similar conclusion was drawn 

by Gouveia et al., (2016) [66] when analysing the cost for microalgae wastewater treatment in a PBR.  

The authors estimated the cost to treat 1 m3 of wastewater at approximately €95 under continuous 

operation (14 days), with the energy consumption (as electricity) the highest cost factor.  This 

approximation does not compare favourably against the treatment cost by conventional wastewater 

treatment systems of between 0.1 and 0.2 € m-3 [75]. 

The principal reason for aeration in the cultivation of microalgae is to supply carbon in the form of CO2 

to the algae, an important nutrient required for growth and to facilitate the assimilation of inorganic N 

and P [67].  However, the energy required to compress the air (enriched or not with CO2) is an energy-

intensive process and is one of the main factors that account for the high operation cost [76–78].  A life 

cycle assessment conducted by Kadam (2002) [79] calculated the electrical consumption of CO2 injection 

required in a 1000 hectare sized HRAP to be 22.2 kWh t-1 CO2.  In this scenario 680 tonnes of CO2 were 

injected into the system per day to ensure a microalgae productivity rate of 45 g m-2 d-1 consuming 15.1 

MWh of electricity at an estimate expense of 17602 € d-1.  Furthermore, aeration inevitably results in 

CO2 loss from the suspension to the atmosphere by outgassing and is a major constraint in ensuring a 

sufficient concentration of carbon for microalgae use [80, 81].  Approximately 51 to 60% of the CO2 

injected into microalgae cultivation is lost to the atmosphere, translating to a significant efficiency and 

monetary loss [82, 83].  An alternative approach to overcome the operational cost and inefficiencies 

associated with carbon supply via aeration is to supplement the medium directly with dissolved carbon, 

such as inorganic carbon salts (i.e. bicarbonate) or organic substrates (i.e. glucose) [84–86].  The premise 

of this approach theoretically ensures the complete utilisation of the added carbon by the microalgae.  

Additionally, by incorporating waste streams rich in bioavailable carbon to augment the supply, the 

treatment of wastewater by microalgae would have wider environmental benefits through resource 

recovery and reduced material costs, and in so doing align to the concept of a circular economy model. 

A further influence on the economic feasibility of implementing microalgae to treat wastewater is the 

stage of the treatment train the process is introduced.  The application of microalgae in wastewater has 

customarily been applied to polishing secondary treatment effluent – i.e. in tertiary treatment after the 

energy intensive secondary treatment stage, to further reduce the inorganic N and P concentrations 

(see Figure 1.1).  Consequently, the introduction of microalgae at this stage of the treatment train would 

not result in the much-desired reduction in overall energy demands of wastewater treatment.  As 

described above, this is largely a direct result of additional mixing and aeration provided.  A more 

                                                           
2 Based on the average 2016 electricity price of 0.1668 € kWh-1 for industrial consumers (Eurostat).  Prices are from 
the first half of the year (January to June) and exclude VAT and other recoverable taxes and levies. 
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effective treatment process would be to integrate the microalga into the treatment train as the 

secondary biological treatment phase, applied to treat primary settled wastewater directly. 

 

 

Figure 1.1 – Simplified scheme depicting the different treatment stages of municipal wastewater [87]. 1, primary 
settled wastewater effluent; 2, secondary treatment effluent; and 3, centrate following sludge dewatering. 

 

The sustainable development of a wastewater treatment system needs to be technologically feasible, 

environmentally friendly and economical.  At present, integrating microalgae as an alternative biological 

wastewater treatment option is technologically and environmentally feasible, but not economically 

competitive and therefore unsustainable.  To be competitive with conventional wastewater treatment 

systems, a drastic reduction in the energy consumption of microalgae-based wastewater treatment 

process is necessary.  An additional aspect which has to be taken into consideration when implementing 

microalgae as the biological treatment stage for wastewater is the efficiency and reliability of the 

processes performance.  Multiple studies have evaluated different microalgae species in treating 

wastewater; however, these were mostly performed independent of one another under varying 

environmental and cultivation conditions.  As such a direct comparison in the treatment performance of 

a particular microalgal strain to a wastewater source cannot be made definitively.  Furthermore, there is 

a lack of replication among studies, which take into consideration the variable composition of 

wastewater. 

1.2 Aim and objectives 

The aim of this research was to carry out a thorough evaluation, using a set of carefully implemented 

laboratory experiments, of the performance of a static microalgae cultivation strategy for remediating 

COD, N and P in settled municipal wastewater.  The specific objectives of the study were: 

 To carry out laboratory experiments to investigate COD, N and P removal capacity of the 

microalga C. vulgaris, H. riparia and A. obliquus from settled municipal wastewater under 

defined culture conditions for the purpose of selecting a species with high efficiency and 

tolerance to a specific wastewater site effluent; 
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 Identify the factor(s) that either limit or improve the performance efficiency of the microalgae 

under a static culturing system; 

 Experimentally assess the performance of the static microalgae treatment process in response 

to wastewater enrichment with different exogenous organic carbon sources, including an 

industrial waste source 

 Empirically verify the reliability of the developed static microalgae treatment process under 

varying wastewater influent compositions; 

 Investigate the performance of the microalgae static wastewater treatment process under 

semi-continuous operation 

1.3 Thesis layout 

This thesis contains six chapters, including a literature review (Chapter 2) and a Materials and Methods 

(Chapter 3).  Experimental work is divided between three chapters (Chapters 4 to 6), each intended to 

scale up in the complexity of developing and evaluating a static microalgae wastewater treatment 

process as a sustainable alternative to conventional wastewater treatment.  Chapter 4 presents 

experimental work conducted to assess the performance of three microalga species for treating the 

PSW, with the findings from this enabling the selection of a suitable species depending on COD, N and P 

removal efficiency.  Moreover, the culture conditions, particular light intensity and exposure cycle, 

temperature and initial microalgae inoculation concentration, were evaluated to examine whether the 

conditions were appropriate in facilitating microalga growth and treatment of the wastewater.  Chapter 

5 presents an investigation to determine the biotic factors influencing the nutrient removal capacity and 

biomass productivity of the selected microalga under static cultivation conditions.  Chapter 6 expands 

on the findings from the previous chapters by evaluating the performance under semi-continuous 

operation.  Finally, Chapter 7 summarises the key conclusions and provides recommendations for future 

work with a view to further develop the static microalgae treatment process towards large scale 

application.  
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Chapter 2 – Wastewater treatment and microalgae 

2.1 – Structure and function of conventional wastewater treatment processes 

Wastewater treatment systems are engineered to facilitate the transformation of contaminants and to 

purify the water in the most efficient and economical way.  This is achieved through a combination of 

biological, physical and chemical methods controlled through the design of specific operational units 

that are built to form a process train.  In a conventional wastewater treatment system, several steps are 

employed to achieve the agreeable levels of pollutant removal, with the primary, secondary and tertiary 

stages of the process train designed to reduce specific fractions of the pollutants from the water.  Figure 

2.1 presents a typical process flow in a conventional wastewater treatment system, highlighting the 

particular fractions removed at the different stages. 

2.1.1 Preliminary treatment 

When wastewater is received by a treatment plant via the sewer system, it is initially treated to remove 

the larger objects and suspended solids matter.  This preliminary treatment phase consists of the 

wastewater passing through a screen to remove gross solids (e.g. rags, cans, leaves, wood fractions, 

plastics objects etc.) that are carried by the water.  If these materials are not removed they could cause 

damage to pumps, valves and other downstream equipment leading to blockages and overflow 

problems [1, 88].  Finer screens are then employed to remove detritus material (e.g. grit, sand, stones 

etc.) that originate from road surface runoff; otherwise the abrasive action of these materials can 

further damage pumps and other mechanical equipment.  The retained materials are commonly washed 

to reduce the presence of faecal matter before being compressed for disposal, either by incineration or 

landfill.  Other operational processes, such as dissolved air floatation, shredding or pre-chlorination can 

be applied to condition the influent wastewater for improved efficiencies in the subsequent treatment 

stages [2]. 

2.1.2 Primary treatment 

The primary treatment stage is designed to remove the smaller fractions of insoluble inorganic and 

organic material, which is achieved because of the difference in density of the materials relative to the 

water [1, 2].  This is accomplished in a large sedimentation basin in which the wastewater is detained for 

a designated period of time, usually 2 hours.  During this time, denser solids with adequate settling 

velocities settle to the floor of the tank, while materials less dense (e.g. oil, grease etc.) rise to the 

surface.  The settled solids (i.e. sludge) are collected into a hopper by the continuous action of 

mechanical scrapers, while the floating materials (i.e. scum) are skimmed from the surface.  Under 

optimal operation, the efficiency of separation at this stage can reduce the suspended solids 

concentration by 50 to 70%, and since a proportion of the solid is composed of organic matter, a 25 to 

40% reduction in BOD is achieved [1, 89].  This process is the most practical and economical method for 

reducing the carbonaceous material, directly reducing the strength of the wastewater and thus making 
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it more tractable to the secondary treatment stage.  After settlement has taken place, the wastewater is 

known as “primary settled wastewater” (PSW) and is displaced from the sedimentation basin to the 

secondary treatment stage by the incoming raw wastewater.  The effluent still contains a high amount 

of soluble material – organic and inorganic in nature – as well as insoluble colloidal material, which 

collectively needs to be removed through further treatment. 

2.1.3 Secondary treatment 

The objective of the secondary treatment stage is to reduce the O2-demanding materials (i.e. BOD) in 

the wastewater, and in certain process train configurations the removal of inorganic material, such as 

ammonium (NH4
+) and phosphate (PO4

3-), is also achieved.  The process promotes the growth of 

microorganisms (e.g. heterotrophic bacteria, protozoa and fungi) which take advantage of these 

materials as a source of food and energy, concomitantly digesting and eliminating them from the water 

[1, 90].  The two main cultivation techniques adopted as the biological treatment process are either 

suspended growth systems in which the microorganisms are suspended in the water column, or biofilms 

in which they naturally become fixed to a surface medium [1, 2]. 

In attached growth systems, the wastewater passes over and, to an extent, also through a biological film 

fixed to an immobile medium held in a tank.  As the pollutants in the water come into contact with the 

biological film composed of a consortium of microorganisms that have been conditioned to the 

wastewater environment, they feed on and metabolise the contaminants [1, 89].  Oxygen in this process 

is supplied by natural ventilation as air flows through the interstices created by the medium and diffuses 

into the biological film.  The three common attached growth systems are rotating biological contractors, 

trickle filters and fluidized bed biological reactors [1, 2]. 

In suspended growth systems the microbial community is maintained in suspension in an aerobic 

environment.  Oxygen is provided through compressed air systems, mechanical agitation or injection of 

relatively pure O2 [1, 2].  Various reactor configurations have been designed and are currently operated, 

such as step feed, sequence batch, oxidation ditch, plug-flow and complete mixed reactors; all of these 

are loosely based on the principles of the activated sludge process [2].  The typical activated sludge 

process consists of a main aeration basin and a secondary settling basin.  In the aeration basin, the 

sludge is composed of microbial aggregates and colloidal matter contained in flocs, and is maintained in 

suspension by the aeration or mixing equipment, which facilitates the contact between the 

microorganisms and oxidisable contaminants in the water.  In a continuous system, the treated water 

that is mixed with the sludge is displaced by the incoming wastewater to the settling basin following an 

appropriate hydraulic retention time.  A proportion of the settled sludge is recycled to the aeration 

basin in order to maintain the concentration of adapted (activated) microorganisms necessary to 

maintain a high treatment performance [1, 2].  This process achieves an approximately 70 to 85% 

removal of the BOD from the water [89]. 
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Figure 2.1 – Schematic illustrating the role of the treatment operations effect on the different pollutant fractions in 
the course of a conventional wastewater treatment plant (adapted from [2]). 
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When discharging wastewater into sensitive waters, it is necessary to remove much of the N and P to 

limit the effects of eutrophication.  In general, the quantity of N and P is in excess of the activated 

sludge microbial community’s requirement, and only a small fraction is sequestered for growth.  Various 

treatment processes have been developed that target the removal of N and P, and these are 

predominantly based on the biological process of autotrophic nitrification, heterotrophic denitrification 

and enhanced biological phosphorus removal [1, 2].  In practice, these processes are a modification of 

the conventional activated sludge process, but which cycles the water through defined anaerobic, 

anoxic or aerobic environments to encourage the growth and function of specific microorganisms that 

are adapted at removing these inorganics. 

2.1.3.1 Biological nitrogen removal 

Inorganic N abatement from wastewater begins with nitrification in which NH3 is converted to NO2 and 

further to NO3 [1, 2] (Figure 2.2).  This is performed by two functionally defined groups of autotrophic 

bacteria involving a series of complex enzymatic oxidation reactions that are tightly regulated in 

response to environmental cues and substrate concentration [49, 91].  In the first step of nitrification, 

ammonia-oxidising bacteria (AOB; e.g. Nitrosomonas sp.) oxidise NH3 to hydroxylamine (NH2OH), an 

intermediate compound in the reaction, catalysed by ammonia monooxygenase [50].  Subsequently, 

NH2OH is oxidised to NO2 by hydroxylamine oxidoreductase.  Following this step, nitrite-oxidising 

bacteria (NOB; e.g. Nitrobacter sp.) oxidise the formed NO2 to NO3 catalysed in a single step reaction 

[49, 91].  Both groups of bacteria sequester O2 as the electron acceptor, deriving their energy and 

reducing power from the reaction to fix inorganic carbon and N for growth [92].  The nitrification 

reaction is merely responsible for increasing the oxidation state of N and has no substantial effect at 

reducing the N load in the water.  Denitrification is the process in which the formed NO3 (and NO2) is 

converted to N2 by a range of heterotrophic bacteria (e.g. Rhodanobacter, Paracoccus, Thauera and 

Asoarcus genera etc.) [49, 93] (Figure 2.2).  The reaction proceeds under anoxic conditions in which NO3 

is used as the terminal electron acceptor by the bacteria as they oxidise organic material [2].  The 

stoichiometric reactions are as follows: 

 

Nitrification   NH3 + 1.5O2 → NO2
- + H+ + H2O 

2NO2
- + O2 → 2NO3

-  

Denitrification   2NO3
- +  10H+ + 10e- → N2 + 2OH- + 4H2O 

    2NO2
- + 6H+ + 6e- → N2 + 2OH- + 2H2O 
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Figure 2.2 – Schematic depicting the nitrogen cycle [49].  1, NH3 oxidation; 2, NO2 oxidation; 3, NO3 reduction; 4, 
NO2 reduction; 5, NO reduction; 6, N2O reduction; 7, N2 fixing (not relevant in most wastewater treatment systems); 
and 8, ANAMMOX reaction involving the sequential reaction of NH3 oxidation and NO2 reduction.  Reactions 1 and 2 
are completed by AOBs and NOBs respectively, and reaction 3 to 6 by heterotrophic denitrifiers. 

 

In combination, the above biochemical reactions convert the inorganic N in wastewater to N2 which 

dissipates to the atmosphere, thereby eliminating N from the water.  Despite the significant reductions 

of inorganic N achieved, significant limitations still affect the performance.  A major limitation is the 

susceptibility of nitrifiers and denitrifiers to sudden pH and temperature changes, as well as the 

susceptibility of these organisms to toxic compounds [94, 95].  The operation and design of the reactor 

is critical to the process and must accommodate the particular physiological requirements of the 

different bacteria.  Since nitrifiers have a slow generation time, a sufficiently long solid retention time is 

necessary to retain an adequate population of nitrifiers in the water.  To exemplify, a significant effect 

was reported in the abundance of nitrifiers when the solid retention time was reduced from 15 to 5 days 

in an anaerobic-anoxic reactor [96].  The percentage of AOBs decreased from 0.67 to 0.35%, and 

concomitantly the efficiency of NH4
+-N removal was reported to decrease from 90 to 26%.  It is estimate 

that the minimum doubling time of AOBs is between 7 to 8 hours, while that of NOBs is between 10 to 

13 hours [97].  Furthermore, the two processes need to be separated in time and space, with the 

autotrophic bacteria requiring O2, while an anoxic environment must be established to encourage 

denitrifiers to use the N bound O2 as the electron acceptor [1].  In addition to the high operational costs 

involved for meeting the O2 demand of nitrifiers, incorrect dissolved O2 regulation between the two 

environments can result in N2O formation. 

In the denitrification reaction, NO3 is catalysed in series by different reductase enzymes that yield nitric 

oxide (NO) and nitrous oxide (N2O) as intermediates in the overall reaction (NO3
-→NO2

-→NO→N2O→N2) 

(Figure 2.2; Skiba, 2008).  In the presence of low dissolved O2 concentrations, the nitrous oxide 

reductase enzyme becomes inhibited resulting in the incomplete reduction with a partial formation of 

N2O [99–101].  The opposite effect is observed during nitrification, with insufficient dissolved O2 

concentrations (<1 mg L-1 O2) resulting in NH2OH not being completely oxidised and consequently 
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forming N2O [50, 100].  The main source of emissions during nitrification is from AOBs that have been 

shown to possess the necessary genes for the reductive enzymes to reduce NO2 to NO and then to N2O 

[102, 103]. 

Alternative inorganic N removal systems have been developed to overcome the limitations of high 

aeration cost, requirement for exogenous carbon and to reduce sludge production in comparison to the 

above nitrification and denitrification processes.  The anaerobic ammonium oxidation (ANAMMOX) 

process involves the oxidation of NH3 directly to N2 using NO2 as the oxidant instead of O2 – a reaction 

that corresponds more closely to a denitrification reaction rather than to a nitrification reaction [104] 

(Figure 2.2).  A preceding partial nitrification reaction is necessary in which part of the NH3 in the 

wastewater is oxidised to NO2 (approximately 50%) and the subsequent conversion of NO2 to NO3 is 

prevented.  This can be accomplished by the single reactor higher activity ammonia removal over nitrite 

(SHARON) reaction in which NH3 is converted to NO2 [105, 106].  SHARON is accomplished by AOBs 

under aerobic conditions and at sufficiently high temperature – between 26 and 35°C – with operational 

parameters favouring the growth of AOB over NOB, such as O2 concentration and hydraulic retention 

time [105, 107]. 

Alternatively, complete autotrophic nitrogen removal over nitrite (CANON) is a process design in which 

the reactor configuration facilitates the partial nitrification and Anammox in a single process unit, 

allowing the two different groups of bacteria to operate in tandem [108, 109].  These processes are, 

however, not without their disadvantages.  At present, the ANAMMOX reaction is known only to be 

performed by bacteria belonging to the phylum Planctomycetes [108].  These bacteria have a slow 

generation time, with doubling times for particular strains occurring every 5 to 11 days [110, 111].  

Furthermore, the biochemical reactions are inhibited in the presence of high O2 concentrations, and by 

NO2 and NH3 concentrations exceeding 70 and 45 mg L-1 N respectively [112–115].  Overall high 

investment costs, dilute concentrations of NH4
+ in municipal wastewater, and complex operation 

conditions limit the application of these processes mainly to industrial effluents. 

2.1.3.2 Biological phosphorus removal 

Biological P removal is achieved by polyphosphate accumulating organisms (PAOs; e.g. Acinetobacter), 

which have the unique capability of accumulating polyphosphate from their environment in excess of 

their metabolic requirements [2].  These bacteria store carbon products under anaerobic conditions 

driven by adenosine triphosphate (ATP) hydrolysis, and store PO4
3- under aerobic conditions at the 

expense of carbon metabolism via respiration.  Under anaerobic conditions, PAOs assimilate fermented 

products, such as volatile fatty acids (VFA), and metabolise the carbon to the storage molecule poly-β-

hydroxyalkanoate (PHA).  In concert, ATP and reducing compounds nicotinamide adenine dinucleotide 

(NADH), which drive the biochemical reaction, are generated from the hydrolysis of the stored 

polyphosphate and catabolism of glycogen respectively.  The hydrolysed PO4
3- group is expelled from 

the cell in conjunction with a metal cation to help maintain a balanced intracellular charge [2].  
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Subsequently, when the wastewater enters the following aerobic condition, it is low in carbonaceous 

material but rich in PO4
3-.  PAOs are stimulated to grow with the provision of O2, and the accumulated 

PHA is catabolised to supply their energy and carbon needs.  Polyphosphate synthesis is also stimulated 

to regenerate the cellular reserves with the PO4
3- substrate taken from the water.  As a result of PAO 

growth and their polyphosphate storage capacity, the quantity of PO4
3- assimilation exceeds the amount 

released in the anaerobic condition.  Net P removal from the water is achieved by wasting a portion of 

the sludge, thereby directly eliminating the PAOs with the captured polyphosphate [2]. 

Although this process is capable of significantly reducing the P concentration in wastewater, PAO 

abundance and activity are vulnerable to changes in environmental conditions, and thus efficiencies in P 

reduction can be highly variable.  In addition to the complexity of having to intermittently circulate the 

water between an aerobic and anaerobic environment, the temperature, pH and sudden inflow of water 

following rainfall can substantial affect the efficiency of the bacteria to accumulate and remove P [116].  

In a batch experiments conducted at a pH of 6.5, significantly lower rates of P uptake, PAO growth and 

PHA utilisation have been reported compared to pH conditions between 7 and 7.5 [117].  A different 

study reported that the deterioration in P removal efficiency at a lower pH was in part a result of a shift 

in the microbial community with an increase in bacterial groups that compete with PAOs for carbon 

substrates [118].  Glycogen accumulating organisms (GAO) are known competitors, and like PAOs will 

proliferate under the same conditions [116].  GAOs are understood to metabolise glycogen under 

anaerobic conditions, enabling them to assimilate and store VFAs as PHA, which can be oxidised under 

aerobic conditions for simultaneous growth and glycogen storage [119, 120].  GAOs do not contribute to 

P removal and therefore are undesirable in that they negatively affect the performance of P removal.  It 

is suggested that low temperatures favour the growth of PAOs over GAOs, with reported P uptake rates 

decreasing, and carbon utilisation increasing as temperatures change from 20 to 35°C, which correlate 

with a decrease in the fraction of PAOs and increase in GAOs [121].  As such, the operation of biological 

P removal may be more challenging in warm climates or summer periods.  However, while low 

temperatures favour PAO growth, markedly lower temperatures (e.g. 5°C) can significantly reduce the 

rate kinetics of the reaction and require higher sludge age causing a knock-on effect on other aspects of 

wastewater treatment [2, 122]. 

Inorganic P removal can also be achieved by chemical means through addition of a coagulant.  Common 

chemicals used are lime or salts of aluminium or iron that react with PO4
3- to produce an insoluble metal 

phosphate salt [89, 123, 124].  This precipitates out from the water and can be separated in the settling 

phase of either the primary or secondary treatment, or in a separate settling phase if added to a post-

secondary treatment.  The addition of a coagulant can remove between 70 and 90% of all PO4
3-, with 

efficiencies of >90% reported with longer hydraulic retention times and repeated dosing [125–127].  

However, chemical-induced precipitation of P will increase the material cost for treatment, as well as 

sludge volume leading to higher quantities of sludge that commonly is either buried at landfills or 

incinerated [1, 126].  Furthermore, the formation of these precipitate salts, and presence of residual 



 

16 

ions (e.g. Mg2+) and resultant high pH from these reactions can cause a serious problem in the 

downstream process of anaerobic digestion [1, 128]. 

2.1.4 Tertiary treatment 

In circumstances where a higher quality of effluent is required, a third (tertiary) stage of treatment is 

applied.  Methods employed during this stage attempt to further reduce the load of total suspended 

solids, organic matter, and inorganic N and P beyond what is achievable by primary and secondary 

treatment.  This is achieved either by filtration processes (ultra or sand), carbon adsorption, further 

coagulation, or reverse osmosis.  Disinfection is commonly applied at this stage. 

2.2 Microalgae wastewater treatment 

The investigation into the biological removal of carbonaceous, nitrogenous and phosphorus material via 

microalgae in wastewater effluents has been evaluated by several studies.  This has been performed 

with various microalgal species on a range wastewater types, including municipal, agricultural, brewery, 

refinery, and industrial effluents with varying efficiencies in treatment performance and microalgae 

growth [129–132].  The strain Scendesmus obliquus has been demonstrated to successfully remove 

nutrients (carbon, N and P) from piggery wastewater [133, 134], while Chlorella pyrenoidosa successfully 

grew in dairy production effluent [135].  Other Chlorella species, including Chlorella vulgaris, have been 

reported to be suitable candidates in the remediation of N and P from municipal wastewater effluent at 

the primary stage (PO4
3--P: 8 to 3 mg L-1; NH4

+: 119 to 37 mg L-1), secondary stage (PO4
3--P: 6.1 to 0.5 mg 

L-1; NH4
+-N: 6.9 to 0.8 mg L-1) and from centrate (TP: 215 to 40 mg L-1; TN: 116 to 12 mg L-1) [66, 136, 

137].  Choi (2016) [138] reported 88% BOD, 82% TN and 54% TP removal from initial concentrations in 

brewery effluent by C. vulgaris.  Other microalgae species examined for their bioremediation potential 

include Chlamydomonas sp., Nanochloropsis sp., Dunaliella sp., Spirulina sp. and Botryococcu sp. [139, 

140]. 

2.2.1 Carbon, N and P ratios in different waste streams 

A significant influence to the microalgal treatment performance is the composition of the wastewater.  

In order to grow and function, microalgae require three primary nutrients: carbon, N and P [67].  The 

assimilation of these nutrients is strongly affected by the overall composition of nutrients that are 

available in the cultivation medium [141].  Nutrient utilisation rates by microalgae are closely associated 

with their growth, and a limited supply of a primary nutrient can significantly reduce their growth rate 

[142–144].  In this context, to ensure optimal nutrient removal efficiency from the cultivation medium, 

an optimal ratio of nutrients that is reflective of the microalgal elemental stoichiometry needs must be 

present.  The average elemental composition of freshwater microalgae, normalised on carbon, was 

determined to be C1N0.15P0.0094 [145].  Further to this, trace amounts of micronutrients, such as calcium, 

magnesium, potassium, manganese, silica, zinc, iron, etc., are essential and generally abundantly 

available in wastewater [67, 146, 147]. 
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Within a conventional municipal wastewater treatment train, two different wastewater streams are 

identified as potential points at which to integrate a microalgae treatment process; either to treat PSW 

or secondary treatment effluent (STE).  As stated earlier in Chapter 1, a more economical and 

environmental sustainable treatment process would be to integrate microalgae as the secondary 

treatment phase, directly treating PSW to effluent standards.  In addition, PSW exhibits a more optimum 

nutrient ratio and hospitable microflora to support microalgae growth compared to STE (detailed 

below).  When comparing the carbon, N and P quantity in PSW and STE, it can be concluded that they 

are relatively similar in nutrient composition, but differences exist in their concentrations.  Table 1 and 2 

summarise the N, P and carbon concentrations of municipal wastewater from PSW and STE respectively, 

as reported in recent studies on microalgae cultivation3. 

 

Table 1 – Carbon, N and P ratios in PSW used in microalgal-based wastewater treatment studies 

Microalgae species N P C Ratio (C:N:P) Reference 

Chlorella sp. 38.9b 6.9e 224 100/17/3 [148] 

Alga consortium & bacteria 45a 6.5e 400 100/11/1.6 [149] 

Chlorella vulgaris & bacteria 48.4a 3.9e 158 100/30/2.5 [150]  

Algae consortium & bacteria 93c 33f 176g 100/53/18 [151] 

Desmodesmus communis & bacteria 33.6c 1.54e 
 

- [152] 

Scenedesmus sp. ZTY1 & bacteria 41b 8.4e 235 100/17/3.5 [153]  

Microalgae screening 36.1bS 4eS 93S 100/39/4 [154] 

Desmodesmus communis & bacteria 32.4c 2.4f 
 

- [155] 

Chlorella protothecoides 37.4b 2.6e 
 

- [156] 

Chlorella vulgaris 43.3d 0.6f 256 100/17/1 [157] 

Neochloris oleoabundas 40.8d 10e 242 100/17/4 [158] 

Chaetomorpha linum 24.5d 2.4e 307 100/8/1 [159] 

Microalgae screening 23b 8.6e 270 100/8.5/3 [160] 

Chlorella vulgaris 36.3d 4.2f 317 100/11/1.3 [161] 

Microalgae screening 41b 4.7e 70 100/58/7 [162] 

Chlorella pyrenoidosa 27.1d 10.1f 240 100/11/4 [163] 

Chlorella vulgaris (WWTP 1) 84bS 6eS 150S 100/56/4 [164] 

Chlorella vulgaris (WWTP 2) 42bS 5.9eS 180S 100/23/3 [164] 

Chlorella protothecoides & bacteria 44.4d 8f 130 100/34/6 [165] 

Algal-bacterial consortium 18.9d 3.8e 140 100/20/3.5 [166] 

Average 31 5.6 158 100/19/3 
 

aTotal Kjeldahl Nitrogen; bTN; cNH3-N; dNH4
+-N; eTP; fPO4-P; gTotal organic carbon; SSoluble fraction; Unless 

otherwise stated, carbon is measured as COD 

 

 

 

                                                           
3 The studies cited for this analysis were sourced from Web of Knowledge, published between 1990 and 2017 with 
the key words “microalga*, municipal*” and either “+primary*wastewater” or “+secondary*wastewater”. 
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In STE the concentration of N, P and carbon (represented as the COD) were in the range of 0.63 and 50 

mg L-1 N, 0.1 and 26 mg L-1 P, 11 to 340 mg L-1 O2, respectively.  In PSW the concentrations were higher, 

with N in the range of 23 to 93 mg L-1, P in the range of 1.5 and 33 mg L-1, and COD in the range of 93 

and 400 mg L-1 O2.  By comparing the average C/N/P ratio of the different wastewater effluents with the 

proximate composition of freshwater microalgae, it can be observed that PSW more closely matches the 

stoichiometric ratio.  With an average C/N/P ratio of 100/34/7, STE contains either an excess ratio of N 

to P or, conversely, is limited in carbon (Table 2).  In STE, nearly all of the pollutants that could be a 

source of bioavailable carbon are degraded in the biological treatment stage with the remaining carbon 

material being composed of complex polymers that are either recalcitrant or only partially digestible [1, 

167].  In STE the ratio of biodegradable dissolved organic carbon to dissolved organic carbon (DOC) has 

been reported to range between 0.21:1 and 0.28:1, with a concentration of DOC as low as 7.8 mg L-1 

[168]. 

 

Table 2 – Nutrient ratios in STE used in microalgal-based wastewater treatment studies 

Microalgae species N P C Ratio (C:N:P) Reference 

Chlorella sp. 19.1a 0.3d 42 100/45/0.7 [148] 

Haematococcus pluvialis 42.4c 2.6e 22 100/193/12 [169] 

Scenedesmus sp. ZTY1 & bacteria 11a 1.9d 41 100/27/4 [153] 

Desmodesmus communis & bacteria 1.47a 0.1d 
 

- [155] 

Chlorella vulgaris 0.63b 0.6e 96 100/0.6/0.6 [157] 

Neochloris oleoabundas 44b 26d 59 100/75/44 [158] 

Chaetomorpha linum 17.9b 0.5d 30 100/60/2 [159] 

Microalgae screening 7a 1.6d 38 100/18/4.2 [160] 

Microalgae consortium 50a 15d 63 100/79/24 [170] 

Microalgae consortium 17a 1.9e 34 100/50/5 [171] 

Scenedesmus dimorphus 15.8a 0.8d 32 100/49/2.5 [172] 

Microalgae consortium 16.5a 1.5d 11 100/150/13 [173] 

Chlorella sp. 18.9a 1.7d 11 100/171/15 [174] 

Neochloris oleoabundans 12.3b 3e 340 100/3.6/1 [175] 

Botryococcus braunii 11.9a 11.5e 50 100/24/23 [176] 

Chlorella vulgaris (WWTP 2) 65.6aS 7.5dS 90S 100/73/8 [164] 

Chlorella vulgaris (WWTP 1) 36aS 2.4dS 90S 100/40/3 [164] 

Average 22.8 4.6 66 100/34/7   
aTN; bNH4

+-N; cNO3-N; dTP; ePO4-P; SSoluble fraction; Unless otherwise stated, carbon is measured as COD 

 

The discrepancy in carbon, N and P concentrations between the different wastewater streams has been 

demonstrated to affect microalgal removal efficiencies.  In a comparative study, Wang et al., (2010) 

[148] found that a Chlorella sp. had a higher average specific growth rate with a concomitant improved 

efficiency in inorganic N and P removal from PSW, compared to STE.  The removal capacity of the 

microalga from PSW was 68.5% TN and 90.6% TP, and from STE 50.8% TN and 4.96% TP.  Moreover, a 
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56.5% decline in COD was recorded from the PSW, while in the STE an increase of 22.7% was registered, 

indicating that oxidisable carbon matter was being excreted by the microalgae.  In a study by Cabanelas 

et al., (2013) [164], a similar effect in treatment efficiency with the microalga C. vulgaris strain SAG211-

12 was observed across the two types of wastewater streams.  Higher TN, TP and COD removal rates 

were recorded when cultured in PSW compared to STE, with experiments for each wastewater stream 

conducted on samples from two independent wastewater treatment plants.  Higher C. vulgaris growth 

rates were recorded in the PSW samples, varying from 111 to 125 mg L-1 d-1 compared to 63 to 68 mg L-1 

d-1 in the STE samples. 

In respect to the ratio of bioavailable N and P, various studies have demonstrated the ability of 

microalgae to grow and effectively treat wastewater under ratios that deviate from the canonical N and 

P stoichiometry of freshwater microalgae [68, 142, 177].  Kapdan and Aslan (2008) [141], for example, 

reported a lower residual NH4-N concentration when treating synthetic wastewater with C. vulgaris 

after an optimum N:P ratio was established for the species.  In this study, effluent NH4-N concentrations 

decreased from 5.1 to 2 mg L-1 when the N:P ratio was increased from 4:1 to 8:1, with a significant 

decline in removal efficiency occurring with increasing ratios.  Alketife et al., (2017) [144] reported a 

slightly higher optimal N:P ratio for a different C. vulgaris strain, with complete N and P removal 

achieved at a ratio of 10:1.  Arbib et al., (2013) [178] examined the removal efficiency of S. obliquus 

under varying N:P ratios, and concluded that for an efficient simultaneous nutrient removal the ratio 

should be between 9:1 and 13:1.  Complete removal of N and P is achievable outside the optimal N:P 

ratio as long as the ratio lies between the minimum and maximum cellular N:P demands [179].  In 

general, an N:P ratio of 30:1 suggests a deficit in P availability and a 5:1 ratio a deficit in N availability for 

microalgae [180]. 

Numerous studies employing different culturing techniques have demonstrated the success of 

microalgae in treating PSW, albeit with varying degrees of efficiency (Table 3 and references therein).  

For example, from unsterilized PSW using C. vulgaris cultured in a microalgal membrane bioreactor, up 

to 96.6% of TN and 92.7% of TP was removed in addition to 96.9% of COD [181].  In a different study, 

the microalga Chlorella protothecoides was capable of removing NH3-N and PO4-P from PSW with an 

efficiency of 94% and 62%, respectively [165].  However, the authors state that the organic matter 

concentration in PSW remained constant, a possible result of CO2 sparging which promoted autotrophic 

metabolism over heterotrophic metabolism (described below).  AlMomani and Örmeci (2016) [158] 

demonstrated removal efficiencies of 63.2% NH4
+-N, 32.4% total dissolved P and 64.9% COD from PSW 

employing a native microalgal consortium isolated form the secondary wastewater basin of a treatment 

plant.  Although the depuration of the nutrients from the wastewater sample mediated by the 

microalgae consortium is far lower than in the other two studies, it must be noted that the cultures 

were treated under near static conditions, which would have lowered the mass transfer rates of 

substances (e.g. O2 and CO2) and optimal growth conditions.  The difference in the autochthonous flora 

of the wastewater between PSW and STE is shown to have an effect on microalgal growth and 
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treatment performance.  Ramos Tercero et al., (2014) [165] reported that aerobic bacteria from the 

activated sludge that were present in the final effluent had strongly competed with algal growth, 

indicating that sterilization of the STE was necessary.  By comparison, C. protothecoides seemed to be 

resistant to competition with the autochthonous microbial community of PSW.  In a study by Sforza et 

al., (2014) [156], no difference in C. protothecoides growth was detected between unsterilized and 

sterilised PSW, corroborating the reported observation that the autochthonous microbial community of 

the PSW may not negatively affect algal growth.  Thus, in a proposed microalgal wastewater treatment 

process, to ensure efficient treatment and minimise the potential negative effects of bacteria competing 

with microalgae, it would be more appropriate to integrate the microalgae after the primary settling 

stage. 

2.2.2 Carbon, N and P removal mechanism by microalgae 

2.2.2.1 Carbon 

In photoautotrophic mode, microalgae can utilise inorganic carbon, predominantly CO2, as their primary 

carbon source [67].  In aqueous solutions, gaseous CO2 dissociates into bicarbonate (HCO3
-) and 

carbonate (CO3
2-) ions depending on the pH, with the precise equilibrium subject to the temperature of 

the environment, cation concentration and salinity [182].  In freshwater environments at 25°C, HCO3
- 

forms the dominant inorganic carbon species between pH 7 and 8, while CO3
2- forms at pH >10.3, and 

H2CO3 at pH <6.35 (Figure 2.3) [183, 184].  As a result of the non-polar nature of CO2, it can easily diffuse 

across the plasma membrane of microalgal cells, whereas HCO3
- requires active transport mechanisms 

(Figure 2.4) [67, 68, 185].  In the chloroplast, HCO3
- is rapidly catalysed to CO2 through the enzymatic 

action of carbonic anhydrase to facilitate the fixing of inorganic carbon [67, 186].  Most microalgae have 

adapted carbon concentration mechanisms to minimise the loss of photosynthetic activity in order to 

improve CO2 accumulation rate within the chloroplast because of the low CO2 concentration in aquatic 

environments [187]. 

Microalgae convert inorganic carbon to organic carbon via the Calvin cycle by utilising the reductant 

NADPH (nicotinamide adenine dinucleotide phosphate oxidised) and energy from ATP hydrolysis 

produced in the photosynthetic electron transport chain [67].  Inorganic carbon, as CO2, is fixed to 

ribulose-1, 5-bisphosphate (RuBP), the acceptor molecule, yielding two molecules of 3-

phosphoglycerate (3-PGA) in a reaction catalysed by the enzyme ribulose-1, 5-bisphosphate carboxylase 

oxygenase (RuBisCo) (Figure 2.4).  The carboxyl carbon on each 3-PGA molecule is subsequently 

phosphorylated to form 1, 3-bisphosphoglycerate (3-bisPGA), and is successively reduced to 

glyceraldehyde-3-phosphate (G3P).  In this reaction, for every three molecules of CO2 fixed, four 

molecules of RuBP are produced with only three remain in the cycle.  The additional G3P is transferred 

into storage or metabolised further to pyruvate through the glycolytic pathway and subsequently into 

the tricarboxylic acid cycle (TCA).  The Calvin cycle provides the carbon skeletons necessary for other 

metabolic reactions to produce amino acids and lipids in microalgae [67]. 
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Figure 2.3 –Distribution of inorganic carbon speices as a function of pH [67].  The pH range between 7 and 8 favours 
HCO3

- as the dominant dissolved inorganic carbon species, with CO3
2- dominant at pH >10.3 and H2CO3 at pH <6.35 

in freshwater environements at 25°C. 

 

Previous studies have reported that, other than light, the quantity of carbon in wastewater to be one of 

the principal rate-limiting factors for microalgal growth [188–190].  Low availability in carbon, in 

particular inorganic carbon, can limit microalgal growth and directly the quantity of N and P assimilated 

by microalgae (described in more detail below).  To increase the availability of carbon in the wastewater 

medium, and exogenous supply, in the form of CO2 or bicarbonate salts, is commonly used [84, 191, 

192].  The effect is a significant improvement in microalgal growth and remediation of N and P from 

wastewater, with the efficiency dependent on the CO2 concentration and injection period.  Shen et al., 

(2015) [193] reported on the remediation of TN from artificial wastewater by S. obliquus at CO2-to-air 

ratios of 1%, 5%, 10% and 15%.  In this treatment, a 99.6% removal efficiency of TN occurred within 2 

days at 5% CO2, with the concentration decreasing from an initial value of 25.0 to 0.08 mg L-1.  In 

comparison 1%, 10%, 15% CO2 or ambient air were only capable of reducing the TN concentration to, 

respectively, 3.55, 3.0, 5.5 and 6.15 mg L-1 within 3 days. 

A similar effect has been reported by other studies, with the supply of CO2 in the range of 1 to 6% 

described as optimum to promote microalgal growth and nutrient removal [194–197].  Concentrations 

above this range have been found to reduce the beneficial effect of CO2, with reported inhibitory effects 

on microalgal respiration [198].  It must be noted that the tolerance to CO2 is strain dependent, with 

certain species capable of acclimating to elevated CO2 concentrations up to 100% [199, 200].  Maeda et 

al., (1995) [201] observed that Chlorella sp. strain T-1 could grow in an atmosphere containing 100% CO2 

following a period of acclimation through sequential culturing at increasing CO2 concentrations.  Sakai et 

al., (1995) [202] demonstrated that a CO2 concentration of 40% had no negative effect on the growth 

rate of the microalga Chlorella sp. strain H-84 when compared to its cultivation in 5%, 10% or 20% CO2. 
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While the strategy of CO2 injection is a viable option to augment carbon availability for microalgae in 

wastewater, its provision is energetically expensive, as detailed in Chapter 1.  Furthermore, the supply 

of CO2 may reduce the potential of the microalgae to use and therefore reduce the carbonaceous 

material in wastewater.  Amblard et al., (1990) [203] surmised that because autotrophic carbon fixing is 

the primary pathway to increase net carbon in microalgae, CO2 sparging may reduce the depuration of 

COD from the water as the metabolism of the microalgae is shifted to autotrophic metabolism only.  Hu 

et al., (2012) [197] reported the occurrence of this effect, with the rate in COD reduction inversely 

related to the CO2 concentration supplied.  A potential strategy that may mitigate this is through 

intermittently supplying microalgae with CO2, promoting autotrophic growth followed by heterotrophic 

consumption of the carbonaceous material.  Indeed, it was observed that intermittent sparging for a 

specific period of time minimised carbon losses to microalgae when cultured in a raceway reactor, with 

higher CO2 concentrations in the gas necessitating a lower gas flow [204]. 

Alternatively, certain microalgae can be cultivated on organic carbon substrates, in theory utilising the 

carbonaceous material in wastewater as a source.  Some photosynthetic microalgae are facultative 

heterotrophs, able to metabolise organic carbon compounds, either in a mixotrophic mode with CO2 

and light or in a strict heterotrophic mode (without light) [205].  However, the complexity of the 

carbonaceous material in wastewater may limit its availability as a viable carbon source.  Carbonaceous 

material in municipal wastewater is extremely heterogeneous with compounds ranging from simple 

low-molecular-weight compounds, like butyric acid, to more complex compounds such as polycyclic 

aromatic hydrocarbons and synthetic polymers [206, 207].  For example, Devi et al., (2012) [208] 

reported a COD reduction of only 18.3% with a final concentration of 328 mg L-1 O2 in sterile municipal 

wastewater only when treated by a microalgae consortium under strict heterotrophic conditions. 

Analysis of municipal wastewater has identified the majority of biological carbonaceous material to be 

composed of fibres and proteins while sugars account for only a total 10% or less  [207, 209].  It has 

been suggested that in wastewater treatment the decomposition of complex organic carbon 

compounds by heterotrophic microorganisms (i.e. bacteria and fungi) is necessary to facilitate the 

conversion of the carbonaceous material to a suitable substrate in order to be a viable carbon source for 

microalgae [210, 211].  A premise corroborated by He et al., (2013) [212], the authors showed no 

substantial reduction in BOD5 or DOC concentration from sterile secondary wastewater treated by C. 

vulgaris under mixotrophic conditions, whereas an average 90% BOD5 removal efficiency was recorded 

in unsterilized secondary wastewater under the same conditions.  A faster reduction with a lower final 

NH4
+-N and PO4-P concentration was recorded in the unsterilized wastewater microalgae treatment. 

However, the capacity of microalgae to assimilate and metabolise carbonaceous material from 

wastewater may also be highly dependent on the composition of the wastewater itself, and not only the 

culture conditions.  For example, Sacristán de Alva et al., (2013) [213] recorded 77.3% COD removal 

efficiency from sterile PSW treated by S. obliquus, decreasing from 782 to 177 mg L-1 O2 under 

mixotrophic mode.  In two independent studies treating sterile centrate wastewater, Li et al., (2011) 
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[214] reported a consistent COD removal efficiency (>80%) when treated by C. vulgaris strain UTEX 25 in 

either autotrophic, heterotrophic and mixotrophic mode, while Hu et al., (2010) [197] reported a similar 

COD removal efficiency (78.9%) when treated by Auxenochlorella protothecoides under mixotrophic 

conditions (5% CO2).  It is clear from the reported experimental evidence that the ability of microalgae 

to grow on and simultaneously reduce the carbonaceous material from wastewater is dependent on its 

composition, in addition to species and culture conditions.  However, a paucity of information exists on 

the precise nature and mechanisms by which microalgae are capable of digesting and assimilating more 

complex carbon compounds from their aquatic environment [215, 216]. 

To improve the treatment efficiency of wastewater by microalgae, which may be limited by a labile 

source of carbon and without adopting CO2 injection, supplementation with a source of readily-

biodegradable carbon has been examined.  Addition of organic carbon to microalgae cultures has 

predominantly focused on substrates such as glucose, glycerol, acetate or ethanol known to directly 

enter into the glyoxylate or glycolytic pathways [205, 217–220] (Figure 2.4).  Other carbon sources 

include mono- and di-saccharides such as fructose, sucrose and lactose [215].  Chandra et al., (2014) 

[221] reported an improved efficiency in NO3-N and PO4-P removal from synthetic wastewater enriched 

with glucose using a natural microalgal consortium.  In the treatment without amendment with glucose, 

the concentration of NO3-N and PO4-P decreased by 33% and 9.9%, respectively, whereas the glucose 

supplemented treatments (at concentrations of 0.5 to 3 g L-1) effected a removal efficiency between 

36% and 55% for NO3-N, and 54% to 55% for PO4-P.  Interestingly, the authors observed a decrease in 

COD removal efficiency with an increase in glucose concentration.  Perez-Garcia et al., (2011) [86] 

reported a higher rate of NH4
+-N removal from both synthetic and real municipal wastewater when 

treated with C. vulgaris supplemented with either glucose or acetate.  Although enrichment with 

organic carbon could be a strategy to improve the treatment efficiency of a microalgal wastewater 

treatment process, supplementing organic compounds increases production costs.  Low-cost or waste 

organic carbon substrates have been researched mainly to improve biomass yield of microalgae, 

including food waste (e.g. dairy waste and cane molasses), polysaccharide hydrolysate (produced from 

starch or straw) and high strength domestic or livestock wastewater (centrate) [222–225]. 

2.2.2.2 Nitrogen 

Microalgae are able to utilise N from a variety of inorganic (e.g. NH4
+, NO3, and NO2) and organic sources 

(e.g. amino acids, urea, purines and nucleosides) [129, 226].  In regards to inorganic N, microalgae 

express a clear preference for NH4
+ if available because its assimilation and incorporation is energetically 

more efficient [205, 227].  Ruiz-Marin et al., (2010) [228] demonstrated preference for NH3 as an N 

source from wastewater to any other N source by the microalgae S. obliquus and C. vulgaris.  

Ammonium is assimilated by a group of membrane transporter proteins belonging to the ammonium 

transporter family, an evolutionarily common protein expressed in bacteria, yeast, algae and higher 

plants [229].  Once translocated across the membrane, NH4
+ can directly be incorporated into amino 

acids necessary for growth and other metabolic functions (described below).  In contrast, NO3 and NO2 
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must be reduced to NH4
+; a reaction catalysed by the enzymes nitrate reductase and nitrite reductase, 

which require respectively the reductants NADH and ferredoxin [67].  Moreover, the transport of NO3 

into the cell is an energy-dependent process directly consuming ATP.  Furthermore, NH4
+ has 

quantitatively been linked to supresses the consumption of NO3 and NO2 until it is almost completely 

consumed [227, 230].  In contrast, organic N is considered a poor source because of the greater energy 

cost in acquiring the N [216, 231].  Urea and amino acids require an enzymatic deamination step, which 

predominantly occurs extracellularly [216, 232].  In some cases, the acquisition of organic N is found to 

be inhibited by the presence of NH4
+ [233]. 

Although a decrease of NH4
+ mediated by nitrification can be viewed as a benefit, from an operational 

viewpoint of a microalgae wastewater treatment process, the generation of NOX is undesired as it is not 

eliminated by microalgae in the presence of NH4
+.  Therefore, in a microalgae-bacteria process in which 

nitrification occurs, either a denitrification step in the treatment train needs to be included or a 

sufficient long hydraulic retention period is necessary for the microalgae to effectively reduce the NH4
+ 

and then NO3 in order to meet the required total N discharge limits.  Both approaches have the 

disadvantage of increasing operational cost and complexity.  Furthermore, nitrification may induce N-

limited conditions, with microalga growth rates reduced because of their competition for nutrients 

[234].  In a steady state microalgae-bacteria process, various authors have reported that an approximate 

60 to 85% of NH3 in the medium is oxidised to NO3 with only 13 to 40% assimilated by the microalgae 

[235, 236]. 

Inorganic N assimilation in microalgae is inter-connected with the microalgae’s carbon metabolism, 

requiring carbon skeletons in the form of keto-acids to incorporate N into organic compounds [67] 

(Figure 2.4).  Anabolism of amino acids in microalgae requires inorganic N in the form of NH4
+ as the 

primary N donor molecule.  The integration of N is catalysed by the sequential action of the evolutionary 

conserved enzymes glutamine synthetase (GS) and glutamine 2-oxoglutarate amino transferase 

(GOGAT) [237–239] (Figure 2.4).  GS fixes NH4
+ on a glutamate molecule to yield glutamine, and the 

added amino group then can act as the N donor to 2-oxoglutarate in the NADPH dependent conversion 

to yield two glutamate compounds catalysed by GOGAT [237].  The assimilated N can then be further 

distributed to form other amino acids via transamination reactions.  For example, aspartate 

aminotransferase transfers (AspAT) the amino group of glutamate to oxaloacetate yielding aspartate 

and 2-oxoglutarate, whereas asparagine synthetase (AS) transfers the amino group of glutamine to 

aspartate to form asparagine, both reactions are reversible [237].  Consequently, glutamine, glutamate, 

aspartate and asparagine are precursor substrates for the synthesis of organic N compounds, such as 

amino acids, nucleotides, chlorophylls, polyamines and alkaloids [237, 240].  Overall, this process is 

dependent on the supply of carbon skeletons in the form of keto acids, specifically 2-oxoglutarate and 

oxaloacetate which are metabolites in the tricarboxylic acid (TCA) cycle, along with ATP and reductants 

generated in the TCA cycle and mitochondrial electron transport chain [238]. 
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Figure 2.4 – Scheme of metabolic pathways for assimilation of carbon and nitrogen in the production of energy and 
amino acids in photoautotrophic and heterotrophic cultivation mode of microalgae (adapted from [205, 237]).  
Compound abbreviations are as follows: CIT, citrate; ICIT, isocitrate; 2-OG, 2-oxoglutarate; SUCC CoA, succinyl 
Coenzyme A; SUCC, succinate; FUM, fumarate; MAL, malate; OAA, oxaloacetate; GLU, glutamate; GLN, glutamine; 
ASP, aspartate; ASN, asparagine; ATP, adenosine triphosphate; ADP, adenosine diphosphate; NADP+ (NADPH), 
nicotinamide adenine dinucleotide phosphate oxidised (reduced); G3P, glyceraldehyde-3 phosphate; R5P, ribulose-5 
phosphate; RBP, ribulose-1, 5 bisphosphate; 3PG, 3-phospho glycerate; BPG, 1, 3-bisphosphoglycerate; G6P, 
glucose-6 phosphate; F6P, fructose-6 phosphate; FDP, fructose 1,6-bisphosphate; 2PG, 2-phospho glycerate; PEP, 
phosphoenolpyruvate; PYR, pyruvate; ACCoA, acetyl-Coenzyme A; NH4

+, ammonium; NO2
-, nitrite; NO3

-, nitrate; 
CO2, carbon dioxide; HCO3

-, bicarbonate; and CO3
2-, carbonic acid. Enzymes in red: NR, nitrate reductase; NiR, nitrite 

reductase; GDH, glutamate dehydrogenase; GS, glutamine synthetase; GOGAT, glutamine 2-oxoglutarate amino 
transferase; AspAT, aspartate aminotransferase; AS, asparagine synthetase; and CA, carbonic anhydrase.  Grey 
circles on plasma membrane denote active transport and arrows diffusion only.  



 

26 

An auxiliary pathway in the regulation of NH4
+ assimilation into amino acids was identified as the 

reversible reductive amination of 2-oxoglutarate regulated by the enzyme glutamate dehydrogenase 

(GDH) [241].  Although the pathway is highly conserved between microalgae species it is not thought to 

have a significant part in the formation of amino acids [237].  In fact, evidence suggests its main role is 

to catabolise glutamate which returns the carbon from the amino acid [242].  The activity of GDH is 

believed to be active under conditions of stress, particularly carbon shortage, and thus provides a 

feedback of necessary carbon skeletons to the TCA cycle in the mitochondria ensuring that energy 

production is not impaired [239, 242]. 

The carbon removed from the TCA cycle is replenished through anaplerotic reactions either involving 

the respiration of fixed CO2 (autotrophic) or through assimilation of organic carbon (heterotrophic) 

[243].  In photoautotrophic mode, the inorganic carbon fixed in the Calvin cycle can enter the glycolytic 

pathway (also known as the Embden-Meyerhof pathway) as G3P, in which it is becomes metabolised 

into pyruvate [205, 244] (Figure 2.4).  The generated pyruvate is then transported to the mitochondria 

upon which it enters the TCA cycle following its conversion to Acetyl-CoA.  Through the TCA cycle, 

Acetyl-CoA is further metabolised to yield CO2, reducing equivalents, ATP and carbon skeletons, 

including 2-oxoglutarate oxaloacetate for biosynthesis and further respiration as recycled substrates in 

the cycle [245] (Figure 2.4). 

In heterotrophic mode, organic carbon substrates, as in the example for glucose, would be actively 

transported into the cytosol by the hexose/H+ symporter system together with H+ ions at a 

stoichiometry of 1:1 with the energy provided for this by the hydrolysis of one ATP molecule [246, 247].  

In the cytosol, glucose becomes metabolically active through the glycolytic pathway, which transforms 

one glucose molecule into pyruvate [205].  Glucose may also be metabolised in the pentose phosphate 

pathway (PPP) producing ribose-5-phosphate and erythrose-4-phosphate, which are precursor 

substrates in nucleic acid and amino acid synthesis respectively [248].  The function of both pathways 

are considered anabolic and anaerobic because no O2 is consumed and because ATP and reducing 

equivalents are required which are generated in alternative aerobic pathways, mainly from the 

mitochondria electron transport chain and oxidative phosphorylation.  The main difference between the 

two pathways is the condition under which they are activated; PPP generally has a high rate of activity 

under dark conditions while glycolysis mainly takes place in light conditions [249].  Glycerol, as an 

alternative carbon substrate, can translocate across the membrane by passive diffusion into the cytosol 

of microalgae upon which it becomes sequentially phosphorylated and reduced to G3P and glycerate 

[205, 216].  The G3P is metabolised to Acetyl-CoA, amongst other metabolic intermediates, and directed 

into the TCA for energy [216].  It is impossible to precisely determine which substrate is preferred by any 

given microalgae.  Overall, the carbon and N cycles in microalgae are integrally connected, with as much 

as 35% of carbon coupled to the incorporation of N in microalgae [67, 205, 250]. 
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2.2.2.3 Phosphorus 

In microalgae, P is an important element involved in innumerable metabolic pathways as well as a 

structural component of phospholipids, nucleotides and integral to the biological energy currency, ATP 

[68].  Inorganic P in wastewater exists in several ionic states and like inorganic carbon the specific 

species is dependent on the pH (H3PO4, <2.15; H2PO4
-, 2.15 to 7.20; HPO4

2-, 7.20 to 12.33; and PO4
3-, 

>12.33) [251].  Inorganic P is generally regarded as the most bioavailable form of P, with microalgae 

reported to preferentially assimilate HPO4
2- and H2PO4

- [67, 252].  In eukaryotic algae, PO4
3- enters the 

cell by means of active transport through a symporter channel with H+ or Na+ ions providing the driving 

force, established by a plasma membrane H+-ATPase pump [67].  It is increasingly recognised that 

soluble organic P compounds are a critical source of bioavailable P [68, 253].  These are made accessible 

to the microalgae by the expression of extracellular membrane-bound as well as free phosphatases, 

which non-specifically hydrolyse bound PO4
3- groups [68, 254, 255].  Phosphorus is incorporated into 

organic compounds following phosphorylation of adenosine diphosphate (ADP).  This is an endergonic 

reaction with the energy input obtained from either the oxidation of respiratory substrates or the 

photosynthetic electron transport chain [68, 140].  The produced ATP permits the transfer of the PO4
3- 

group to organic compounds at the substrate level, as for example in the conversion of glucose to 

glucose-6-phosphate in the glycolytic pathway [67, 245].  Furthermore, in P-rich environments 

microalgae can accumulate P in excess of their metabolic needs and store it as acid-insoluble 

polyphosphate granules – a mechanism termed ‘luxury uptake’ which only occurs without a prior 

starvation period [256]. 

2.2.3 Abiotic and biotic factors influencing microalgae wastewater treatment 

2.2.3.1 Bacteria 

Extensive research in wastewater treatment has been carried out with single microalgal species or a 

consortium of different species.  In reality, the presence of other microorganisms (e.g. bacteria and 

fungi) is unavoidable in a microalgal wastewater treatment system, as it is not feasible to previously 

sterilise the water because of the enormous volumes to be processed.  In these conditions, the 

dynamics in community structure are generally a function of operational and environmental conditions, 

as well as the composition of wastewater being processed [257, 258].  With regards to bacteria, only a 

few studies report on community dynamics in microalgal-bacterial co-culture treatment processes.  Su 

et al., (2011) [166] treating PSW with a microalgal consortium, reported the enrichment of certain 

bacterial species and which stabilised over the course of a semi-continuous treatment system.  Notably, 

the bacterial community became dominated by members of the classes Bacteroidia (50%), Flavobacteria 

(25%), Betaproteobacteria (12.5%) and Gammaproteobacteria.  In a subsequent study where different 

inoculation ratios of microalgae to sludge were investigated for their removal efficiency of contaminants 

from PSW, variations in the bacterial community composition occurred between the treatments of 

different inoculation ratios [259].  Bacterial species that were not detected in the original inoculum 
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became enriched to varying degrees during operation, which may have contributed to the difference in 

removal efficiency between the treatments.  When cultured in digestate, the microbial community was 

dominated by Gammaproteobacteria, mainly Pseudomonas stuzeri followed by members of the class 

Alphaproteobacteria [260]; whereas in pig manure, 54% of the community was represented by 

members belonging to the phylum Verrucomicrobium, with also high representation by 

Gammaproteobacteria and members of the phylum Firmicutes [258].  Overall, microalgae have a 

significant effect on the microbial community and were found to reduce the diversity of bacteria present 

[261]. 

With regard to the treatment of wastewater, bacteria are necessary and indeed can be beneficial to 

microalgae.  The bacteria may support the photoautotrophic growth of microalgae by providing CO2 

through their heterotrophic metabolism of organic matter, mineralising it to inorganic compounds that 

can be consumed directly by the microalgae, including NH4
+ and PO4

3- [262–264].  In return, microalgae 

provide O2 generated via photosynthesis, required by the heterotrophic bacteria to degrade the organic 

matter, and microalgae during dark respiration [67].  In fact, photosynthetic oxygenation has the 

potential to meet dissolved O2 needs to a treatment system without the use of mechanical aeration or 

mixing, thereby reducing the energy demands for the treatment process.  To exemplify, Karya et al., 

(2013) [235] employed a sequence batch design with Scenedesmus sp. and nitrifying bacteria isolated 

from activated sludge to evaluate whether this co-culture system can support nitrification.  Without 

mechanical aeration, the process was shown successful in reducing 81 to 85% of NH4
+-N through its 

conversion to NO3-N by nitrification, for which the O2 for this process had been generated by the 

microalga.  Similarly, Wang et al., (2015) [265] reported that photosynthesis by a microalgal consortium 

(predominantly Chlorella sp.) generated a sufficient quantity of dissolved O2 to support nitrification in a 

photo-sequence batch reactor.  In this process, centrate from anaerobically digested swine manure was 

cycled in the reactor between light and dark conditions, with the microalgae under illumination 

providing enough O2 for complete nitritation, while in the dark condition denitrification occurred with 

the addition of acetate as a carbon source.  Overall, 80% of the N was removed through nitritation and 

denitrification from an influent which was not aerated and had a mean NH4
+-N concentration of 297 mg 

L-1.  González et al., (2008) [210] reported that the microalga C. sorokiniana was capable of providing a 

sufficient dissolved O2 concentration for heterotrophic degradation of swine slurry medium when 

diluted 4 and 8 times, with O2 concentrations reaching 2.5 mg L-1. 

The interaction between bacteria and microalgae is more complex than the exchange of just nutrients.  

Certain bacteria can promote microalgal growth by excreting growth-promoting compounds or vitamins 

(e.g. thiamine, biotin, etc.) [266–268].  De-Bashan et al., (2004) [269] found that the bacterium 

Azospirillum brasilense (strain Cd) promoted the growth and nutrient uptake rate of a microalga 

consortium (C. vulgaris and C. sorokiniana) when co-immobilised in alginate beads.  The microalgal-

bacterial co-culture was capable of removing 100% NH4
+-N, 15% NO3-N and 36% PO4-P from municipal 

wastewater, while a corresponding culture with only microalgae achieved 75% NH4
+-N, 6% NO3-N and 
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19% PO4-P removal within 6 days.  Microalgae can promote bacterial growth through microalgal 

exudates that either stimulate their growth directly or can be assimilated as a source of carbon [270–

272].  Hulatt and Thomas (2010) [273] quantified the amount of DOC excreted by microalgae in 

polythene photobioreactors, demonstrating a significant increase in bacterial population in microalgal-

bacterial co-cultures as a result when compared to control cultures with only the bacteria.  The authors 

of this study also showed that the DOC released by C. vulgaris and Dunaliella tertiolectra accounted for a 

maximum 6.4% and 17.3% of the total organic carbon in the culture, respectively.  Conversely, 

metabolites presenting either bactericidal or fungicidal activity excreted by microalgae have been 

reported, including activity against the bacterium Staphylococcus aureus, Escherichia coli and 

Pseudomonas aeruginosa, as well as the fungus Candida albicans [274, 275].  Similarly, certain species of 

bacteria were found to be able to excrete algicidal compounds [276, 277]. 

2.2.3.2 pH 

Several studies have reported on abiotic mechanisms by which bacteria and microalgae adversely affect 

each other.  For example, an increased pH and dissolved O2 concentration observed in microalgae 

cultures can have a detrimental effect on bacterial activity [278–280].  Assimilation of inorganic carbon 

by microalgae, if not replenished at an equivalent rate of consumption, can cause the pH to increase in 

the medium leading to an alkaline environment (pH >9) [67, 146].  In these conditions the benefit 

provided by aerobic and facultative bacteria in wastewater may be reduced as their growth and function 

becomes impaired.  A strong correlation between heterotrophic bacteria abundance and pH is reported 

by other studies, which demonstrate an increased “inactivation” of bacteria with increasing pH [279, 

281–283].  Reduction in coliform bacteria and other pathogenic microorganisms is reported to occur at 

pH 8.5 with pH 9.5 resulting in the highest elimination of the wastewater bacterial community [89, 284].  

The effects are mediated through several different, potentially co-occurring mechanisms, such as 

conformational changes in bacterial membrane structure, respiratory chain damage and increased 

susceptibility to exogenous factors such as light [285–287].  Consequently, the reduced abundance of 

the microbial community in wastewater treated by microalgae will lead to a lower rate of CO2 release 

via respiration that would otherwise serve the microalgae with an alternative source for photosynthesis 

[288, 289].  Notably, pH is also a determining factor of microalgal growth, with alkaline conditions 

having a negative effect on microalgae cycle completion because of changes in membrane lipid 

composition and increased metabolic activity [290, 291]. 

The optimal pH range for the majority of freshwater microalgae species is reported to be between 7 and 

9 [292–294].  Environments outside of the optimum range for a particular species or consortium may 

adversely affect their growth rate and limit their capacity to remediate nutrients from the medium.  

From two independent experimental runs, Sutherland et al., (2015) [295] reported a decrease in 

removal efficiency of dissolved inorganic nitrogen (DIN), with increasing pH from PSW treated with a 

natural consortium of microalgae.  In this study, pH 6.5 and 7 resulted in an approximate 62% DIN, 

whereas at pH 7.5 to 8 approximately 50% DIN removal was achieved.  Martinez et al., (2000) [296] 
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observed that cell rupture of S. obliquus was associated with the point at which the pH of the medium 

reached its highest value (>11) when treating municipal STE.  Overall, establishing an optimal 

environment for microalgal cultivation in wastewater for the purpose of nutrient remediation can be a 

critical step in preserving species dominance.  These conditions are, however, highly dependent on the 

microalgal species and the cultivation method employed.  Therefore, a suitable strategy might be to 

allow a natural species to acclimate to the subsequent processing conditions that naturally develop or 

are expected. 

2.2.3.3 Temperature and light 

As nutrients (e.g. N and P) become limiting, the autochthonous microbial community in wastewater may 

compete with exogenous microalgae (supplemented into the wastewater) for resources [261, 297].  It is 

therefore essential to establish an environment which promotes the growth of the microalgae growth 

above that of bacteria and fungi.  In this context, temperature and light have a significant influence.  In 

regards to light, its availability is fundamental for normal microalgal functioning.  Energy captured from 

light drives the process of O2 evolution and generates ATP and reducing agents necessary for fixing CO2 

into organic carbon [67, 298] (Figure 2.4).  Below the light saturation point, the rate of photosynthetic 

activity is proportional to the irradiance intensity, with intensities above this point causing photo-

inhibition as receptor systems become damaged [67, 298].  The illumination intensity at which 

saturation occurs may differ depending on the microalgal species and temperature.  Dauta et al., (1990) 

[299] investigated the optimal light intensity of four microalgal species (C. vulgaris, Fragilaria 

crotonensis, Staurastrum pingue, Synechocystis minima) under a range of light intensities (5 to 800 µE m-

2 s-1) and temperature (10 to 35°C).  The optimal light intensity increased with temperature until the 

optimal temperature was reached; thereafter the optimal light intensity remained constant or 

decreased with increasing temperature.  In general, the saturation point for freshwater microalgae is 

reported to lie between 200 and 400 µE m-2 s-1 [289, 300, 301].  Maintaining an algal culture at or below 

the saturation point has a practical component because excess light is not utilised by the algae and thus 

becomes a waste of energy expenditure in the form of excess electricity. 

The illumination period and intensity to which a microalgal-bacterial consortium is exposed to is 

demonstrated to significantly affect the ratio of bacteria to algae, and consequently the efficiency of 

carbon, N and P removal in wastewater.  Under prolonged dark conditions, Lee et al., (2015) [302] 

reported a reduced capacity in N and P removal from municipal wastewater when treated with a 

microalgal-bacterial consortium.  After 12 days of operation, the total dissolved nitrogen (TDN) 

concentration was reduced to 4.8, 14.0 and 25.6 mg L-1, and the total dissolved phosphorus (TDP) 

concentration reduced to 0.6, 1.7 and 3.0 mg L-1 in photobioreactors under 12:12h, 36:12h and 60:12h 

dark-light cycles, respectively.  Conversely, the soluble COD concentrations were reduced to 72, 56 and 

35 mg L-1 O2, respectively.  A significant shift in the bacteria to microalgae ratio was observed following 

quantification by qPCR assay.  Under prolonged dark conditions a higher ratio of bacteria to microalgae 

was recorded, with the lowest microbial biomass in terms of dry weight and chlorophyll a in the 60:12h 
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dark-light cycle treatment.  González-Camejo et al., (2017) [303] examined the treatment response of a 

microalgal-bacterial consortium cultured in effluent from an anaerobic membrane system under varying 

light intensity.  At the lowest set light intensity (40 μE m−2 s−1) a higher activity of nitrifying bacteria was 

observed causing increased concentrations of NO3 and NO2 in the effluent with only 73.9% of NH3 

reduction credited to microalgae assimilation, and consequently the TN concentrations exceeded the 

permissible discharge standard (i.e. 10 mg L-1 TN).  In comparison, light intensities of 85 and 125 μE m−2 

s−1 favoured microalgae growth over nitrifying bacteria, with recorded NH3 removal efficiencies by the 

microalgae of 98.3% and 99.3% respectively.  Conversely, between the different light intensities 

examined, no difference in P removal efficiency was recorded (98.6, 99.2 and 99.5% at 40, 85 and 125 

μE m−2 s−1 respectively).  These observations indicated that the illumination period and intensity have a 

strong influence on the population dynamics in a microalgal-bacterial wastewater treatment system.  

Thus, in order to promote the growth of the microalgae above bacterial growth and to ensure an 

adequate response in treatment, these parameters must be adjusted accordingly. 

The environmental temperature also has a significant influence on microalgal productivity and 

treatment efficiency in wastewater.  Ruiz-Martínez et al., (2015) [304] assessed the NH4
+-N removal rate 

by Scenedesmus sp. at various temperatures from effluent of a pilot scale submerged anaerobic 

membrane bioreactor; at a higher temperature the removal rate of NH4
+-N increased, with 15°C, 18°C, 

26°C and 34°C demonstrating a rate of 4.3, 6.7, 15.7 and 17 mg N L-1 d-1, respectively.  However, the 

optimal temperature has been shown to vary depending on the microalgal species and their acclimation 

to a particular environment.  For instance, Filippino et al., (2015) [305] reported a high efficiency in 

nutrient removal within a shorter cultivation period by C. vulgaris at a lower temperature.  A 90% 

reduction in TDN and PO4-P was achieved within 4 days of cultivation at 15°C versus 12 days at 25°C.  

Similarly, Sforza et al., (2014) [156] reported a lower NH4
+-N concentration in the effluent of treated 

PSW by C. protothecoides at lower temperatures (15°C) compared to temperate conditions (23°C to 

30°C).  Interestingly, the authors reported that specific growth rate, based on the parameter of cell 

number, was positively correlated with temperature, while total biomass (measured as total suspended 

solids (TSS)) tended to increase with decreasing temperature. 

In general, most microalgae are capable of surviving at temperatures between 10°C to 30°C, with the 

optimal temperature within a more narrow range, often between 15°C and 25°C [301].  Although higher 

temperatures are generally associated with higher growth rates and increased nutrient uptake rates 

because of higher metabolic activity, these conditions are not always compatible with the conditions for 

wastewater treatment.  Maintaining an optimum temperature in a microalgal wastewater treatment 

process through artificial heating is not feasible given the extreme volumes.  Therefore, the microalgal 

species or consortium employed to treat the wastewater should be selected on their ability to thrive 

under the environmental conditions that are frequented at the treatment plant.  The temperature of 

wastewater for mid-latitude climates has been reported to range between 3°C to 27°C [89].  In Scotland 

it is reported to range from 20°C in summer and 8°C in winter, with an average yearly temperature of 
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approximately 13.5°C [306].  Acclimation of a microalga to the treatment conditions can be performed 

to improve efficiency and tolerance to an environment that is otherwise unfavourable.  In fact, algae 

acclimated to lower temperatures (5°C to 10°C) may be beneficial for use in wastewater treatment.  

Maxwell et al., (1994) [307] reported that C. vulgaris grown at 5°C exhibited physiological characteristics 

of cells acclimated to high irradiance conditions. 

As photosynthetic carbon assimilation (i.e. Calvin cycle) is enzymatically mediated, the rate of the 

reaction is temperature-dependent with a lower reaction rate recorded at lower temperatures [67].  To 

compensate for the imbalance of more light being adsorbed than can be used for carbon fixation, 

microalgae respond by reducing their chlorophyll concentration at lower temperatures compared to 

cells at temperate conditions under the same illumination intensity.  The reduction in chlorophyll was 

accompanied with an increase in the carotenoid xanthophyll [307, 308].  Xanthophyll forms part of the 

light harvesting antenna complex of photosystem II (PS II) and is proposed to modulate the transition of 

the antenna complex to a dissipative photo-protective state, protecting the complex against damage 

from light saturation [309].  Therefore, cultivation at low temperature may require lower light 

intensities to minimise light saturation and photo-inhibition and, hence, may reduce power 

consumption associated with the provision of illumination.  A further benefit of a low operating 

temperature is the improved solubility of O2 and reduced growth rates of indigenous microorganisms [1, 

89, 308]. 

2.2.4 Microalgae bioreactor configuration for wastewater treatment 

Wastewater treatment by microalgae faces several challenges that range from varying wastewater 

composition to the large volumes that need to be treated.  Different microalgae cultivation techniques 

have been proposed and studied to ensure optimal microalgae productivity, high effectiveness in the 

removal of nutrients or contaminants, and to accommodate the large volumes of wastewater.  The 

design and configuration of the reactor has a large effect on the treatment performance, with control 

over light and temperature influencing growth and in turn the assimilation and removal of contaminants 

from the wastewater [310].  The different microalgal cultivation techniques can be broadly categorised 

as either suspended or immobilised systems [311, 312].  These systems are further sub-categorised as 

being either open to the environment or enclosed.  The main performance consideration of the 

bioreactor is its economic cost, with examples for a microalgae wastewater treatment system including 

(but not limited to) PBR, HRAP, matrix-immobilised microalgae and attached microalgal biofilms systems 

[146]. 

2.2.4.1 Immobilised 

The concept of immobilised cell culturing is defined by the state in which living cells are prevented from 

moving independently to all parts of the aqueous phase of a system, either by natural or artificial means 

[313].  The immobilisation of microalgae can be achieved through the self-attachment (passive) to a 

bedding material, which is either completely or partially submerged to support biofilm development (i.e. 
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flat panel or rotating algal biofilm reactor), or through entrapment (active) in gel matrices that can be 

induced or mediated by flocculent or chemical agents [314–317]. 

Biofilm formation initially occurs because cations, inorganic and organic compounds adhere to the 

surface of the bedding material, in effect increasing the concentration relative to the aqueous phase and 

creating a favourable environment for microbial growth [318, 319].  Once colonised onto the surface, 

microalgae and bacteria secrete extracellular substances composed of nucleic acids, proteins, 

polysaccharides and phospholipids which serve to improve adherence to the bedding material but also 

to entrap and concentrate nutrients necessary for cell growth [319].  In general, microalgal biofilms are 

restricted to a single plain because of the need for light and gas exchange, with biofilm thickness 

between 0.052 to 2 mm for optimal performance [320, 321].  In the case of active immobilisation, the 

most widely used technique is the encapsulation of microalgae into polymer matrices made of artificial 

(e.g. acrylamide) or natural materials (e.g. carrageenans or alginates) [64, 317].  Manufactured to form 

beads, the microalgae are entrapped in a suspended form within the pores of the polymer matrix that 

are smaller than the cells, retaining them while allowing the diffusion of water and substances for their 

metabolisms and growth [322]. 

The principal advantage of immobilised microalgae systems is that they eliminate or reduce the 

processing cost associated with separating the algal biomass from the treated water before discharge 

[311, 314, 323].  Furthermore, by immobilising microalgae a higher concentration of cells relative to free 

suspended systems can be maintained in the water.  Up to 3.3 g L-1 dry weight (DW) [324] compared to 

1.5 to 1.7 g L-1 DW and 0.25 to 1 g L-1 DW in suspended tubular and raceway ponds respectively, has 

been reported [312].  It is thought that the high concentration of active biomass within biofilms or other 

matrices allows for an increased rate of biodegradation activity and therefore improved removal 

efficiency [322].  This effect could also be attributed to the fact that particulate, organic and inorganic 

compounds attach to the surface of the immobilising polymers or biofilms, increasing and sustaining a 

high concentration of these substances to the proximity of the microalgae and other microorganisms, in 

effect facilitating their biodegradation.  However, no study has directly examined this occurrence to any 

great extent.  Similarly, the close proximity of co-immobilised microalgae and bacteria, which generate 

O2 and CO2 respectively, can avoid gas diffusion problems inside the medium or immobilising matrix 

[289, 318, 325].  Conversely, Jiménez-Pérez et al., (2004) [326] found the N and P uptake rates of the 

microalga S. intermedius and Nannochloris sp. to be slightly higher when cultured in suspension 

compared to when immobilised.  The authors argued this to be because of the additional resistance of 

nutrient diffusion across the polymer and impeded light penetration caused by the dense growth of cells 

within the inner surface of the beads, thereby reducing the photosynthetic activity. 

The performance of immobilised microalgae systems to treat wastewater has been well documented 

(Table 3 and references therein).  However, despite being effective at removing contaminants from 

wastewater, aspects of this technology still limit its commercial application.  In active immobilisation, 

the polymers used to form the matrices are vulnerable to degradation over time, which can result in 
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cells leaching [64, 327].  Furthermore, the technical knowledge necessary for the manufacturing and 

high cost associated with the materials can prohibit their application, especially when the aim is to treat 

large volumes of wastewater [140, 311, 322].  On the other hand, microalgal biofilms require a large 

surface area.  A theoretical analysis estimated 0.32 to 2.1 m2 PE-1 is required to accommodate a 

microalgae biofilm treatment process in addition to the 0.2 to 0.3 m2 PE-1 of the conventional 

wastewater treatment system when employed as a post-treatment process (i.e. tertiary) [87, 328].  

Functioning as the primary biological treatment process for municipal wastewater, an estimated 0.76 m2 

PE-1 is required [328].  The aerial requirement compromises the environmental sustainability of this 

technology.  Also, when exposed to the natural elements, fluctuations in both irradiance and 

temperature affect the performance, with low irradiance leading to low microalgal growth and O2 

generation in the biofilm and, hence, a reduced efficiency in nutrient removal [329, 330]. 

Attempts to optimize light utilization in algal biofilm-based systems have been directed to bioreactor 

design modification, typically designed with high surface area to volume ratio [331].  A rotating algal 

biofilm was designed and operated by Christenson and Sims (2012) [323] to allow periodic exposure of 

the biofilm between the medium and light.  Posadas et al., (2014) [257] compared the treatment of 

domestic wastewater by two microalgae biofilm systems, one grown on an open surface and the other 

enclosed in clear tubes.  Overall, the open surface algal-bacteria biofilm had higher efficiency in 

inorganic carbon, N and P removal compared to the enclosed biofilm reactor.  The main hypothesis put 

forward to explain the difference in efficiency between the two biofilm systems was the location of the 

active microalgal population in respect to the light source.  In the enclosed system, photosynthetic O2 

originated at the tubular surface and needed to diffuse to the centre of the tube in order for it to be 

utilised via heterotrophic metabolism; on the other hand, in the open biofilm O2 originated in close 

contact to the contaminants at the biofilm-wastewater interface.  Microalgal biofilms are also prone to 

sloughing, defined by the detachment of microalgae and other particulate matter from the matrix 

surface in the course of treatment.  For example, Boelee et al., (2011) [329] noted an average 

suspended solids concentration of 3.2 mg L-1 in the final effluent, containing a high proportion of 

microalgae biomass.  This corresponded to an average concentration of 0.13 mg L-1 N and 0.07 mg L-1 P.  

Taking this into account, under continuous operation the biomass requires separation from the water 

prior to discharge to minimise the input of these captured nutrients into receiving systems, effectively 

negating the main advantage of microalgae immobilisation [64, 319].  When managed incorrectly, 

microalgae biomass can account for a considerable proportion of the suspended solids content, 

contributing substantially to the effluent BOD [2]. 

2.2.4.2 Suspended cultures 

Suspended cultivation of microalgae allows the cells to move freely in the aqueous phase and is 

amongst the most commonly applied algal cultivation technique for treating wastewater [146, 332–

334].  Open suspended systems can be categorised into natural ponds, such as facultative ponds and 

lagoons, or artificial containers such as raceway ponds.  In facultative ponds, different environments 
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naturally form as a result of the large depths (over 1 meter) and with minimal mixing as provided solely 

by wind, natural convection currents and water flow [335].  Consequently, stratification occurs as 

aerobic conditions form at the surface of the water because of microalgae photosynthesis, while 

anaerobic conditions form towards the bottom [335].  However, improved treatment efficiency as a 

result of the stratification has been reported, as it allowed different microbial communities with 

opposing roles in the treatment to become established [336].  In practice, high BOD, NH3 and PO4 

removal rates and microalgal growth have been reported in facultative ponds with minimal operation 

cost and maintenance required [335, 337, 338].  HRAP can be considered as an improvement to the 

design of facultative ponds, with added operational control over mixing and culture conditions [334].  

Generally designed with depths of 0.2 to 0.5 meters, HRAP are configured as a closed single canal, or 

meandering canal divided by central walls [335, 339].  To prevent sedimentation of the microalgae and 

to ensure periodic exposure to light, mixing is provide by means of a paddlewheel that is normally 

operated at velocities between 10 and 30 cm s-1, while a CO2 inlet can provide control over pH  [80, 295, 

340]. 

Photobioreactors are enclosed suspended cultivation systems, designed as an enclosed system 

composed of transparent plastic or glass materials which hold the algal biomass and growth medium 

within a confined system boundary [80, 334].  As a cultivation method, PBR have the benefit of better 

control over the culture environment.  Temperature is easily controlled by heating or cooling the tubing, 

fluctuations in the pH are minimised through direct CO2 injection or acid addition, and evaporation or 

contamination is greatly reduced because of the sealed system limiting the exposure of the culture 

environment [310].  The main advantage of PBRs is the improved light utilisation rate with a higher 

surface area to volume ratio compared to open pond systems [73, 341].  The increased irradiance to 

which the microalgae are exposed to promotes higher photosynthetic rates and cell densities.  However, 

the use of PBRs for large-scale application is likely to be limited because of the high economic cost for 

materials, construction, and operation [73, 342, 343]. 

Both facultative and HRAPs are open cultivation systems and thus dependent on sunlight as the primary 

source of irradiance.  As such, variations in effluent quality will occur between seasonal cycles with the 

most effective period being the summer months [330, 339].  Other factors that affect the performance 

of open reactors are temperature, evaporation and potentially inorganic carbon deficiencies.  

Evaporation helps maintain a stable temperature (during the day), however, the loss of water from the 

system can result in significant change in the ionic composition which can directly affect microalgal 

growth [344].  Likewise, CO2 diffusion to the atmosphere can reduce the biodegradation activity and 

growth of the microalgae, leading to a less efficient treatment performance [81].  Open culturing 

systems (i.e. HRAP) are also susceptible to contamination by protozoa and zooplankton, which can 

reduce the algal concentration within a few days [345].  For example, Oswald (1980) [346] reported a 

90% reduction in algal concentration within 2 days as a result of rotifers and cladocerans that can graze 

on microalgal cells. 



 

36 

A further disadvantage to microalgal pond systems is the large surface area required because of the 

shallow depths that are necessary to facilitate light penetration through the water [80].  Craggs et al., 

(2003) [347] reported that the surface area of HRAP at a depth of 0.45 and 0.3 meters operating at a 

volume of 37.5 m3 would occupying an area of 85 and 128.1 m2 respectively.  Under the proposed 

loading rate in the study, the surface area required to treat 1 m3 d-1 of wastewater was 17 and 25.6 m2 

based on the depth of the pond.  In a study by Wang et al., (2015) [265], the authors estimated the 

surface area occupied by a HRAP using data from a laboratory pilot experiment.  Depending on the N 

load the system required between 12 and 60 m2 to treat 1 m3 d-1 of centrate wastewater from 

anaerobically digested swine manure.  In comparison, PBRs have inherent limitations associated to their 

design, such as high dissolved O2 accumulation that can reduce photosynthetic activity, and biofouling 

with microbial films forming on the internal surfaces of the reactors which can adversely affect light 

penetration.  PBRs placed outdoors are also susceptible to the seasonal variation in illumination 

intensity.  Molina et al., (2001) [348] designed an outdoor tubular PBR with a working volume of 200 L, 

with vertical tubes made of plexi-glass connected to a 4 m tall airlift and degasser section to examine 

the pilot-scale production of the microalga Phaeodactylum tricornutum.  In this reactor, a maximum 

biomass productivity of 1.9 g L-1 d-1 was obtained with a decline to 1.2 g L-1 d-1 in the spring cultivation 

period. 

2.2.4.3 Treatment performance and duration 

The COD, N and P concentration in the effluent and duration of the treatment are key criteria in 

assessing the performance of a bioreactor system of a microalgal wastewater treatment process.  The 

performance of a microalgal treatment process must be able to meet current mandatory effluent 

concentrations, as set in Europe by the UWTD, with the prospect of achieving lower set standards 

(Chapter 1; [14, 26, 27].  Furthermore, the addition or integration of a microalgal biological treatment 

process within a conventional wastewater treatment train must complement the upstream and 

downstream processes by achieving a constant output and flow.  In regards to hydraulic retention time, 

the shorter the time the smaller the reactor system necessary, which has benefits to capital costs and 

also surface area requirements [89, 349].  Table 3 lists the remediation data by microalgae reported 

from independent studies treating municipal wastewater cultured either by matrix-immobilised (active), 

biofilm-immobilised (passive), PBR suspended or HRAP suspended systems. 

When comparing the N and P removal efficiency for the microalgal cultivation systems a vast difference 

is noted, not only between but also within the different cultivation systems (Table 4; Figure 2.5).  

Between immobilised and suspended cultivation systems, a consistently high N and P removal efficiency 

over the shortest treatment duration is noted for PBR suspended systems, despite the vast differences 

in operating parameters (i.e. biomass inoculation concentration, temperature and irradiance).  In PBR 

suspended systems, an average 87.3% N and 82.9% P removal efficiency was achieved, within an 

average of 3.1 days (days or HRT).  Of all the collated studies in this category, with the exception of that 

by Choi (2015), a final N concentration below 10 mg L-1 and P concentration below 1 mg L-1 was 
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reported, with the majority of studies reporting P concentrations below 0.5 mg L-1 (Table 3).  The 

dominant species of microalgae used were of the family Chlorophyceae, which is well known for their N 

and P remediation abilities, including Chlorella sp. and Scenedesmus sp.  A similar consistent rate of N 

and P removal but at a lower efficiency is noted in the biofilm-immobilised systems, at a respective 

77.4% and 79.3% efficiency, taking an average treatment time of 4.3 days (days or HRT).  Matrix-

immobilised cultivation systems were operated for treatment duration of 4.1 days (days or HRT), during 

which the highest N removal efficiency was achieved compared to all other systems.  The HRAP 

suspended systems did not performed as well, achieving the lowest P removal efficiency and requiring a 

longer treatment time with an average 8.6 days (days or HRT). 
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Table 3 – Carbon, nitrogen and phosphorus removal capacities from municipal wastewater by microalgae in different bioreactor types as reported in independent studies. 
Concentration values are in mg L-1 (Ci and Cf; % removal percentage). 

Algae 
Waste 
water type 

Treatment conditions 
and reactor 

  
Treatment 
time (days) 

Nitrogen 
 

Phosphorus 
 

Carbon Reference 

 HRT Ci Cf %  Ci Cf %  Ci Cf %  

    
Immobilised - passive     

             
  

Centrate wastewater 
native algal-bacterial 
consortium 

PSW 

Algal biofilm reactor, 
fixed, V = 31  L, 0.5 
m2, artificial 
illumination, 21.9°C; 
7.7 pH 

10 40 91 TN 
27.
3 

70 
 

7 PO4
3--P 0.05 85 

 
181 TOC 18.1 90 

 
 
[350] 

                
 

Consortia of Chlorella and 
Phormidium sp. 

Grey water 

Algal biofilm reactor, 
fixed, V = 3 L, 630 
cm2, natural sunlight, 
7.3 pH 

6 - 29 TAN 1.7 94 
 

24.5 TDP 2.4 90 
 

235 COD 71 69 

 
 
[351] 

                
 

Consortium of 
Woronichinia sp., 
Actuodesmus sp., 
Aulacoseira sp., 
Desmodesmus 
quadricaudatus, Nitzschia 
sp., Limnothrix redekei and 
Gomphonema parvulum 

PSW 

Algal biofilm reactor, 
fixed, V = 31 L, 0.5 
m2, artificial 
illumination, 21.7°C; 
8.3 pH 

10 40 86 TN 6.8 92 
 

12 PO4
3--P 0.96 96 

 
167 TOC 18.3 89 

 
 
 
[257] 

               
 

PSW 

Algal tubular biofilm 
reactor, fixed, V = 31 
L, 0.5 m2, artificial 
illumination 

10 40 86 TN 17 80 
 

12 PO4
3--P 3.84 68 

 
167 TOC 25.0 85 

 
[257] 

                
 



 

39 

Consortium of 
Scenedesmus, Chlorella, 
Cyanobacteria, Oocystis, 
Ankistrodesmus and 
Synura 

STE 

Rotating algal biofilm 
disk, fixed, V = 8 L, 
artificial illumination, 
21 to 25°C, 8.5 to 9 
pH 

6 21 46.5 TN 8.7 81 
 

15.15 TP 0.07 99 
 

63.1 COD - - 

 
 
 
[170] 

                
 

Predominant strain was 
Halochlorella rubescens 

STE 

Twin-Layer PBR 
biofilm, fixed, V = 55 
L, 3 x 2m2 modules, 
artificial illumination, 
18 to 32°C, 8.4 pH 

1 8 7.5 NO3-N 1.3 83 
 

0.61 0.17 73 
 

- - - 

 
 
[352] 

                
 

Scenedesmus sp. and 
natural bacteria 
population 

STE 

Algal biofilm reactor, 
fixed, V = 96 L, 
artificial illumination, 
20 to 22°C, 7.76 pH 

2 91 18.5 TN 11 36 
 

1.32 TP <0.5 62 
 

60 COD 39 35 

 
[353] 

                
 

Chlorella vulgaris 
Treated 
municipal 
waste water 

Suspended carrier, 
suspended V = 20 L, 
aerated, artificial 
illumination, 25 to 
30°C; 8.2 to 9 pH 

0.1 37 17.4 DIN 6.7 61 
 

3.07 TP 0.8 71 
 

21 COD - - 

 
 
[354] 

                
 

Chlorella sp., 
Scenedesmus, Pediastrum, 
Nitzschia, Navicula, 
Crucigenia, Synedra and 
bacteria 

Waste 
water 
Lagoon 
effluent 

Rotating algal biofilm 
disk, fixed, V = 535 L, 
natural sunlight, 9.6 
to 19.2°C; 8 to 10 pH 

0.25 20 4.5 TN 1.1 75 
 

2.1 TP 1.6 23 
 

- - - 

 
 
[323] 
 

                 
Nitzschia sp. and other 
green filamentous 
microorganisms 

Municipal 
waste water 

Algal biofilm, fixed, 
1.8 m2, artificial 
illumination, 22°C; 7 
pH 

0.7 10 5.5 NO3-N 2.2 60 
 

0.9 PO4
3--P 0.2* 88 

 
- - - [329] 
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Scenedesmus obliquus and 
bacteria 

STE 

Biofilm in a twin wall 
polycarbonate sheet, 
fixed, V = 5 L, 0.5 m2, 
natural illumination, 
21.7°C;7.6 pH 

1 130 32 TAN 1.6 95 
 

1.7 TP 0.1 94 
 

61 COD 37 39 [355] 

      
             

  
Immobilised - active     

             
  

Scenedesmus obliquus STE 

Sodium alginate 
beads, suspended, V 
= 2.5 L, aerated, 
batch mode, artificial 
illumination, 25°C; 9 
to 9.5 pH 

- 2 34 NH4
+-N 1.2 96 

 
2.5 PO4

3--P 1.12 55 
 

- - - [228] 

                 

Chlorella vulgaris PSW 

Carrageenan beads, 
suspended, V = 0.4 L, 
flask shaking, 
artificial illumination, 
24°C; 7.1 pH 

- 5 37NH4
+-N <2 95 

 
3.1 PO4

3--P 0.04 99 
 

- - - [356] 

                 

Chlorella vulgaris 
BNR 
treatment 
effluent 

Alginate beads, V = 5 
L, agitated, artificial 
illumination, 30°C; 
6.7 pH 

- 6 8.73 TN 0.1 99 
 

0.8 TP 0.32 60 
 

- - - [305] 

                 

Chrlorella vulgaris PSW 

Soldium alginate - 
medium 
concentration, V = 
1.6 L, aerated, 
artificial illumination, 
25°C; 6.5 to 7.2 pH 

- 2 42 NH3-N 0.4 99 
 

12 PO4
3--P 0.62 94 

 
- - - [357] 
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Chlorella vulgaris PSW 

Sodium alginate - low 
density, V = 1 L, 
aerated, artificial 
illumination, 20°C; 
7.95 to 8.29 pH 

- 7 36.2 NH4
+-N 0.1 99 

 
3.4 PO4

3--P 1.08 68 
 

- - - [358] 

                 

Phormidium sp. STE 

Chitosan, V = 0.5 L, 
aerated, artificial 
illumination, 20°C; 
.8.5 to 10 pH 

- 0.25 9.5 NH4
+-N 0.4 95 

 
2.2 PO4

3--P 0.64 71 
 

30 COD - - [359] 

                 

Chlorella vulgaris STE 

Sodium alginate, V = 
1 L, aerated, natural 
illumination, 30°C; 
7.8 to 9.1 pH 

0.75 20 24 NH3-N 4.4 81 
 

9.2 TP 2.7 70 
 

257 COD 94 63 [360] 

                 

Consortium of algae and 
bacteria; main algae were 
Scenedesmus and Chlorella 

STE 

Alginate beads, V = 
2.5 L, no mixing, 
artificial illumination, 
23°C; 8.05 to 9 pH 

- 10 36 NH4
+-N 3.6 90 

 
0.86 TP 0.03 97 

 
49 COD - - [361] 

      
             

  
Suspended - PBR     

             
  

Consortium with the 
predominate strains 
Actinastrum, 
Scenedesmus, Chlorella, 
Spirogyra. 

PSW 

Semi-continuous 
mode, V = 1 L, 
aerated, artificial 
illumination, 23 to 
25°C; 7 to 8 pH 

3 10 39 NH4
+-N 6.1 84 

 
2.1PO4

3--P <0.1 99 
 

- - - [362] 
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Prevalent microalgae 
species was Scenedesmus 

STE 

Batch, V = 15 L, pump 
mixed, artificial 
illumination, 20°C; 
7.2 to 8.5 pH 

- 1 36 NH4
+-N 0.1 99 

 
2.56 PO4

3--P 0.03 98 
 

- - - [363] 

                 

Prevalent microalgae 
species was Scenedesmus 

STE 

Batch, closed, V = 15 
L, pump mixed, 
natural illumination, 
4 to 28°C 

- 7 21 NH4
+-N 4.6 79 

 
1.49 PO4

3--P 0.44 70 
 

- - - [363] 

                 

Scenedesmus obliquus and 
wastewater microbial 
community 

STE 

Batch, flat panel PBR, 
V = 4.5 L, aerated, 
artificial illumination, 
20°C; 7 pH 

1.1 - 19.7 TN 2 89 
 

1.75 TP 0.09 84 
 

- - - [349] 

                 
Consortium of 
chlorococcales and 
cyanobacteria as well as 
natural wastewater 
microbial community 

Anaerbic 
wastewate
r effleunt 

Batch, flat panel PBR, 
V = 8 L, aerated CO2, 
artificial illumination, 
28 to 32°C;7.2 pH 

2 - 59 NH4
+-N - 67 

 
- - 97 

 
51 COD - - [364] 

                 

Scenedesmus obliquus and 
wastewater microbial 
community 

STE 

Semi-continuous, 
tubular air lift 
reactor, V = 330 L, 
natural illumination, 
13°C; 8.72 pH 

5 110 26.16 TN 3.4 86 
 

1.77 TP 0.21 88 
 

76.6 COD 
 

24 [365] 

                 

Scenedesmus obliquus STE 

Batch, V = 2.5 L, 
aerated, artificial 
illumination, 25°C; 9 
to 9.5 pH 

- 2 34 NH4
+-N 0.1 99 

 
2.5PO4

3--P 0.42 83 
 

- - - [228] 
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Chlamydomonas 
reinhardtii 

STE 
Batch, V = 5 L, mixed, 
artificial illumination, 
7 to 10 pH 

- 4 25 NH4
+-N 0.1 99 

 
1.7PO4

3--P <0.1 98 
 

30.2 COD - - [366] 

                 

Chlorella vulgaris 
Tertiary 
waste-
water 

Batch, V = 0.2 L, 
mixed, artificial 
illumination, 27°C; 
7.3 to 5.7 pH 

- 4 8.7 TN 0.1 99 
 

1.71 TP <0.1 99 
 

22.6 TC - - [367] 

                 

Chlorella vulgaris and 
natural wastewater 
microbial community 

Municipal 
waste water 

Membrane 
photobioreactor, 
closed, V = 10 L, 
aerated, artificial 
illumination, 25°C; <9 
pH 

2.5 - 8.3 TN 3.6 56 
 

1.24 TP <0.3 82 
 

55.6 COD - - [368] 

                 

Chlorella vulgaris and 
natural wastewater 
microbial community 

Pre-PSW 

Optical panel 
membrane PBR, 
closed, V = 40 L, 
aerated, artificial 
illumination, 25°C; 
7.2 pH 

3.4 150 40.2 TN 11 70 
 

9.24 TP 4.37 52 
 

209 COD 86 58 [181] 

                
 

Chlorella sp. ADE4 and 
natural wastewater 
microbial community 

Treated 
sewage 
effluent 

Membrane PBR, 
closed, V = 7 L, 
aerated, artificial 
illumination, 25°C; 
7.5 to 8.5 pH 

2 18 18.8 TN 6.3 66 
 

1.01 TP <0.1 94 
 

10.5 COD - - 

 
 
[369] 

                 
Suspended - HRAP     
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Scenedesmus obliquus and 
wastewater microbial 
community 

STE 

HRAP, V = 533 L, 
mixed, natural 
illumination, 13°C; 
9.32 pH 

10 110 26.16 TN 11 55 
 

1.77 TP 0.64 64 
 

76.6 COD 
 

-
12 

[365] 

                 

Chlorella pyrenoidosa and 
wastewater microbial 
community 

STE 

HRAP, V = 165 L, 
mixed, natural 
illumination, 31 to 
6°C; 7.8 to 9.3 pH 

- 18 46 NH4
+-N 2.1 95 

 
3.22 TP 0.59 84 

 
426 COD 90 78 [370] 

                 
Consortium of Chlorella, 
Nitzschia sp., Navicula sp., 
Stigeoclonium sp., ciliate, 
protozoa and bacteria 

PSW 
HRAP, V = 470 L, 
mixed, natural 
illumination, 23.7°C 

6 - 36 NH4
+-N 0.3 99 

 
- - - 

 
318 COD 64 80 [371] 

                 

Unspecified - algae and 
microorganisms 

PSW 
HRAP, mixed, natural 
illumination, 13 to 
19°C;7.4 to 8.9 pH 

8 - 51.2 TN 14 72 
 

8.5 TP 4.8 43 
 

260 COD 170 34 [372] 

                 
Micractinium pusillum, 
Desmodesmus communis, 
D. opliensis, Pediastrum 
boryanum, Actinastrum 
hantzshii, closterium and 
natural bacteria 

PSW 

HRAP (Spring), V = 
4375 m3, mixed, 
natural illumination, 
13°C; 9.7 pH 

7 - 22 NH4
+-N 4 79 

 
1.8 DRP 1.6 22 

 
- - - [373] 

                 

Prevalent organisms was 
Coelastrum amongst 
others 

USAB 
effluent 

HRAP, (Spring L-CO2) 
V = 9600 m3, mixed, 
natural illumination, 
7.9 to 8.1 pH 

7 - 48 NH4
+-N 2.9 94 

 
7.8PO4

3--P 3.2 58 
 

167 COD 63 62 [374] 
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Chlorophyta PSW 

Experiment 1, V = 15 
L, mixed, natural 
illumination, 23°C; 
7.5 pH 

4 16 29.1 DIN 15 48 
 

4.1 DRP 3.56 13 
 

- - - [295] 

COD, chemical oxygen demand; DIN, dissolved inorganic nitrogen; DRP, dissolved reactive phosphorous; NH4
+-N, ammonium-nitrogen, NO3-N, nitrate-nitrogen; PO4

3--P, phosphate-
phosphorous; TAN, total ammonia nitrogen; TC, total carbon; TDP, total dissolved phosphorous; TN, total nitrogen; TOC, total organic carbon; TP, total phosphorous. 

 



 

46 

In regards to N removal, the high efficiency recorded in the matrix-immobilised systems cannot be 

completely attributed to the function of the microalgae.  In part, the ionic interactions of the N cations 

and anions (i.e. NH4
+ and NO3

-) with the polymer used as the matrix would contribute to their reduction.  

For example, Fierro et al., (2008) [375] reported a higher inorganic N and P removal efficiency from 

synthetic wastewater by Scenedesmus sp. immobilised in chitosan (PO4-P: 94% and NO3-N: 70%) 

compared to that in a free-living suspended state (PO4-P: 20% and NO3-N: 30%).  Despite the vast 

difference in removal efficiency no statistical difference between the treatments was computed 

following the removal efficiencies adjustment of the immobilised treatment with the control treatment, 

chitosan beads only (without microalgae).  In the control experiment a 60% PO4-P and 20% NO3-N 

reduction was recorded, suggesting that the net removal efficiency contributed by microalgal 

assimilation was only 34% PO4-P and 50% NO3-N.  The higher PO4-P removal in the immobilised 

treatments was attributed to the release of calcium ions from the polymer that contributed to its 

precipitation rate [376].  The same effect was reported by Ruiz-Marin et al., (2010) [228] when 

comparing NH4
+-N and PO4-P removal from urban wastewater by both C. vulgaris and S. obliquus, with 

each microalga cultured either immobilised in sodium alginate or in free-living suspended state.  A 

higher NH4
+-N uptake rate and growth rate was recorded in the immobilised microalgae treatments, 

with S. obliquus more effective in removing the inorganic nutrients within the 2-day cultivation period. 
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Figure 2.5 – Treatment period versus remediation efficiency for A) Nitrogen and B) Phosphorus from data reported 
in the literature (Table 3) for independent microalgal treatment studies cultured either matrix immobilised (active), 
biofilm immobilised (passive), PBR suspended or HRAP suspended. 

 

The discrepancy in N and P removal efficiency between open and enclosed microalgal systems is mainly 

a result of the different environments that may form (i.e. nitrification and/or denitrification) and surface 

to volume ratios.  In a comparative study, Molinuevo-Salces et al., (2010) [377] assessed the 

performance of a microalgal consortium treatment in an anaerobically-digested swine slurry in an open 

HRAP and enclosed PBR.  Depuration of NH4
+-N was recorded in both bioreactor types; however, in the 
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open HRAP NH3 volatilisation was the dominant mechanism of removal, whereas in the enclosed PBR 

nitrification and denitrification became dominate.  A higher N concentration was recorded in the 

biomass of the enclosed PBR, but interestingly a higher P concentration was recorded in biomass of the 

open HRAP.  In a similar study, Arbib et al., (2013) [365] compared the treatment performance of a 

mesocosm HRAP (530 L) and airlift tubular-PBR (380 L) run in parallel under continuous operation fed 

with secondary treatment effluent.  A statistically significant average TN and TP removal efficiency was 

recorded in both systems with a respective 65% and 58% in the HRAP, and 89% and 86% in the tubular-

PBR over the course of the duration (157 days) of the treatment.  The majority of inorganic N and P 

removal was attributed to assimilation by the microalgae and other microorganisms in the wastewater, 

with only a small fraction through chemical volatilisation or precipitation. The main reason for the better 

efficiency in the tubular-PBR was the higher surface to volume ratio of the system, which facilitated a 

greater photosynthetic rate, and which in turn promoted higher growth of the microalgae.  Comparing 

both systems, a maximum suspended solids concentration of 733 mg L-1 was recorded in the tubular-

PBR, whereas an average 188 mg L-1 was recorded in the HRAP.  Furthermore, the input of atmospheric 

air to the tubular-PBR helped maintain a stable pH of the wastewater, with the elevated pH in the HRAP 

affecting the performance of the microalgae and other microorganism. 

 

Table 4 – Average N and P removal efficiency for the culturing conditions (data from studies in Table 3) 

Factor       No. of studies P % removal   N % removal 

Biofilm immobilised (passive) 
 

11 
 

77.4 
 

79.3 

Matrix immobilised  (active) 
 

8 
 

76.9 
 

94.4 

HRAP Suspended 
 

7 
 

47.4 
 

81.2 

PBR Suspended   13 
 

87.3 
 

82.9 

 

Following the evaluation of microalgae cultivation types, a suspended PBR-type system was selected as 

the cultivation system in the present work because of certain attributes which are desirable for a 

microalgae wastewater treatment system.  These attributes include: 1) effective in treating municipal 

wastewater in compliance to current or lower effluent standards; 2) low technology footprint 

requirement; 3) on average able to accomplish contaminant removal within a shorter treatment time 

compared to other systems; and 4) improved control over the culture condition.  Microalgae harvesting 

and downstream biomass application are beyond the scope of this thesis, but are discussed for further 

development. 
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Chapter 3 – Materials and Methods 

The materials and methods described in this chapter are standard analytical techniques common for the 

analysis of wastewater and microalgae.  Experimental designs are described in their respective chapters.  

Unless otherwise stated, all chemicals were of analytical grade and prepared in deionised water (18.2 

MΩ cm-1).  Samples and chemicals were prepared, diluted and stored in type A borosilicate glass, unless 

otherwise specified.  Weights measurements were recorded in grams (g) and volumes in millilitres (mL). 

3.1 Wastewater source 

PSW was obtained from Seafield Wastewater Treatment Plant located in Edinburgh, UK.  The facility 

treats predominantly domestic wastewater received via a combined sewage system from Edinburgh City 

and the surrounding areas.  The site treats an average flow of 283 million L a day, i.e. a PE of 

approximately 800,000, to comply with the standards set by the UWTD for BOD and COD of, 

respectively, 25 mg L-1 O2 and 125 mg L-1 O2 [14, 378].  The treatment process comprises 10 preliminary 

screens, 4 grit removal tanks, 4 primary settlement clarifiers and 4 plug flow secondary activated sludge 

lanes followed by 9 final settlement tanks before being discharged to the Firth of Forth via a long sea 

outflow (Mr. Skroblin of Veolia Ltd., personal communication). 

The samples were collected from the same primary settling tank effluent channel for all the 

experimental work.  The wastewater samples were grab samples taken on the same day that an 

experiment was to be commenced (around 8:00 am).  Once collected, the samples were taken directly 

to Heriot-Watt University where they were processed within two hours.  It should be noted that 

because sampling was conducted on different dates in order to accommodate the logistics of running 

experiments to test different parameters, the composition of the wastewater varied; this was addressed 

in the respective results chapters.  Unless stated otherwise in the respective results chapters, each 

wastewater batch was filtered through a Whatman 113 filter (Ø 90mm, pore size 30 μm, Whatman 

International Ltd., UK) as a pre-treatment step to provide consistency in turbidity between samples. 

3.2 Microalgae strains, medium and maintenance 

Chlorella vulgaris (CCAP 211/79), Heynigia riapria (CCAP 222/47) and Acutodesmus obliquus (SAG 276-1; 

formerly known as Scenedesmus obliquus) were used in the experiments for this thesis work.  All strains 

were non-axenic freshwater microalgae.  Manipulations of the stock cultures and seed cultures were 

carried out under sterile conditions in a biological laminar flow hood to limit the contamination of the 

cultures with other microorganisms. 

A modified version of Bold basal medium (BBM), adjusted to pH 7.2 was used as the maintenance 

medium.  To 800 mL deionised water, 1 mL of each micro nutrient solution (Table 5) and 10 mL of each 

macro nutrient solution (Table 6) were added and the volume made up to 1 L with deionised water after 

pH adjustment.  All glassware and medium was heat sterilised at 121°C for 15 minutes.  Stock cultures of 

100 mL were maintained in 250 mL Erlenmeyer flasks and grown statically with intermittent manual 
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shaking.  Routine serial sub-culturing was performed every 14 days by transferring 10% v/v of each 

strain to fresh BBM. 

For all experiments, seed cultures of the strains were grown for 7 days prior to use as inocula.  These 

were cultured in 350 mL BBM in 500 mL round borosilicate bottles, which were aerated continuously 

with atmospheric air through a sterile In-Line HEPA filter (Ø 53 mm, pore size ≥0.3 μm, Whatman 

International Ltd., UK) at a volumetric flow rate of 0.15 of air volume per volume of liquid per minute 

(V/Vm).  Environmental conditions were the same for both the stock cultures and the experimental runs 

– i.e. incubated at 15 ±1°C and at a 12:12 light-dark cycle (Fluora, Osram, Germany) with a photon flux of 

100 µE m-2 s-1 (US-SQS/L probe, Walz, Germany). 

 

Table 5 – Stock micro-nutrients for the preparation of BBM 

Solution Chemical Formula Concentration2 (g L-1) 

    

1 
Iron (II) sulphate FeSO4.7H2O 4.98 

Sulphuric acid >98% H2SO4 1 mL 

    

2 

Manganese (II) chloride MnCl2.4H2O 1.44 

Zinc sulphate ZnSO4.7H2O 8.82 

Cobalt (II) chloride CoCl2.6H2O 0.4 

Copper (II) sulphate CuSO4.5H2O 1.57 

Sodium molybdate NaMoO4.2H2O 1.18 

    

3 
EDTA salt EDTA 50 

Potassium hydroxide KOH 31 

    
4 Boric acid H3BO3 11.42 

    

5 

Vitamin B1 Thiamine-HCL 1.2 

Vitamin B7 Biotin 0.012 

Vitamin B12 Cyanocobalamin 0.01 
2Reagents were made in various volumes to the stated concentration; 1 mL of each stock solution was 
added to 1 L of BBM medium. 
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Table 6 – Stock macro-nutrients for the preparation of BBM 

Solution Chemical Formula Concentration1 (g L-1) 

1 Sodium Nitrate NaNO3 75 

2 Calcium chloride CaCl2.2H2O 2.5 

3 Magnesium sulphate MgSO4.7H2O 7.5 

4 Potassium hydrogenphosphate K2HPO4 7.5 

5 Potassium dihyrdogen phosphate KH2PO4 17.5 

6 Sodium chloride NaCl 2.5 

7 Sodium carbonate Na2CO3 2 

1Reagents were made in various volumes to the stated concentration; 10 mL of each stock solution was 
added to 1 L of BBM medium. 

 

3.3 Analysis of Inorganics 

Ammonia, nitrite, nitrate and phosphate analyses were performed following the methods described in 

Standard Methods for the Examination of Water and Wastewater [379].  These methods were modified 

to accommodate the analysis of smaller sample volumes – 5 mL instead of 25 mL – without affecting the 

chemistry of the reactions.  Prior to analysis, all samples were centrifuged at 3500xg for 10 minutes 

(Heraeus Multifuge 3S) to minimise optical interference from either the microalgae or particular matter.  

Absorbance was measured on a Genesys 20 spectrophotometer with a 1 cm light path (Thermo 

Scientific, UK). 

For each inorganic compound, a calibration graph of known concentrations versus their respective 

absorbances was plotted.  The resultant calibration graphs followed a linear regression model (Equation 

1) with the intensity of the reaction colour formed correlating to the concentration of the analyte.  Thus, 

once the absorbance intensity (𝑦) of the sample was known, the unknown analyte concentration (𝑥) 

was calculated by inverting the linear equation 1 (i.e. Equation 2).  Within the calibration range, the 

amount of analyte was the limiting factor in the reaction.  Any experimental sample out of the range of 

absorbance (>1 Abs units) was diluted with deionised water prior to reagent addition and the dilution 

factor included in the final calculation. 

𝑦 = 𝑚𝑥 + 𝑐                 (1) 

𝑥 =
𝑦−𝑐

𝑚
                  (2) 

where 𝑦 is the measured absorbance intensity, 𝑥 the concentration of analyte, 𝑚 the slope and 𝑐 the 𝑦-

intercept of the line of regression. 
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3.3.1 Validation 

The trueness of the calibration graphs and standard deviations of the regression equation were 

calculated following the guidelines described in Miller and Miller (2010).  The correlation coefficient, R, 

was calculated to assess the degree of correlation between 𝑥 and 𝑦, and the manner of their 

dependency (Equation 3). 

𝑅 =
∑[(𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)]

√[∑(𝑥𝑖−𝑥̅)2][∑(𝑦𝑖−𝑦̅)2]
                 (3) 

where ∑ is the sum of the measured values, 𝑥𝑖 and 𝑦𝑖 the individual values of analyte concentration and 

absorbance respectively, 𝑥̅ the mean of all the 𝑥-values, and 𝑦 the mean of all the 𝑦-values. 

A t-test was used to validate the relationship between the dependent 𝑦 variable (absorbance) and the 

independent 𝑥 variable (concentration) as linear (Equation 4).  The calculated t value (tCAL) was 

compared to the critical t value (tCRI) with a significance level of 99% at 𝑛-2 degrees of freedom – t table 

from Emden (2008).  The null hypothesis, which states there is no significant linear relationship between 

the independent and dependent variable as the slope equals 0, is rejected if tCAL is greater than tCRI, thus 

confirming linearity. 

𝑡 =
𝑅√𝑛−2

√1−𝑅2
                  (4) 

The standard deviation of the regression (SDy/x), which estimates the error in the 𝑦-direction as 

residuals, was calculated by equation 5, and the standard error of the slope (SDm) and intercept (SDc) by 

equation 6 and 7 respectively.  The error of the calculated concentration (Sxo) was determined by 

equation 8, where 𝑣 is number of replicate readings.  

SDy/x = √
∑(𝑦𝑖−𝑦̂)2

𝑛−2
                 (5) 

SDm =
SDy/x

√∑(𝑥𝑖−𝑥̅)2
                  (6) 

SDc = SDy/x √
∑ 𝑥𝑖2

𝑛 ∑(𝑥𝑖−𝑥̅)2                 (7) 

Sxo =
𝑆y/x

𝑚
 √

1

𝑣
+

1

𝑛
+

(𝑦𝑖−𝑦̅)2

𝑐2 ∑(𝑥𝑖−𝑥̅)2                (8) 

The confidence interval (CI) at 99% at 𝑛-2 degrees of freedom for the slope and intercept were 

calculated by equation 9. 

CI = 𝑡CRI SDm or SDc                (9) 

The limit of detection (LOD) is classed as the analyte concentration giving a signal equal to the blank 

signal (yB) plus three standard deviations of the blank (SB) (Equation 10).  In this equation SB is 

substituted with Sy/x as it is assumed each point, including the blank, has an equal variation in 
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distribution represented by the standard deviation of the regression (residuals) calculated as Sy/x.  

Additionally, the blank signal, which corresponds to the absorbance of the reagents without analyte is 

estimated as the calculated intercept, 𝑐. 

LOD = 𝑐 + 3Sy/x                (10) 

Each day of analysis for each inorganic compound, three standards and a sample of deionised water as 

the blank were treated in parallel to experimental samples to check reagent performance and precision. 

3.3.2 Reporting of inorganic compound concentration 

The concentration of each inorganic compound in the calibration and sample was recorded as the 

concentration of the element of interest in the compound.  For example, NO3-N refers to the 

concentration of N within the NO3 compound.  The method for the analysis of each inorganic compound 

is described below 

3.3.3 Ammonia - Nitrogen 

Ammonia was determined by the Phenate reaction with no preliminary distillation step, which was in 

compliance with the standard method 4500-NH3.F.  The concentration of NH3-N is measured based on 

the intensity of indophenol, a blue compound formed by the reaction of NH3 with phenol and 

hypochlorite as catalysed by sodium nitroprusside (Berthelot reaction) (Searle, 1984; Park et al., 2009).  

In the sample, an alkaline environment is formed which allows NH3 to react with sodium hypochlorite to 

form monochloramine.  This reacts with phenol to form the intermediate p-benzoquinone chloramine 

before reacting with a further phenol molecule to form an indophenol dye.  The reagents for this 

reaction were prepared as listed in Table 7 and were stable for three months at 4°C. 

Calibration standards were prepared from a commercial 100 mg L-1 NH3-N stock standard (Hach, UK).  A 

working 1 mg L-1 NH3-N standard was made by diluting 1 mL of the stock standard in a final volume of 

100 mL deionised water.  Calibration standards in the range of 1 to 0.025 mg L-1 NH3-N were diluted 

from this solution. 

 

Table 7 – Ammonia reagents 

Reagent Chemical Formula In 500 mL 

NH3.R1 
Phenol C6H6O 15 g 

Sodium nitroprusside Na2[Fe(CN)5NO] 0.015 g 

    

NH3.R2 
Sodium Hydroxide NaOH 10 g 

Sodium hypochlorite solution (12%) NaOCl 4 mL 

 

For analysis, 0.5 mL NH3.R1 and 0.5 mL NH3.R2 reagent were added to a 5 mL sample and the mixture 

vortexed.  Each reaction was carried out in a 12-mL test tube, which was sealed after mixing and left in 
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the dark between 22 to 27 °C for at least one hour for colour development.  Absorbance intensity of the 

indophenol was measured at 635 nm.  The final concentration of the sample was calculated using 

equation 11, which was derived from the calibration data (Figure 3.1, Table 8). 

𝑥 =
𝐴𝑏𝑠635−0.0331

1.1433
                (11) 

where 𝑥 is the concentration (mg L-1), Abs635 the absorbance of the sample at 635 nm, 1.1433 the slope 

of the line of best fit, and 0.0331 the intercept of the line. 
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Figure 3.1 – Ammonia-Nitrogen calibration graph.  Absorbance readings are mean ±SD, n = 14 (4 for concentration 
0.025 mg L-1 NH3-N) independent samples for each concentration.  The dotted line represents the ±99% confidence 
interval for the regression line. 

Table 8 – Ammonia calibration data 

Definition Value 

Number of samples, n 102 

Regression coefficient, R 0.9957 

Slope (m) ± standard error (SDm) 1.1433 ± 0.0106 

Intercept (c) ± standard error (SDc) 0.0331 ± 0.0058 

Residual standard deviation, SDy/x 0.0364 

tCRI 107.87 

tCAL 2.6259 

Linearity significant Yes 

Measurement LOD (Abs at 635nm) 0.142 

Concentration LOD (mg L-1) 0.096 



 

54 

3.3.4 Nitrite - Nitrogen 

Nitrite was determined by the Diazotization reaction described in method SM 4500-NO2
-.B in which an 

azo dye is formed in proportion to the amount of NO2 present.  Nitrite reacts with sulphanilamide at pH 

2 to 2.5 to form a diazonium cation which couples with N-(1-napthyl)-ethylenediamine dihydrochloride 

(NED dihydrochloride) to produce a red-purple azo dye (modified Griess reaction) [383].  The reagents 

for this reaction were prepared as listed in Table 9 and were stable for one month when stored in the 

dark at 4°C. 

Calibration standards were prepared from a 100 mg L-1 NO2-N stock standard, which was made using 

sodium nitrite (NaNO2).  In a 1 L volumetric flask, 0.49243 g NaNO2 was added to approximately 200 mL 

deionised water and, once dissolved, the remaining volume made up to 1 L.  The stock standard was 

stored at 4°C and was stable for one week.  A working 1 mg L-1 NO2-N standard was made by diluting 1 

mL of the stock standard in a final volume of 100 mL deionised water.  Calibration standards in the range 

of 0.6 to 0.0125 mg L-1 NO2-N were diluted from this solution. 

 

Table 9 – Nitrite reagents 

Reagent Chemical Formula In 100 mL 

NO2.R1 Sulphanilamide H2NC6H4SO2NH2 1 g 

 
Hydrochloric acid HCl (37%) 10 mL 

NO2.R2 NED dihydrochloride C10H7NHCH2CH2NH2.2HCl 1 g 

 

For analysis, 0.1 mL NO2.R1 and 0.1 mL NO2.R2 reagent were added to a 5 mL sample and the mixture 

vortexed.  Colour development was left to proceed for a minimum of 20 minutes at room temperature.  

Absorbance intensity of the azo dye was measured at 543 nm.  The final concentration of the sample 

was calculated using equation 12, which was derived from the calibration data (Figure 3.2 and Table 10). 

𝑥 =
𝐴𝑏𝑠543−0.0191

3.3378
                (12) 

where 𝑥 is the concentration (mg L-1), Abs543 the absorbance of the sample at 543 nm, 3.3378 the slope 

of the line of best fit, and 0.0191 the intercept of the line. 
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Figure 3.2 – Nitrite-Nitrogen calibration graph.  Absorbance readings are mean ±SD, n = 14 for all concentration 
with the exception of 0.0125 mg L-1 NO2-N where n = 9, independent samples for each concentration.  The dotted 
line represents the ±99% confidence interval for the regression line. 

 

Table 10 – Nitrite calibration data 

Definition Value 

Number of samples, n 93 

Regression coefficient, R 0.9993 

Slope (m) ± standard error (SDm) 3.3378 ± 0.0128 

Intercept (c) ± standard error (SDc) 0.0191 ± 0.0038 

Residual standard deviation, SDy/x 0.0266 

tCRI 2.631 

tCAL 260.88 

Linearity significant Yes 

Measurement LOD (Abs at 543 nm) 0.099 

Concentration LOD (mg L-1) 0.024 
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3.3.5 Nitrate - Nitrogen 

Nitrate was determined by the formation of an azo dye using the reserved Hydrazine reduction reaction 

method SM 4500-NO3
-.G.  Nitrate is reduced to NO2 by hydrazine sulphate catalysed by copper ions 

[383, 384].  Zinc ions are present to limit the formation and precipitation of copper oxide or hydroxide in 

the alkaline condition of the reaction, and to minimise the copper complexing with organic matter.  The 

formed nitrite is then determined following the diazotization reaction through the addition of a colour 

reagent.  The determined concentration of nitrate in the sample includes the fraction of nitrite which 

was present before reduction.  To discriminate between the two compounds, the nitrate concentration 

in the sample is calculated as follows (Equation 13): 

[NO3-N]A = [NO3-N]I − [NO2-N]              (13) 

where [NO3-N]A is the actual nitrate concentration, [NO3-N]I is the measured concentration, and [NO2-N] 

the nitrite concentration measured directly from the Diazotization method in section 3.3.5.  The 

reagents for the reducing reaction were prepared as listed in table 11, which were stable at room 

temperature, and the colour reagent listed in table 12, stable for one month when stored in the dark at 

4°C. 

Calibration standards were prepared from a commercial 100 mg L-1 NO3-N stock standard (Hach, UK).  A 

working 1 mg L-1 NO3-N standard was made by diluting 1 mL of the stock standard in a final volume of 

100 mL deionised water.  Calibration standards in the range of 1 to 0.05 mg L-1 NO3-N were diluted from 

this solution. 

 

Table 11 –Reducing reagents 

Reagents Chemical Formula In 100 mL 

NO3.R1 Hydrazine sulphate NH2NH2.H2SO4 2.7 g 

NO3.R2 Copper sulphate CuSO4.5H2O 0.25 g 

NO3.R3 Zinc sulphate ZnSO4.7H2O 5.3 g 

NO3.R4 Sodium hydroxide NaOH 10 g 

 

Table 12 –Colour reagent 

Reagent Chemical Formula In 100 mL 

Colour reagent Orthophosphoric acid H3PO4 (>85%) 20 mL 

 
Sulphanilamide H2NC6H4SO2NH2 1 g 

 
NED dihydrochloride C10H7NHCH2CH2NH2.2HCl 0.08 g 

 

The reducing reagent was prepared fresh when required.  In a 20-mL test tube, 13.7 mL deionised water, 

5 mL NO3.R1, 0.750 mL NO3.R2 and 0.550 mL NO3.R3 were thoroughly mixed.  The solution was kept 

sealed until subsequent use in order to minimise hydrazine loss by oxidation.  For analysis, 0.730 mL 
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NO3.R4 reagent was added to a 5 mL sample and vortexed, followed by the addition of 0.420 mL 

reducing reagent.  The mixture was then vortexed and the reaction left standing to proceed for 10 

minutes.  A 0.730 mL volume of the combined colour reagent was then added and the sample vortexed 

again.  Colour development was left to proceed for a minimum of 30 minutes.  Absorbance intensity of 

the azo dye was measured at 535 nm.  The final concentration of the sample was calculated using 

equation 14, which was derived from the calibration data (Figure 3.3 and Table 13). 

𝑥 =
𝐴𝑏𝑠535+0.0297

0.9579
                (14) 

where 𝑥 is the concentration (mg L-1), Abs535 the absorbance of the sample at 535 nm, 0.9579 the slope 

of the line of best fit, and 0.0297 the intercept of the line. 
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Figure 3.3 – Nitrate-Nitrogen calibration graph.  Absorbance readings are mean ±SD, n = 10 for all concentration 
with the exception of 0.05 mg L-1 NO3-N where n = 9, independent samples for each concentration.  The dotted line 
represents the ±99% confidence interval for the regression line. 
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Table 13 – Nitrate calibration data 

Definition Value 

Number of samples, n 69 

Regression coefficient, R 0.9972 

Slope (m) ± standard error (SDm) 0.9579 ± 0.0088 

Intercept (c) ± standard error (SDc) -0.0297 ± 0.0029 

Residual standard deviation, SDy/x 0.0147 

tCRI 2.6512 

tCAL 109.15 

Linearity significant Yes 

Measurement LOD (Abs at 535 nm) 0.014 

Concentration LOD (mg L-1) 0.046 

 

3.3.6 Total Nitrogen 

Total nitrogen includes the organic and inorganic bound N.  Analysis was performed using Hach test kit 

LCK238, following the manufacture’s guidelines with readings recorded on a DR1900 spectrophotometer 

(Hach, Loveland, CO, USA). 

3.3.7 Phosphate - Phosphorus 

Phosphate was determined by the Ascorbic acid reaction method SM 4500-P.E, which without any 

preliminary steps determines SRP.  The concentration of SRP is measured based on the intensity of the 

formed phosphomolybdenum blue complex.  The reaction proceeds with ammonium molybdate 

reacting with orthophosphate in acid conditions (pH <2) as catalysed by potassium antimony tartrate to 

form 12-phosphomolybdic acid (McKelvie et al., 1995).  The complex is reduced by ascorbic acid to an 

intensely blue coloured phosphomolybdenum complex.  The reagents for this reaction were prepared as 

listed in table 14 and were stable for one month at room temperature. 

Calibration standards were prepared from a 150 mg L-1 PO4-P stock standard, which was made using 

potassium dihydrogen orthophosphate (KH2PO4).  KH2PO4 was first oven dried at 105°C overnight and 

cooled in a desiccator.  In a 1 L volumetric flask, 0.65913 g KH2PO4 was added to approximately 200 mL 

deionised water and, once dissolved, the remaining volume made up to 1 L.  The stock standard was 

stable for 1 week when stored at 4°C.  A working 1.5 mg L-1 PO4-P standard was made by diluting 1 mL of 

the stock standard in a final volume of 100 mL deionised water.  Calibration standards in the range of 

1.2 to 0.0375 mg L-1 PO4-P were diluted from this solution. 
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Table 14 – Phosphate reagents 

Reagents Chemical Formula In 100 mL 

PO4.R1 Ammonium molybdate (NH4)6Mo7O24.4H2O 4 g 

PO4.R2 Potassium antimony tartrate C8H4K2O12Sb2.3H2O 0.274 g 

PO4.R3 Sulphuric acid H2SO4 (>95%) 14 mL 

 

The colour reagent was only stable for a maximum of 4 hours and therefore prepared fresh when 

required.  In a 50-mL Falcon tube, 9 mL deionised water, 4.5 mL PO4.R1, 1.5 mL PO4.R2, 15 mL PO4.R3 

and 0.180 g ascorbic acid (C6H8O6) were mixed.  For analysis, 1 mL colour reagent was added to a 5 mL 

sample and vortexed.  Colour development was left to proceed for 30 minutes.  Absorbance intensity 

was measured at 882 nm.  The final concentration of the sample was calculated using equation 15, 

which was derived from the calibration data (Figure 3.4 and Table 15). 

𝑥 =
𝐴𝑏𝑠882+0.0105

0.5523
                (15) 

where 𝑥 is the concentration (mg L-1), Abs882 the absorbance of the sample at 882 nm,  0.5523 the slope 

of the line of best fit, and 0.0105 the intercept of the line. 
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Figure 3.4 – Phosphate-Phosphorous calibration graph.  Absorbance readings are mean ±SD, n = 17 independent 
samples for each concentration.  The dotted line represents the ±99% confidence interval for the regression line. 
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Table 15 – Phosphate calibration data 

Definition Value 

Number of samples, n 119 

Regression coefficient, R 0.9996 

Slope (m) ± standard error (SDm) 0.5523 ± 0.0014 

Intercept (c) ± standard error (SDc) -0.0105 ± 0.0001 

Residual standard deviation, SDy/x 0.0063 

tCRI 2.6185 

tCAL 398.66 

Linearity significant Yes 

Measurement LOD (Abs at 882 nm) 0.008 

Concentration LOD (mg L-1) 0.034 

 

3.3.8 Total Phosphorus 

Total phosphorus includes the organic and inorganic bound P in the sample which is measured as SRP 

once digested with potassium persulphate (K2S2O8).  To a 16 mm Ø borosilicate glass tube, 0.1 g K2S2O8 

was added followed by 5 mL sample and 0.1 mL 30% v/v H2SO4 (made from >98% H2SO4).  The tube was 

sealed with Teflon lined caps and the sample digested at 148°C for 30 minutes.  Once cooled, 0.4 mL 

10% w/v NaOH solution was added and the sample vortexed.  Thereafter, SRP was analysed in the 

sample by the Ascorbic acid method detailed in section 3.3.8.  Calibration standards for TP were 

prepared in the same way as described for SRP in section 3.3.8. The final concentration of the sample 

was calculated using equation 16, which was derived from the calibration data (Figure 3.5 and Table 16). 

𝑥 =
𝐴𝑏𝑠882+0.0059

0.4895
                (16) 

where 𝑥 the concentration (mg L-1), Abs882 the absorbance of the sample at 882nm, 0.4895 the slope of 

the line of best fit, and 0.0059 the intercept of the line. 
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Figure 3.5 – Total phosphorus calibration graph.  Absorbance readings are mean ±SD, n = 8 independent samples for 
each concentration.  The dotted line represents the ±99% confidence interval for the regression line. 

 

 

Table 16 – Total phosphorus calibration data 

Definition Value 

Number of samples, n 55 

Regression coefficient, R 0.9971 

Slope (m) ± standard error (SDm) 0.4895 ± 0.0051 

Intercept (c) ± standard error (SDc) -0.0059 ± 0.0043 

Residual standard deviation, SDy/x 0.0192 

tCRI 2.6718 

tCAL 96.04 

Linearity significant Yes 

Measurement LOD (Abs at 543 nm) 0.052 

Concentration LOD (mg L-1) 0.118 
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3.4 Total carbohydrate analysis 

The amount of carbohydrate in the experimental sample was quantified using the phenol-sulphuric acid 

method of DuBois et al., (1956).  Samples were centrifuged (15,000xg; 5 min) prior to analysis.  Briefly, 

0.5 mL samples were each mixed with 0.25 mL of 5% w/v phenol solution in a test tube, then 1.5 mL of 

>98% sulphuric acid was added.  The mixture was vortexed vigorously and then allowed to stand for 10 

minutes prior to spectrophotometric measurement at 490 nm. Each day the analysis was performed, a 

standards using D-glucose between the ranges of 10 to 100 mg L-1 were included.  The final 

concentration of the sample was calculated using equation 17, which was derived from the calibration 

data (Figure 3.6 and Table 17). 

𝑥 =
𝐴𝑏𝑠490−0.0098

0.0124
                (17) 

where 𝑥 the concentration (mg L-1), Abs490 the absorbance of the sample at 490 nm, 0.0124 the slope of 

the line of best fit, and 0.0098 the intercept of the line. 
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Figure 3.6 – Total carbohydrate calibration graph.  Absorbance readings are mean ±SD, n = 10 independent samples 
for each concentration.  The dotted line represents the ±99% confidence interval for the regression line. 
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Table 17 – Total carbohydrate calibration data 

Definition Value 

Number of samples, n 60 

Regression coefficient, R 0.9953 

Slope (m) ± standard error (SDm) 0.0124 ± 0.0002 

Intercept (c) ± standard error (SDc) 0.0098 ± 0.0096 

Residual standard deviation, SDy/x 0.0392 

tCRI 2.6633 

tCAL 77.91 

Linearity significant Yes 

Measurement LOD (Abs at 543 nm) 0.127 

Concentration LOD (mg L-1) 9.467 

 

3.5 Chemical Oxygen Demand 

Chemical oxygen demand measures the oxidation potential of a sample expressed in terms of oxygen 

equivalence as mg L-1 O2, which is the mass of O2 consumed per L of solution.  The COD test is an 

empirical test used as an index of municipal waste pollution, thus making it an important parameter in 

wastewater treatment.  It is an indication of how stable a particular waste solution is in terms of 

whether it will exert a harmful O2-demand on the environment it is released into.  Additionally, since it is 

a chemical reaction it is not subject to inhibition by toxic compounds that are known to affect tests that 

are biochemically based, such as for example the biological oxygen demand test. 

Under high temperature and acidic conditions, a known excess quantity of the oxidant dichromate 

(Cr2O7
2-) reacts with the sample matter, thereby becoming reduced to chromic acid (Cr3+).  The 

stoichiometry of the reaction allows for the quantity of unreduced dichromate to be determined by 

titration with a known concentration of iron (II) ammonium sulphate solution, thus the amount of 

oxidant consumed to be quantified providing the O2-demand of the material in the sample.  Both 

organic and inorganic compounds in a sample are susceptible to oxidation, although appreciably organic 

material is the predominant substrate of the reaction. 

The analysis was performed using the mercury-free, small-scale reflux digestion procedure described 

and approved by the [387].  The choosing of this procedure was to avoid exposure to mercury (II) 

sulphate, which is used in the Standard Methods for the Examination of Water and Wastewater because 

of its toxic nature [379].  In the mercury-free method, chromium (III) potassium sulphate and an excess 

of silver nitrate are added as substitutes to suppress chlorine and ammonium ions, which interfere with 

the reaction.  The reagents for the procedure are listed in table 18. 
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Table 18 – Chemical oxygen demand reagents 

Reagent Chemical Formula Concentration3 (g L-1) 

COD.R1 Silver nitrate AgNO3 1200 

COD.R2 Chromium (III) potassium sulphate KCr(SO4)2.12H2O 250 

COD.R3 Iron (II) ammonium sulphate (NH4)2Fe(SO4)2.6H2O 9.8 

COD.R4 Potassium dichromate K2Cr2O7 6.129 

COD.R5 Silver sulphate in sulphuric acid (commercial) Ag2SO4, >98% acid 10 (in acid) 
3Reagents were made in various volumes to the stated concentration. 

 

Four blank samples of deionised water and standards (in triplicate) were prepared and digested in 

parallel when analysing any experimental sample to verify the reagents and procedure of the method.  

Glucose was used as the reference material and its theoretical COD (CODt) calculated by equation 18: 

CODt, CxHyOz = 8(4𝑎 + 𝑏 − 2𝑐)/(12𝑎 + 𝑏 + 16𝑐)           (18) 

where 𝑎 is the number of carbon atoms, 𝑏 the number of hydrogen atoms, and 𝑐 the number of oxygen 

atoms in the organic compound.  Thus, 1 g L-1 of glucose (C6H12O6) solution has a CODt of 1.067 g L-1 O2 

when completely oxidised.  Prior to use with samples, a series of standards (50, 100, 200 and 300 mg L-1 

O2) diluted from 1000 mg L-1 O2 stock standard (0.93720 g L-1 glucose, previously dried at 105°C) were 

run to establish the method (Figure 3.7).  For each digestion, a fresh COD stock standard was made.  The 

range of detection for the method was between 9 to 400 mg L-1 O2, with 1 mL 0.025 M iron (II) 

ammonium sulphate solution corresponding to 100 mg L-1 O2. 
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Figure 3.7 – Theoretical Chemical Oxygen Demand (x-axis) plotted against the experimental Chemical Oxygen 
Demand concentration (y-axis) from the method.  Values are mean ±SD; n = 9 for each concentration; R = 0.9999.  
The dotted line represents the ±99% confidence interval for the regression line. 
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All experimental samples were filtered through a non-sterile 0.45 µm cellulose acetate filter (Whatman 

International Ltd., UK) prior to digestion in order to analyse for the soluble oxidising fractions only 

(CODS).  For analysis, a 2 mL sample was mixed with 0.1 mL COD.R1, placed into a digestion tube (16 mm 

Ø, borosilicate glass with Teflon caps), and left to stand for two minutes.  The following was then carried 

out in a fume hood: to the digestion tube, 0.1 mL COD.R2 was added followed with 1 mL COD.R4 and 3 

mL COD.R5.  The digestion tube was gently vortexed for 30 seconds allowing any evolved gas to escape 

through the loose cap.  With caps sealed, samples and blanks were placed in a COD heating block at 

148°C for 2 hours. 

Once cold, a sample (or blank) was poured into a 50-mL conical flask.  In order to recover all of the 

sample volume in the tube, 10 mL deionised water was added to the digestion tube, capped, shaken and 

the solution added to the conical flask.  One drop (using a glass Pasteur pipette) of Ferroin indicator was 

added and the sample titrated with 0.025 M iron (II) ammonium sulphate solution (i.e. COD.R3).  The 

colour of Ferroin indicator changes sharply from blue-green (Fe2+) to copper-red (Fe3+) at the end point 

of the titration.  The residual dichromate in the analyte was dependent on the volume of titrant 

necessary for the colour change, allowing the COD to be calculated using equation 19. 

COD as mg L-1 O2 = (4000𝑀(𝑉b − 𝑉s))𝐷𝐹             (19) 

where Vb is the volume (mL) of titrant reacted with the blank samples, Vs the volume of titrant reacted 

with the samples, 4000 a constant, DF the dilution factor, and M the molarity of the standardised iron 

(II) ammonium sulphate solution. 

For the standardisation of the iron (II) ammonium sulphate solution, 10 mL of >98% sulphuric acid was 

added to 50 mL of deionised water in a 200-mL conical flask.  The mixture was left to cool prior to 

addition of 5 mL of 0.02083 M potassium dichromate (COD.R4 reagent) and two drops of Ferroin 

indicator.  The solution was titrated with the iron (II) ammonium sulphate solution (COD.R3) and the 

volume necessary to reach the end point recorded.  The molarity of the iron (II) ammonium sulphate 

solution was calculated by equation 20, where V is the volume used. 

𝑀 = 5/(8𝑉)               (20) 

3.6 Cleaning procedure 

All glass necessary for the analysis of inorganics, COD and total carbohydrate was acid washed prior to 

use.  For the analysis of inorganics and total carbohydrate, all glassware was washed in a 50% v/v HCl 

solution (made from 37% HCl), and borosilicate tubes for COD were washed in a 50% v/v HNO3 solution 

(made from 70% HNO3).  For this, all glassware was submerged in the respective acid solution, allowed 

to stand for 30 minutes and then rinsed 3 times with deionised water.  Sampling bottles for wastewater 

were washed with 1% v/v HCl for 30 minutes and rinsed with deionised water. 
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3.7 Total suspended solids 

Whatman GF/C filters (Ø 25 mm, pore size = 1.2 μm, Whatman International, Ltd, UK) were used to 

determine the biomass dry weight as total suspended solids (TSS).  Prior to use, each filter was washed 

and dried at 105°C for a minimum of 6 hours, and then placed in a desiccator to cool before being 

weighed.  For sample analysis, a filter was placed onto the filtration unit and pre-wetted with deionised 

water.  A recorded volume of sample was added under a constant vacuum.  The filter was rinsed with 

deionised water, dried (105°C) and allowed to cool before being weighed.  Each sample was measured 

in triplicate.  The biomass dry weight was calculated using equation 21, which determined the difference 

between the final weight (WF) and initial weight (WI) of the filter and concentration recorded as g L-1. 

TSS g L-1 = ((𝑊F − 𝑊I) x 1000) / 𝑆𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (mL)           (21) 

3.8 Microalgae biomass dry-weight measurement 

Each experiment was inoculated with a microalgae biomass dry weight of 0.1 g L-1.  A calibration graph 

of known weight concentrations versus their respective absorbance measurements was plotted for each 

micro-algal species.  The biomass dry weight was determined following the procedure outlined in 

section 2.7.  The calibration graphs are shown in Figure 3.8, 3.9 and 3.10, and calibration data in Table 

19, 20 and 21, for C. vulgaris, H. riparia and A. obliquus, respectively. 

 

0 .0 0 .2 0 .4 0 .6

0 .0

0 .5

1 .0

1 .5

2 .0

W e ig h t  (g  L
- 1

)

A
b

s
o

rb
a

n
c

e
 a

t 
6

8
0

 n
m

 

Figure 3.8 – Chlorella  vulgaris calibration graph.  Absorbance readings are mean ±SD, n = 18.  The dotted line 
represents the ±99% confidence interval for the regression line. 
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Table 19 – C. vulgaris calibration data 

Definition Value 

Number of samples, n 18 

Regression coefficient, R 0.9997 

Slope (m) ± standard error (SDm) 3.0961 ± 0.0203 

Intercept (c) ± standard error (SDc) 0.0021 ± 0.0043 

Residual standard deviation, SDy/x 0.0147 

tCRI 2.9208 

tCAL 152.38 

Linearity significant Yes 

Measurement LOD (Abs at 543 nm) 0.046 

Concentration LOD (mg L-1) 0.014 
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Figure 3.9 – Heynigia riparia calibration graph.  Absorbance readings are mean ±SD, n = 24.  The dotted line 
represents the ±99% confidence interval for the regression line. 
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Table 20 – H. riparia calibration data 

Definition Value 

Number of samples, n 24 

Regression coefficient, R 0.9989 

Slope (m) ± standard error (SDm) 1.8729 ± 0.0185 

Intercept (c) ± standard error (SDc) 0.0066 ± 0.0027 

Residual standard deviation, SDy/x 0.0089 

tCRI 2.8188 

tCAL 100.98 

Linearity significant Yes 

Measurement LOD (Abs at 543 nm) 0.033 

Concentration LOD (mg L-1) 0.014 
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Figure 3.10 – Acutodesmus obliquus calibration graph.  Absorbance readings are mean ±SD, n = 24.  The dotted line 
represents the ±99% confidence interval for the regression line. 
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Table 21 – A. obliquus calibration data 

Definition Value 

Number of samples, n 21 

Regression coefficient, R 0.9998 

Slope (m) ± standard error (SDm) 2.5682 ± 0.0127 

Intercept (c) ± standard error (SDc) 0.0048 ± 0.0024 

Residual standard deviation, SDy/x 0.0085 

tCRI 2.8609 

tCAL 202.53 

Linearity significant Yes 

Measurement LOD (Abs at 543 nm) 0.03 

Concentration LOD (mg L-1) 0.01 

 

3.9 Cell counts 

The concentration of microalgal cells in liquid was determined by direct counting using a Neubauer 

improved haemocytometer with a depth of 0.1 mm.  Samples were agitated to ensure the microalgae 

were homogenous prior to taking an aliquot and transferring to a Micro tube (1.5 mL).  When necessary, 

the samples were diluted with deionised water to obtain a cell concentration range that could be 

counted.  To each cell suspension used for counting, Lugols solution (to 0.1% v/v final concentration) 

was added and the mixture allowed to stand for approximately one hour.  The treated suspensions were 

then thoroughly mixed and the cells counted and concentrations recorded as cells mL-1. 

Cell mL-1 = (𝑥 10000)DF              (22) 

where 𝑥 the number of cells counted per square (1 mm x 1 mm), 10,000 the conversion factor from 

mm3 to mL, and DF the dilution factor. 

3.10 pH 

The pH was measured with a HI1230 pH probe and HI8424 meter (Hanna Instruments Inc., UK).  Prior to 

use, the apparatus was calibrated with pH 7.02 (HI7007) and 10.02 (HI7010) commercial buffers.  

Sample measurements were performed in the same tube that the sample was collected; the electrode 

probe was rinsed with distilled water before and between measurements.  Under constant gentle 

mixing, readings were taken after they were observed to have stabilised. 

3.11 Dissolved Oxygen 

Dissolved oxygen (DO) was measured with the luminescent DO probe, LDO101 and HD40q meter (Hach, 

UK) with results reported as mg L-1 O2.  Measurements were performed in the same tube that the 

sample was collected; with the probe rinsed with deionised water before and between measurements.  

Under constant gentle mixing, readings were taken after they were observed to have stabilised. 
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The probe was calibrated in 100% water-saturated air.  This was performed by filling a BOD bottle with 

approximately 1/3 distilled water, shaking it for 30 seconds to saturate the entrapped air and allowing 

the contents to equilibrate for 30 minutes.  The bottle stopper was removed and the probe inserted to 

the centre of the bottle and allowed to calibrate following the meter’s displayed guide.  The meter 

automatically adjusts for barometric pressure and temperature, while conductivity was entered 

manually. 
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Chapter 4 – Preliminary evaluation of microalga to treat settled municipal wastewater effluent 

4.1 Introduction 

Microalgae are ubiquitous to wastewater environments indicating that the nutrient concentration and 

composition as a suitable medium for growth [129, 388].  Despite their abundance, however, 

experimental evidence from microalgae wastewater treatment studies reported in the literature 

highlight an extreme variation in COD, N and P remediation between studies (see references in Table 4).  

The main factors affecting treatment performance are reported to be the choice of microalgal species, 

wastewater composition and cultivation conditions.  In this context, selection of a microalgal species for 

wastewater treatment from the literature for another wastewater source cannot be made conclusively 

on the reported values alone because of the variable nature of the wastewater between studies and 

cultivation conditions.  Even wastewater from the same treatment plant will vary between seasons, let 

alone from one day to the next. 

Several studies to date have screened a vast number of microalgae for their wastewater remediation 

potential and growth in different municipal wastewater streams [214, 389–393].  Microalgae belonging 

to the genera Chlorella and Scenedesmus are described as the best performing species because of their 

consistent high N and P remediation efficiencies and growth rate.  The reasons for the dominance of 

these genera in wastewater treatment has been accredited to their robustness, tolerance and quick 

acclimation under varying environmental factors (i.e. temperature, pH, microbial community etc.) 

compared to other species, but also the ease in which they are cultured [390, 394, 395].  However, both 

Chlorella and Scenedesmus genera are extremely diverse with certain species exhibiting a better 

wastewater treatment performance than others.  For example, Bohutskyi et al., (2015) [393] reported 

on the TN and TP removal efficiency and growth of multiple microalgae species in municipal wastewater 

from different streams (i.e. primary, secondary and centrate), including 14 Chlorella spp. and 4 

Scenedesmus spp.  The results of this study demonstrated the suitability of the strains C. sorokiniana 

CCTCC M209220, C. sorokiniana BRWWTP001 and Scenedesmus alternans UTEX B72 only in treating 

municipal wastewater.  These algal strains exhibited a higher biomass productivity and TN and TP 

removal efficiency compared to the other strains assessed, with some Chlorella and Scenedesmus strains 

exhibiting no growth or change in TN and TP concentration.  The enhanced performance of these types 

of wastewater autochthonous microalgae has been suggested to be related to the existence of certain 

genetic traits in regards to acclimation response, growth, cell wall composition as well as tolerance to, 

and production of, xenobiotic substances (i.e. chloreline) [393, 394, 396].  Some studies have even 

demonstrated certain Chlorella sp. to have a higher tolerance to anionic detergents compared to species 

such as Dunaliella sp. [397, 398]. 

Wastewater composition naturally varies as a result of the location and natural environment [1].  In this 

context, it is critical to select a microalgae species which is tolerant (or acclimated) to the expected 

composition and environment of the wastewater, in particular to toxic and/or synthetic chemicals that 
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may potentially be present (e.g. heavy metals, herbicides, antibiotics etc.) [396, 399].  Furthermore, the 

cultivation conditions can significantly impact on the treatment performance, with a single microalgae 

species response varying according to the conditions under which it is grown.  Environmental factors, 

including temperature, light-dark cycle and light intensity all have a significant influence on microalgal 

productivity, as well as affect cellular metabolism [68, 400, 401].  It is therefore necessary to ensure an 

appropriate environment for a given microalgae strain, especially considering each species (or strain) 

will have a unique optimum requirement.  Additionally, the autochthonous microbial community of 

wastewater can negatively impact microalgae productivity and compete for organic and inorganic 

resources [402].  It is therefore essential for the cultivation conditions to promote microalgae growth to 

minimise any negative interference from other microorganisms present naturally in the wastewater (e.g. 

bacteria and fungi).  In light of the reported factors, it is essential to systematically evaluate a microalgal 

species tolerance and treatment performance to a distinct wastewater source under the chosen 

cultivation conditions, to verify its ability to achieve an adequate level of treatment. 

In the present study, the main objective was to assess the COD, NH3-N and PO4-P remediation efficiency 

and growth of the microalgal species Chlorella vulgaris, Heynigia riparia and Acutodesmus obliquus in 

experiments with municipal PSW, in view of selecting the most effective species for subsequent studies.  

The unicellular species C. vulgaris and A. obliquus were selected for this study because of their natural 

abundance in wastewater systems and the extensive research available pertaining to their use in 

wastewater treatment.  The application of H. riparia for the purpose of bioremediation of wastewater 

has not been extensively assessed since its identification as a new genus in 2009 [403].  The main 

interest in this species lies in its formation of large colonies, which were qualitatively found to grow at a 

lower maximum density than C. vulgaris and A. obliquus, offering a potential solution to the issue of self-

shading and reduced light penetration in bioreactors.  Colonies of H. riparia are symmetrical, comprised 

of small spherical cells connected together (up to 64 cells) via mucilaginous stalks grow to total colony 

diameters of 56 to 68 µm [403].  All species chosen are facultative heterotrophs, which is an essential 

attribute in their metabolic utilisation and reduction of the organic carbon (i.e. carbonaceous material) 

in the wastewater [205, 404]. 

In order to identify a robust microalga strain for wastewater treatment, the three selected strains where 

inoculated in unsterilized PSW to evaluate their treatment efficiency and any effect the wastewater had 

on growth and treatment performance.  Furthermore, this study evaluated whether the culture 

conditions were appropriate for promoting microalgal growth in view of being co-cultured in an 

environment containing bacteria and fungi; the microalgae were cultured as free-living suspended 

cultures at 15°C with a 12:12 light:dark cycle at 100 µE m-2 s-1.  In a laboratory setting, the COD, NH3-N 

and PO4-P removal efficiency for each species was investigated under aerated and static (non-aerated or 

mixed) cultivation conditions.  The latter condition was performed in order to evaluate and identify any 

limitations this strategy may have on microalgal productivity and treatment performance in order to 

establish an energy-efficient and cost-effective microalgal treatment process compared to conventional 
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wastewater systems. These aerated and static cultivation experiments were run in parallel and the 

results on their performance compared for each of the three microalgal strains in order to determine 

the strain and optimum culturing environment for treating wastewater. 
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4.2 Materials and Methods 

4.2.1 Experimental Set-up 

The experimental set-up consisted of each microalga species cultivated in a separate batch of PSW.  

Whilst this was not ideal, this experimental design was used because of a limited available space in the 

incubation chamber.  As such, only one microalgal species could be accommodated in the chamber and 

tested under static (non-aerated) and aerated conditions, including the corresponding controls.  Each 

treatment and corresponding controls were performed in triplicate.  The PSW physiochemical 

composition of each batch used in this study are summarised in Table 22, with PSW batch 1, 2 and 3 

used to investigate the growth and treatment efficiency of C. vulgaris, H. riparia and A. obliquus 

respectively. 

 

Table 22 – Composition of PSW of the individual batches 

Parameter (mg L-1) PSW composition 

  Batch 1 Batch 2 Batch 3 

NH3-N 30.5 ±0.4 28.9 ±0.3 32.3 ±0.05 

PO4-P 3.2 ±0.0 3.0 ±0.03 3.8 ±0.03 

NO3-N 0.7 ±0.0 <DL <D.L 

NO2-N 0.2 ±0.0 <DL <D.L 

CODS 106.7 ±4.2 145.0 ±0.1 156.6 ±2.7 

TSS 22.8 ±1.4 63.3 ±0.3 57.3 ±2.1 

pH 7.13 8.07 7.2 

COD/NH3-N/PO4-P (g/g/g) 100/42/4 100/20/2 100/21/2 

DL = detection limit 

 

The experiments were conducted using 800 mL of PSW that was placed in 1 L borosilicate bottle.  All 

experiments were inoculated with washed microalgae at a biomass dry weight concentration of 0.1 g L-1.  

For this, a culture of microalgae grown on BBM (Section 3.2) was concentrated by centrifugation (3500g; 

10 min) in 50 mL Falcon tubes and washed twice with 10 mL of the collected wastewater to remove 

residual nutrients.  To ensure consistency in the inoculation density across the microalgae treatments 

within the wastewater sample, 5 litres of filtered PSW was transferred to a 5 L glass bottle and 

inoculated with the washed microalgae.  This was mixed and divided between six 1 L borosilicate 

bottles.  Although the different wastewater samples used in the experiments were filtered (30 µm) to 

control the turbidity, the natural microbial community of the wastewater was not eliminated, which 

would potentially contribute an influence upon the COD, N and P removal of the wastewater sample.  To 

evaluate this, control samples of 800 mL PSW, without addition of microalgae, were set-up.  In total, 

four treatments, each in triplicate were prepared and labelled as follows:  Wastewater Control (WWC), 
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Wastewater with aeration (WW+Air), Wastewater with microalgae (WW+C.v or A.o or H.r) and 

Wastewater with aeration and microalgae (WW+Air+C.v or A.o or H.r). 

4.2.2 Glassware, sampling and analysis 

All glass bottles for the four treatments were capped with foam plugs and incubated for a period of 7 

days.  Before use, all glassware with the relevant syphoning and aeration tubes was autoclaved (121°C; 

15 minutes).  Atmospheric air was continuously supplied directly into the aerated samples through a 

sterile In-Line HEPA filter at a rate of 0.2 V/Vm.  Liquid samples were withdrawn daily to measure the 

concentration of NH3-N, PO4-P, NO3-N and NO2-N, microalgal cell growth (cell mL-1) and pH (described in 

Chapter 3, sections 3.3.4, 3.3.5, 3.3.6, 3.3.8, 3.9 and 3.10 respectively).  Dry weight (as a proxy for 

biomass) and COD were measured on the initial and final day of the experiment only (Chapter 3, 

sections 3.7 and 3.5 respectively).  The analysis of these two parameters was limited because the 

experimental design had to take into account a maximum final volume withdrawal of 10% of the initial 

volume from each bottle.  The reason for this conservative maximum sampling volume was to prevent 

experimental interference to microalgal growth, particular in static treatments caused by a large 

variation in the illuminated surface to volume ratio.  All treatments were briefly mixed (by swirling) prior 

to taking an aliquot to ensure a homogenous sample. 

The average NH3-N and PO4-P removal rates were determined using equation 23: 

𝑅i = (𝑆0 − 𝑆i )/(𝑡i − 𝑡0 )               (23) 

where Ri represents the substrate removal rate (NH3-N or PO4-P), S0 the initial concentration, Si the 

corresponding concentration at ti which is the time at which the concentration of the inorganic 

compound was reduced to its lowest. 

The percentage removal efficiency (RE) was calculated using equation 24: 

𝑅𝐸 (%) =  (𝑆0 − 𝑆i) 𝑆0⁄ ∗ 100              (24) 

Specific growth rate of the microalgae was calculated using equation 25 

𝜇 (d-1) =
𝑙𝑛NT−𝑙𝑛NO

∆𝑡
               (25) 

where NO is the cell concentration at the beginning of a time interval, NT the cell concentration at the 

end of the time interval and ∆𝑡 the length of the time interval in days. 

4.2.3 Statistical analysis 

Figures were generated using Prism version 6.02 (GraphPad Software, USA) and statistical analysis was 

performed using SPSS version 22 (IBM Corporation, Armonk, NY).  A two-way mixed ANOVA was applied 

to determine whether there were differences between the treatments within each PSW batch in the 

concentration of the inorganic compounds over time.  For the test, the treatment type (between-subject 
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factor) and the time in days (within-subject factor) were the independent variables, while the 

concentration of the inorganic compounds the dependent variable.  The data was initially analysed for 

outliers by Studentised residual plots, the Shapiro-Wilk test to determine whether the assumption of 

normality is met (p > 0.05), the Levene’s test to determine whether the assumption of homogeneity is 

met (p > 0.05), and Mauchly’s test to determine whether the assumption of sphericity is met (i.e. 

interaction, p > 0.05).  The final significance is calculated by the two-way mixed ANOVA with the test 

satisfied when p < 0.05.  To determine the point (day) at which the nutrient concentration became 

significantly different between the treatments, a univariate general linear analysis was applied at each 

day with a Tukey’s HSD post-hoc test for multiple comparisons (p < 0.01).  Unless stated otherwise, the 

p-value reported refers to the comparison of a treatment to the control treatment (WWC) in the 

experiment with the day stated at which the effect became significant. 
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4.3 Results and Discussion 

4.3.1 Influence of aerated and non-aerated cultivation conditions on microalgae growth 

The strains C. vulgaris, H. riparia and A. obliquus were evaluated with respect to their productivity and 

removal of COD, NH3-N and PO4-P from PSW under aerated and non-aerated cultivation conditions.  This 

was performed in order to identify a suitable strain for use in subsequent experiments, with a view to 

developing a static microalgae wastewater treatment process.  Figure 4.1 shows the time-course cell 

concentration for each species for the different cultivation conditions, and specific growth and final 

biomass concentrations are summarised in Table 23.  In general, microalgal growth typically consists of a 

lag phase, an exponential or arithmetic growth phase and then stationary phase which, depending on 

the duration of cultivation, is followed by a phase of cell decline (death phase).  From the recorded cell 

concentrations, slight variations in this behaviour were observed for each of the species, variations 

observed in this respect not only between the different microalgae species in the same condition but 

also for the same microalgae species in the different cultivation conditions (i.e. aerated vs non-aerated). 

In the aerated cultivation condition, both C. vulgaris and A. obliquus exhibited a higher specific growth 

rate (0.22 d-1) compared to H. riparia (0.04 d-1).  The growth of C. vulgaris in the WW+Air+C.v treatment 

was characterised by an initial increase at day 1 and slight decline at day 2, before arithmetic growth 

with a maximum cell density of 2.6 x107 (±3.9x106) cells mL-1 achieved by day 3 (Figure 4.1A).  Thereafter 

the cell concentration of C. vulgaris declined as of day 4 until becoming undetectable at day 7.  The 

growth curve indicates a short adaptation phase for C. vulgaris under the aerated conditions, occurring 

within 24 hours (first sampling point).  A similar observation was reported by Ruiz-Marin et al., (2010) 

[228] with C. vulgaris expressing a lag phase of no more than 20 hours when grown suspended in 

secondary effluent.  Growth of A. obliquus in the WW+Air+A.o treatment was characterised by a 

continuous arithmetic growth phase following a 1-day lag (Figure 4.1A).  A lower maximum A. obliquus 

concentration of 1.3 x107 (±3.8x105) cell mL-1 was achieved at day 7 compared to C. vulgaris.  From these 

results, it can be suggested that C. vulgaris had a better adaptive response to PSW compared to A. 

obliquus under aerated cultivation conditions.  The lowest growth achieved was with H. riparia with an 

approximate 3-day lag indicating a long adaptation period that preceded a small increase over one day, 

with a maximum cell concentration of 3.4 x106 (±8.5x105) cell mL-1 at day 7 (Figure 4.1A). 
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Figure 4.1 – Temporal changes in microalgal cell concentration for C. vulgaris, H. riparia and A. obliquus cultured in 
PSW under aerated (A) and non-aerated (B) cultivation conditions.  In plot A, the left y-axis denotes cell 
concentration of C. vulgaris only and right y-axis denotes cell concentration of H. riparia and A. obliquus. 

 

Table 23 – Specific growth rate and final biomass concentration (mg L-1) of microalgae cultures when 
incubated under aerated and non-aerated conditions 

Cultivation 
Conditions 

C. vulgaris   H. riparia   A. obliquus 

  
µ (d-1) Biomass conc. 

 
µ (d-1) Biomass conc. 

 
µ (d-1) Biomass conc. 

Aerated 0.22* 132.8 ±1.6 
 

0.04 196.7 ±14.7 
 

0.22 429.6 ±13.8 

Non-
aerated 

0.05 217.3 ±6.4 
 

-0.02 186.7 ±2.3 
 

0.09 349.4 ±9.2 

*Specific growth rate calculated between the initial day and day 5 
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The observed difference in growth between the three species in the aerated cultivation conditions can 

in part be explained by their individual morphological, phenological and genotypic features.  The 

physiological properties of microalgae have been demonstrated to govern ecological performance, such 

as nutrient assimilation and adaptive mechanisms, including growth [405].  Microalgae, like many other 

organisms, express a relationship between growth rate and organisms size [406, 407].  Nielsen (2006) 

[408] quantitatively noted a significant allometric relationship in microalgae with smaller celled species 

exhibiting a higher maximum growth rate.  A possible reason for the inadequate growth and 

performance of H. riparia may be explained by its colony formation, characterised by aggregates of well-

differentiated, morphologically identical cells connected together via mucilaginous stalks, resulting in an 

overall large organism size (56 to 68 µm) [403].  As cell size increases, diffusion rates and intracellular 

transport rates are reduced becoming increasingly inadequate at maintaining required intracellular 

conditions and consequently limiting the maximum growth rate achievable [409].  In comparison; C. 

vulgaris size ranges between 2 to 10 µm, with daughter cells between 2 to 4 µm during exponential 

growth [410, 411]; while the size of A. obliquus ranges between 3 to 20 µm, with the potential of 4 to 8 

celled colony’s forming in which the individual cells are linearly arranged along their axes, a physiological 

adaptation that depends on various abiotic and biotic factors [412].  It must be noted that throughout 

these experiments A. obliquus was predominantly observed to be in a unicellular state. 

An additional aspect governing growth and subsequently treatment performance (discussed below) 

could likely stem from the biochemical composition of the microalgae, dictating their robustness and 

vulnerability to the environment in PSW.  For example, cell wall composition in Chlorella spp. and 

Scendesmus spp. has been described to contain the bio-polyester algaenan [413, 414].  Although the 

precise function of algaenan is still under review, the long chain fatty acid is hypothesised to confer or in 

part improve resistance to infection, based on the observations of being non-hydrolysable by common 

lytic enzymes and relatively impermeable to various organisms (i.e. fungi and bacteria) [415, 416].  

Furthermore, algaenan-free microalgae are found to be more susceptible to chemical toxins [415].  The 

production of algaenan is noted to be strain-specific rather than species-specific [413].  In view of this 

fact, the particular species of Chlorella used in this study (Chlorella vulgaris) has been proven to not 

produce algaenan based on analysis with the stain calcofluor [417].  Despite not containing algaenan, C. 

vulgaris was found to be resistant to the actions of various concentrated mixtures of commercial 

enzymes, including β-glucanase, cellulase, and pectinase, suggesting a complex cell wall structure with 

tolerance to degradation [417].  Approximately 20% of the cell population was affected by enzyme 

action, with those cells affected likely undergoing auto-spore release or in the death phase of the cell 

cycle, which will have increased their susceptibility.  Although the presence of algaenan in H. riparia was 

not investigated in the present study, a possibility exists that H. riparia lacks algaenan in its cell wall 

structure and therefore reduces the microalgae’s robustness in the unsterile PSW environment.  This 

assumption is based on the observation that colony forming microalgae identified to express algaenan in 

their cell wall (e.g. Botryococcus braunii and Coelastrum sphaericum) demonstrate good robustness and 

growth when cultured in unsterile wastewater, similar to unicellular microalga [339, 413, 418]. 
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In the non-aerated cultures (static) the microalgae demonstrated a substantial lack of growth compared 

to that in the aerated cultures (Figure 4.1B).  Cell concentrations of C. vulgaris and A. obliquus in the 

non-aerated conditions showed a similar response in growth for the initial couple of days of treatment 

with respect to their corresponding aerated cultures.  In the WW+C.v treatment, C. vulgaris cell 

concentration increased at day 1 followed by a decline at day 2; however, the cell concentration 

remained relatively constant for the remaining 5-days, reaching a final concentration of 1.6 x107 

(±6.6x105) cell mL-1.  A. obliquus in the WW+A.o treatment exhibited a 1-day lag followed by a small 

arithmetic increase over two days before declining to a cell concentration averaging 4.7 x106 (±6.1x105) 

cell mL-1 over the last 3-days of treatment.  In comparison, no distinctive growth phase was discernible 

by H. riparia in the WW+H.r treatment; in fact, cell concentration in this treatment declined slightly over 

the course of the treatment period from an initial concentration of 2.5 x106 (±6.4x105) cell mL-1 to 2.2 

x106 (±4.5x105) cell mL-1 at day 7.  As a result of the low growth of all the microalgal cultures during the 

treatment period, the specific growth rates were small compared to under aerated conditions (Table 

23). 

Independent from any physiological aspects that govern microalgae growth, the substantial rise in pH 

following the elimination of carbon in the form of CO2 from the PSW in the non-aerated cultures of C. 

vulgaris and A. obliquus may explain the low microalgae growth in these treatments.  Temporal changes 

in pH for the treatments with or without microalgae, cultured under aerated and non-aerated 

conditions, are presented in Figure 4.2.  The initial value of pH varied slightly between PSW batches in 

each of the experiments, with approximately pH 7 in PSW batch 1 and 3, and pH 8 for PSW batch 2 

(Table 22).  In the WW+C.v treatment (PSW batch 1), the pH increased in the first day of treatment to 

9.5 ±0.1 and further thereafter, albeit at a slower rate, until day 4 at which point the pH stabilised to 

approximately 10.9 ±0.1 until the end of the treatment (Figure 4.2C).  In the WW+A.o treatment (PSW 

batch 3) the pH increased at a more gradual and steady rate over the whole treatment period, reaching 

10.6 ±0.1 at day 7 (Figure 4.2C).  In autotrophic growth, microalgae uptake dissolved inorganic carbon 

(DIC) predominantly in the form of HCO3
-, which is converted to CO2 and fixed in the Calvin cycle [67].  

Consequently, OH- ions are produced that are either expelled to the immediate environment or are 

neutralised intracellularly following H+ uptake, shifting the equilibrium to an alkaline environment [419–

421].  In an aquatic environment, the concentration of DIC is strongly correlated to pH, with pH 

increasing as DIC decreases.  Sutherland et al., (2015) [295] quantitatively noted this inverse correlation 

in which DIC decreased from 441 to 23 mg L-1 as the pH increased from <8 to 10.7 in a high rate algal 

mesocosm system without pH control.  In carbon limited conditions, cell division and consequently 

growth are reduced owing to an arrest in photosynthetic activity and synthesis of carbon skeletons 

necessary for cell maintenance [67, 188, 189].  The magnitude in pH change in the WW+C.v and 

WW+A.o treatments suggests the concentration of DIC became limited in the PSW affecting microalgae 

growth potential.  Furthermore, the high pH will have exacerbated the existing carbon limitations owing 

to a shift in DIC equilibrium, with pH >10 leading to CO3
2- becoming the dominant inorganic carbon 

species [419, 422].  Most microalgae preferentially take up CO2 over HCO3
-, while CO3

2- is not known to 
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be readily utilised by most microalgae [67, 423].  Therefore, as the microalgae actively fix inorganic 

carbon, not only did C. vulgaris and A. obliquus reduce the quantity of inorganic carbon but also the 

buffering capacity of the medium, which led to a shift in pH that further reduced the pool of bioavailable 

inorganic carbon species.  As the treatments were cultured statically, the contribution of atmospheric 

CO2 was considered to be negligible. 
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Figure 4.2 – Temporal changes in pH for the treatments with (A, C) or without (B, D) microalgae, cultured under 
aerated (A, B) and non-aerated conditions (C, D) for PSW batch 1 (squares; C. vulgaris treatment experiment), PSW 
batch 2 (open circles; H. riparia treatment experiment) and PSW batch 3 (open triangle; A. obliquus treatment 
experiment).  Each point is a mean ±SD, of n= 3 independent replicates. 

 

The change in pH was not as pronounced in the WW+H.r treatment compared to the WW+C.v and 

WW+A.o treatments (Figure 4.2C).  In the WW+H.r treatment (PSW batch 2) a slight decline in pH was 

observed at day 1 before increasing again to a maximum value of 8.9 ±0.1 at day 7 (Figure 4.2C).  The 

small effect in pH change and decline in H. riparia concentration in the WW+H.r treatment suggests a 

low photosynthetic efficiency by the microalgae.  In autotrophic microalgae, the amount of light energy 

received and captured has a direct relationship to the carbon fixation capacity, which affects the 

productivity in microalgae growth [424, 425].  Both Jacob-Lopes et al., (2009) [426] and Goncalves et al., 
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(2014) [427] respectively describe an increase in the CO2 fixation quantity and rate in various algae 

species (green algae and cyanobacteria) when exposed to an increased light period and intensity (below 

the saturation point).  Conversely, under low photo period conditions (>16:8 dark:light), CO2 fixation 

rates depreciate significantly as a result of carbon-fixation reactions ceasing because of limited 

photosynthetic activity. 

The pH dynamics for the aerated microalgae treatments are shown in Figure 4.2A.  The WW+Air+C.v and 

WW+Air+A.o treatments exhibited an increase in pH from their initial value to 8.9 ±0.1 and 8.5 ±0.1 at 

day 1 respectively.  The pH in the WW+Air+A.o treatment after day 1 stabilised for the exact period of A. 

obliquus exponential growth.  Similarly, in the WW+Air+C.v treatment the pH remained constant at 

approximately 9.1 ±0.1 over days 1 to 4 which corresponded to the growth phase of C. vulgaris.  These 

results indicate that the input of CO2 into the aqueous phase was in equilibrium with the rate of 

consumption, sufficiently to avoid significant depletion of CO2 in the medium and pH increase, as 

observed in the non-aerated microalgae treatments.  Furthermore, the reduction in NH3-N in the 

WW+Air+C.v and WW+Air+A.o treatments will have aided in minimising the effects of excess OH- ion 

formed in the medium during inorganic carbon fixing (Figure 4.3A, C).  This is because the translocation 

and assimilation of NH3 into amino acids is accompanied by the translocation of H+ ion out of the cell to 

maintain cytosolic pH following the reaction of the NH3 with the carboxylic acid group [428–430].  The 

decline in C. vulgaris concentration corresponded to a pH drop between days 5 to 7, reaching a final 

value of 7.6 ±0.1.  The resultant decrease in pH can be accredited to the continuous input of CO2 present 

in the atmospheric air injected; the CO2 concentration in the culturing system will have increased until 

CO2 solubility in the medium reached atmospheric pressure saturation levels (i.e. equilibrated) as 

inorganic carbon input exceeded the rate of consumption resulting in a decrease in pH [393, 422].  In 

contrast to the microalgae treatments, the change in pH of the control treatments (without microalgae) 

was minor, with only small variations occurring throughout the 7-day treatment period because of the 

activity of the wastewaters microbial community (Figure 4.2B, D).  For example, in the WWC treatment 

of PSW batch 1 the pH increased to 8.7 ±0.1 at day 7.  In this treatment a decrease in the concentrations 

of NO3-N and COD were noted, which is indicative of denitrification, a reaction in which OH- ions are 

released, which explains the pH increase [89] (Figure 4.4; Table 25).  This effect, however, cannot 

explain the increase in pH to 8.3 ±0.1 at day 7 in the WWC treatments of PSW batch 3, as indirectly no 

denitrification was recorded, i.e. increase and decrease in NO3-N concentration. 

In comparison to algal growth and yield for Chlorella sp. and Acutodesmus sp. reported in other studies, 

the specific growth rates and final biomass concentrations were lower in this study for both aerated and 

non-aerated conditions.  For instance, specific growth rates between 0.25 and 2.4 d-1 for C. vulgaris, and 

between 0.28 and 1.19 d-1 for A. obliquus, have been reported during their growth in wastewater [148, 

158, 228, 431–433].  However, the cultivation conditions, such as light intensity, inoculation density, 

light duration, temperature, CO2 injection etc., and the types of wastewater used in the present study 

were quite different to those applied in other studies.  Although the conditions under which the 
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microalgae were evaluated in the present study appeared to support growth in PSW, further studies to 

determine the optimal cultivation conditions for an industrial-scale process are recommended to 

improve microalgae productivity.  This observation holds true for the H. riparia strain tested here.  In 

order to fully elucidate whether H. riparia was in a major way limited by the cultivation conditions 

(specifically light) or by its inherent physiology (and biochemistry) for treating the wastewater medium, 

further experiments under varying conditions with either synthetic or sterile wastewater are required.  

These experiments should include the evaluation of the Fv/Fm ratio, a measure of the alga’s maximum 

quantum yield of charge separation in PS II, a proxy for quantifying the environmental effects on algal 

health.  

4.3.2 Influence of aerated and non-aerated cultivation conditions on microalgae Nitrogen and 

Phosphorus removal 

Inorganic or organic forms of N and P are essential for growth and cellular function for all organisms.  In 

microalgae, N is required as a substrate in the synthesis of proteins, chlorophylls and other biological 

molecules (i.e. ribonucleic acid (RNA), deoxyribonucleic acid (DNA) and ATP) [67].  Similarly, P is a key 

element in energy metabolism (i.e. ATP), a substrate of phospholipids and an essential component in 

various metabolic pathways functioning as a signalling or activating component (i.e. kinase and 

phosphorylation reactions) [68, 245].  The N:P ratio available to microalgae in the medium is considered 

one of the most influential parameters affecting N and P removal performance [141].  Limitations in one 

of these elements may reduce the removal of the other element [180].  Although each microalga was 

investigated for their growth and removal of N, P and COD in separate PSW samples, the initial inorganic 

N and P concentrations between the batches were found to be very similar (NH3-N: 28.9 to 32.3 mg L-1; 

PO4-P: 3.0 to 3.8 mg L-1) with an approximate 10:1 ratio (Table 22).  As a result of NH3-N and PO4-P being 

the primary N and P compounds in microalgae metabolism, and present as the major fraction of 

inorganic N and P in all PSW batches at an equal ratio, this allowed comparisons to be made in the 

treatment performance of C. vulgaris, H. riparia and A. obliquus irrespective of the PSW batch [67]. 

4.3.2.1 Inorganic Nitrogen removal 

Concerning inorganic N removal, the graphs in Figure 4.3 plots A, C and E show the concentration of 

NH3-N over the 7-day treatment period of all the treatments for PSW batch 1, 2 and 3 respectively.  

Table 24 shows the removal kinetic parameters and efficiencies of NH3-N and PO4-P for all microalgae 

treatments.  Regardless of the treatment process, aerated or non-aerated, the addition of any of the 

three microalgal strains to PSW resulted in the enhanced removal performance of NH3-N, and indeed 

markedly more so compared to the un-inoculated controls.  In general, the highest rate of removal in 

the microalgae-inoculated treatments occurred within 24 hours, between 32.6 and 8.7% for aerated, 

and between 17.7 and 20.1% for non-aerated cultivation conditions of total NH3-N reduction.  The 

highest removal efficiency over the shortest retention period occurred in the WW+Air+C.v treatment.  In 

this treatment, NH3-N was removed below the detection limit within 5 days of cultivation, following a 
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steady but rapid decline at a rate of 6.08 mg L-1 d-1 from an initial concentration of 30.5 ±0.3 to 0.09 

±0.01 mg L-1 (p < 0.01 at day 1) (Figure 4.3A).  However, the concentration of NH3-N increased over the 

course of the remaining 2 days of cultivation, reaching a final concentration of 7.9 ±0.7 mg L-1.  

Conversely, in the corresponding treatment with A. obliquus, the NH3-N concentration declined at a 

continuous, albeit slower rate, over the whole 7-day treatment period (p < 0.01 at day 1) (Figure 4.2C; 

Table 24).  The concentration of NH3-N in the WW+Air+A.o treatment, however, did not achieve greater 

reduction as recorded in the WW+Air+C.v treatment, with a final NH3-N concentration of 4.3 ±2.2 mg L-1.  

In the WW+Air+H.r treatment the concentration of NH3-N decreased only slight in comparison, from an 

initial value of 28.9 ±0.3 to 13.2 ±1.7 mg L-1  at day 7, with the greatest effect occurring within the first 2 

days.  This was the lowest performing strain, with a removal rate of 2.25 mg L-1 d-1, which equates to 

nearly 3 times lower than observed in the WW+Air+C.v treatment.  Moreover, no statistically significant 

interaction effect between the four treatments of PSW batch 2 was determined (Mauchly’s test p < 

0.05).  The reported NH3-N removal efficiencies in the C. vulgaris and A. obliquus aerated treatments 

(PSW batches 1 and 3) were comparable to the values reported in previous studies treating municipal 

wastewater under similar cultivation conditions (i.e. aerated and/or mixed) (Table 24).  For example, in a 

study performed by Tam and Wong (1989) [136], the microalgae C. pyrenoidosa and Scenedesmus sp. 

were able to remove 93.9% and 98.1% of NH4
+-N, respectively, from primary settled effluent after 13 

days of cultivation with an initial NH4
+-N concentration of 22.5 mg L-1.  Ruiz-Marin et al., (2010) [228] 

obtained a NH4
+-N removal efficiency of 99% by A. obliquus from urban wastewater within 2 days, while 

Su et al., (2012) [366] reported NH4
+-N removal efficiency of 90% by C. vulgaris within 6 days. 

The recorded increase in NH3-N concentration in the WW+Air+C.v treatment after day 5 corresponded 

with the decline in C. vulgaris concentration.  From this observation it can be suggested that the decline 

in C. vulgaris and consequently cell death may have resulted in the release of intracellular N fractions, 

including NH3-N, from the algal cells into the PSW.  The decline in C. vulgaris concentration may in part 

be attributed to the concentration of inorganic N becoming limited in the PSW after arithmetic growth 

and consequently the nutrient requirements to sustain growth and microalgae function were not 

available.  At day 4 the concentration of NH3-N in the WW+Air+C.v treatment was below the detection 

limit (0.08 ±0.01 mg L-1).  Similarly, at day 4 both NO2-N and NO3-N concentrations in this treatment 

were on the border or below the detection limit at 0.01 ±0.0 mg L-1 and 0.09 ±0.0 mg L-1, respectively.  

The low concentration of PO4-P in the WW+Air+C.v treatment at day 4 (0.17 ±0.05 mg L-1) may have 

contributed to these effects, which led to the observed decline in C. vulgaris concentration (Figure 4.3B).  

The resultant N:P ratio (based on NH3-N:PO4-P) at day 4 was 1:1, which denotes a severe limitation in N 

[180].  Conversely, the WW+Air+A.o treatment exhibited a constant N:P ratio within the optimal range 

of  8:1 to 11:1 for A. obliquus throughout the 7-day treatment period [178]. 

In the non-aerated microalgae treatments, the trend in NH3-N removal was similar for all treatments, 

with removal rates between 1.25 and 1.87 d-1, and efficiencies between 30 and 40% (Table 24).  In these 

treatments the concentration of NH3-N was characterised by an initial rapid decline by day 1, and 
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thereafter a slower but continuous rate of decline that occurred for the remaining treatment period 

(Figure 4.3A, C, E).  In the WW+C.v, WW+A.o and WW+H.r treatments the NH3-N concentration declined 

to 22.3 ±0.6, 26.6 ±0.2 and 23.1 ±0.1 mg L-1 at day 1, with final concentrations of only 18.2 ±0.2, 19.2 

±0.1 and 20.2 ±0.1 mg L-1, respectively.  No statistical interaction in NH3-N concentration between any of 

the non-aerated microalgae treatments and their respective WWC treatments occurred (Mauchly’s test, 

p < 0.05).  These results were expected given that the amount of nutrients utilised by algae directly 

relates to their productivity [136].  This is because the demand for nutrients to sustain cellular function 

is lower than required for cell growth and division, and hence a reduced rate in nutrient assimilation is 

observed.  Although this observation is not extensively reported on in microalgae wastewater studies, 

several studies have consistently found that a higher nutrient removal rate and capacity is coupled to 

higher specific growth rates in microalgae cultures [142, 252, 310, 326, 434, 435]. 

Table 24 – Removal of NH3-N and PO4-P values of microalgae treatments under aerated and non-
aerated cultivation conditions 

Parameter C. vulgaris    H. riparia   A. obliquus 

 
Static Air1 

 
Static Air 

 
Static Air 

RNH3-N (mg L-1 d-1) 1.76 6.08  1.87 4.00  1.25 2.25 

RPO4-P (mg L-1 d-1) 0.22 0.63  0.17 0.18  0.52 0.47 

RE NH3-N (%) 40.3 99.7  30.1 54.4  40.5 86.6 

RE PO4-P (%) 47.8 98.7  38.6 42.3  95.7 86.6 
1All calculations for the treatment WW+Air+C.v are based for the first 5 days 
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Figure 4.3 – Changes in PSW concentration for NH3-N (A, C, E) and PO4-P (B, D, F) in mg L-1 for PSW batch 1 (A, B), 
batch 2 (C, D) and batch 3 (E, F) treated under conditions with and without microalgae, supplied with or without air.  
Each point is a mean ±SD, of n= 3 independent replicates.  Treatment WWC (Wastewater only); Treatment WW+Ma 
(Wastewater with microalgae: either with C.v, A.o or H.r); Treatment WW+Air (Wastewater with air); and Treatment 
WW+Air+Ma (Wastewater with air and microalgae: either with C.v, A.o or H.r). 
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The low growth and NH3-N removal achieved in the WW+C.v and WW+A.o treatments was a result of 

the combined effects of inorganic carbon becoming limited initially and then likely from subsequent NH3 

toxicity because of the increase in the pH above 9.  Ammonia assimilation and incorporation into amino 

acids in microalgae is inextricably dependent on carbon skeletons from the TCA cycle [67, 189].  

Microalgae require CO2 fixation to replenish the carbon in the TCA cycle via anaplerotic reactions, such 

as phosphoenolpyruvate carboxylase and/or RuBisCo [189, 436].  Thus, a deficiency in inorganic carbon 

reduces the capacity of microalgae to assimilate NH3 because the carbon is preferentially fed into 

anaplerotic reactions necessary to sustain TCA cycle function [189, 437].  Comparison of Figure 4.2C and 

Figure 4.3A and E show that the decrease in NH3-N uptake after day 1 in both the treatments correlated 

with the largest increase in the pH of the PSW.  Although pH is not a direct quantification of inorganic 

carbon concentration, an alkaline pH in non-buffered or low alkalinity microalgae culture are indicative 

of a low DIC concentration available [295].  In studies by Pereira et al., (2016) [434] and Huertas et al., 

(2010) [399], both authors observed dependence in the inorganic carbon concentration on the capacity 

by the microalgae to assimilate inorganic N; higher inorganic carbon levels were associated with a higher 

and faster rates of inorganic N uptake.  Similar to the results obtained in the WW+C.v and WW+A.o 

treatments in the present study, Huertas et al., (2010) [399] reported an increase in pH accompanied by 

a reduced capacity of the marine microalga Nannochloropsis gaditana to assimilate NO3, the main 

inorganic N fraction, when cultured on air stripped of CO2 (0.0001% v/v) compared to lower or neutral 

pH value when aerated on ambient and elevated CO2-air. 

The alkaline environment in the WW+C.v and WW+A.o treatment will have subsequently reduced the 

NH3-N removal efficiency.  This result is in agreement with work by Azov and Goldman (1982) [438], who 

observed a substantial decline in NH4Cl removal efficiency, based on V/Vmax ratio, at higher pH (i.e. >8.4 

compared to 8) for S. obliquus grown in flask cultures.  Ammonium is the preferred inorganic N species 

in medium for microalgae, as NH3 at a high concentration becomes toxic to microalgae, as well as to 

other aquatic organisms [429].  The toxic effect of NH3 on microalgae is because the compound can 

readily diffuse through the membrane unhindered as a result of its uncharged nature [439, 440].  A high 

intracellular concentration of NH3 is reported to disrupt the photosynthetic apparatus in a light-

dependent manner, either through the direct binding of NH3 with the Mn complex of PS II, which is 

involved in the H2O oxidation reaction, or by disrupting the intracellular pH stasis, or both [438, 439, 

441].  Although, free NH3 in solution can dissipate freely from liquid, this effect was considered to have a 

negligible influence on NH3-N removal because the treatments were kept static [429]. 

Abeliovich and Azov (1976) [440] examined the effect of ammonia concentration at varying pH values 

and reported that photosynthesis and growth of S. obliquus was inhibited at an NH3 concentration over 

2 mM (approximately 34.06 mg L-1) when pH values exceeded 8.  Based on the conditions these authors 

used (i.e. pH 8 and temperature of 30°C), it can be deduced that approximated 7% (c.a. 2.5 mg L-1) of the 

total NH3-N was present as free NH3, with the dissociation constant (pKa) between NH4
+ and NH3 

approximately 9.25 (25°C) [442].  Tolerance to NH3 is however species specific, and has been described 
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as an important selection criterion for a suitable microalga in the wastewater treatment process 

because of the potential for high concentrations of free NH3 to form [264].  In this context, it can be 

inferred that both C. vulgaris and A. obliquus are relatively resilient to the combined effects of high pH 

and free NH3 formation, given the high concentrations that remained in the wastewater of both the 

microalgae treatments, highlighting these strains as suitable species for wastewater treatment.  In the 

WW+C.v and WW+A.o treatments at day 7, the concentration of free NH3 is approximated to be 16.9 

and 17.6 mg L-1 respectively.  Although no noteworthy microalgae growth in these cultures was 

recorded, the cell concentration did not decline below the inoculation concentration indicating a high 

tolerance. 

In conventional wastewater treatment, NH3-N reduction is achieved through its conversion to NO2, then 

into NO3 and N2 by nitrification and denitrification, respectively.  In this investigation, both the NO2-N 

and NO3-N concentrations were found to be different, not only between the four treatments in each 

PSW batch, but also between the same treatments in the different PSW batches (Figure 4.4).  The 

environment of each treatment formed differently and independently, resulting in a different inorganic 

N profile because of the various mechanisms underlying NH3-N removal.  For instance, in the WWC 

treatment of PSW batch 1, by day 7 the concentration of NO2-N declined from an initial 0.20 ±0.01 to 

0.13 ±0.01 mg L-1, and that of NO3-N from an initial 0.69 ±0.01 to 0.11 ±0.02 mg L-1 (Figure 4.4A, B).  This 

reduction can be ascribed to the action of denitrifying bacteria in the PSW, which utilise N-bound O2 for 

aerobic respiration in an anoxic environment [89].  The decline in both NO2-N and NO3-N concentrations 

corroborates the understanding that the environment in this particular WWC treatment became anoxic, 

likely because denitrification ceased to function in the presence of even a low O2 concentration (i.e. <0.3 

mg L-1 O2) [443–445].  The anoxic environment was a result of the treatment being incubated statically.  

The lack of O2 will also have limited the ability of the nitrifying bacteria, if present, from converting the 

NH3-N, and thus limiting its removal from PSW.  This was evident by the fact that the NH3-N 

concentration remaining constant over the 7-day treatment period (Figure 4.3A).  This inference also 

explains the minimal removal efficiency of NH3-N in the WWC treatment of PSW batches 2 and 3.  Both 

NO2-N and NO3-N concentrations in these treatments were consistently below the detection limit from 

the commencement and duration of this investigation (Figure 4.4C - F), while the concentration of NH3-

N remained constant at approximately 25.4 ±0.4 and 30.2 ±0.4mg L-1 respectively (Figure 4.3A, C and E). 

The increase in either, or both, NO2-N and NO3-N concentrations in the WW+Air treatments in this 

investigation substantiates the inference that the WWC treatments were O2-limited and not just 

deficient in nitrifiers (Figure 4.4).  In the WW+Air treatment of PSW batch 1 and 3, a gradual increase in 

NO2-N concentration is noted at day 4, with each treatment reaching a respective concentration of 0.49 

±0.16 and 0.58 ±0.06 mg L-1 at day 7 (Figure 4.4A, E).  In the WW+Air treatment of PSW batch 1, the 

increase in NO2-N concentration was not accompanied by an increase in NO3-N, which remained 

constant at approximately 0.76 mg L-1 (Figure 4.4B).  While in the WW+Air treatment PSW batch 3, NO3-

N increased at day 5 from 0.07 ±0.01 to 0.50 ±0.1 mg L-1 at day 7 (Figure 4.4F).  A similar result is 
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recorded in the WW+Air treatment of PSW batch 2 in which the concentration of NO2-N increased to 

0.63 ±0.03 mg L-1, and of NO3-N to 0.33 ±0.07 mg L-1, at day 7.  The lag in nitrification may be attributed 

to the long generation times exhibited by the nitrifying organisms [89].  The energy yield from NH3 and 

NO2 oxidation is low and consequently, AOBs exhibit a doubling time that can range between 16 and 

189 hours, and NOBs between 18 and 69 hours, under optimal conditions [446]. 
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Figure 4.4 – Changes in PSW concentration for NO2-N (A, C, E) and NO3-N (B, D, F) in mg L-1 for PSW batch 1 (A, B), 
batch 2 (C, D) and batch 3 (E, F) treated under conditions with and without microalgae, supplied with or without air.  
Each point is a mean ±SD, of n= 3 independent replicates.  Treatment WWC (Wastewater only); Treatment WW+Ma 
(Wastewater with microalgae: either with C.v, A.o or H.r); Treatment WW+Air (Wastewater with air); and Treatment 
WW+Air+Ma (Wastewater with air and microalgae: either with C.v, A.o or H.r).  
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Nitrifying bacteria are sensitive to pH, exhibiting an optimal range between pH 7 and 8.5, and inhibition 

occurring below pH 6.5 and above pH 9 [89, 447, 448].  Furthermore, without an adequate supply of 

inorganic carbon the nitrification reaction and growth of nitrifying bacteria are inhibited [449].  The high 

rate of inorganic carbon utilisation by phototrophs in microalgae-bacteria co-cultures can cause a lack of 

resource availability to nitrifiers and is linked to the cessation of nitrification [450].  In the WW+C.v and 

WW+A.o treatments, the pH increase and low inorganic carbon availability will have limited the 

formation of NO2-N and subsequently NO3-N.  While the pH in the WW+H.r treatment remained below 

9, the small increase in NO2-N and NO3-N detected (i.e. from 0.02 to 0.24 mg L-1 and 0.06 to 0.24 mg L-1 

respectively) did not corresponded to the equivalent amount of NH3-N removed, approximately 8.72 mg 

over the 7-day experiment, indicating that nitrification was not the dominant pathway in reducing the 

inorganic N from the PSW (Figure 4.2C; Figure 4.3E; Figure 4.4E, F).  A low dissolved O2 availability in the 

medium may explain the limited occurrence of nitrification in this treatment given the assumed low 

photosynthetic efficiency of H. riparia as suggested under the present conditions.  However, further 

experiments are needed which directly address this hypothesis. 

The highest concentration of NO2-N and NO3-N throughout this investigation was recorded in the 

WW+Air+H.r treatment.  In this treatment the concentrations of NO2-N and NO3-N increased 

substantially as of day 6.  The concentration of NO2-N increased from 0.26 ±0.04 to 2.93 ±0.44 mg L-1 

and the concentration of NO3-N from 0.14 ±0.01 to 1.99 ±0.03 mg L-1, at day 7 (Figure 4.4C, D).  A similar 

increase was observed in the WW+Air+A.o treatment, although the increase in NO2-N occurred after a 

shorter lag phase, with NH3 conversion to NO2 and NO3 as of day 4 (Figure 4.4E, F).  The occurrence of 

these compounds is a direct result of the O2 provided by the aeration, together with the CO2 availability 

and stable pH of the culture, directly promoting a higher activity of the nitrifying bacteria in the PSW 

[89].  The lack of nitrification in the WW+Air+C.v treatment is a result of NH3-N becoming a limited 

resource, decreasing to below the detection limit at day 4 and likely before nitrification had a chance to 

begin.  Interestingly, the decline in NO2-N and NO3-N in the WW+Air+C.v treatment occurred after the 

complete reduction in NH3-N.  The delay in NO3-N and NO2-N removal and uptake by C. vulgaris shows 

that this species prefers NH3-N.  This observation was expected since NH3 is known to be preferentially 

assimilated by microalgae because NO2 and NO3 need to be reduced to NH3 in an endogenic reaction 

[67, 451].  Both Silva et al., (2015) [252] and Ruiz-Marin et al., (2010) [228] demonstrated that C. vulgaris 

preferred NH3-N in wastewater to other potentially available inorganic nitrogen sources. 

4.3.2.2 Inorganic Phosphorus removal 

Figure 4.3B, D and F show the temporal variation in PO4-P concentration for each treatment in PSW 

batch 1, 2 and 3 respectively.  The trend in PO4-P depuration in each treatment across all PSW batches 

exhibited a similar trend to their respective NH3-N profile, with the exception of the WW+A.o treatment.  

The aerated microalgae treatments presented the highest removal efficiencies, achieving maximum 

removal rates in the range of 0.18 to 0.63 mg L-1 d-1 (Table 24).  The PO4-P removal efficiencies obtained 

in this study were in the same order of magnitude than the ones reported by Wang et al., (2014) [154] 
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(0.17 to 0.32 mg L-1 d-1), but substantially lower than reported by Ruiz et al., (2013) [452] (2.0 to 8.7 mg 

L-1 d-1).  The higher removal rates by Ruiz et al., (2013) [452] are justified by the continuous supply of 5% 

CO2 compared to ambient air in this study, which ensured an adequate supply of dissolved inorganic 

carbon and, thus, promoted a greater growth response and nutrient removal by the microalgae.  

However, a similar TP removal rate to this study is also reported by Ji et al., (2013) [133] for S. obliquus 

and C. vulgaris cultured on municipal wastewater at 15% CO2 (approximately 0.425 mg L-1 d-1), while 

Silva et al., (2015) [252] reported a large variation in removal rate depending on the N:P ratio in the 

culture medium (0.48 to 2.61 mg L-1 d-1).  The discrepancy in P removal rate in microalgae cultures 

reported in the literature highlight the different propensity in microalgae performance and behaviour 

depending on the culture conditions and/or strain, and which further highlights those comparisons to 

select a favourable microalgal strain(s) for treatment must be done on a case-by-case basis. 

In the WW+Air+C.v treatment, the PO4-P concentration rapidly declined to below the detection limit by 

day 5, from an initial concentration of 3.2 ±0.1 to 0.04 ±0.05 mg L-1 (p <0.01 at day 1), and thereafter 

increased to a final concentration of 1.2 ±0.1 mg L-1.  A continuous steady rate of decline in PO4-P was 

recorded in the WW+Air+A.o treatment from an initial concentration of 3.8 ±0.1 mg L-1 to 0.2 ±0.1 mg L-1 

at day 7 (p <0.01 at day 1).  In the WW+Air+H.r treatment PO4-P decreased by day 1 from an initial 

concentration of 3.0 ±0.1 to 1.5 ±0.1 mg L-1, followed by a gradual increase to a final concentration of 

1.7 ±0.1 mg L-1.  In microalgae cultures it has been demonstrated that the removal of P from the 

medium is influenced by the available N concentration.  Beuckels et al., (2015) [453] described the 

assimilation of PO4
3- into microalgal biomass as dependent on the supply of bioavailable N.  Their study 

identified that biomass P concentrations were low when the N concentration in the biomass was low 

because the algae were grown on N-limited medium, irrespective of the amount of P in the medium.  

This mechanism is in agreement with the results in the present study as the PO4-P and NH3-N 

concentrations in the aerated microalga treatments displayed an equivalent trend in removal. 

The dependence of inorganic N uptake and incorporation into the microalgal biomass influencing 

inorganic P uptake is more pronounced in the non-aerated microalgae treatments.  In these treatments 

the highest NH3-N removal efficiency occurred at day 1, in conjunction with the highest PO4-P removal 

efficiency.  Thereafter, the removal rate of NH3-N declined drastically and concomitantly with a decline 

in PO4-P removal.  For example, in the WW+C.v treatment PO4-P decreased from an initial concentration 

of 3.2 ±0.0 to 2.4 ±0.1 mg L-1 by day 1, with only a further 0.7 mg PO4-P removed over the remaining six 

days.  This trend in PO4-P concentration was also observed in the WW+H.r treatment (Figure 4.3D).  The 

PO4-P concentration in the WW+A.o treatment, on the other hand, was characterised by a steady and 

continuous rate of decline, identical to that recorded in the WW+Air+A.o treatment (Figure 4.3F).  While 

PO4-P removal was higher in the WW+A.o treatment compared to the WW+C.v, the mechanism of 

removal after day 1 will likely have been a result of P precipitation in both treatments. 

In an alkaline environment, PO4
3- ions precipitates from solution following their reaction with metal ions.  

Phosphate reacts with calcium ions at a pH of approximately 8 to form hydroxyapatite (Ca5(PO4)3), 
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among other species, or it can also react with magnesium ions when the pH is above 7.5 to form struvite 

(NH4MgPO4·6H2O); both are insoluble mineral salts [126, 454].  The degree of precipitation is influenced 

by the concentrations of PO4
3- and cations in the medium, as well as temperature and pH [376].  In the 

WW+C.v and WW+A.o treatments of this study, the decline in PO4-P concentration can be attributed to 

its assimilation initially by the microalgae and subsequently by precipitation as the pH of the treatments 

had been observed to increase to approximately 9 at day 1.  However, it could not be determined why 

the reduction in PO4-P in the WW+A.o treatment, compared to the WW+C.v treatment, was more 

efficient despite both treatments resulting in a similar pH increase over the 7-day treatment period.  

One possible explanation may be the difference in the PSW composition of batches 1 and 3.  A higher 

concentration of cations allows for a greater amount of PO4-P to react with and precipitate out, while a 

higher ionic strength of the water decreases the potential for precipitation to occur [376].  Additional 

experimentation is needed to address this hypothesis. 

4.3.2.3 Influence of the indigenous microbial community in PSW on Nitrogen and Phosphorus removal 

Comparing the capacity to remove inorganic N and P between the treatments, the results indicate that 

regardless of the PSW batch and treatment condition, with or without aeration, the removal can be 

directly attributed to the microalgae because the control treatments (without microalgae) showed no 

significant decrease in NH3-N and PO4-P (Mauchly’s test p < 0.05) (Figure 4.3).  In the WWC treatments 

of PSW batch 2 and 3, the concentration of NH3-N gradually decreased to 25.4 ±0.4 and 30.2 ±0.4 mg L-1 

by day 7, respectively.  In the same treatments the PO4-P concentrations decreased marginally to a final 

concentration of 2.3 ±0.03 and 2.9 ±0.03 mg L-1 respectively.  In comparison a slight initial decline, either 

at day 1 or 2, in both NH3-N and PO4-P concentrations is noted in the WW+Air treatments of PSW batch 

2 and 3, with a gradual increase thereafter (Figure 4.3).  For PSW batch 1, only a small deviation from 

the initial NH3-N and PO4-P concentration was recorded in both the WWC and WW+Air treatments by 

the end of the experiment.  The gradual decrease in NH3-N and PO4-P in these treatments will have been 

because of the presence of the natural microbial community of the PSW, which either converted or 

assimilated the inorganic compounds.  Although a small degree of nitrification and denitrification 

occurred in the control treatments, the results suggest that the natural microbial community was not 

able to effectively remove or convert the inorganic compounds to any great extent under the culture 

conditions presented. 

Although the influence of the microbial community cannot be completely disregarded with respect to 

eliminating the inorganic N and P in the microalgae cultures, based on the results of the control 

treatments their ability to significantly do so is limited.  This finding is consistent with previous studies 

employing microalgae-bacteria co-cultures.  For example, Su et al. (2012b) investigated the potential of 

a co-culture composed of wastewater-born algae consortium (majority filamentous blue-green algae) 

and activated sludge, inoculated with different ratios (w/w: weight per weight) of nutrients removed 

from pre-treated wastewater.  The removal efficiencies of total Kjeldahl N and PO4-P removal at day 10 

were respectively 95.5% and 93.5% in the 5:1 algae-bacteria co-culture, whereas in the reactor with only 
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sludge the concentrations declined by 31.4% and <10% respectively.  Ma et al., (2014) [455] directly 

examined the influence of bacteria removing nutrients from centrate, a waste stream following sludge 

dewatering, with C. vulgaris by varying the initial concentration of bacteria in the co-culture.  Their 

results revealed no significant difference in nutrient removal from the wastewater with increasing 

bacteria concentrations, implying that the presence of bacteria had little effect on the removal of the 

inorganic N and P compounds, at least within the investigated range.  In the present study, the 

contribution of the bacteria in the microalgae treatments to remove the inorganic N and P may have 

been limited by the composition of the microbial community and environment of the treatment.  

Biological nutrient removal from wastewater is dependent on specific microorganisms (i.e. nitrifying, 

denitrifying and PAOs), which are encouraged to grow and function by cycling the wastewater through 

anaerobic, aerobic and anoxic environments [1, 89].  The presence of these microorganisms is naturally 

low in influent and settled wastewater, and without these specific microorganisms the removal of 

inorganic N and P in wastewater treatment tends to be minimal [456–458].  It can be suggested that the 

microbial population in the PSW, and therefore in the microalgae treatments, did not contain an 

adequate abundance of these microorganisms to effectively facilitate inorganic N and P removal. 

Another aspect that may have limited the microbial population in reducing the inorganic N and P in the 

microalgae treatments may have been the environmental and cultivation conditions of the experiment.  

As previously discussed, nitrification and denitrification in the microalgae treatments may have been 

inhibited by the elevated pH or limited supply of inorganic carbon and oxygenation of the medium via 

photosynthesis [1].  In general, the elevated pH in the microalgae treatments may have potentially 

reduced the abundance of the microbial community of the PSW by means of photo-oxidative 

destruction of coliform bacteria [281, 285, 287].  As a result, this will have led to a lower rate of CO2 

release via heterotrophic carbon-oxidation that would have otherwise served the microalgae with an 

alternative source of this essential compound for photosynthesis [288, 289].  In regards to the decline in 

PO4-P concentration after 24 hours in the WW+Air treatments of PSW batches 2 and 3, this may have 

been a result of PAOs in the wastewater sample.  In anaerobic environments these bacteria hydrolyse 

their stored polyphosphate to drive carbon assimilation and storage [2].  When conditions change to 

aerobic, PAOs actively consume inorganic P beyond their need for balanced growth.  It is possible that 

this particular group of bacteria were present in the PSW batches 2 and 3 at a sufficient abundance to 

accomplish the observed decline in PO4-P, but not in the PSW batch 1.  Between the collection and set-

up of the treatments, the PSW may have become anaerobic and consequently induced the phase of 

polyphosphate release and carbon assimilation, and upon aeration of the PSW, the bacteria will have 

actively assimilated the inorganic P.  This observation is supported by the fact that the concentration in 

PO4-P did not increase in the WWC treatments as O2 was not supplied, which maintained an anaerobic 

environment.  As a result of the continuous aeration, no subsequent cycle in PO4-P release and uptake 

could occur.  Additional experimentation is needed to confirm this conjecture primarily by community 

analysis of the PSW at the various time points to confirm the presence and abundance of PAOs [459]. 
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4.3.2.4 Influence of operating conditions on COD reduction 

The influence of the treatment condition on the reduction of CODS was also analysed.  The final CODS 

concentrations for each treatment in PSW batch 1, 2 and 3 are presented in Table 25.  It was expected 

that the reduction in CODS concentration would be generally higher in the treatments with aeration 

and/or inoculated with microalgae.  This is because an aerobic condition is necessary for oxidative 

biodegradation and incorporation of the carbonaceous material by heterotrophic bacteria, with the 

provision of O2 supplied in the atmospheric air injected and/or via photosynthetic O2 evolution in the 

microalgae treatments [1, 67].  Interestingly, COD reduction in the WWC treatments of each PSW batch 

was equal to the reduction in the WW+Air treatments, and in some cases greater than in the microalgae 

treatments.  For instance, in the WW+C.v treatment the COD declined by 44%, whereas in the respective 

WWC and WW+Air treatments of the PSW batch a 57 and 56% reduction was recorded, respectively.  

Similarly, in the WW+H.r treatment only a 9% reduction occurred (from 145 to 131 mg L-1 O2), while in 

the WW+Air treatment of this PSW batch 26% of the soluble carbonaceous material was removed.  In 

PSW batch 3, a removal efficiency of approximately 49% was recorded in all the treatments.  It must be 

noted that the low CODS removal efficiency of 20.5% recorded in the WW+Air+C.v treatment was most 

likely a consequence of a net increase in oxidisable organic matter in the PSW following algal death as a 

result of NH3-N and PO4-P shortage after day 5 – an effect also observed in a microalgae wastewater 

study by Sforza et al., (2014) [156]. 

 

Table 25 – Final CODS concentration (mg L-1) of treatments with or without microalgae, under aerated 
and non-aerated conditions 

PSW batch Initial WWC WW+Algae WW+Air WW+Air+Algae 

PSW 1 (C. vulgaris) 106.7 ±4.2 45.3 ±4.6 59.6 ±6.4 46.31 ±7.2 84.80 ±5.0 

PSW 2 (H. riparia) 145.0 ±0.1 120.0 ±2.7 131.3 ±5.9 106.33 ±4.5 89.0 ±7.0 

PSW 3 (A. olbiquus) 156.6 ±2.7 85.6 ±2.5 78.6 ±2.3 81.3 ±10.1 70.31 ±6.0 

 

These results suggest that the naturally occurring heterotrophic organisms are chiefly responsible for 

consuming and reducing the carbonaceous material in the PSW across all batches and treatments.  

Although it has been reported that microalgae can utilise organic compounds (i.e. glucose, acetone, 

etc.), either under heterotrophic or mixotrophic culture conditions, various studies have highlighted a 

limited capacity of microalgae that are able to utilise carbonaceous material from wastewater sources.  

For example, in a study by Lau et al., (1995) [150], evaluating the treatment of PSW by C. vulgaris 

cultured under mixotrophic mode, the authors reported that the trend in COD concentration over the 

10-day retention period was similar between the control (without microalgae) and microalgal 

treatments employing different inoculation densities - ranging between 1 x107 and 5 x105 cells mL-1.  

From this observation the authors inferred that under the experimental conditions and wastewater 

sample used, the microalgae were unable to utilise the carbonaceous material as a source or carbon 
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because of the high and variable complexity in the composition of the compounds; with the COD from 

the wastewater reduced primarily by the bacterial population.  A similar finding was reported in a study 

by He et al., (2013) [212], in which an average 90% BOD5 removal from unsterilized secondary 

wastewater was recorded, while in their sterile treatment no change in BOD5 or dissolved organic 

carbon was recorded when both treatments were inoculated with C. vulgaris.  However, the capacity of 

microalgae to assimilate and utilise the organic carbon material in wastewater is dependent on the 

wastewater type and source.  Posadas et al., (2014) [460] observed a high variation in total organic 

carbon (TOC) removed by a microalgal consortium in different wastewater types, ranging from an 18% 

TOC removal in lyophilized coffee manufacturing wastewater to 56% TOC removal in fish processing 

wastewater.  Overall, in the cultivation conditions of the present study, it can be inferred that the 

microalgae could not effectively remove and utilise the CODS as a carbon source even under inorganic 

carbon limited conditions.  To assess the capacity of each of the microalgal strains to utilise the 

carbonaceous material in wastewater sourced from Seafield, experiments using axenic cultures 

inoculated into sterile wastewater would ideally need to be conducted. 

4.4 Conclusion 

In this work three microalgal strains were assessed for their suitability to treat PSW based on i) their 

ability to remediate carbonaceous, nitrogenous and phosphorus material from the water, and ii) their 

growth.  Each microalgal species was cultured in real and unsterilized PSW under aerated and non-

aerated (static) conditions.  The response in growth and treatment performance in aerated conditions, 

which represented the optimal condition in this study, varied substantially between the different 

microalgae species.  C. vulgaris exhibited the ability to acclimatise better to the PSW medium and its 

environment based on the observed growth and higher inorganic N and P removal efficiencies as 

compared to that of A. obliquus and H. riparia, highlighting it as the preferred species in treating PSW.  A 

possible reason for the better response exhibited by C. vulgaris was attributed to its physiology, as for a 

smaller unicellular microalga a higher rate of productivity and inorganic N and P uptake from PSW could 

be achieved.  Concerning the performance in the non-aerated conditions, demise in growth and 

inorganic N and P removal was observed following the initial days after inoculation into the wastewater.  

In the non-aerated C. vulgaris and A. obliquus treatments, the demise in NH3-N and PO4-P reduction 

coincided with the formation of an alkaline environment, indicative of inorganic carbon being depleted 

in microalgae cultures.  Given that the main difference between aerated and non-aerated microalgae 

treatments was the provision of CO2 in the atmospheric air supplied, it can be inferred that the PSW was 

deficient in inorganic carbon necessary to support microalgae growth and inorganic nutrients for 

assimilation.  Although organic carbon was present in the wastewater (measured as oxidisable-carbon), 

the consumption of it by the microalgae was considered to be minimal.  This observation is based on the 

equal levels of deprivation achieved in COD concentration between the microalgae treatments and the 

control treatments (without microalgae).  This data suggests that the carbonaceous material was 

primarily degraded by the autochthonous microbial community of the wastewater.  Taking this into 
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account, it can be suggested that the majority of organic carbon fractions in the wastewater could either 

not be assimilated and/or metabolised by the microalgae potentially owing to the complexity of the 

compounds.  In comparison the microalgae were chiefly responsible for removing the inorganic P and N.  

Overall, no negative effects on the microalgae could be assigned to the composition of the PSW itself 

(i.e. toxic compounds), while the possible competition with native microflora was considered, it is not 

seen to affect algal growth and function.  Based on its performance, C. vulgaris was chosen as the test 

species for subsequent experiments in this thesis. 
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Chapter 5 – Effect of organic carbon enrichment on the treatment efficiency of primary settled 

wastewater by Chlorella vulgaris 

5.1 Introduction 

In Chapter 4, the characterisation of the PSW in the non-aerated microalgae treatments indicated that 

the concentration and fractions of carbon present in the wastewater were either of an insufficient 

quantity or in a non-bioavailable form, thus resulting in a low microalgal growth and inorganic N and P 

depuration from the water.  The potential of establishing an energy-efficient and cost-effective 

microalgae treatment process by means of eliminating aeration is thereby restricted by the quantity of 

carbon naturally present in a given source of PSW.  Microalgae acquire the majority of their carbon via 

photosynthetic carbon fixation in which inorganic carbon is incorporated into organic carbon substrates 

[67].  However, a number of microalgae have demonstrated to have facultative heterotroph capabilities, 

consuming organic carbon substrates over CO2 fixation [461].  Alternatively, certain microalgal species 

are mixotrophic in which photoautotrophic and heterotrophic carbon assimilation and metabolism 

occur simultaneously [205, 300, 462, 463].  In the presence of a suitable organic carbon source, the 

synergistic effect of the two processes has been shown to enhance microalgal productivity.  For 

example, when C. vulgaris was cultured in BG-11 medium under mixotrophic conditions the biomass 

yield was 2.08 g L-1 (at a glucose concentration of 7.22 mM) compared to just 1.64 g L-1 under 

photoautotrophic conditions [464].  Similarly, Mondal et al., (2017) [465] observed a 4-fold increase in 

Chlorella species BTA9031 productivity under conditions promoting mixotrophic growth compared to 

photoautotrophic conditions, with dry biomass yields of 1.45 and 0.7 g L-1 respectively.  The effects of 

other organic carbon sources, including glycerol, fructose or sodium acetate have also been studied in 

mixotrophic cultivation of freshwater microalgae.  The influence of the organic carbon source on 

microalgae productivity varies not only between organic carbon sources, but also the concentrations 

present at in the medium and even among different microalgae species cultured with the same carbon 

source [198, 205, 219, 466–469]. 

Some studies have reported the cultivation of microalgae in wastewater with an exogenous organic 

carbon source, herein representing a strategy to concurrently improve the treatment efficiency and 

microalgal productivity.  For example, Gupta et al., (2016) [85] observed maximum 58.1% TN and 74.8% 

TP removal efficiency by C. vulgaris from municipal wastewater supplemented with 5 g L-1 glucose, 

compared to a respective 15.8% and 22.8% reduction when the organism was cultured in wastewater 

only.  Higher removal efficiency in COD were also observed in the glucose-supplemented wastewater 

treatments compared to without.  Interestingly, an enhanced reduction in COD was noted when glucose 

was present at a low concentration compared to high concentration (glucose concentration ranged from 

2 to 30 g L-1 in the study).  Perez-Garcia et al., (2011) [86] found that organic carbon supplementation of 

secondary municipal wastewater was necessary as the present fractions were not in a bio-available form 

for microalgae to assimilate when cultured under heterotrophic conditions.  In the study, NH4
+ removal 

by C. vulgaris from the wastewater was statistically higher when supplemented with 0.12 M acetate or 
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glucose compared to without any exogenous carbon.  It is worth noting that the addition of organic 

carbon in microalgae wastewater treatment can also become a strategy to overcome light limitations 

that are caused by either the opaque nature of wastewater or high cell densities.  Particulate and 

colloidal matter attenuate the light intensity to microalgae as well as increase the scattering of photons, 

reducing photosynthetic efficiency directly and detrimentally impacting on growth and remediation of 

pollutants from the wastewater [16, 146, 470].  Moreover, reduced light capturing is caused by self-

shading in which the microalgae in suspension inadvertently shield each other from receiving light, 

which becomes accentuated as cultures become denser over time or if mixing is limited [150, 471–474]. 

It is critical to extrapolate carefully the results reported in previous studies.  Many studies, including the 

above mentioned, assessed the effect that exogenous organic carbon has on a microalgae wastewater 

treatment process in either real or synthetic wastewater that had been sterilised by filtration or 

autoclaving (similar studies: [86, 218, 475, 476]).  This is problematic given the presence of the natural 

microflora of the wastewater (i.e. bacteria, fungi, viruses, grazers etc.) that may negatively affect algal 

growth and nutrient removal efficiencies more acutely in the presence of a simple organic carbon source 

(e.g. glucose) that is known to stimulate non-photosynthetic organism growth.  Analysis on the microbial 

dynamics in algal-bacteria co-cultures in wastewater containing a readily available source of exogenous 

organic carbon for either microorganism is limited.  Mayo and Noike (1994) [477] reported on the effect 

that various glucose loading concentrations had on the growth and the culture dynamics between C. 

vulgaris and heterotrophic bacteria collected from settled activated sludge.  Under the specific 

operating conditions, Mayo and Noike (1994) [477] observed C. vulgaris growth rate to increase with an 

increase in glucose loading rate, with the highest growth achieved at 150 mg L-1 d-1 glucose loading.  

Above this glucose loading rate the dissolved O2 became the growth-limiting factor and VFA began to 

accumulate in the reactors, resulting in a decline in both bacterial and algal density.  Above this glucose-

loading rate (higher rates were 300 and 700 mg L-1 d-1) the conditions formed indicated a prevalence of 

heterotrophic carbon-oxidation exceeding photosynthetic O2 evolution.  Yun et al., (2017) [478] 

reported a higher biomass yield in axenic algae culture in BG-11 medium amended with glucose under 

mixotrophic conditions compared to microalgal-bacterial co-cultures cultured with the same 

concentration of glucose.  This result is in agreement with the findings reported by Zhang et al., (2012) 

[479], in which a higher biomass yield was achieved in a pure C. pyrenoidosa culture with 10 g L-1 glucose 

amended soybean wastewater under heterotrophic conditions compared to its corresponding 

microalgal-bacteria co-culture.  However, the difference in algal biomass between the axenic and 

bacteria contaminated culture was reported as not significant.  Interestingly, a lower final TN and TP 

concentration was recorded in the microalgal-bacterial co-culture (TN: 22.89 mg L-1; TP: 0.69 mg L-1) 

compared to the pure C. pyrenoidosa culture (TN: 64.71 mg L-1; TP: 2.76 mg L-1).  Zhang et al., (2012) 

[479] attributes the success of the algae, which were in competition with the bacteria, in part because of 

the cultivation conditions and medium composition, which permitted to maintaining a higher active 

algal growth rate capable of competing with bacterial growth.  A similar result was reported by Perez-

Garcia et al., (2010) [480] using a co-culture of C. vulgaris and Azospirillum brasilense cultivated under 
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mixotrophic conditions with glucose (10 g L-1), where a statistically significant removal of 44% NH3-N 

compared to <30% under autotropic cultivation was observed without any negative effects on 

microalgal growth linked to the presence of the bacteria.  In fact, a previous study found that the 

interaction between microalgae and bacteria can be dependent on the respective cell densities [481]; 

the study noted that a low bacterial cell density (5 x106 cell mL-1) improved the growth of microalgae, 

whereas high bacterial cell density (between 10 and 20 x 106 cell mL-1) inhibited microalgae growth and, 

conversely a high microalgae cell density inhibited the growth of bacteria.  With the objective of 

developing a static microalgae wastewater treatment process, supplementation of a suitable organic 

carbon source may improve the remediation efficiency.  Empirical studies aiming to investigate this 

effect should initially use a universally, readily available organic carbon source that can be metabolised 

by both microalgae and bacteria. 

In this regard, various organic carbon substrates present themselves as a viable source in the evaluation 

of a static microalgae treatment process, including glucose or glycerol.  However, in view of 

development a static microalgae wastewater treatment process for industrialisation and large-scale 

application, the significant cost of the proposed carbon sources is a major drawback.  Both glucose and 

glycerol are commercial commodities and as such would increase the material cost of the overall 

process, with the quantity required dependent on the volumes of wastewater [482].  Moreover, glucose 

is primarily produced for human consumption and any deviation from this purpose is generally 

considered inappropriate with regards to the fuel versus food debate [483].  Glycerol is an organic 

carbon source often used in the mixotrophic production of microalgae and is an industrial by-product.  

However, the use of crude or pre-treated glycerol as a substrate in the manufacturing of value-added 

products has expanded in recent years with emerging processes resulting in resource competition [484–

486].  Furthermore, glycerol as a by-product from microalgae biofuel production is often recycled as a 

carbon source in the medium as it positively affects net lipid productivity [464, 487, 488].  Therefore, the 

economic need to use a non-commercial organic carbon source(s) is imperative to ensure the 

sustainable development of a low-cost, static microalgae wastewater treatment process. 

Various organic carbon by-products generated from manufacturing processes have been successfully 

proven to support microalgal growth, both in heterotrophic or mixotrophic conditions.  For instance, 

sugar cane juice [223], cassava starch hydrolysate [224], corn powder hydrolysate [222, 225], cheese 

whey effluents [220, 489, 490], dairy waste (Woertz et al, 2009), and brewery waste [218, 491, 492] 

amongst others have proven their worth in this respect.  The main focus of these studies was to improve 

microalgae biomass and lipid yield.  An alternative opportunity could be to supplement PSW with a 

carbon-rich by-product as a relatively inexpensive source to enhance the treatment efficiency by C. 

vulgaris under static cultivation. 

A potential carbon-rich by-product to enhance microalgae wastewater treatment efficiency is pot ale, a 

residue remaining in the pot sill after the first distillation step in whisky production [493, 494].  

Characterised as an acidic (<4 pH) brown-red turbid liquid, pot ale is mainly composed of yeast and 
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barley fractions that are present in both the solid and soluble phase.  Carbohydrates account for 

approximately 2.5% (w/v) of the soluble content of pot ale, while proteins account for approximately 1% 

(w/v) [493].  Consequently, high COD concentrations between 31 and 62 g L-1 O2, and high BOD 

concentrations between 24 and 35 g L-1 O2 have been reported for different pot ale sources [494–496].  

The main fractions of carbohydrates are the non-fermentable sugar dextrin (polysaccharide of four or 

more glucose units linked by glycosidic bonds, and which can be branched) as we all residual fractions of 

glucose, fructose, maltose and formed organic acids [495, 497, 498].  Moreover, pot ale contains a high 

concentration of TN (>2 g L-1) and TP (<1 g L-1) that is released into solution from the milled malt and 

yeast fractions throughout the manufacturing process [496].  Presently, the disposal of pot ale is a 

concern as its high COD, N and P content are associated with expensive treatment processes [499, 500].  

Conventional treatment of pot ale is expensive, achieved through anaerobic digestion with the co-

generation of methane, followed by phosphate precipitation and biological nitrification and 

denitrification [495, 499].  Despite the high depurative efficiency achieved (<90%), effluents of pot ale 

still retain high organic loads with COD concentrations around 10 g L-1 O2 [496, 501].  This is the result of 

the inherent variation in its composition following the distillation process that makes stable anaerobic 

digestion difficult to maintain [494, 499].  In some instances, the methane produced is contaminated 

with hydrogen sulphite, with concentrations reaching as high as 2 g L-1 and, hence, making it an 

unsuitable product without further processing.  Being produced at an estimated 8 L per L of alcohol, 

approximately 2 to 3 million tonnes of pot ale are generated in Scotland annually, thus presenting a 

substantial source of a carbon-rich by-product [493, 502].  With the need for a more cost effective and 

sustainable disposal process, the coupling of pot ale with PSW treatment by microalgae is a potential 

solution. 

The objective of this study is to evaluate the effect that enrichment of PSW with organic carbon 

substrates has on a static microalgal treatment process, to better understand this process, and to give a 

contribution towards its potential development for industrialisation and large-scale application.  It was 

hypothesised that organic carbon enrichment of PSW improved the treatment efficacy by the 

mixotrophic microalga, C. vulgaris, under static culture conditions.  To this end, three consecutive 

experiments in a laboratory setting were carried out to systematically assess this organism’s 

performance in response to different organic carbon substrates and to compositional changes of the 

wastewater.  In the first experiment, PSW was enriched with a small quantity of glucose as a 

representative organic carbon substrate to facilitate the bioremediation by C. vulgaris.  This experiment 

was carried out on a single wastewater grab sample in order to verify the potential of the treatments 

and to provide a baseline response in removal efficiency, with a primary focus on NH3, PO4 and COD 

concentration.  Moreover, in view of developing an integrated system where bacteria and microalgae 

coexist, the condition tested was to also qualitatively monitor the response that organic carbon 

enrichment of PSW had on the natural microflora of the wastewater in view of potential bacterial 

contamination and their effect on the treatment process.  The second experiment aimed to validate the 

efficiency and reproducibility of this process, taking into account natural fluctuations in the composition 
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(biological/chemical) of wastewater, by additionally conducting three independent batch studies with 

PSW obtained on different days of the year (grab samples).  In addition to enriching with glucose, when 

evaluating the reproducibility of the static microalgae treatment process, independent treatments 

enriched with either glycerol or CO2 were also included to compare between different organic and 

inorganic carbon source.  The third experiment aimed to evaluate the effect PSW enrichment with pot 

ale has on the treatment efficiency by C. vulgaris.  This was done to verify pot ale as a potentially 

alternative and relatively cheap organic carbon source compared to glucose or glycerol, in order to 

improving the cost-effectiveness of a static microalgae treatment process.  The pot ale experiment was 

repeated on a total of three PSW batches (grab samples), collected and treated separately and 

sequentially to ensure the reliability and reproducibility to include natural abiotic and biotic variability of 

the wastewater in the assessment of the pot ale enriched treatment process. 
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5.2 Material and Methods 

5.2.1 Experimental conditions and set-up 

5.2.1.1 Quantities of organic and inorganic carbon used for each experiment 

In the first and second experiment the amount of organic carbon added to the PSW samples throughout 

this study was set to generate an equivalent COD of 300 mg L-1 O2.  For glucose, this equated to 281.1 

mg L-1, whereas for glycerol this was 245.9 mg L-1 (quantity calculated using equation 18).  Prior to use, 

D-glucose (as powder: ACROS Organics, UK) was oven-dried overnight at 105°C.  For glycerol, several 

millilitres were autoclaved (121°C; 15 minutes), then allowed to cool to room temperature and the 

quantity required accurately weighed in a pre-weighed Falcon tube.  A small amount of PSW sample was 

added to the glycerol in the tube to reduce its viscosity and facilitate its transfer.  In order to recover all 

of the glycerol in the tube, aliquots of wastewater from the sample were used to wash the tube three 

times.  For inorganic carbon enrichment, CO2 (75%) was bubbled directly into the wastewater sample 

through a sterile In-Line HEPA filter at a rate of 0.2 V/Vm for 1 minute every 8 hours.  The gas flow was 

measured by a rotameter (FL-2010, Omega Engineering Ltd., UK) with injection time regulated by a 

solenoid valve (CO2Art Ltd., UK) connected to a programmable 24-hour time switch. 

The pot ale used in this study was previously subjected to a protein extraction process [493].  The de-

proteination process is reported to consistently achieve removal of >60% soluble protein fraction, with a 

maximum 90% removal [503].  To avoid the introduction of other microorganisms other than the 

autochthonous microbial community of the PSW and bacteria associated with the microalga, upon 

receipt the pot ale was filter sterilised (0.22 µm) and stored at 4°C until use.  No pH adjustment or 

amendments with nutrient salts was performed.  The quantity of pot ale added to the PSW for each 

batch run was set at a ratio of 1:150 (v/v); this resulted in an equivalent COD increase between 250 and 

260 mg L-1 O2. 

5.2.1.2 Initial glucose enrichment experiment 

Glucose enrichment in PSW with microalgae was performed in 450 mL of wastewater contained in 500 

mL round borosilicate bottles.  For this, a cell suspension of C. vulgaris grown on BBM was concentrated 

by centrifugation (3500xg; 10 min) in 50 mL Falcon tubes and washed twice with 10 mL of the collected 

wastewater.  Three litres of filtered PSW was transferred to a 5 L borosilicate bottle and inoculated with 

the washed microalgae at a biomass dry weight concentration of 0.1 g L-1.  For enrichment, 1.5 L of the 

wastewater with C. vulgaris was transferred to a clean 2 L borosilicate bottle and amended with glucose 

(section 5.2.1.1), and then the sample was divided between three 500 mL borosilicate bottles.  This step 

was repeated separately for the enrichment of the wastewater only treatment without the addition of 

the microalga.  In total, four conditions (each in triplicate) were set up and labelled as follows: 

Wastewater control (WWC), Wastewater with glucose (WWG), Wastewater with C. vulgaris (WW+C.v) 

and Wastewater with glucose and C. vulgaris (WWG+C.v). 
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5.2.1.3 Evaluating the reproducibility of the treatment efficiency by C. vulgaris with either glucose, 

glycerol or CO2 enrichment across different PSW samples 

In addition to glucose, the effect of glycerol and CO2 enrichment was also investigated as additional 

independent treatments.  The volume treated was increased to 950 mL, and for each batch of PSW one 

bottle for each treatment was set up.  For each PSW batch treated, 4 L of filtered PSW was transferred 

to a 5 L borosilicate bottle and inoculated with washed microalgae (as prepared in section 5.2.1.2) at a 

biomass dry weight concentration of 0.1 g L-1.  A 950-mL volume of the wastewater with C. vulgaris was 

then transferred to each bottle.  Glucose and glycerol were added directly to the PSW to the 

concentrations stated in section 5.2.1.1.  The treatment conditions were labelled as follows: Wastewater 

control (WWC), Wastewater with C. vulgaris (WW+C.v), Wastewater with glucose and C. vulgaris 

(WWG+C.v), Wastewater with glycerol and C. vulgaris (WWGY+C.v), and Wastewater with CO2 and C. 

vulgaris (WWCO2+C.v).  This experiment was repeated a total of three times with each run treating a 

different sample of PSW.  From hereafter, R1, R2 and R3 refer to the experimental runs performed with 

PSW batches 1, 2 and 3 respectively. 

5.2.1.4 Pot ale enrichment experiment 

Pot ale enrichment in PSW with C. vulgaris was performed in 450 mL of wastewater contained in 500 mL 

borosilicate bottles.  The experimental set up was the same as described for the initial glucose 

enrichment experiment in section 5.2.1.2, with the exception of pot ale as the exogenous organic 

carbon source, added directly to the PSW to the ratio stated in section 5.2.1.1.  In total, four conditions, 

each in triplicate were set up and labelled as follows: Wastewater control (WWC), Wastewater with pot 

ale (WWPA), Wastewater with C. vulgaris (WW+C.v), and Wastewater with pot ale and C. vulgaris 

(WWPA+C.v).  This experiment was repeated a total of three times with each run treating a different 

sample of PSW enriched with a different sample of pot ale.  Hereafter, R4, R5 and R6 refer to the 

experiments performed with PSW batch 4, 5 and 6, and pot ale batch 1, 2 and 3, respectively. 

5.2.1.5 Glassware, sampling and analysis 

For the experiments all glassware was capped with a foam bung and incubated for a period of 5 days.  

Before use, all glassware with the relevant syphoning and aeration tubes was autoclaved (121°C; 15 

minutes).  Liquid samples were withdrawn daily to measure microalgal cell growth (cell mL-1), pH and 

concentration of NH3-N, PO4-P, NO3-N and NO2-N (described in Chapter 3, sections 3.3.4, 3.3.5, 3.3.6, 

3.3.8, 3.9 and 3.10 respectively).  In the initial glucose experiment only the concentration of glucose was 

measured by total carbohydrate analysis on a daily basis.  Dry cell weight (as a proxy for biomass) and 

COD were measured on the initial and final day of each experiment only (Chapter 3, sections 3.7 and 3.5 

respectively).  All treatments were briefly mixed (by swirling) prior to taking an aliquot to ensure a 

homogenous sample. 
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5.2.2 Statistics 

Figures were generated using Prism version 6.02 (GraphPad Software, USA) and statistical analysis was 

performed using SPSS version 22 (IBM Corporation, Armonk, NY).  Normality and homogeneity of 

variances for the data was tested with a Shapiro-Wilk test and Levene’s test respectively.  Since the data 

were found not to comply with a normal distribution, a nonparametric Kruskal-Wallis test by rank was 

run to determine if a difference in the median concentration values of an inorganic compound occurred 

between the treatments at a selected time point.  The null hypothesis states that the distribution of 

concentration in each treatment is the same, and the alternative hypothesis states that the 

concentration differs in its distribution between at least two treatments.  A statistically significant 

difference is noted when p <0.05, rejecting the null and accepting the alternative hypothesis.  If a 

statistically significant difference is calculated (p <0.05), a pairwise comparison using Dunn’s procedure 

with a Bonferroni correction for multiple comparisons was followed.  Unless otherwise stated, the 

reported significance refers to a comparison of a treatment to the control treatment (WWC) at the time 

point (day) stated. 
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5.3 Results and Discussion 

5.3.1 Effect of enrichment with glucose 

5.3.1.1 Inorganic Nitrogen and Phosphorus removal 

Bioavailable organic carbon, in the form of glucose, had a strong influence on the ability of C. vulgaris to 

remove inorganic N and P from the PSW.  In the case of NH3-N, this was the most abundant form of 

inorganic N available to the microalga in the PSW (Figure 5.1A), and its removal was more effective in 

wastewater that was enriched with glucose compared to the untreated (no glucose) control.  In the 

WWG+C.v treatment, NH3-N concentration significantly declined from an initial concentration of 28.6 

±0.1 to 4.1 ±0.3 mg L-1 at day 1, and reached 0.1 ±0.05 mg L-1 at day 2 (H(3) = 10.421, p =0.002 at day 1).  

Conversely, in the WW+C.v treatment without enrichment with glucose, concentrations of NH3-N 

decreased at a slower rate, reaching 19.7 ±0.7 mg L-1 at day 1, after which only a total of 2.1 mg NH3-N 

was further removed over the remaining four days.  In the treatments without the microalgae, NH3-N 

decreased to no more than 19.1 ±0.2 mg L-1 in the WWG treatment, and no reduction was recorded in 

the WWC treatment.  No statistically significant difference was calculated between the control and the 

treatments WW+C.v and WWG.  Concerning TN, a final concentration of 5.29 ±0.22 mg L-1 was achieved 

in the WWG+C.v treatment, which is below the maximum 10 mg L-1 imposed by the UWTD [14].  No 

other treatment in this experiment achieved the required minimum TN discharge concentration (Table 

26).  However, the limited removal in TN for these treatments is not surprising given that the majority of 

N present in the PSW was NH3-N; 28.6 ±0.1 mg L-1 NH3-N with the remaining N fractions (organic N + 

NO2-N + NO3-N) equating to approximately 6.43 mg L-1.  Therefore, a low NH3-N reduction was expected 

to result in a relatively high TN concentration. 

 

Table 26 – Initial and final concentrations of TN and COD for treatments enriched or not enriched with 
glucose, with or without C. vulgaris; concentration in mg L-1 and mg L-1 O2 respectively. 

Treatment TN 
 

COD 

 
Initial 

 
Final 

 
Initial 

 
Final 

WW 

35.03 ±0.48 

 
32.63 ±0.18 

 
141.9 ±4.2 

 
101.6 ±5.6 

WWG 
 

25.34 ±0.21 
 

416.3 ±15 
 

138.3 ±3.1 

WW+C.v 
 

19.12 ±0.83 
 

141.9 ±4.2 
 

106.6 ±8.4 

WWG+C.v 
 

5.29 ±0.22 
 

422.4 ±5.8 
 

133.6 ±9.1 
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Figure 5.1 – Changes in the PSW concentrations for NH3-N (A), PO4-P (B), NO2-N (C) and NO3-N (D) in mg L-1 treated 
with and without C. vulgaris, enriched with or without glucose.  Each data point is the mean ±SD, of n = 3 
independent replicates.  Some error bars are smaller than the symbols.  Treatment WWC (wastewater only); 
treatment WW+C.v (wastewater with C. vulgaris); treatment WWG (wastewater with glucose); and treatment 
WWG+C.v (wastewater with glucose and C. vulgaris). 

 

In view of the marked reduction in NH3-N concentration recorded in the WWG+C.v treatment, it can be 

argued that this effect was a direct result of the additional organic carbon (as glucose) to the PSW.  As 

detailed in section 2.2.2.2 and Figure 2.4, inorganic N assimilation and synthesis into amino acids in 

microalgae is inextricable dependent on carbon skeletons and energy in the form of ATP and 

NADPH/NADH [67, 238].  In microalgae, the incorporation of NH3 has been shown to increase the 

demand for TCA cycle intermediates, with 2-oxogluterate and oxaloacetate being the main metabolites 

[238].  Carbon substrates, which have been appropriated for N assimilation from the TCA cycle, are 

replenished by anaplerotic reactions involving carbon fixation or assimilation in autotrophic or 

heterotrophic pathways, respectively, of mixotrophic algae like C. vulgaris.  In the WWG+C.v treatment 

the glucose will have been assimilated and metabolised by the microalgae, initially to glucose-6-

phosphate and other intermediates to pyruvate through the glycolytic pathway and subsequently into 

the TCA providing a direct input of necessary carbon substrates [205, 245].  In comparison, microalgae 

growth was minimal in the WW+C.v treatment for the duration of the 5-day treatment period and 

alkalisation of the PSW above pH 10 occurred, symptomatic of inorganic carbon limitation as observed 

also for the non-aerated C. vulgaris treatment in Chapter 4 (Figure 4.3; Figure 5.2B, D).  Moreover, the 



 

107 

reduction of COD in the WW+C.v treatment was minimal with a removal efficiency of 24%, which was 

slightly lower than that in the WWC treatment (28%) (Table 26).  The similar final COD concentrations 

recorded in the WW+C.v and WWC treatments suggest: i) the readily available source of organic carbon 

in the wastewater was limited and depleted fast; ii) the naturally occurring heterotrophic organisms 

were chiefly responsible at consuming the carbonaceous material since either treatment resulted in a 

similar final COD concentration; and iii)  the residual carbonaceous material in the wastewater could not 

be degraded further by either microalgal or microflora community under the conditions of the 

treatments.  Based on these observations, it can be argued that bioavailable carbon (organic or 

inorganic) to the microalgae in the wastewater of the WW+C.v treatment was limited, thus explaining 

the minimal reduction in NH3-N.  Consequently, when compared to the WW+C.v treatment, the 

significantly higher NH3-N removal efficiency in the WWG+C.v treatment can be attributed to higher 

availability of bioavailable carbon, mainly to C. vulgaris, herein in the form of glucose.  A similar finding 

was reported by Eisele and Ullrich (1997) [504], where inorganic N assimilation by Ankistrodesmus 

braunii was enhanced by glucose (10 mM) cultivated in CO2-free air.  By comparison, in the carbon-

deplete culture condition (with glucose or CO2) the majority of the NO3 assimilated by the algae was 

released as NH3 following NO3 reduction, as the microalgae were not able to incorporate the inorganic N 

into organic compounds because of a lack of bioavailable carbon. 

With respect to other studies treating wastewater with microalgae under aerated conditions, a similar 

or higher N removal efficiency was recorded in the present glucose-enriched PSW treated with C. 

vulgaris under static conditions.  For example, in the study performed by Sforza et al., (2014) [156], the 

microalga C. protothecoides was able to remove 71% TN from unsterile settled municipal wastewater 

with an initial TN concentration of 38.71 mg L-1 when cultivated under continuous aeration with 5% v/v 

CO2 at 10°C.  Choi (2015) [181] obtained a 99.8% NH4
+-N removal efficiency from unsterile preliminary 

sedimentation effluent with an average 25.38 mg L-1 NH4
+-N by C. vulgaris cultured in a microalgae 

membrane bioreactor supplied with continuous atmospheric air at a hydraulic retention time of 3.4 

days.  In fact, in this experiment the WWG+C.v treatment achieved the same NH3-N removal efficiency 

within a shorter retention period than the WW+Air+C.v treatment in the preliminary evaluation study 

described in Chapter 4.  When Figure 5.1A is juxtaposed with Figure 4.3A, it can be clearly seen that the 

WWG+C.v treatment achieved a 99% NH3-N removal by day 2 compared to by day 4 in the WW+Air+C.v 

treatment.  This observation suggests the presence of glucose facilitates NH3-N removal from 

wastewater by microalgae without aeration, and as, or more effective than in aerated cultures. 

The variation in N removal efficiency and time taken between the non-aerated WWG+C.v treatment and 

the aerated microalgal wastewater treatment studies mentioned above (amongst others) may be 

attributed to the different carbon sources present as a result of the cultivation strategy.  In addition to 

being metabolised directly in anaplerotic reactions, the metabolism of glucose through the glycolytic 

pathway yields a net gain of two ATP and two NADH molecules, providing energy and reducing power 

for cellular metabolism, including for amino acid synthesis [205, 244].  Moreover, products formed in 
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glucose metabolism can be further metabolised for ATP production in the mitochondrial oxidative 

phosphorylation pathway, which is functional also in the absence of light [505].  On the other hand, 

inorganic carbon fixation is achieved at the expense of ATP and NADPH.  In brief, energy captured in the 

form of photons by chlorophylls, phycobilins and carotenoids enables electrons donated by water to 

transfer to PS I and II.  Through the electron transfer chain, the reaction yields sufficient energy to 

regenerate ADP and NADP+ to ATP and NADPH, respectively [67, 506].  The products produced in the 

light reaction are then utilised for inorganic carbon fixation in the Calvin cycle and other metabolic 

reactions, which are also functional in the dark [67, 506].  Therefore, in autotrophic condition inorganic 

N incorporation into amino acids is dependent on photosynthesis in comparison, under mixotrophic 

condition the presence of an organic carbon source means that microalgae are not dependent on 

photosynthesis and light stops being a growth limiting factor.  It can be argued that under mainly the 

autotrophic condition, the incorporation of N into amino acids requires a higher photosynthetic 

efficiency to meet the additional demand in ATP and NADPH for both N and carbon fixation.  

Consequently, not only does a limited resource of inorganic carbon affect N incorporation in microalgae, 

but also a low photosynthetic efficiency.  Therefore, the aforementioned phenomenon may explain the 

slower and/or reduced N removal efficiency in microalgal cultured with inorganic carbon as their 

primary source compared to organic carbon, as observed in the present experiment. 

In all the treatments, both the NO2-N and NO3-N concentrations were consistently on the border of the 

detection limit from the commencement and duration of these experiments (Figure 5.1C, D).  Although 

N2 was not analysed for, the likelihood of inorganic N being removed through its conversion to N2 (i.e. 

nitrification and denitrification) will have been limited by various chemical and physical factors 

associated with the treatments, albeit independent from each other.  For all treatments, the main 

limitation to nitrification will have been the relatively short duration of the experiment (day 5), 

terminating likely before a sufficient abundance of nitrifying bacteria could become established to elicit 

a detectable difference in NO2-N concentration given their long generation time [1].  Additionally, the 

observed pH changes, O2 availability and inorganic or organic carbon concentrations occurring in each 

treatment to varying degrees may also have limited these pathways [89].  For instance, nitrification 

rates are reduced by a high concentration of carbonaceous-BOD in wastewater, a situation that would 

have been exacerbated by the deliberate organic carbon enrichment with glucose carried out in the 

WWG and WWG+C.v treatments in the experiment reported here [507, 508].  Furthermore, the removal 

of NH3-N to almost below detection limits in the WWG+C.v treatment occurred within only 2 days, 

resulting in resource limitation for nitrifying bacteria and probably well before nitrification had a chance 

to begin.  The pH increase in the WW+C.v treatment, and inferred low inorganic carbon availability will 

have limited the activity of nitrifying bacteria and formation of NO2-N or NO3-N [449].  Although a small 

increase in NO2-N was detected in this treatment (i.e. from 0.02 to 0.07 mg L-1 at day 1), this did not 

coincide with an equivalent amount of NH3-N removed over the 5-day duration, indicating that 

nitrification was not the dominant pathway in reducing NH3-N from the PSW.  Inorganic N 

concentrations in the control treatments (WWC and WWG) remained fairly constant over the 5-day 
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duration of these experiments, with the exception of NH3-N declining slightly within the first day in the 

WWG treatment, but which was not significant (H (3) = 10.421, p = 0.307 at day 1).  This reduction can 

be ascribed to a high metabolic activity of the microbial community present in the PSW as a result of the 

exogenous glucose, which coincided with a decrease in total carbohydrate concentration (Figure 5.2A).  

A major limitation to these control treatments was the low concentration of dissolved O2, which can be 

attributed to the cultures having been incubated statically (Figure 5.2C).  In the WWC and WWG 

treatments, O2 concentrations were 1.36 ±0.18 and 0.54 ±0.11 mg L-1 respectively.  This will have not 

only impacted on the metabolic activity of the endogenous microorganisms in digesting and assimilating 

inorganic N, but also nitrifying bacteria dependent on O2 for converting them by nitrification and thus 

limiting their removal [1, 89]. 
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Figure 5.2 – Changes in PSW total carbohydrate concentration (A) in mg L-1, pH (B), dissolved O2 concentration (C) in 
mg L-1 O2 and C. vulgaris concentration (D) in cell mL-1for each treatment for the duration of the experiment.  Data 
points are mean ±SD, of n = 3 independent replicates.  Some error bars are smaller than the symbols.  Treatment 
WWC (wastewater only); treatment WW+C.v (wastewater with C. vulgaris); treatment WWG (wastewater with 
glucose); and treatment WWG+C.v (wastewater with glucose and C. vulgaris). 

 

The addition of glucose also had a significant effect on inorganic P removal.  In the WWG+C.v treatment, 

PO4-P was drastically reduced from 3.2 ±0.02 to 0.1 ±0.01 mg L-1 at day 1 and remained at this 

concentration until the end of the treatment period (Figure 5.1B) (H (3) = 10.385, p = 0.002 at day 1).  
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This was a maximal removal efficiency of 96% within a period of 1 day.  Notably, this is a far higher 

recorded rate than reported in previous studies using PSW which had reported removal efficiencies of 

less than 50% for the same retention time [136, 150, 509].  Similar to the observed difference in NH3-N 

removal between the WWG+C.v treatment and the WW+Air+C.v treatment discussed in Chapter 4, the 

reduction of PO4-P below the detection limit in the WWG+C.v treatment was achieved within a shorter 

retention period at day 2 compared to day 4 (Figure 4.3B).  As previously detailed (Section 4.3.2.2), the 

efficiency of P removal is affected by both abiotic and biotic factors.  In pH environments of 

approximately 9 or above, for example, soluble PO4
3- precipitates as a result of chemically reacting with 

cations in solution, mostly magnesium and calcium ions [376, 454].  In regards to biotic influences, 

research has indicated that P assimilation by algae is dependent on the overall bioavailable N 

concentration in the water, whereas N uptake is independent of P [453].  The reason for this is unclear, 

but a working theory suggests the dependence of P assimilation on N is because of the nutrients 

respective functions in cellular metabolism.  Nitrogen is mainly integrated into proteins necessary for 

biological activities in a cell, so a low supply of N will thus limit the synthesis of proteins [510, 511].  A 

reduction in protein synthesis is accompanied by a reduction in ribosome abundance as well as the 

quantity of RNA transcribed.  Given that the majority of intracellular P is present in ribosomal RNA, low 

protein expression levels as a result of N limitation will most likely result in lower cellular demand for P 

because of a reduction in ribosomes required [512].  Indeed, this physiological explanation has been 

observed in studies in which the supply of N to microalgae was limited, resulting not only in a lower 

concentration of N but also of P in the biomass [513]. 

Given the high removal efficiency of NH3-N under neutral pH in the WWG+C.v treatment and 

exponential growth of C. vulgaris, it can be inferred that the main mechanism for PO4-P removal was 

through assimilation by C. vulgaris and other microorganisms, such as bacteria, present in the 

wastewater and/or associated with the microalga mainly for direct metabolic use (Figure 5.1A; Figure 

5.2B, D).  In comparison, PO4-P removal in the WW+C.v treatment was a result of its assimilation initially 

and subsequent precipitation after day 1 because of a gradual increase in the pH above 9 (Figure 5.1B; 

Figure 5.2B).  Here, PO4-P concentrations decrease from 3.2 ±0.02 to 1.7 ±0.02 mg L-1 at day 1, and then 

continued to decrease reaching a minimal concentration of 0.8 ±0.02 mg L-1 at day 4.  The low removal 

and consequent assimilation rate of NH3-N by C. vulgaris will have likely influenced the internal N 

concentration of the microalgae, thus also affecting the assimilation of P in this treatment [453].  

However, the continuous removal of P by the microalgae through luxury uptake after day 1 in the 

WW+C.v treatment cannot be ruled out [514].  This same trend of a slow decrease in PO4-P after day 1 

was not observed in the WWG treatment despite displaying a similar reduction in NH3-N and PO4-P for 

the initial day of treatment as in the WW+C.v treatment.  The reduction in PO4-P concentration in the 

WWG treatment by day 1 was likely through its assimilation and incorporation by the indigenous 

microbial community present in the PSW, concurrent with the reduction of NH3-N.  As anoxic conditions 

developed in the control treatments, assimilation and degradation of the inorganic compounds will have 
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slowed (Figure 5.2C).  However, as the pH did not increase above 8 in these treatments, no substantial 

decrease in PO4-P could be attributed to PO4
3- precipitation. 

In general, the characterisation of the wastewater revealed significant reductions in NH3-N and PO4-P in 

the WWG+C.v treatment within just 2 days.  In the control treatments (without microalgae) the most 

effective decline in NH3-N and PO4-P was in the WWG treatment by day 1, while WWC exhibited no 

noteworthy change from the initial concentrations of the PSW.  Although the degree of NH3-N and PO4-P 

removed in the WWG treatment by the naturally occurring heterotrophic organisms will have also 

contributed to the removal of these inorganics in the WWG+C.v treatment, their overall contribution 

can be considered minimal.  Based on the values obtained, in the WWG treatment at total of 7.4 mg 

NH3-N and 1.2 mg PO4-P were removed by day 1, whereas in the WWG+C.v treatment 24.4 mg NH3-N 

and 3.1 mg PO4-P were removed by day 1.  In view of the higher reduction in NH3-N and PO4-P achieved 

when inoculated with C. vulgaris, from the net difference between the WWG and WWG+C.v treatment 

it can be argued that the microalgae were chiefly responsible at remediating the inorganic N and P from 

the PSW.  As previously discussed in Section 4.3.2.3 of Chapter 4, a potential factor limiting the influence 

of the microbial community in removing inorganic N and P from the wastewater was the microbial-

community not being composed of microorganisms able to consume substantial quantities of these 

compounds.  To fully elucidate the precise quantities and removal efficiencies of NH3-N and PO4-P from 

the wastewater by the microalgae alone, sterile glucose enriched PSW should be treated with an axenic 

strain of Chlorella under the present culture conditions. 

Furthermore, the high pH environment and dissolved O2 concentrations formed in the microalgae 

treatments may have limited the microbial population in removing inorganic N and P from the 

wastewater, in particularly in the WW+C.v treatment (Figure 5.2B, C).  An alkaline environment 

(discussed below) in conjunction with a high dissolved O2 concentration in a light environment mediates 

photo-oxidative destruction of coliform bacteria [515, 516].  Ansa et al., (2012) [283] observed that the 

increase in faecal coliform rate of decay in raw domestic wastewater correlated with an increase in 

chlorophyll-a concentration, with the microalgae responsible for a rise in pH and dissolved O2.  

Marchello et al., (2015) [394] reported no difference in coliform and Escherichia coli concentrations 

between aerated and non-aerated microalgae-bacteria co-cultures treating secondary treatment 

effluent.  In both these treatments the concentration of bacteria declined abruptly by day 2, resulting in 

a 99% reduction in colony forming units concurrent with a high pH environment.  Overall, the dissolved 

O2 concentration in the WW+C.v and WWG+C.v treatments had a tendency to increase during the 5-day 

treatment period to 8.7 ±0.4 and 6.2 ±0.2 mg L-1, respectively, indicating a prevalence of photosynthetic 

activity over heterotrophic carbon-oxidation. 

However, the high dissolved O2 concentration in the microalgae treatments may have had a negative 

effect on C. vulgaris.  Dissolved O2 generated in situ via photosynthesis can negatively affect microalgal 

productivity.  For example, Molina et al., (2001) [348] observed a 17 and 25% reduction in 

photosynthetic activity by the microalga Phaeodactylum tricornutum in medium with dissolved O2 
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saturation levels of 200 and 300%, respectively.  The negative effect is mainly a result of the competitive 

nature of O2 with CO2 for the active site of RuBisCO [67].  In the Calvin cycle, RuBisCO actively fixes CO2 

to form two compounds of 3-phosphoglycerate in the carboxylation reaction of ribulose 1, 5-

bisphosphate.  These compounds are recycled in the Calvin cycle and the formed products are used in 

carbon metabolism of respiration or storage components.  However, in the presence of O2, RuBisCO 

fixes O2 to form one molecule of 2-phosphoglycolate and one of 3-phosphoglycerate.  Although 2-

phosphoglycolate can be converted back to 3-phosphoglycerate following its conversion into glyoxylate, 

additional expense of ATP is necessary.  Furthermore, more CO2 needs to be fixed in the Calvin cycle to 

compensate for the loss of the carbon substrates.  This requires additional ATP and NADPH, which are 

generated in the light reaction of photosynthesis thereby increasing the indirect cost associated with O2 

fixing.  Overall, O2 fixing diverts energy and carbon compounds that would otherwise be used to support 

microalgal growth and thus reduce microalgae productivity [517].  Although the minimal growth 

observed in the WW+C.v treatment can mainly be assigned to the lack of readily available carbon 

substrates, the high dissolved O2 concentration will also have impacted on C. vulgaris ability to fix 

inorganic carbon under the conditions which formed.  Another aspect caused by a high O2 concentration 

is photo-oxidative damage to PS II through the formation of reactive oxygen species, thus a dissolved O2 

concentration of 1.9 mg L-1 or less in microalgae cultures is recommended [518, 519]. 

5.3.1.2 Organic nutrient removal 

Under aerobic conditions, organic substrates in wastewater are removed through oxidative 

biodegradation and incorporation for biosynthesis predominantly by heterotrophic bacteria [1].  Owing 

to the mixotrophic nature of C. vulgaris, it will have participated together with the indigenous bacterial 

community in the PSW and that associated with the micro-alga for the collective removal of bioavailable 

organics from wastewater [205].  Figure 5.2A shows the total carbohydrate (TC) concentrations for each 

of the treatments throughout the culture period.  Without enrichment with glucose, the initial TC 

concentration was 9.7 ±2.1 mg L-1, which was lower than the theoretical range of 50 to 120 mg L-1 for 

municipal wastewater, as suggested by Gray (2004) [1].  The TC concentration in the WW+C.v and WWC 

treatments declined only slightly to an average 4.6 ±6.5 mg L-1 after 1 day for both treatments, with no 

substantial change thereafter.  In the enriched treatments (WWG and WWG+C.v) the TC concentration 

declined rapidly from an initial concentration of 305.1 ±6.5 to 9.2 ±1.1mg L-1 after 1 day.  It can be 

inferred that glucose was completely removed within this time since its concentration reached initial 

concentrations recorded in the non-enriched (WWC) treatment.  The COD results further confirm the 

removal of the glucose from the enriched treatments (Table 26), as shown by a removal of 

approximately 67% in the WWG and WWG+C.v treatments, with final COD readings of 138.3 ±3.1 and 

133.6 ±9.1 mg L-1 O2, respectively.  Based on the TC profiles of both glucose-enriched treatments, it 

cannot be conclusively stated whether the microbial community present in the PSW or microalgae were 

chiefly responsible for the removal of the exogenous glucose.  The necessary active hexose/H+ 

symporter system, by which glucose from the medium is assimilated in microalgae, including in Chlorella 
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spp., is known to be induced (by protein expression) within 15 to 18 minutes upon glucose detection 

[520, 521].  Despite this fast acclimation response, previous research identified heterotrophic bacteria 

to always exhibit higher glucose-specific uptake rates compared to Chlorophyta in either batch, 

chemostat or discontinuous feed cultivation conditions [522].  However, a lower residual glucose 

concentration was achieved in experiments with only alga than that in cultures with only heterotrophic 

bacteria.  A potential study to clarify the degree of glucose consumption by the algae and bacteria 

would be to use 13C isotopic labelled glucose [523]. 

Interestingly, the beginning of the C. vulgaris stationary growth phase at day 2 in the WWG+C.v 

treatment coincided with an increase in TC concentrations (Fig. 5.2A, B).  Henderson et al., (2008) [524] 

reported an increased production of dissolved organic carbon during the stationary growth phase for 

various microalgal species, and this was attributed to the excretion of extracellular polysaccharide 

substances (EPS) by the microalgae.  Hence, the observed increase in TC concentrations after day 2 in 

the WWG+C.v treatment could be attributed to EPS production during the stationary phase [525].  

Various EPS compounds are known to be produced by different microalgae, including Chlorella spp., 

with glucose as a common carbon source in the culture media [526, 527]. 

5.3.1.3 Growth and pH 

It was initially proposed that indigenous microorganisms, particularly bacteria, in the PSW samples 

would out-compete C. vulgaris for organic and inorganic resources, and result in limiting the alga's 

growth and ability to the remove N, P and the exogenous glucose that was added.  The results, however, 

indicate that the removal of these components in PSW is enhanced by the inoculation of C. vulgaris 

together with the supplementation of glucose.  Indeed, the addition of glucose had a distinctly positive 

effect on the growth of C. vulgaris (treatment WWG+C.v) compared to no substantial growth observed 

in the absence of glucose (treatment WW+C.v) (Figure 5.2B).  Although cell counts in the WW+C.v 

treatment did not indicate any growth of the microalgae by cell numbers, the biomass measurements 

were seven times higher compared to that in the WWC treatment which did not contain glucose and 

was not inoculated with the alga, with dry weights of 280.8 ±16.6 and 42.8 ±2.2 mg L-1 for the 

treatments respectively.  The WWG+C.v treatment had the highest biomass yield with 419.1 ±4.5 

compared to 111.7 ±13.0 mg L-1 for the WWG treatment. 

Variations in pH occurred in all four treatments, with the highest degree of change observed in the 

WW+C.v treatment (Figure 5.2D).  As previously detailed in sections 2.2.2.1 and 4.3.1, the alkalisation of 

the PSW in this treatment is a consequence of the fixation of CO2 by RuBisCO, which is converted from 

HCO3
−.  In brief, this photosynthetic-driven process leaves OH– ions in the cell which have to be 

neutralised with H+ ions that are taken up from the extracellular environment, resulting in an increased 

extracellular pH [419].  The knock-on effect is a decrease in the CO2 to bicarbonate ratio, and eventually 

a reduced absolute CO2 concentration.  The alkalisation also suggests a reduction and consequent 

limitation in inorganic carbon because of its ability to buffer pH changes in the medium environment.  
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Moreover, the unfavourable (high pH) environment present may also have limited the growth of other 

members of the microbial community in the PSW and thus reduced their production of CO2 via 

respiration that would have otherwise served C. vulgaris with an alternative source of this essential 

compound for photosynthesis.  Furthermore, the pH increase in the WW+C.v treatment will have had a 

strong influence on its NH3-N removal efficiency (Figure 5.1A).  While NH4
+ is the preferred inorganic N 

source for microalgae, a rise in pH above 8 leads to its dissociation to form free NH3, which is toxic to 

microalgae [429].  The pH in this treatment increased from 7.97 to 10.49 at a relatively constant rate 

over the 5-day duration of these experiments (Figure 5.2D). This will have contributed to the formation 

of free NH3, creating an unfavourable environment for nutrient assimilation and microalgae growth.  

The resultant drop in NH3-N removal after day 1 in the treatment supports the lack of available carbon 

before the onset of ammonia toxicity, most likely because of the low inorganic carbon to the microalgae 

will have limited the assimilation of NH3-N. 

Conversely, the pH in the glucose-enriched treatments decreased rapidly within the first day to below 

6.6 for the WWG+C.v and to below 5.9 for the WWG treatments (Figure 5.2D).  This drop in pH coincided 

with the removal of the added glucose in both treatments, suggesting that acidification of the PSW did 

not negatively affect the consumption of this substrate (Figure 5.2A).  The anoxic environment in the 

WWG treatment will have driven the degradation of organic compounds, including glucose, to produce 

organic acids through the process of acidogenesis and acetogenesis, and thus also the observed pH 

reduction in this treatment (Figure 5.2C) [89].  It should also be noted that the pronounced removal of 

NH3-N and PO4-P will have also influenced the overall extracellular H+ concentration and thus influencing 

the observed shifts in pH values.  An abrupt decline in the concentrations of these nutrient pollutants 

can lower the pH, as observed in the WWG+C.v treatment with NH3-N the main N source in the PSW 

[143, 429]. 

5.3.2 Treatment reproducibility assessed across PSW samples and alternative carbon sources 

The small-scale treatment of PSW with the addition of exogenous glucose was used to evaluate the 

growth of C. vulgaris, its removal of inorganic compounds, and to analyse for other biochemical and 

physical changes under the different treatment regimens evaluated.  This provided a useful 

understanding of the treatment performance under static culturing conditions revealing that it was 

limited, either because of the limited bioavailability of carbon to the microalga or detrimental effects 

from pH changes.  In order to upscale this into a commercially-viable system, we would need to 

demonstrate that this process can be consistently replicated with PSW collected at any time to take into 

consideration biotic and abiotic variability of the wastewater throughout the year.  To investigate this, a 

further three batches of PSW were collected and treated separately and sequentially with C. vulgaris 

employing the same static culturing approach as described and evaluated above.  In addition to 

enriching with glucose, treatments with glycerol and CO2 were also included to compare between the 

use of a different organic and inorganic carbon source. 
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The NH3-N and PO4-P concentration profiles for each treatment in the different PSW batches are shown 

in Figure 5.3.  In general, the efficiency in NH3-N and PO4-P removal across the batches of PSW was 

effective and reliable in the treatments with exogenous organic carbon.  The treatments enriched with 

glucose or glycerol exhibited a similar trend with respect to their removal of NH3-N and PO4-P, with a 

respective 91% and 98% final average efficiency in both treatments (both p < 0.01 at day 2).  Notably, 

when comparing between the individual experimental runs, the minimum NH3-N concentration 

achieved increased with an increase in initial concentration.  For instance, in PSW batch R1 the 

concentration of NH3-N declined from an initial concentration of 23.4 ±0.2 mg L-1 to below the detection 

limit (LOD 0.09 mg L-1) in both the WWG+C.v and WWGY+C.v treatments at day 2 (Table 27; Figure 

5.3A).  Conversely, a higher minimum NH3-N concentration was achieved for the same treatments of 

PSW batch R2 and R3 at day 3; these PSW batches had a higher initial NH3-N concentration of 34.9 ±0.5 

and 34.7 ±0.2 mg L-1, respectively (Table 27).  The concentration of NH3-N in the WWG+C.v and 

WWGY+C.v treatments at day 3 were, respectively, 1.03 ±0.01 and 0.41 ±0.01 mg L-1 in PSW batch R2, 

and 2.31 ±0.02 and 3.04 ±0.01 mg L-1 in PSW batch R3 respectively (Figure 5.3C, E).  A similar 

observation can be drawn based on the TN concentrations of the organic carbon enriched treatments in 

each of the different PSW batches, as a higher initial concentration led to a higher final concentration 

(Table 28).  For example, the highest initial TN concentration was recorded in PSW batch R3 and, 

consequently, this PSW batch exhibited the highest final TN concentration which was above the 

permissible maximum 10 mg L-1 by the UWTD in the organic carbon enriched treatments.  No such effect 

was observed for the PO4-P concentration in the organic carbon enriched treatments (Figure 5.3B, D, 

and F). 
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Figure 5.3 – Changes in the PSW concentrations for NH3-N (A, C, E) and PO4-P (B, D, F) in mg L-1 for PSW batch R1 (A, 
B), R2 (C, D) and R3 (E, F) treated under the conditions with or without C. vulgaris, and enriched with or without 
glucose, glycerol or CO2.  Each point is a mean ±SD, of n = 3 (pseudo replicates for each treatment per batch).  
Treatment WWC (Wastewater only); treatment WW+C.v (Wastewater with C. vulgaris); treatment WWG+C.v 
(Wastewater with glucose and C. vulgaris); treatment WWGY+C.v (Wastewater with glycerol and C. vulgaris); and 
treatment WWCO2+C.v (Wastewater with CO2 and C. vulgaris). 
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Table 27 – Initial inorganic N and P concentrations and pH of each PSW batch used in the experiment to 
validate the reproducibility of the static treatment process; values are a mean ±SD, of n = 3 (pseudo 
replicates) with concentrations reported in mg L-1. 

PSW batch NH3-N PO4-P NO2-N NO3-N pH 

R1 23.4 ±0.2 2.9 ±0.1 0.30 ±0.0 0.41 ±0.0 7.42 

R2 34.9 ±0.5 4.3 ±0.3 0.03 ±0.0 0.06 ±0.0 7.36 

R3 34.7 ±0.2 3.7 ±0.1 0.03 ±0.0 0.06 ±0.0 7.42 

 

Table 28 – Initial and final concentrations of COD (mg L-1 O2) and TN (mg L-1) for each PSW batch (R1, R2 
and R3) when inoculated with or without C. vulgaris, and enriched with or without glucose, glycerol or 
CO2; values are a mean ±SD, of n = 3 (pseudo replicates). 

PSW batch Treatment COD 
   

TN  
  

  
Initial 

 
Final 

 
Initial 

 
Final 

R1 

WWC 113 ±5.3   65 ±0.7   

29.8 ±0.2 

  24.4 ±0.8 

WW+C.v 113 ±5.3 
 

85 ±3.5 
  

17.5 ±0.2 

WWG+C.v 379 ±4.1 
 

109 ±0.7 
  

5.3 ±0.0 

WWGY+C.v 392 ±7.0 
 

95 ±3.5 
  

5.1 ±0.1 

WWCO2+C.v 113 ±5.3 
 

75 ±2.1 
  

15.5 ±0.5 

         

R2 

WWC 219 ±10.0 
 

92 ±3.5 
 

38.7 ±1.8 

 
36.3 ±0.5 

WW+C.v 219 ±10.0 
 

82 ±2.1 
  

23.8 ±0.9 

WWG+C.v 513 ±9.1 
 

103 ±2.1 
  

9.4 ±0.8 

WWGY+C.v 520 ±16.3 
 

119 ±7.7 
  

9.6 ±0.3 

WWCO2+C.v 219 ±10.0 
 

94 ±6.3 
  

16.0 ±0.0 

         

R3 

WWC 182 ±6.1 
 

104 ±1.4 
 

44.5 ±0.7 

 
36.8 ±0.4 

WW+C.v 182 ±6.1 
 

83 ±0.7 
  

26.0 ±0.4 

WWG+C.v 482 ±3.1 
 

153 ±0.7 
  

12.0 ±0.1 

WWGY+C.v 477 ±4.2 
 

116 ±0.7 
  

11.9 ±0.1 

WWCO2+C.v 182 ±6.1   89 ±0.7     20.5 ±0.3 

 

These observations suggest that there is a limitation between the maximum N concentrations that could 

be treated in the presence of the enriched carbon quantities added to the PSW batches in this study.  

Given the necessity for keto-skeletons required for the incorporation of inorganic N into microalgal 

biomass, this observation can be explained by the fact that a higher N load in the PSW would inferably 

require a greater quantity of carbon by the microalgae.  In the present study, a similar COD removal 

efficiency in all the organic carbon-enriched treatments was recorded (Table 28).  Across all these 

treatments an average 74% COD was removed with a maximum 79% and a minimum 68% COD removal 

achieved in the WWG+C.v treatment of PSW batch R2 and R3 respectively.  In all these treatments the 

decline in COD was equivalent to the quantity of organic carbon added (Table 28).  In the WWG+C.v and 

WWGY+C.v treatments of PSW R2 the quantity of carbonaceous material removed was higher than just 

the quantity of exogenous organic carbon, at a respective 410 and 401 mg.  The higher quantity of 

carbonaceous removal in the PSW batch R2 may be a result of higher levels of readily available 

carbonaceous material.  However, given the higher maximum NH3-N concentration achieved, despite 
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the higher concentration of carbonaceous material consumed, it can be suggested that additional 

reduction may have been by the naturally occurring microbial community and not exclusively by C. 

vulgaris.  Moreover, the higher COD removal did not appear to reflect itself in microalgae growth.  The 

maximum microalgal cell concentrations reached were lower in PSW batches R2 and R3 (Figure 5.4A, C 

and E).  C. vulgaris increased to above 4.5 x107 cells mL-1 in PSW batch R1, with a maximum cell 

concentration of 6.08 x107 (±3.2x106) cells mL-1 at day 3, and 4.65 x107 (±2.8x106) cells mL-1 at day 4 for 

the treatments enriched with glucose and glycerol, respectively.  In comparison, in PSW batches R2 and 

R3 the maximum cell concentration reached in either of the organic carbon enriched treatments was 

below 4.5 x107 cells mL-1. 

Previous research has demonstrated that adjustments in carbon availability affect depuration of N from 

wastewater or other medium, and vice versa, by microalgae.  For instance, Petrovic and Simonic (2015) 

[528] noted that at lower NO3 concentration, the N content of the medium was more efficiently 

removed than under higher NO3 concentration when each condition contained an equal quantity of 0.5 

mg L-1 sucrose.  In this study, NO3-N removal efficiency was 92% at an initial concentration of 50 mg L-1 

by C. sorokiniana, whereas 88% removal efficiency was achieved at an initial concentration of 100 mg L-

1.  Similarly, Gupta et al., (2016) [85] recorded a significantly higher quantity of TN and TP removed by C. 

vulgaris in wastewater supplemented with 5 g L-1 glucose compared to with 2 g L-1 glucose.  

Interestingly, however, an increase in glucose concentration above 5 g L-1 did not result in a significant 

difference in final N and P removed, but rather in a slight variation in the rate of removal.  A higher 

glucose concentration promoted a higher removal rate with the fastest rate achieved at 30 g L-1, which 

was the maximum glucose concentration evaluated in this study.  Overall, the findings from this study 

and those of the above-mentioned studies indicate that a certain quantity of bioavailable carbon is 

necessary in order to ensure specific quantity of NH3-N removal. 
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Figure 5.4 – Change in C. vulgaris concentration (A, C, E) in cell mL-1, and pH (B, D, F) for PSW batch R1 (A, B), R2 (C, 
D) and R3 (E, F) treated under the conditions with or without C. vulgaris, and enriched with or without glucose, 
glycerol or CO2.  Cell concentration is expressed a mean ±SD, of n = 3 (pseudo replicates for each treatment per 
batch) and for pH one measurement was recorded per sample for each treatment.  Treatment WWC (Wastewater 
only); treatment WW+C.v (Wastewater with C. vulgaris); treatment WWG+C.v (Wastewater with glucose and C. 
vulgaris); treatment WWGY+C.v (Wastewater with glycerol and C. vulgaris); and treatment WWCO2+C.v 
(Wastewater with CO2 and C. vulgaris). 
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Unexpectedly, the addition of CO2 in the WWCO2+C.v treatments seemed to provide little benefit in 

promoting microalgal growth and the removal of inorganic N and P (Figure 5.3).  In fact, the WW+C.v 

treatments, which had no additional carbon or were mixed, demonstrated similar rates in growth and 

inorganic N and P removal.  Although no direct negative impact was observed on the performance of C. 

vulgaris cultured with CO2 at the concentration and frequency supplied in these experiments, the results 

suggest that the CO2 had an inhibitory effect on the capacity of the microalgae to remediate N and P.  It 

is known that the provision of inorganic carbon to microalgae improves photosynthetic efficiency and 

further improvement of productivity and growth rate [156, 200, 529, 530].  Acidification of the 

wastewater to a pH of approximately 5.6 in all WWCO2+C.v treatments occurred, presumably because of 

an increase in carbonic acid from the CO2 suggesting an accumulation of inorganic carbon in the 

medium.  Conversely, the pH in organic carbon enriched treatments decreased slightly in the initial few 

days of treatment and increased once C. vulgaris stationary phase was reached, with none of the 

treatments increasing above pH 9 (Figure 5.4B, D and F).  In comparison to the organic carbon enriched 

treatments, intermittent enrichment with CO2 did not yield an improvement in microalgal growth or 

nutrient removal from the wastewater (Figure 5.3, Figure 5.4). 

According to previous research, the supply of concentrated CO2 to non-acclimated microalgae can lower 

or inhibit respiration because of its strong influence on photosynthetic efficiency [198], an effect 

described by [531].  This effect can be explained by the activity of carbonic anhydrase.  In brief, the 

abundance of intracellular carbonic anhydrase is known to increase in microalgae cells when grown 

under atmospheric concentrations of CO2, and to decrease when grown on air enriched with CO2 [532] 

(study used 5% CO2).  When transferred to a high CO2 environment, the upregulation of carbonic 

anhydrases in non-acclimatised microalgae can have a negative impact [531].  In these conditions, the 

high catalytic activity of intracellular carbonic anhydrase can cause acidification of the stroma, an 

environment which is physiologically alkaline [533, 534].  The resultant loss in pH control leads to an 

inhibition of the Calvin cycle (enzymes are pH dependent) and a loss of the proton gradient established 

across the thylakoid membranes necessary for ATP production, hence leading to a reduction in 

photosynthetic efficiency and the ability to fix CO2.  Moreover, CO2 uptake is not easily controlled in 

microalgae unlike HCO3
-, as CO2 can easily diffuse through the membrane resulting in uncontrolled 

uptake [535].  Based on this physiological explanation, it can be inferred that C. vulgaris was not 

acclimated to the conditions of CO2 enrichment that this strain was subjected to in the WWCO2+C.v 

treatment.  Prior to its inoculation in the wastewater, C. vulgaris was grown under atmospheric air 

conditions and consequently may have contained a high number of carbonic anhydrase, which increased 

its susceptibility to the intracellular inhibitory effects of CO2.  Moreover, this assumption supports the 

decline in removal efficiency of NH3-N despite the presence of excess inorganic carbon (low pH) in the 

WWCO2+C.v treatments.  The rate of photosynthesis will have been impaired and directly impacting on 

the generation of carbon skeletons and ATP necessary for microalgal N assimilation and growth [244].  It 

is clear this point needs further investigation to drive firmer conclusions.  Since the acidification of the 

stroma itself is hard to assess, the intensity of chlorophyll fluorescence could be measured as a proxy of 
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cell health to monitor photosynthetic efficiency [531].  Although the high concentration of CO2 was 

probably the main cause of the effect, intermittent aeration is considered a suitable strategy for 

microalgae treatment of wastewater at a lower energetic cost, but control optimisation is needed in its 

application [536]. 

Results presented in the previous initial glucose enrichment experiment (Section 5.3.1) showed that 

nitrification and denitrification were not dominant pathways in reducing the NH3-N in the organic 

carbon enriched static microalgae wastewater treatment process.  Similar results were obtained in the 

reproducibility experiment, which substantiates this observation.  Slight variations in the initial NO2-N 

and NO3-N concentrations were recorded between the PSW batches, however, this seemed to have no 

noteworthy effect on the treatment performance of the process (Table 27).  The highest initial NO2-N 

and NO3-N concentrations were in PSW batch R1. In this PSW batch the NO2-N concentration was 

reduced to below the limit of detection in all treatments, except in the WW+C.v treatment, and the NO3-

N concentration declined below the detection limit, except in the WW+C.v and WWCO2+C.v treatments 

(Figure 5.5A, B).  Slight fluctuations in both the NO2-N and NO3-N concentrations were recorded in all 

treatments in PSW batch R2 and R3 over the 5-day treatment period, nonetheless no substantial change 

occurred (Figure 5.5C – F). 
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Figure 5.5 – Changes in the PSW concentrations for NO2-N (A, C, E) and NO3-N (B, D, F) in mg L-1 for PSW batch R1 
(A, B), R2 (C, D) and R3 (E, F) treated under the conditions with or without C. vulgaris, and enriched with or without 
glucose, glycerol or CO2.  Each point is a mean ±SD, of n = 3 (pseudo replicates for each treatment per batch).  
Treatment WWC (Wastewater only); treatment WW+C.v (Wastewater with C. vulgaris); treatment WWG+C.v 
(Wastewater with glucose and C. vulgaris); treatment WWGY+C.v (Wastewater with glycerol and C. vulgaris); and 
treatment WWCO2+C.v (Wastewater with CO2 and C. vulgaris). 
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5.3.3 Pot ale enrichment of PSW 

Results in the above experiments demonstrate that organic carbon enrichment had a positive effect on 

the performance of a microalgal process to treat unsterilized PSW without aeration.  Although using 

glucose or glycerol as organic substrates is pertinent for research in a laboratory setting, from a 

commercial perspective these substrates entail a high cost at an industrial and large-scale application.  

Consequently, it is imperative that alternative, low-cost organic carbon substrates are identified and 

assessed for their applicability, ideally from a waste source.  The following experiments investigated the 

effect of pot ale enrichment, a whiskey by-product, on the treatment efficiency of PSW by C. vulgaris.  

To verify its suitability, the experiment was replicated on three separate batches of PSW each with 

independently deproteinated pot ale samples, collected and treated independently and sequentially to 

understand any abiotic and biotic variability the wastewater or pot ale may have on the performance of 

treating the PSW. 

5.3.3.1 Characterisation of pot ale and PSW batches 

Pot ale composition, as well as the initial composition of each PSW batch (with and without pot ale 

amendment) was analysed immediately before commencing the experiments with the inoculation of the 

microalga see Table 29 and Table 30, respectively.  Pot ale COD concentration was consistent across all 

samples, with a mean concentration of 42.8 ±1.9 g L-1 O2, indicating a high oxidisable-carbon content.  

Inorganic analysis revealed NO3-N to be the main inorganic N species, however, the average 

concentration across all the pot ale samples was low, at 0.36 ±0.1 mg L-1.  Both NO2-N and NH3-N 

concentrations were found to be negligible or below the limit of quantification for the assays used.  To 

accurately determine NH3-N and NO3-N concentrations, it is worth to mention that an additional analysis 

was conducted on pot ale adjusted to pH 7.  This was done to enable an alkaline environment to form, 

which is necessary for the chemical reaction of the assay following the addition of the reagents, but also 

to eliminate any potential interference that cations may have on the reaction (i.e. copper, magnesium or 

calcium) [379].  In brief, after pH adjustment the pot ale was left to stand for 1 hour under continuous 

shaking (100 rpm) and then re-filtered to 0.2 µm to remove any precipitation.  No difference in NH3-N 

and NO3-N concentration was recorded between the non-adjusted (~3.3) and pH adjusted (7.0) pot ale 

sample (data not shown).  In regards to TN, analysis revealed pot ale contained a high concentration, 

which will have come from organic fractions and varied in concentration between the samples.  A similar 

result was reported by Barrena et al., (2017) [503] in which TN concentration varied between 440 and 

1100 mg L-1 for deproteinated pot ale processed from four independent malt whiskey distilleries.  The 

pot ale used in this study also contained a high amount of PO4-P and TP, with average concentrations of 

420.49 ±50.26 and 599.05 ±66.01 mg L-1, respectively. 
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Table 29 – Physicochemical characterisation of three deproteinated pot ale sample from undisclosed 
malt whiskey distilleries; values are a mean ±SD, of n = 3 (pseudo replicates) with organic and inorganic 
N or P concentrations reported in mg L-1, and COD concentration in mg L-1 O2. 

PA batch NH3-N NO2-N NO3-N TN PO4-P TP COD pH mS/cm 

P1 <0.1 <0.02 0.26 886 436 622 43100 3.32 4.33 

P2 <0.1 0.14 0.57 696 442 634 41400 3.30 3.74 

P3 <0.1 0.03 0.31 327 334 482 40700 3.28 4.18 

NH3-N and NO3-N concentrations from pot ale with pH 7. 

 

The initial inorganic N and P concentrations varied not only between the batches of PSW, but also within 

the same batch of PSW when enriched with pot ale (Table 30).  Since pot ale is rich in inorganic P and 

carbonaceous material, whist containing trace quantities of inorganic N, the enrichment resulted in a 

substantial shift with respect to the canonical C/N/P ratio (herein based on COD/NH3-N/PO4-P 

concentrations) for freshwater algal growth (i.e. 100/15/1) [145].  In the pot ale enriched PSW, the 

C/N/P ratios ranged between 100/11/2 and 100/5/2.5, denoting a limitation in inorganic N, while 

without pot ale C/N/P ratios ranged between 100/25/3 and 100/16/4. 

 

Table 30 – Physicochemical characterisation of each PSW batch; values are a mean ±SD, of n = 3 (pseudo 
replicates) with concentrations reported in mg L-1. 

PSW Batch 
NH3-N   PO4-P   NO2-N   NO3-N   COD (mg L-1 O2) 

- +   - +   - +   - +   - + 

R4 20.9 19.6 
 

5.7 9.8 
 

0.02 0.02 
 

0.05 0.05 
 

130 393 

R5 47.8 46.8 
 

5.9 9.1 
 

0.03 0.02 
 

0.06 0.11 
 

191 440 

R6 35.2 34.4 
 

4.4 7.2 
 

0.03 0.02 
 

0.05 0.06 
 

168 415 

“-“, PSW without pot ale; “+”, PSW with pot ale 

 

5.3.3.2 Effect of enrichment with pot ale 

Pot ale had a significant effect on the removal of both the NH3-N and PO4-P concentrations in PSW 

inoculated with C. vulgaris under static culture conditions.  As shown in Figure 5.6, a clear depuration of 

these compounds in the WWPA+C.v treatment occurred in all three wastewater batches examined.  In 

the case of NH3-N, its concentration declined to below the detection limit only in the WWPA+C.v 

treatment of PSW batch R4, from an initial 20.9 ±0.09 to 0.09 ±0.0 mg L-1 at day 2 (H(3) = 10.385, p = 

0.016 at day 1) (Figure 5.6A).  In comparison, a higher final NH3-N concentration was recorded in the 

WWPA+C.v treatments of PSW batch R5 and R6 after the 5-day treatment period; initial and final 

concentrations were respectively 47.8 ±0.09 and 17.7 ±0.9 mg L-1 in PSW batch R5 (H(3) = 10.385, p = 

0.013 at day 1)( Figure 5.6C), and 35.2 ±0.03 and 4.7 ±0.2 mg L-1 in PSW batch R6 (H(3) = 10.421, p = 

0.013 at day 1) (Figure 5.6E).  This was a direct result of the wastewater containing a higher initial NH3-N 
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concentration.  Tam & Wong (1996) observed a similar response in C. vulgaris cultures with varying NH3-

N concentrations, in which a higher initial N concentration resulted in a lower removal efficiency and 

consequently higher residual N concentration.  The effect described in the present experiment is in 

agreement with the observed response described in the reproducibility experiments when using glucose 

or glycerol as the organic carbon source (section 5.3.2). 

As postulated in the reproducibility experiments, the resultant demise in NH3-N removal in the 

WWPA+C.v treatments of PSW batch R5 and R6 may be a result of the wastewater having become 

limited in bioavailable carbon for the microalgae to utilise.  This inference is based on the trend in COD 

concentration recorded daily in this experiment.  In the WWPA+C.v treatment of PSW batches R5 and 

R6, the concentration of COD gradually declined after an initial rapid drop at day 1, with final COD 

concentrations at 154 ±2.9 and 122 ±6.6 mg L-1 O2, respectively (Figure 5.7C, E).  For PSW batch R5 and 

R6, a correlation is noted when the concentration of NH3-N and COD of the WWPA+C.v treatments are 

juxtaposed in respect to their wastewater batch.  In the WWPA+C.v treatments of PSW batch R5 and R6, 

the trend in COD concentration coincided with the decline in NH3-N concentration, with the lowest 

recorded concentration of both parameters occurring at day 3.  Thereafter, no substantial change in 

both the NH3-N and COD concentrations were recorded for the remaining treatment period, indicating 

that further carbonaceous material and NH3-N was not taken up by the microalgal-bacterial co-culture.  

At this time point the concentration of COD corresponded in part to the COD concentration recorded in 

the WW+C.v and WWC treatments of the respective PSW batch, from which it can be inferred that the 

exogenous carbonaceous material in the form of pot ale was completely removed.  Furthermore, the 

high concentration of dissolved O2 in these treatments compared to the controls (WWC and WWPA) can 

be considered as evidence of the near complete depletion of the bioavailable fractions of carbonaceous 

material in the PSW as no further aerobic degradation occurred (Figure 5.7B, D, F).  In WWPA+C.v 

treatment in PSW batch R4, the trend in COD concentration was characterised by a slower initial decline 

untill day 3, at which point the concentration slightly increased before decreasing again to 172 ±14.2 mg 

L-1 O2 at day 5 (Figure 5.7A).  The slight increase in COD concentration at day 4 was probably a result of 

the accumulation of soluble degradable matter in suspension related to cell death.  The increase in COD 

concentration coincided with a decline in C. vulgaris concentration (Figure 5.7A; Figure 5.8B). 
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Figure 5.6 – Changes in PSW concentrations for NH3-N (A, C, E) and PO4-P (B, D, F) in mg L-1 for PSW batch R4 (A, B), 
R5 (C, D) and R6 (E, F) treated under the conditions with and without C. vulgaris, enriched with or without pot ale.  
Each data point is the mean ±SD, of n = 3 independent replicates.  Some error bars are smaller than the symbols.  
Treatment WWC (Wastewater only); Treatment WW+C.v (Wastewater with C. vulgaris); Treatment WWPA 
(Wastewater with pot ale); and Treatment WWPA+C.v (Wastewater with pot ale and C. vulgaris). 

  



 

127 

0 1 2 3 4 5

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

D a y

C
O

D
 (

O
2

 m
g

 L
-1

)

A  (R 4 )

0 1 2 3 4 5

0

5

1 0

1 5

2 0

D a y

D
is

s
o

lv
e

d
 O

x
y

g
e

n
 (

O
2

 m
g

 L
-1

)

B  (R 4 )

0 1 2 3 4 5

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

D a y

C
O

D
 (

O
2

 m
g

 L
-1

)

C  (R 5 )

0 1 2 3 4 5

0

5

1 0

1 5

D a y

D
is

s
o

lv
e

d
 O

x
y

g
e

n
 (

O
2

m
g

 L
-1

)

D  (R 5 )

0 1 2 3 4 5

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

D a y

C
O

D
 (

O
2

 m
g

 L
-1

)

E  (R 6 )

0 1 2 3 4 5

0

2

4

6

8

1 0

D a y

D
is

s
o

lv
e

d
 O

x
y

g
e

n
 (

O
2

m
g

 L
-1

)

F  (R 6 )

W W C W W + C .v W W P A W W P A + C .v

 

Figure 5.7 – Changes in COD concentration (A, C, E) and dissolved O2 concentration (B, D, F) in mg L-1 O2 for PSW 
batch R4 (A, B), R5 (C, D) and R6 (E, F) treated under the conditions with and without C. vulgaris, enriched with or 
without pot ale.  Each data point is the mean ±SD, of n = 3 independent replicates.  Some error bars are smaller 
than the symbols.  Treatment WWC (Wastewater only); Treatment WW+C.v (Wastewater with C. vulgaris); 
Treatment WWPA (Wastewater with pot ale); and Treatment WWPA+C.v (Wastewater with pot ale and C. vulgaris). 

 

Similar to the glucose and glycerol enriched treatments in the reproducibility experiment, the results 

from the WWPA+C.v treatments suggest a maximum removal capacity of NH3-N that can be achieved by 

the microalgal-bacterial co-culture in relation to the quantity of pot ale added.  In the WWPA+C.v 

treatments, the total quantity of NH3-N removed at day 3 was 27.9 mg in PSW batch R5 and 29.5 mg in 

PSW batch R6.  Given that pot ale in both these treatments amounted to an approximate 250 mg L-1 O2 

COD, it can be inferred that this quantity of carbonaceous material supported the removal of the above 
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amount of NH3-N from the PSW in the experimental conditions.  In line with this observation, the initial 

NH3-N concentration of PSW batch R4 was below the suggested maximum and as such a complete 

reduction below detection limit in the WWPA+C.v treatment was achievable.  However, based on data 

reported in the literature, it cannot be posited that increasing the concentration of bioavailable carbon 

will necessarily facilitate a greater quantity in N removal from the wastewater to permissible discharge 

concentrations (i.e. 10 mg L-1 TN: [14]).  Growth and nutrient removal characteristics of C. vulgaris using 

artificial wastewater showed a complete removal up to a 21.2 mg L−1 NH4-N concentration, while the 

removal efficiency dropped 50% at initial concentrations between 41.8 and 92.8 mg L-1 NH4-N [538].  A 

similar observation was reported by Choi and Lee (2013) [539], with C. vulgaris cultured in sterile 

municipal wastewater amended with ammonium salt.  A complete reduction in NH4-N was achieved up 

to an initial concentration of 25.2 mg L-1, a 50% decline in NH4-N removal efficiency was recorded in the 

wastewater at concentrations exceeding 85.5 mg L-1, and further decreased to less than 30% at 

concentrations above 105.4 mg L-1.  In both these studies, inorganic carbon (as CO2) was supplied to the 

medium, either by direct aeration or shaking of the cultures, and as such the cultures were not carbon 

limited.  These data suggest that the microalga C. vulgaris cannot remediate NH3-N when its initial 

concentration is higher than a specific threshold value.  However, this effect may be a result of the 

culture conditions and not because of the microalgae’s ability.  Both of the above studies were 

conducted in batch cultures with the microalgae reaching stationary growth.  As a result, N uptake may 

have been limited because uptake is closely related to growth.  As such it would be of value and interest 

to examine if a limitation occurred under continuous cultivation in which the microalgae are maintained 

in a perpetual state of exponential growth. 

In regards to the use of brewery or distillery wastewater to grow microalgae, only a few studies have 

reported on the subject.  Solovchenko et al., (2014) [540] carried out research on a semi-batch operated 

50 L microalgae-bacteria treatment process of alcohol distillery wastewater using the mixotrophic strain 

C. sorokiniana.  In this study, the treatment process was operated for 3 cycles, each run for a period of 4 

days, with each cycle achieving significant COD removals, from approximately 20 to 1.5 g L-1 O2.  In a 

preliminary test, alcohol distillery wastewater treated by the endogenous microflora under aerated 

conditions with atmospheric air achieved no noteworthy COD reduction, demonstrating that the 

microalgae were vital to the reduce COD.  In this study, it must be noted that the alcohol distillery 

wastewater was adjusted to pH 7 to ensure an optimum environment for the microalgae.  In the present 

study, adjustment of the pot ale was not necessary mainly because of the dilution factor – 10 mL in 1.5 

L.  Although the addition of pot ale was accompanied by a small decrease to the pH of the wastewater, 

this did not negatively affect the treatment performance in the WWPA+C.v treatment.  In other studies, 

Yang et al., (2008) [541] reported a 76% reduction in COD from cassava ethanol fermented wastewater 

treated by the microalgae C. pyrenoidosa in both batch and continuous operated mode.  O’Rourke et al., 

(2016) [542] demonstrated successful mixotrophic cultivation of the microalga Parachlorella kessleri on 

waste residue from fermented wort, with the carbonaceous material composed of residual glucose, 

maltose and maltodextrin. 
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The assimilation and metabolism of the non-fermented sugars in pot ale by C. vulgaris in the PSW may 

have occurred through a less indirect pathway compared to that for glucose or glycerol (discussed in 

Chapter 4).  Compared to simple organic carbon compounds such as glucose, glycerol or acetate, there is 

a paucity of information detailing the precise nature and mechanism by which microalgae assimilate and 

digest more complex carbon substrates in their aquatic environment [215, 216, 543].  Carbohydrate 

metabolism in microalgae has been extensively studied, primarily in an attempt to attain a higher starch 

or lipid content for the manufacturing of biofuels from algal biomass [544, 545].  This research 

demonstrated carbohydrate synthesis and catabolism to predominantly occur in the chloroplast of 

microalgae belonging to the phyla Chlorophyta, Dinophyta, Glaucophyta, and Rhodophyta [546–550].  

No studies have robustly proven extracellular expression of the enzymes necessary for starch hydrolysis 

(i.e. isoamylase, β-amylase or α-amylase) in microalgae, either membrane bound or released into the 

medium.  Therefore, it cannot be stated with absolute certainty as to whether C. vulgaris was able to 

hydrolysis and degrade the non-fermented sugars of the pot ale extracellularly. 

However, as the COD concentration declined in the WWPA+C.v treatments for each PSW batch, it is 

possible that C. vulgaris was able to assimilate the organic carbon provided in the form of pot ale by 

other means.  In the WWPA treatments of each PSW batch a reduction in COD was observed, indicating 

the ability of the endogenous microflora in the PSW to digest the carbonaceous matter, including the 

pot ale (Figure 5.7A, C, E).  Bacteria are known to release as well as display membrane bound enzymes, 

including glucosidases such as β- and α-amylase [551–554].  In the WWPA+C.v treatments the 

concentration of dissolved O2 increased above 2 mg L-1, achieving required levels for heterotrophic 

microorganisms to oxidise the organic material as well as autotrophic bacteria to carry out nitrification 

(Figure 5.7B, D, F) [89].  Therefore, it is feasible that the endogenous microflora aided in the digestion of 

the non-fermented sugars to a form that was more readily available to the microalgae; by hydrolysing 

the polysaccharides to monomers or disaccharides, such as glucose or maltose [2, 543].  Additionally, 

heterotrophic respiration would have increased the availability of inorganic carbon.  Analysis of the 

carbohydrate fractions in the wastewater of this treatment is necessary to drive a firmer conclusion.  An 

alternative mechanism may have been via endocytosis.  However, substrate uptake by this mechanism 

in Chlorophyta has not been clearly demonstrated.  Wang et al., (2011) [555] reported on the 

internalisation of copper nano particles via endocytosis in the prokaryotic alga Microcytis aeruginosa.  

Domozych (1991) [556] reviewed vesicle trafficking in Chlorophyta, highlighting the complexity of 

endomembrane system in relation to other eukaryotic cell processes, although no information was 

presented in regards to substrate uptake by endocytosis.  To fully elucidate the mechanism by which the 

organic carbon of pot ale is utilised by the microalgae, heterotrophic culturing under axenic conditions 

would need to be performed.  To further investigate the mechanism of cellular uptake and verify if the 

endocytic pathway confers a mechanism for the internalisation of soluble organic carbon, microalgae 

could be pre-treated with an endocytic inhibitor such as Wortmanin or sodium azide [557, 558]. 
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Based on the time-course of C. vulgaris concentration, the high initial NH3-N concentration present in 

PSW batch R5 and R6 combined with the elevated pH (discussed below) are likely the reasons 

underlying the slower growth rate and extended lag period exhibited by the microalgae.  Based on 

morphological observations of C. vulgaris grown under alkaline conditions, pH-induced effects resulted 

in a greater flexibility of Chlorella cell walls and is suggested to prevent its rupture and, therefore, 

inhibiting autospore release [290].  C. vulgaris concentration in the WWPA+C.v treatment of PSW batch 

R6 exhibited a 1-day lag followed by a gradual rate of growth, increasing from 1.2 x107 (±1.6x106) cells 

mL-1 at day 1 to a maximum 3.2 x107 (±1.9x106) cells mL-1 at day 4 (Figure 5.8F).  In PSW batch R5, the 

cell concentration in the WWPA+C.v treatment displayed a lower growth rate over the course of the 

initial 4 days of treatment, increasing only marginally before substantially increasing at day 5 (Figure 

5.8D).  C. vulgaris concentration in this treatment was respectively 1.3 x107 (±5x105) and 3.1 x107 

(±2x106) cells mL-1 at day 1 and day 4, and 5.8 x107 (±3x106) cells mL-1 at day 5.  In comparison, C. 

vulgaris concentration in the WWPA+C.v treatment of PSW batch R4 (lowest recorded NH3-N 

concentration in this experiment) exhibited a 1 day lag period with a clear exponential phase, with 

maximum cells concentration reached by day 3 from an initial 1.1 x107 (±1x106) to 3.5 x107 (±2x106) cells 

mL-1 respectively, followed by a small decline at day 4 before increasing again to an equivalent 

concentration as recorded on day 3 (Figure 5.8B).  At present no explanation can account for the sudden 

increase in C. vulgaris concentration recorded in the WWPA+C.v treatment of PSW batch R5 after day 4, 

yielding the highest cell concentration of all three experimental runs.  A similar response was observed 

in the WW+C.v treatment of the same PSW batch, but not for PSW batch R4 or R6, which suggests that 

the cause may be a result of the wastewater itself rather than be treatment specific.  However, a lack of 

complete analysis of the wastewater (i.e. metal content, microbial abundance, characterisation of 

organic compounds etc.) imposes limitations on this interpretation and its precise cause.  It is interesting 

to note that despite the discrepancy in C. vulgaris concentration over the 5-day treatment period 

between the WWPA+C.v treatments, the concentration of final biomass in each treatment was similar; 

in the PSW batch R4, R5 and R6 final yields were 476 ±25, 410 ±26 and 426 ±11 mg L-1 respectively. 

The trend in microalgae growth in the WWPA+C.v treatments of PSW batch R5 and R6 bear comparison 

to microalgae growth in conditions with similar or higher NH3 concentrations, in which a prolonged 

acclimation phase or reduced productivity was noted relative to conditions of lower NH3 concentration 

[440, 537, 559].  For instance, the specific growth rate of C. vulgaris cultured on wastewater dropped by 

a third when the NH4
+-N concentration was doubled, from 0.92 d-1 at 17 mg L-1 to 0.33 d-1 at 39 mg L-1, 

displaying a longer acclimation period on a time scale of hours [559].  It must be noted that tolerance to 

NH3 is species dependent, which explains the discrepancy in microalgae growth observed in the present 

study when compared to other microalgae wastewater studies with higher NH3-N concentration in 

which no effect on microalgae growth and metabolism is observed (Godos et al. 2010; Collos & Harrison 

2014 and references therein).  Tolerance of C. vulgaris to NH3-N concentrations of 170 mg L-1 or higher 

have been reported [538, 559, 560]. 
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The dissolved O2 concentration increased in the treatments with microalgae, despite the prevailing high 

free NH3 formation as a result of pH increase, indicating a prevalence of photosynthetic activity over 

heterotrophic carbon-oxidation.  The WWPA+C.v treatments of PSW batch R4, R5 and R6 achieved 

maximum dissolved O2 concentrations of 7.5 ±0.5, 6.8 ±0.2 and 9.1 ±0.2 mg L-1 O2, respectively (Figure 

5.8B, D and F), and maximum pH values of 10.8 ±0.09, 9.0 ±0.02 and 8.9 ±0.16, respectively (Figure 5.7B, 

D, F).  Previous research has demonstrated that accumulation of free NH3 in the extracellular 

environments, which can penetrate internally into algal cells cause an intracellular pH disturbance, 

damage PS II and reduce photosynthetic efficiency and O2 evolution [439, 561].  For example, NH3-N 

concentration of 2 mM (i.e. about 34 mg L-1) at pH 8 was reported to inhibit photosynthesis and growth 

of S. obliquus in HRAP treating domestic sewage [440].  In a further investigation, Azov and Goldman 

(1982) [438] observed a 50 and 90% decline in S. obliquus photosynthesis when the pH increased to 9.5 

at 25°C, at NH3-N concentrations of 2 and 3 mM respectively.  In comparison to the results reported in 

the studies above, it is clear that C. vulgaris used in these experiments is tolerant to NH3 and elevated 

pH and, hence, its suitability in wastewater treatment.  Despite the presence of O2 and NH3-N in the 

WWPA+C.v treatment of PSW batch R5 and R6, the occurrence of nitrification was ruled out based on 

the absence of no substantial increase in both NO2-N and NO3-N concentrations and the elevated pH 

values present in the wastewater (Figure 5.9C – F).  The same observation holds true for the WWPA+C.v 

treatment in PSW batch R4 with the amendment that NH3-N was limited in the wastewater following its 

decline at day 2 (Figure 5.9A, B). 

In regards to P, the addition of pot ale resulted in a higher initial and consequently final PO4-P 

concentration compared to that for the experiments using glucose or glycerol as the organic carbon 

source.  In the WWPA+C.v treatment in PSW batch R4, the concentration of PO4-P declined rapidly at 

day 1 to 2.8 ±0.8 mg L-1 after which the rate slowed before reaching a final concentration of 0.5 ±0.06 

mg L-1 (Figure 5.6B), but which was not significant compared to the WWPA treatment (H(3) = 10.495, p = 

0.243 6 at day 5).  Similarly, for the same treatment in PSW batch R6 the highest removal effect was 

recorded at day 1, declining to 3.3 ±0.04 mg L-1, with a final PO4-P concentration of 2.3 ±0.2 mg L-1, 

which was found to be significant compared to WWPA (H(3) = 10.152, p = 0.018 at day 3) (Figure 5.6F).  

Whereas in PSW batch R5 the PO4-P concentration in this treatment declined at a steadier rate from an 

initial concentration of 9.1 ±0.06 to 3.3 ±0.12 mg L-1 at day 4, before slightly increasing to 3.9 ±0.17 mg L-

1 at day 5 (Figure 5.6D).  This decline in PO4-P concentration was, however, found as insignificant 

compared to the WWPA treatment (H(3) = 10.385, p = 0.249 6 at day 5).  In these treatments the decline 

in PO4-P was in part a consequence of microalgal uptake, together with chemical precipitation following 

an increase in pH above 8 in the culture condition (Figure 5.8A, C, E).  Although the precise partitioning 

of PO4-P removed by the microalgal-bacterial co-culture and its precipitation was not conducted, the 

decline in PO4-P removal rate after the initial days of treatment may have been a response to limited 

NH3-N uptake by the microalgae as P assimilation is shown to be dependent on N uptake [453].  In 

general, final PO4-P concentration in the WWPA+C.v treatments declined to a similar PO4-P 

concentration recorded in the WW+C.v treatments (Figure 5.6B, D and F). 
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Figure 5.8 – Change in PSW pH (A, C, E) and C. vulgaris concentration (B, D, F) in cell mL-1 for PSW batch R4 (A, B), 
R5 (C, D) and R6 (E, F) treated under the conditions with and without C. vulgaris, enriched with or without PA.  Each 
data point is the mean ±SD, of n = 3 independent replicates.  Some error bars are smaller than the symbols.  
Treatment WWC (wastewater only); Treatment WW+C.v (wastewater with C. vulgaris); Treatment WWPA 
(wastewater with pot ale); and Treatment WWPA+C.v (wastewater with pot ale and C. vulgaris). 
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Figure 5.9 – Changes in PSW concentrations for NO2-N (A, C, E) and NO3-N (B, D, F) in mg L-1 for PSW batch R4 (A, B), 
R5 (C, D) and R6 (E, F) treated under the conditions with and without C. vulgaris, enriched with or without PA.  Each 
data point is the mean ±SD, of n = 3 independent replicates.  Some error bars are smaller than the symbols.  
Treatment WWC (wastewater only); Treatment WW+C.v (wastewater with C. vulgaris); Treatment WWPA 
(wastewater with pot ale); and Treatment WWPA+C.v (wastewater with pot ale and C. vulgaris). 
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Whilst it is pertinent to analyse for TP concentration in future studies to ensure the static microalgae 

treatment process complies with the UWTD, the high residual concentration of PO4-P as a result of pot 

ale amendment highlights a potential limitation to the use of this carbon sources in a static microalgae 

wastewater treatment process.  Future work on optimising the static microalgae treatment using pot ale 

should focus on lowering PO4-P concentration, and directly TP concentration, to about 2 to 3 orders of 

magnitude before the wastewater can be safely discarded into the environment.  While microalgae 

accumulate PO4-P in the form of polyphosphates, this mechanism increases upon starvation of the cells 

[562].  The microalga in the inocula used in these experiments were not starved before being inoculated 

into the PSW.  A potential strategy to improve PO4-P removal may be to starve the cultures to induce 

the accumulation of more PO4-P than the levels demonstrated in these experiments.  However, this may 

have implications upstream of the process that could entail a financial cost because of a further 

cultivation step required.  Alternatively, the P content of the pot ale could be extracted prior to addition 

in PSW, either through precipitation, adsorption or electrodialysis methods [563–566]. 

In the present experimental design, it is difficult to determine precisely the individual contribution the 

microalgae and the heterotrophic (i.e. bacteria, fungi etc.) constituents in the co-culture had in the 

removal of either the inorganic and organic fractions from the PSW.  Nonetheless, characterisation of 

the wastewater in the microalgae treatments compared with the control treatments (WWC and WWPA) 

highlight that C. vulgaris was a key organism in the consortium responsible for achieving inorganic N and 

P removal.  The decline in N and P were, however, lower in the WW+C.v treatments (without pot ale) 

relative to the WWPA+C.v treatments (Figure 5.6).  This result is congruent with the observed response 

in the equivalent treatments in the initial glucose experiment.  As previously inferred this is because of a 

limitation in inorganic and organic carbon based on the prevalence of high pH values and minimal 

reduction in COD, similar to results in the present (pot ale experiment) WW+C.v treatments.  In regards 

to COD, the WWPA treatments indicated a varied capacity at removing the additional carbonaceous 

material provided in the form of pot ale between the treatments, albeit at a slower rate compared to 

the WWPA+C.v treatments (Figure 5.7A, C, E).  Final COD concentrations in the WWPA treatment in PSW 

batch R4, R5 and R6 were 135 ±10.0, 377 ±4.0 and 147 ±5.2 mg L-1 O2, respectively (Table 28).  Despite 

the reduction in carbonaceous material in the WWPA treatments, no significant change in NH3-N 

concentration was recorded, whereas slight variations in PO4-P concentration were and more so in the 

PSW batch R4 than in PSW batch R5 and R6.  In comparison, a noticeable decline in the NH3-N 

concentrations was observed in the equivalent WWG treatment in the initial glucose experiment (Figure 

5.1A).  Additionally, in the WWG treatment the observed decline in pH at day 1 was attributed to the 

degradation of the carbonaceous material, including glucose, which resulted in organic acid formation 

through the process of acidogenesis and acetogenesis as a result of the anoxic environment that formed 

(Figure 5.2B, C) [89].  A similar response was not observed in the WWPA treatments despite the culture 

condition becoming anoxic, inferring that withou O2 the soluble carbonaceous material, predominantly 

pot ale, was not as easily digestible compared with glucose.  The final dissolved O2 concentration in the 

WWPA treatments were 0.42 ±0.15, 0.53 ±0.24 and 0.38 ±0.24 mg L-1 O2 in PSW batch R4, R5 and R6 
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respectively (Figure 5.7B, D, F).  In general, these observations suggest that the microalgae were chiefly 

responsible for removing the inorganic N and P, and the naturally occurring heterotrophic organisms the 

carbonaceous material. 

5.4 Conclusion 

This study aimed to evaluate the influence of organic carbon enrichment on C. vulgaris performance in 

order to reduce both the carbonaceous and inorganic N and P load in PSW under static cultivation 

conditions.  Exogenously supplied organic carbon to the wastewater proved to improve the depuration 

of these contaminants in the microalgae treatment.  An initial experiment with PSW enriched with 

glucose revealed significant reductions in NH3-N (28.6 ±0.1 to 0.1 ±0.05 mg L-1) and PO4-P (3.2 ±0.02 to 

0.1 ±0.01 mg L-1) in the WWG+C.v treatment within 2 days.  The degree of removal compared to the 

WW+C.v treatment was attributed to the higher availability of carbon that is postulated to feed into 

anaplerotic reactions replacing key intermediates in the TCA cycle that would otherwise have been 

sequestered in the anabolic reaction of inorganic N incorporation into amino acids.  Performance of the 

organic carbon enriched microalgae wastewater treatment on a further three individually PSW batches, 

either with glucose or glycerol enrichment, yielded consistent rates of inorganic N and P reduction.  

Characterisation of the wastewater revealed removal efficiencies of 90% and above (at day 2) for NH3-N 

and PO4-P, irrespective of the initial concentration of these inorganics in the wastewater.  However, 

higher initial concentrations of these inorganics did not lead to their reduction to levels as low as those 

achieved when their initial concentrations were lower, hence suggesting that the capacity of the 

microalgae in this respect for treating PSW may be limited by the availability of organic carbon or the 

cultivation mode (i.e. batch). 

Further investigation using the deproteinated pot ale as an organic carbon source to improve the 

economic feasibility of the treatment process demonstrated a comparative inorganic N and P removal 

response in the microalgae treatments to those achieved with either glucose or glycerol enrichment.  

With the treatment repeated on three PSW batches, collected and treated separately and sequentially, 

a similar observation was recorded to the reproducibility experiment in that the final achievable NH3-N 

concentration was affected by its initial concentration.  Under the culture conditions used, enrichment 

of PSW with pot ale at a ratio of 1:150 v/v, which accounted for an equivalent COD of approximately 250 

mg L-1 O2, prompted the removal of approximately 28.7 mg L-1 NH3-N in the WWPA+C.v treatments.  As a 

consequence, wastewater with a higher initial concentration (than the quantified theoretical maximum) 

exhibited higher final concentrations.  However, further research on additional wastewater samples 

with controlled N loads, and adequate pH and dissolved O2 control measures is needed to draw firmer 

conclusions with the aim of addressing how to overcome this limitation. 

Interestingly, in all microalgae treatments of the experiments no significant formation of NO2-N or NO3-

N was detected across all treatments, indicating that nitrification activity was limited for various 

reasons, albeit independently from each other.  Using a readily available organic carbon source in 
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unsterilized PSW presented the possibility of the naturally occurring heterotrophic microorganisms from 

out-competing the microalgae in the enriched treatments.  C. vulgaris cell concentration and final 

biomass dry weights indicate that C. vulgaris was a good competitor in a mixed population, since within 

3 to 5 days this alga reached highest cell concentration and consistent final biomass yields across the 

different PSW batch enriched treatments.  Inclusion of community analysis in any future experiments is 

recommended to better understand the interaction and influences between the microalgae and 

bacteria under the present experimental design.  The findings presented here suggest that the 

microalgae were chiefly responsible for removing the inorganic N and P, while the endogenous microbial 

community in the wastewater had consumed the majority of the carbonaceous material. 
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Chapter 6 – Evaluation of the treatment efficiency of pot ale enriched primary settled wastewater by 

Chlorella vulgaris operated as a static semi-continuous process 

6.1 Introduction 

A practical step needed for the implementation of microalgae into wastewater treatment is to develop a 

process able to treat the wastewater in a timely manner that is up to speed with the rate at which it is 

produced and at scale.  To this end, research has been conducted on developing semi-continuous and 

continuous operated microalgae treatment processes (Ho et al., (2014) [567] and references therein).  In 

a continuous operated process, fresh wastewater is continuously fed into the PBR at the same rate at 

which spent wastewater (i.e. treated) is withdrawn.  Under steady state conditions, a constant rate of 

nutrient removal is achieved as the active microalgal-bacterial culture is maintained in a constant state 

of growth to promote a high assimilation rate of inorganic N and P [543, 567].  In a semi-continuous 

operated process, a proportion of the wastewater in the PBR is withdrawn and replaced with fresh 

wastewater when the water is appropriately cleaned and the microalgae have reached late logarithmic 

growth [543, 567].  The culture is then maintained under batch operation to allow cell densities to 

increase and contaminant removal to occur before a next replacement.  In both processes, the ratio 

between the total culture volume and the replaced volume for the specific period of treatment defines 

the hydraulic retention time (HRT), normally determined per day.  The main advantages that either of 

these processes offer compared to a batch process are that they have shorter HRTs required for 

microalgae growth and contaminant removal as the initial time required for the microalgae to acclimate 

is limited to the start-up of the culture only.  

In regards to the use of PBRs for wastewater treatment, a major limitation for scale up is the delivery of 

light.  PBRs which are externally illuminated require a large surface area to volume ratio in order to 

ensure sufficient light with an equal distribution reaches the microalga to support photosynthesis [568].  

Current commercial PBR designs follow this principle, but in order to accommodate large volumes, as 

would be necessary when treating wastewater, a large illuminated surface area is necessary.  This aspect 

increases the complexity in PBR design and marks a serious contribution towards reactor cost [569].  

Furthermore, light attenuation can result from biofilm formation on the internal surface of the reactors 

during the course of cultivation, resulting in photo limitation affecting algal productivity and 

subsequently treatment [365, 570, 571].  The foregoing problems can be overcome by internalising the 

light source, either through the use of plastic light guides, or fluorescent or light-emitting diode (LED) 

strips [571–574].  These approaches have successfully been applied in PBRs with microalgae, achieving 

similar or higher biomass yields to external illuminated PBRs [575–577]. 

As an extension of the batch-wise operated treatments investigated previously (Chapter 5), the specific 

aim of this chapter was to evaluate the treatment of a static microalgae process under semi-continuous 

operation.  The objective was to evaluate the effects that wastewater, when being replaced with fresh 

sample at designated intervals, has on COD and inorganic N and P removal by the microalgae, in this 
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case using Chlorella vulgaris.  Furthermore, an experiment was conducted to evaluate the performance 

of the microalgae semi-continuous static process at treating pot ale enriched PSW at a greater volume 

(7 L) in a reactor configured with internal LEDs as the source of light. 
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6.2 Material and Methods 

6.2.1 Semi-continuous treatment experiment 

The same four treatments described in the pot ale batch experiment in Section 5.2.1.4 were set up 

under identical conditions to investigate the treatment performance under semi-continuous operation, 

with the exception of the wastewater not being filtered.  Semi-continuous treatment was started as a 

batch culture, thereafter the treatments were fed semi-continuously (i.e. every 4th day), for a total of 

three cycles by discarding half of the initial volume and replacing it with the corresponding wastewater 

samples: PSW in the WWC and WW+C.v treatments, and pot ale enriched PSW in the WWPA and 

WWPA+C.v treatments.  The pot ale-enriched PSW was prepared as described in section 5.2.1.1.  

Throughout this experiment, fresh PSW was used for each cycle, collected on the day the experiments 

were commenced, while the same batch of pot ale was used for the enrichment.  In this experiment the 

composition of the pot ale sample was comparable to the previous pot ale samples used in the batch 

experiments listed in Table 29, and was as follows (mg L-1): COD, 43325; NH3-N, 0.21; PO4-P, 463; NO3-N, 

0.34; NO2-N, 0.04; TN, 573; TP, 463. The pH was 3.26. 

6.2.2 Laboratory large-volume semi-continuous treatment experiment 

An 8 L capacity transparent polypropylene bottle, with a diameter of 19.3 cm and height of 40.9 cm, was 

used as the reactor bottle (Nalgene, USA, product number DS2205-0020).  The operating volume of each 

reactor for the experiment was set at 7 L.  Internalised at the centre of the bottles were waterproof 

RGB-LED strips fixed firmly to a central pole in a spiral arrangement (AquaWhite Flexi-LED strip, Tropical 

Marine Centre Ltd., Chorleywood, UK).  The suitability of the light spectrum of the LEDs was checked 

prior to use.  Internal light levels were determined in dry conditions and set at approximately 100 µE m-2 

s-1 photon flux (US-SQS/L probe, Walz, Germany) measured internally at a distance of 5 cm from the wall 

of the bottle.  In this experiment, only the WWPA+C.v treatment was assessed, and performed in 

triplicate.  The culture was started as a batch culture with washed C. vulgaris inoculated into 21 L of 

unfiltered PSW (described in section 5.2.1.2), and then dispensed equally between three reactor bottles.  

The treatment was run for 23 consecutive days with half of the initial medium volume decanted and 

replaced with fresh PSW on designated days.  Throughout this experiment, the same batch of pot ale 

was used for the enrichment, and had the following composition (mg L-1): COD, 45600; NH3-N, 0.17; PO4-

P, 425; NO3-N, 0.32; NO2-N, 0.04; TN, 221; TP, 613. The pH was 3.26. 

6.2.3 Glassware, sampling and analysis 

For all experiments, all glassware and reactor bottles were capped with a foam bung.  Before use, all 

glassware and reactor bottles with the relevant syphoning tubes were autoclaved (121°C; 15 minutes).  

Liquid samples were withdrawn daily to measure microalgal cell growth (cell mL-1), pH and 

concentration of NH3-N, PO4-P, NO3-N and NO2-N (described in Chapter 3, sections 3.3.4, 3.3.5, 3.3.6, 

3.3.8, 3.9 and 3.10, respectively).  Dry cell weight (as a proxy for biomass) and CODS were measured on 
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the initial and final day of each experiment only (Chapter 3, section 3.7 and 3.5 respectively).  All 

treatments were briefly mixed (by swirling) prior to taking an aliquot to ensure a homogenous sample.  

In the case of the large-volume experiments, samples were mixed for 30 seconds using an internal 

magnetic stirrer (flea) for 1 minute. 
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6.3 Results and Discussion 

6.3.1 Small-volume treatment of semi-continuous pot ale enriched PSW 

Previous experiments highlight that C. vulgaris is a key organisms in the consortium necessary for the 

effective removal of the inorganic N and P from the wastewater, and as such it is imperative to retain a 

sufficient active population when operating the treatment as a semi-continuous or continuous process.  

The shorter the HRT, the greater the limitation is on algal growth, which can consequently affect 

treatment efficiency as the cell population may be washed out from the reactor if the HRT is shorter 

than the microalgal growth rate [578].  Inorganic N and P concentrations recorded in the WWPA+C.v 

treatments operated as a batch process (Section 5.3.3) indicated a maximum removal effect within 3 

days of cultivation, with the achievable levels dependent on the initial concentrations of these 

inorganics in the wastewater.  The highest concentration of C. vulgaris achieved in these treatments was 

within 4 to 5 days.  Although inorganic N and P removal occurred faster compared to C. vulgaris growth, 

in the present experiment emphasis was placed on retaining a high cell concentration.  Therefore, PSW 

in the semi-continuous experiment was replaced every 4 days with a resultant HRT of approximately 8 

days.  As the active biomass was not recycled in this study, the solids retention time was equal to the 

HRT. 

6.3.1.1 Evaluation of the treatment performance 

The efficiency of a static microalga wastewater treatment process, operated under semi-continuous 

mode, was evaluated based on the removal of COD, NH3-N and PO4-P from PSW.  Figure 6.1 represents 

the change in both NH3-N and PO4-P concentrations in the microalgae treatments with and without pot 

ale-enrichment during the 4 consecutive cycles of the experiment.  In the first cycle of the semi-

continuous process, which can be consider operating in a batch mode, the NH3-N concentration declined 

below the limit of detection in the WWPA+C.v treatment (Figure 6.1A).  Here, the concentration of NH3-

N decreased from 29.2 ±0.5 to 0.01 ±0.01 mg L-1, corresponding to a removal rate of 7.3 mg L-1 d-1 and 

efficiency of 99% (Figure 6.1A; Table 31).  Based on the NH3-N data obtained in the pot ale batch 

experiments previously discussed in Chapter 5, the achieved level of NH3-N removed in cycle 1 is in 

agreement with the proposed maximum quantity achievable in response to the enriched carbon 

quantity added to the PSW (i.e. <30 mg L-1 NH3-N).  Thereafter, the efficiency of the treatment 

decreased with recorded percentages of 89, 82 and 74% by the end of cycle 2, 3, and 4, respectively, 

corresponding to removal rates of 3.6, 4.6 and 4.7 mg L-1 d-1.  Although inorganic N and P removal was 

more proficient in the WWPA+C.v treatment compared to the WW+C.v treatment, because of a higher 

concentration of bioavailable carbon, a similar decline in NH3-N removal efficiency was also observed in 

the WW+C.v treatment in the consecutive cycles.  In the WW+C.v treatment, NH3-N concentration 

decreased from an initial value of 29.5 ±0.2 to 12.2 ±0.5 mg L-1 at day 4, corresponding to a removal rate 

of 4.3 mg L-1 d-1 and efficiency of 59% (Figure 6.1B; Table 31).  Thereafter, the concentration of NH3-N 

decreased in a consistent manner over the 4-day duration in cycle 2, 3 and 4 at a rate of 1.7, 2.8 and 2.9 
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mg L-1 d-1, respectively, which corresponded to removal efficiencies of 29, 39 and 37%.  As a result of the 

decrease in NH3-N removal per cycle, a higher final NH3-N concentration was recorded in each 

subsequent cycle in both the microalgae treatments. 

 

Table 31 – Removal efficiency of NH3-N and PO4-P from PSW in semi-continuous operated conditions 
either with or without C. vulgaris, and either enriched with or without pot ale.  Treatment WWC, 
wastewater only; treatment WW+C.v, wastewater with C. vulgaris; treatment WWPA, wastewater with 
pot ale; and treatment WWPA+C.v, wastewater with pot ale and C. vulgaris.  Each value is the mean 
±SD, of n = 3.  The days in bold represent the removal rates prior to PSW replenishment at the end of 
each cycle. 

Treatment NH3-N (% removal)             

  Day 2  Day 4 Day 6 Day 8 Day 10 Day 12 Day 14 Day 16 

WWC 0.9 ±1 0.2 ±2 -1.8 ±1 -3.1 ±0.5 1.4 ±0.1 3.5 ±0.2 4 ±1.6 -0.8 ±2 

WW+C.v 58 ±0.9 59 ±1 17 ±0.6 29 ±2 31 ±3 39 ±3 31 ±0.2 37 ±2 

WWPA 12 ±0.2 22 ±1 12 ±0.5 9.6 ±1 8.7 ±2 6.3 ±5 10 ±1 6.6 ±4 

WWPA+C.v 78 ±6 99 ±0.4 75 ±6 89 ±2 78 ±5 82 ±3 69 ±2 74 ±0.8 

         

 
PO4-P (% removal)             

WWC 3.7 ±3 -2.4 ±2 -0.3 ±0.2 -0.7 ±0.2 2.0 ±0.4 1.4 ±2 6.2 ±1 3.4 ±4 

WW+C.v 78 ±0.9 77 ±5 23 ±4 56 ±2 46 ±4 59 ±4 41 ±1 59 ±4 

WWPA 1.9 ±0.8 8.3 ±0.7 11 ±2 8.7 ±2 9.4 ±4 2.9 ±3 5.5 ±1 5.6 ±4 

WWPA+C.v 49 ±4 71 ±2 43 ±4 50 ±4 46 ±5 63 ±4 41 ±3 62 ±2 

 

Reports of a decline in removal efficiency in a semi-continuous microalgae treatment process are found 

in the literature.  For example, Ruiz-Marin et al., (2010) [228] evaluated the treatment efficiency of 

encapsulated S. obliquus in unsterilized urban wastewater.  A 90% NH4
+-N removal efficiency was 

achieved within the first 2 days (cycle 1).  In subsequent cycles, the removal efficiency was found to 

decline to 87%, a rate which was maintained for a further four cycles before a substantial decline to 10% 

was recorded in the last cycle.  De-Bashan et al., (2002) [579] cultured C. vulgaris co-immobilised with 

the bacterium Azospirillum brasilense under semi-continuous operation in artificial sterile wastewater 

for six consecutive cycles.  The wastewater was completely replaced every 48 hours, denoting the end of 

a cycle, while the biomass was recycled.  A near complete removal of NH4
+-N was maintained for the 

first four cycles, thereafter the efficiency dropped and only 67% of NH4
+-N was removed at the end of 

the sixth cycle.  Ruiz-Marin et al., (2010) [228] attributes the main reason for the decline in removal 

efficiency to a collapse in the culture after the fourth cycle, although no indication is given as to why 

(e.g. pH change, nutrient limitation etc.); and de-Bashan et al., (2002) [2002] ascribed the decline to the 

microalgae becoming saturated, however, growth data is only reported for the first 144 hours (i.e. for 

the first 3 cycles).  It can be speculated that the algae entered a stationary phase of growth, which 

would have reduced nutrient assimilation capacity.  In the present study, the concurrent demise in NH3-

N removal efficiency after cycle 1 in both the microalgae treatments suggests the occurrence of a 
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common effect.  As the same fresh wastewater sample was used in each consecutive cycle for all 

treatments, it can be suggested that the same environmental factor occurring during the course of each 

cycle may be responsible.  The dominant factor between the treatments was the alkaline conditions 

which formed in the microalgae treatments and likely the reason underlying the decline in NH3-N 

removal efficiency.  A substantial increase in pH is observed in the course of each cycle in the WW+C.v 

treatment and in the WWPA+C.v treatment after cycle 1, likely resulting from the use of inorganic 

carbon as a carbon source in photosynthesis leading to the release in OH- ions into the wastewater that 

induce the formation of alkaline conditions ([67]; Figure 6.2).  An increase in alkalinity has been shown 

to affect enzyme activity, nutrient assimilation, and viability and growth rate of microalgal [290, 423, 

580]. 

In the WW+C.v treatment, the microalgae acclimated well in the PSW during the initial first days as 

indicated by an immediate growth response (Figure 6.3).  C. vulgaris concentration increased from 1.5 

x107 (±5.1x105) to 2.2 x107 (±2.6x106) at day 2, with no further growth in microalgae thereafter.  

Notably, the cessation in arithmetic growth of C. vulgaris at day 2 in the WW+C.v treatment coincided 

with the cessation in NH3-N removal (Figure 6.1B; Figure 6.3).  Concomitantly, the pH rapidly increased 

from 7.5 ±0.0 to 8.7 ±0.02 at day 2, and further to 8.9 ±0.1 at day 4 (Figure 6.2).  Although the transient 

change in the pH was within the relatively wide pH range (8.6 – 9.1) that is reported to not affect 

microalgal growth, the observed change in pH of cycle 1 may have been too abrupt and leading to less 

optimal microalgae growth under the sudden stress induced by the change in pH conditions in this 

experiment [581].  Furthermore, the pH change will have increased the concentration of free NH3 

dissolved in the water [442].  Alkaline conditions have been noted to impact on microalgae NH3 removal 

capabilities as well as negatively affect the health of microalgal cells (discussed below) [429, 440].  Kang 

et al., (2014) [582] obtained a significant reduction in NH4
+-N removal efficiency at pH 8 compared to 

the culture conditions between pH 5 to 7, likely a result of a greater dissociation effect of NH3 in the 

medium under alkali conditions.  Additionally, the sharp pH increase denotes an appreciable reduction 

in alkalinity and buffering capacity of the wastewater, indicating a limitation in bioavailable inorganic 

carbon which will have impacted on the ability of the microalgae to effectively assimilate and 

incorporate inorganic N into the cell. 
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Figure 6.1 – Time-course of NH3-N and PO4-P concentrations in mg L-1 of PSW treated by semi-continuous operation 
in the WWPA+C.v treatment (A; wastewater with pot ale and C. vulgaris) and WW+C.v treatment (B; wastewater 
with C. vulgaris).  Each point is the mean ±SD of n = 3 independent replicates.  Some error bars are smaller than the 
symbols.  The dotted line represents the duration of each cycle. 
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Figure 6.2 – Time course of pH of PSW treated by semi-continuous operation under the conditions with and without 
microalgae, and enriched with or without pot ale.  Each point is the mean ±SD of n = 3 independent replicates.  
Some error bars are smaller than the symbols.  The dotted line represents the duration of each cycle.  Treatment 
WWC (wastewater only); Treatment WW+C.v (wastewater with C. vulgaris); Treatment WWPA (wastewater with 
pot ale); and Treatment WWPA+C.v (wastewater with pot ale and C. vulgaris). 

 

The pH value dropped slightly with the change in PSW between cycles in the WW+C.v treatment as a 

result of dilution and replenishment of inorganic carbon present in the fresh wastewater.  However, the 

pH increased rapidly again and reached values above 9.5 at the end cycles 2 to 4 (Figure 6.2).  In 

addition to the maximum cell concentration achieved being lower in each proceeding cycle, the period 

of arithmetic growth was shorter, lasting only one day (Figure 6.3).  The initial and final cell 

concentrations in the WW+C.v treatment were respectively 1.1 x107 (±1.6x106) and 2.1 x107 (±6.3x105) 

in cycle 2, 1.1 x107 (±1.1x106) and 1.8 x107 (±6.5x105) in cycle 3, and 8.7 x106 (±1.3x106) and 1.7 x107 

(±1.9x106) in cycle 4.  A decline in final biomass concentration was also recorded between cycles, with 

values of 340 ±11, 296 ±6, 251 ±13 and 218 ±7 mg L-1 obtained for cycles 1, 2, 3, and 4, respectively.  A 

similar response to increasing pH levels on growth was observed by Ge and Champagne (2016) [583] 

when treating sterile synthetic centrate with C. vulgaris in a semi-continuous operated PBR at a HRT of 8 

days.  As a result of increasing pH levels (8.53 – 9.21), a decline in biomass yield was observed in the two 

treatments with the highest centrate loading rates during phase 2 of the experiment.  When the pH of 

the treatments was adjusted (through the addition of 2 M HCl) to 7.5 in phase 4 of the experiment, a 

significant increase in biomass yield was obtained from an approximate 0.28 – 0.31 g L-1 (phase 2 values) 
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to 0.49 – 0.51 g L-1.  Simultaneously, pH adjustment improved the NH4
+-N removal efficiency of the 

treatment from 86% to 92%. 

Figure 6.3 – Changes in C. vulgaris concentration in cell mL-1 of PSW treated by semi-continuous operation under 
the conditions with microalgae either enriched with or without pot ale.  Each point is a mean ±SD, of n = 3 
independent replicates.  Some error bars are smaller than the symbols.  The dotted line represents the duration of 
each cycle.  Treatment WW+C.v (wastewater with C. vulgaris); and Treatment WWPA+C.v (wastewater with pot ale 
and C. vulgaris). 

 

The assumption of pH having a negative effect on microalgae growth and consequently NH3-N removal 

in the microalgae treatments of this experiment is supported by the observed trend in these parameters 

in the WWPA+C.v treatment.  During cycle 1 of the WWPA+C.v treatment, the decline in NH3-N 

concentration was accompanied with a continuous increase in C. vulgaris and biomass concentration 

over its 4-day duration, while the pH remained below 7.5, ranging between 6.6 and 7.2 (Figure 6.2).  

Thereafter, a substantial increase in pH (>8.5) was recorded during the subsequent cycles that was 

accompanied with a decline in cell and biomass concentrations.  The final cell and biomass 

concentrations were 3.2 x107 (±5.5x106) cell mL-1 and 500 ±33 mg L-1 in cycle 1, 3.1 x107 (±2.3x106) and 

429 ±45 in cycle 2, 2.6 x107 (±3.5x105) and 424 ±19 in cycle 3, and 2.6 x107 (±3.0x106) and 321 ±24 in 

cycle 4.  Based on these results, it can be implied that the increase in pH impeded cell and biomass 

productivity in the WWPA+C.v treatment, and affected NH3-N removal efficiency by reducing the 

abundance of microalgae and solubility of NH3-N. 
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The minimal change in pH during cycle 1 in the WWPA+C.v treatment was not consistent with the pH 

profiles previously described in the same treatment operating in batch mode for the equivalent 

treatment period (Figure 5.8).  In the batch operated WWPA+C.v treatments, the pH increased to above 

8.9 by day 4 in all three trials.  Based on the fact that the wastewater in the present experiment was not 

filtered prior to use, it can be suggested that the difference in pH between the batch and semi-

continuous WWPA+C.v treatment during cycle 1 was a result of a higher abundance in heterotrophic 

microorganisms and concentration of suspended solids in the wastewater.  It has been observed that 

the pH in microalgal cultures is more stable or decreases, depending on the O2 availability, when co-

cultured with a suitable bacterial concentration.  Su et al., (2012) [259] found that the pH in the reactor 

with microalgae treating unsterilized municipal wastewater increased above 9.2, whereas in the 

microalgal treatments with added activated sludge (applied at various ratios) maintained a pH of 

approximately 7.5 for the duration of the experiment.  The stability of pH in the microalgal-activated 

sludge treatments investigated can initially be attributed to an improved rate of inorganic carbon 

production by the heterotrophic bacteria via respiration, which counter-balanced the rate of depletion 

by microalgae inorganic carbon fixing initially, and subsequently the nitrification process as dissolved O2 

accumulated in the medium.  Introduction of bacteria to axenic microalgae cultures during mid 

cultivation has been shown to have an ameliorating effect, with a reduction in pH from an alkali 

condition occurring simultaneously with bacterial growth [584].  Additionally, production of acidic 

substances during the degradation of organic compounds (e.g. acetic acid, poly-(γ-glutamic acid)) by 

bacteria can lower the pH in microalgal cultures [479, 585, 586]. 

It is therefore plausible that a higher abundance of heterotopic organisms in the wastewater of the 

present experiment aided in mitigating the formation of alkali conditions in the WWPA+C.v treatment 

during cycle 1. This is supported by the rate of inorganic carbon formation from heterotrophic 

respiration was equal, or close to, the rate of consumption by microalgae [587].  This scenario was 

limited in the WW+C.v treatment since sufficient organic material must be present for significant 

bacterial CO2 production (Table 33).  Analysis of the dissolved O2 concentration achieved in cycle 1 

indirectly substantiated this effect.  Despite a higher cell concentration in the WWPA+C.v treatment 

compared to the WW+C.v treatment in cycle 1, the achieved dissolved O2 concentration at the end of 

the cycle was lower, at 3.2 ±04 compared to 6.7 ±0.2 mg L-1, respectively (Table 32).  These values show 

that the O2 levels were above the minimum required (>2 mg L-1 O2) to sustain heterotrophic 

microorganisms to oxidise the carbonaceous material, as well as autotrophic bacteria to carry out 

nitrification [2, 89].  The lower dissolved O2 concentration in the WWPA+C.v treatment relative to the 

WW+C.v treatment will have been in response to the added pot ale, as the heterotrophic population in 

the wastewater will have consumed a higher amount of O2 during the degradation and metabolism of 

the added carbonaceous material in the wastewater.  Additionally, the demand and rate of inorganic 

carbon fixing by the microalgae in the WWPA+C.v treatment may have been lower as the pot ale 

permitted the microalgae to compensate the demand of carbon with an organic source via mixotrophic 

metabolism. 
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Table 32 – Dissolved O2 concentrations in mg L-1 of PSW at the beginning and end of each treatment 
cycle in the presence or absence of microalgae, and enriched with or without pot ale.  Treatment WWC, 
wastewater only; treatment WW+C.v, wastewater with C. vulgaris; treatment WWPA, wastewater with 
pot ale; and treatment WWPA+C.v, wastewater with pot ale and C. vulgaris.  Each value is the mean 
±SD, of n = 3 independent replicates. 

Cycle Period Treatment 

  

WWC WW+C.v WWPA WWPA+C.v 

1 Initial 1.7 ±0.1 1.7 ±0.1 1.7 ±0.1 1.7 ±0.1 

 
Final 1.1 ±0.0 6.7 ±0.2 0.7 ±0.1 3.2 ±04 

  
 

   2 Initial 1.5 ±0.4 4.1 ±0.6 1.2 ±0.2 3.6 ±0.2 

 
Final 0.8 ±0.4 5.4 ±0.1 0.5 ±0.0 4.5 ±0.3 

  
    

3 Initial 1.3 ±0.3 3.6 ±0.8 1.1 ±0.0 2.7 ±0.3 

 
Final 1.1 ±0.2 3.9 ±0.2 0.4 ±0.1 3.8 ±0.2 

  
    

4 Initial 1.4 ±0.4 1.8 ±0.7 0.9 ±0.2 2.2 ±0.4 

 
Final 0.9 ±0.2 2.1 ±0.4 0.3 ±0.0 3.4 ±0.2 

 

The increase in pH observed in the subsequent cycles after cycle 1 in the WWPA+C.v treatment could be 

because of the following reason.  In comparison to cycle 1, the COD loadings of the wastewater were 

lower in cycles 2 to 4 (Table 33).  Consequently, the respiration rate of bacteria will have declined as a 

result of the bioavailable carbon sources depleting sooner, directly affecting the rate of CO2 formation.  

Thereafter, the quantity of inorganic carbon consumed by the microalgae may have been greater than 

the quantity produced during respiration of the heterotrophic bacteria, resulting in a pH increase.  The 

alkali conditions will have also had a direct impact of the bacterial population, and should be included in 

additional studies.  However, it should be noted that the main limitation to this interpretation is that the 

bacterial population was not quantified in the wastewater at any stage of this experiment.  

Concurrently, as the loading COD concentration was lower in cycle 2 to 4, it is possible that the 

microalgae increased their rate of inorganic carbon fixing to compensate for the demand in carbon 

required to sustain growth. 

On the other hand, the reduction in NH3-N removal efficiency in the WWPA+C.v treatment may have 

been in response to the low N:P ratio present in the wastewater used.  The optimal ratio for maximum N 

and P removal by a microalgal-bacterial consortium is reported to lie between 6:1 and 10:1, with ranges 

extending to 5:1 and 30:1, depending on the algal species and culture conditions [148, 180, 588].  The 

initial N and P ratio, based on NH3-N and PO4-P concentrations, in the PSW of the WWPA+C.v treatment 

were in the range of 4.3:1 and 3.5:1 and declined to between 2.7:1 and 0.01:1 at the end of the cycles, 

overall indicating a limitation in NH3-N throughout the experiment.  However, as the N:P ratio in the 

WW+C.v treatment remained within the recommended range throughout the whole experiment (15:1 – 

8:1), it can be argued that the increase in pH was the main effector reducing NH3-N removal efficiency as 
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both microalgae treatments were affected.  As such, further studies should place emphasis on 

controlling the pH when optimising the treatment process. 

Table 33 – COD concentrations in mg L-1 O2 of PSW at the beginning and end of each treatment cycle 
with or without microalgae, and enriched with or without pot ale.  Each data point is a mean ±SD, of n = 
3 independent replicates. 

Cycle Period Treatment 

  

WWC WW+C.v WWPA WWPA+C.v 

1 Initial 200 ±2.5 200 ±2.5 481 ±1.1 474 ±2.0 

 
Final 108 ±2.0 99 ±3.6 238 ±2.8 125 ±7.1 

 
RE (%) 46 50 51 74 

      2 Initial 120 ±3.0 113 ±6.8 360 ±1.5 245 ±8.5 

 
Final 88 ±1.5 101 ±2.3 75 ±2.1 63 ±1.5 

 
RE (%) 27 11 79 75 

      3 Initial 160 ±0.5 161 ±2.0 311 ±6.7 294 ±1.7 

 
Final 96 ±1.9 99 ±2.6 141 ±5.5 127 ±11 

 
RE (%) 40 39 55 57 

      4 Initial 157 ±2.0 147 ±4.3 309 ±5.3 300 ±27 

 
Final 105 ±5.9 115 ±20 144 ±6.6 131 ±3.2 

 
RE (%) 33 22 53 56 

 

This point has further relevant implications in the continual performance of a static semi-continuous 

treatment process, not only in controlling inorganic N removal, but also in maintaining a healthy 

population of microalgae.  An indirect effect in response to the elevated pH conditions in both the 

microalgae treatments is noted in regards to the dissolved O2 concentrations.  Initial and final dissolved 

O2 concentrations for each cycle are summarised in Table 32.  A decline in the maximum dissolved O2 

concentration achieved in each consecutive cycle is noted in both the microalgae treatments.  For 

instance, in the WW+C.v treatment a concentration of 6.7 ±0.2 mg L-1 was achieved at the end of cycle 1 

compared to 2.1 mg L-1 at the end of cycle 4.  As previously mentioned, the accumulation of free NH3 in 

microalgal cultures caused by alkali conditions can interfere with the O2-evolution complex in PS II 

because of the unregulated passive inflow of free NH3 across the cell membrane [439, 561].  Although a 

similar response in the microalgae treatments in the batch operated pot ale experiment was not noted, 

based on the observed accumulation of dissolved O2, it should be pointed out that the period of 

cultivation (5 days) may have been too short a period to have noted any longer-term effects.  As the 

microalgae in the semi-continuous treatment were not replaced with fresh inoculum, chronic exposure 

to NH3 at high pH may have adversely affected their health and the photosynthetic reactions, and 

consequently growth and treatment performance on a long term basis.  Consequences of this effect 

over longer treatment periods will likely result in the culture condition turning anaerobic, which may 
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further negatively affect treatment performance and microalgae growth, in particular under natural 

diurnal light dark periods [290, 440]. 

In regards to the WWPA+C.v treatments the high copper content in PA may have also contributed to the 

decline in O2 evolution and the metabolic function of the microalgae.  Copper is an essential trace 

element required by microalgae for cellular growth and enzyme activity, including in the synthesis and 

function of the copper containing electron carrier’s plastocyanin and cytochrome oxidase (Baron et al, 

1995; Borowitzka, 2016).  The uptake of metal ions by microalgae, including copper, occurs in two 

stages.  Metal ions firstly adsorb onto the external surface of the microalgae membrane followed by the 

internalisation across the membrane facilitated by ion pores, channels or protein transporters in the 

algal cell membrane (Levy et al, 2007; Tessier, 1995; Knauer et al, 1997; Kaplan, 2013).  However, a 

variety of adverse effects have been reported in response to elevated copper concentration in the 

medium of microalgae impairing the biochemical functions governing growth, photosynthesis and 

respiration.  The most notable effect is on the PSI and PSII in microalgae, with copper demonstrated to 

inhibit the electron flow in the reaction centres (Hadjoudja et al, 2009; Samson et al, 1988; Stauber et al 

1987).  In regards to cellular growth, high internal copper concentrations are reported to influence 

mitosis by inhibiting spindle formation by reacting with glutathione, an essential compound in the 

cellular division mechanism (Stauber et al 1987; Stoiber et al, 2007).  Furthermore, copper may inhibit 

enzymes in the cytoplasm or disrupt the mechanism regulating intracellular pH (Cid et al, 1996; Franklin 

et al, 2001a).  Unfortunately, the concentration of copper in the PSW of all these experiments in this 

study was not quantified.  It is feasible that the addition of PA increased the exposure of the microalgae 

to ionic copper which would have impacted on their growth and biochemical functions.  Furthermore, 

the effects of copper toxicity have been shown to increase with increasing pH.  Wilde et al. (2006) 

reported a 20-fold increase in copper toxicity to Chlorella sp. as the pH increased, with IC50 values 

(concentration required to inhibit algal growth rate by 50%) decreasing from 19 to 1 µg Cu L-1 as the pH 

increased from 5.5 to 8.  A similar 20-fold increase was reported by Franklin et al. (2000) as the pH 

increased from 5.7 to 6.5.  Traub (2015) reported that approximately 70% of the copper present in PA 

was present in the solids fractions (yeast), which were removed prior to use in these experiments, 

leaving a residual concentration after deprotonation of the PA between approximately 0.5 and 1 mg L -1.  

Although the dilution factor at which PA was added to the PSW would have reduced the copper content 

to a negligible concentration, copper accumulation from repeated dosing following PSW replenishment 

may have occurred.  Therefore an effect of copper toxicity would be expected in the semi-continuous 

experiment compared to the batch experiments, as a fresh microalga inoculum was used to treat each 

PSW batch in the batch experiment.  Analysis of the microalgae biomass copper concentration might be 

beneficial not only to elucidate whether an accumulation in the microalgae occurs, but also to assess the 

suitability of the produced biomass in downstream processes.  On a large scale operation, excess 

microalgae-bacteria biomass produced during the treatment process could be used in the production of 

biogas through anaerobic digestion.  In the process of anaerobic digestion copper toxicity could become 

an issue (Yenigun et al, 2010; Lin et al, 1993). 
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Autotrophic microbial nitrification is known to be highly sensitive to pH, with optimal conditions found 

to lie within a narrow pH range of 7 to 8.5 [89, 589].  The decrease in wastewater NH3-N concentration 

in both the microalgae treatments in the present experiment was not accompanied by an increase in 

concentration of either NO2-N or NO3-N (Figure 6.4).  The maximum concentrations of NO2-N and NO3-N 

recorded in either of the microalgae treatments throughout this experiment were 0.05 mg L-1 and 0.11 

mg L-1, respectively.  The low concentration in each cycle suggests that the process of NH3 conversion to 

NO3 was limited, and the NO3 present or formed was rapidly assimilated by the microalgae.  The 

possibility of NO3 being converted to N gas will have been unlikely as aerobic conditions were 

maintained in the reactors by the microalgae via photosynthesis throughout the 16 day experimental 

period (Table 32).  Moreover, reduction of NH3 via volatilisation was considered to be negligible as the 

treatments were cultured statically. 

Similar to the reduction pattern of wastewater NH3-N, the PO4-P removal efficiency in the microalgae 

treatments was highest in cycle 1 compared to that in cycles 2, 3 and 4 (Table 31).  By the end of cycle 1, 

the PO4-P concentration was reduced in the WWPA+C.v treatment from an initial 6.7 ±0.07 to 1.9 ±0.15 

mg L-1, and in the WW+C.v treatment from an initial 3.7 ±0.09 to 0.8 ±0.19 mg L-1 (Figure 6.1).  This 

corresponded to a removal efficiency of 77% and 71% in the WWPA+C.v treatment and the WW+C.v 

treatment, respectively, at a removal rate of 1.2 and 0.7 mg L-1 d-1 (Table 31).  Thereafter, the PO4-P 

removal efficiency in cycles 2 to 4 for both the microalgae treatments were comparable at 

approximately 60%, with removal rates between 1 and 0.6 mg L-1 d-1 in the WWPA+C.v treatment, and 

0.6 and 0.4 mg L-1 d-1 in the WW+C.v treatment, in cycles 2 to 4.  The residual PO4-P concentrations at 

the end of cycles 2 to 4 were similar in the respective microalgae treatments despite a slight increase in 

the initial concentration occurring in each cycle.  However, the final concentration of PO4-P of cycles 2 to 

4 in both the microalgae treatments was higher compared to the respective final concentration reached 

in cycle 1 (Figure 6.1). 

In this experiment, the removal of PO4 in the microalgae treatments is suggested to have been achieved 

by two mechanisms – directly by microalgal-bacterial assimilation, and indirectly by chemical 

precipitation as a result of alkaline conditions.  The decline in PO4-P removal efficiency after cycle 1 will 

likely have been a consequence of the microalgae becoming P-saturated as well as in response to a 

reduction in NH3-N assimilation and incorporation.  Previous studies have demonstrated that P-starved 

microalgae or cyanobacteria could attain a far higher rate of nutrient uptake than saturated cells [562, 

590, 591].  As the microalgal-bacteria biomass was not recycled between cycles, it is plausible that the 

microalgae attained saturation levels during cycle 1, and consequently were unable to effectively reduce 

PO4-P during cycles 2 to 4 with a limited quantity assimilated.  According to Powell et al., (2008) [592], 

microalgae can accumulate P beyond their metabolic needs independent of N, although the maximum 

achieved percentage of P in the biomass is limited to approximately 3%.  From data in other small-scale 

experiments, a similar effect can be inferred in which the microalgae apparently become saturated with 

high polyphosphate accumulation before all the PO4 is removed, and consequently PO4 remains present 
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in the wastewater [269, 514].  In regards to the influence of N on P uptake, the uptake of P is dependent 

on the availability and quantity of N [453].  As a result of NH3-N removal efficiency declining in the 

microalgae treatments, a decline in PO4-P removal can be expected. On the other hand, the presence of 

metal ions in the wastewater, together with elevated pH values, can favour the precipitation of PO4-P.  

Inorganic P precipitation is dependent on pH, temperature and cation concentration in the culture 

condition, and can account for 29 to 77% of phosphate removal when pH >8.5 [593]. 

Figure 6.4 – Time-course of NO2-N and NO3-N concentrations in mg L-1 of PSW treated by semi-continuous 
operation in the WWPA+C.v treatment (A; wastewater with pot ale and C. vulgaris) and WW+C.v treatment (B; 
wastewater with C. vulgaris).  Each point is a mean ±SD, of n = 3 independent replicates.  Some error bars are 
smaller than the symbols.  The dotted line represents the duration of each cycle. 
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Overall, the NH3-N and PO4-P removal efficiencies obtained in the WWPA+C.v treatment for all the 

cycles were in range with data reported in other microalgae wastewater treatment studies operating 

semi-continuously or continuously under more favourable conditions, such that employed optimised pH 

control or air/CO2 aeration and mixing [156, 228, 467, 578, 583, 594].  For example, Arcila and Buitron 

(2016) [595] achieved 99% NH4
+-N and 49% PO4-P removal from settled municipal wastewater in a 50 L 

HRAP operated in continuous mode at 10 HRT inoculated with a naturally occurring microalgal-bacterial 

consortium.  In a 22 L flat panel PBR, Anbalagan et al., (2016) [596] achieved an average 83% TN and 

78% TP removal efficiency from municipal wastewater in a semi-continuous microalgae process over 

three consecutive cycles operating at a HRT of 6 days. 

The NH3-N and PO4-P removal in the wastewater was mainly attributed to the microalgae as the control 

reactors without microalgae showed no appreciable decline.  In fact, in the WWC treatment a slight 

increase in NH3-N and PO4-P was detected during cycle 2 based on the concentrations recorded, likely 

from the degradation of organic N and P fractions in the wastewater or release of cellular matter 

following cell death (Table 31).  Between the cycles, the initial concentration of NH3-N and PO4-P was 

higher than the preceding cycle, presumably because of a higher concentration in the wastewater 

collected from the plant for each subsequent cycle (Figure 6.5B).  However, it must be noted that the 

composition of the wastewater was not analysed prior to use in the treatments.  In the WWPA 

treatment, a maximum NH3-N removal efficiency of 22% was recorded by the end of cycle 1, and a 

maximum PO4-P removal efficiency of 8% by the end of cycle 2 over the whole duration of these 

experiments (Figure 6.5A; Table 31).  This decrement can be ascribed to a higher metabolic activity of 

the microbial community present in the PSW as a result of the exogenous pot ale, which coincided with 

a decrease in COD concentration (Table 33).  However, no difference in biomass concentration was 

recorded at the end of each cycle, with an average final concentration of 167 ±12 mg L-1 for all cycles.  

Although a small change in NH3-N concentration is noted in the WWPA treatment, no substantial 

difference in both the NO2-N and NO3-N concentrations were recorded, with the concentrations 

trending to be below the detection limit throughout the duration of the experiment (Figure 6.6).  A 

major limitation to these control treatments was the low concentration of dissolved O2, which can be 

attributed to the cultures having been incubated statically (Table 32).  This will have impacted on the 

metabolic activity of the endogenous microorganisms in digesting and assimilating inorganic N 

compounds or converting them by nitrification and, thus, limiting their removal. 
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Figure 6.5 – Time-course of NH3-N and PO4-P concentrations in mg L-1 of PSW treated by semi-continuous operation 
in the WWPA treatment (A; wastewater with pot ale) and WWC treatment (B; wastewater only).  Each point is a 
mean ±SD, of n = 3 independent replicates.  Some error bars are smaller than the symbols.  The dotted line 
represents the duration of each cycle. 
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Figure 6.6 – Time-course of NO2-N and NO3-N concentrations in mg L-1 of PSW treated by semi-continuous 
operation in the WWPA treatment (A; wastewater with pot ale) and WWC treatment (B; wastewater only).  Each 
point is a mean ±SD, of n = 3 independent replicates.  Some error bars are smaller than the symbols.  The dotted 
line represents the duration of each cycle. 
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6.3.2 Performance of a large-volume microalgae semi-continuous process treating pot ale enriched PSW 

Figure 6.8 represents the changes in both the NH3-N and PO4-P concentrations in the 7 L semi-

continuous operated WWPA+C.v treatment.  The concentration of these inorganics in the initial two 

cycles was low relative to wastewater samples used in the previous experiments of this thesis (Chapters 

4 and 5), because of the unfortunate circumstance of each sample being collected after a period of 

heavy rain.  The initial concentrations of NH3-N and PO4-P were respectively 6.1 ±0.01 mg L-1 and 3.1 

±0.02 mg L-1 in cycle 1, and 6.1 ±0.5 mg L-1 and 2.3 ±0.06 mg L-1 in cycle 2.  As a result of the low initial 

concentration, the demand exceeded the availability, and NH3-N rapidly declined below the detection 

limit by the second day of treatment in both cycle 1 and 2 (Figure 6.8).  In cycle 1, both the NO2-N and 

NO3-N concentrations declined from an initial 0.07 ±0.0 mg L-1 and 0.87 ±0.01 mg L-1, respectively, to 

below the detection limit at day 2, with no change thereafter (Figure 6.9).  Apart from a small increase in 

NO3-N at the beginning of cycle 2, as a result of fresh PSW being supplied, both the NO2-N and NO3-N 

concentrations were below the detection limit for the whole duration of the cycle (Figure 6.9).  

Consequently, it can be stated that as of the second treatment day in cycle 1 and 2 there was an 

insufficient supply of inorganic N in the wastewater. 

 

Figure 6.8 – Time course of NH3-N and PO4-P concentrations in mg L-1 of pot ale enriched PSW treated by semi-
continuous operation under the conditions with microalgae (WWPA+C.v treatment) in 7 L internally illuminated 
reactor.  Each data point is the mean ±SD, of n = 3 independent replicates.  Some error bars are smaller than the 
symbols.  The dotted line represents the duration of each cycle. 
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Figure 6.9 – Time course of NO2-N and NO3-N concentrations in mg L-1 of pot ale enriched PSW treated by semi-
continuous operation under the conditions with microalgae (WWPA+C.v treatment) in 7 L internally illuminated 
reactor.  Each data point is the mean ±SD, of n = 3 independent replicates.  Some error bars are smaller than the 
symbols.  The dotted line represents the duration of each cycle. 

 

The supply of N is known to be a critical factor in regulating lipid synthesis and yield in microalgae [146, 

597].  Microalgae have been reported to typically have a lipid content of less than 20% based on the 

final dry weight of cell biomass when cultured under normal (non-stressed) conditions [598].  When N 

becomes the growth limiting factor, the lipid content increases with final yields of 60 to 80% reported as 

a result of the microalgae transitioning to anabolism energy-rich storage compounds such as starch and 

lipids [334, 599, 600].  However, this effect is accompanied by cell-cycle cessation and reduction in 

productivity as a result of N not being available for protein synthesis, which is essential for cellular 
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Figure 6.10 presents the growth of C. vulgaris in the WWPA+C.v treatment over a period of 23 days.  

Based on its growth, C. vulgaris can be suggested to have utilised the assimilated NH3-N initially and 

subsequent intracellular N compounds to sustain growth following N limitation as of the second day of 

treatment in the first two cycles.  A clear acclimation phase is noticed in cycle 1, indicated by a 3-day lag, 

after which the cell concentration increased from 1.0 x107 (5.8x105) at day 3 to 1.5 x107 (1.7x106) at day 

5.  In cycle 2, the microalgae exhibited a small increase in concentration after the addition of fresh PSW, 

followed by a sudden increase at day 9.  Here, C. vulgaris concentration increased from 9.9 x106 

(±1.1x106) at day 9, to 1.9 x107 (±1.3x106) at day 12 (the end of cycle 2).  The reason for the extended 

treatment period from 5 days in cycle 1 to 7 days in cycle 2 was to allow the microalgae to grow to 

ensure a sufficient concentration in the subsequent cycles after being diluted with fresh PSW.  Although 

the cell concentration increased in cycle 2, this was not accompanied by an increase in biomass yield.  At 

the end of cycle 1 and 2, biomass concentrations were 385 ±5 and 255 ±1 mg L-1 respectively. 

The data obtained for both cycles define a clear contradiction in the biomass concentration and the cell 

concentration, indicating that biomass content per cell might have changed.  Sforza et al., (2014) [156] 

obtained a comparable result when cultivating C. protothecoides continuously in unsterilized settled 

municipal wastewater.  The authors note a significant reduction in biomass concentration between the 

dark and light phases of the culture conditions (12:12 light:dark), despite the cell concentration 

remaining constant.  The reduction of biomass was attributed to an intracellular biomass loss following 

the consumption of stored compounds during dark respiration.  The biomass concentration increased 

during the light period, accompanied with the consumption of NH3-N and PO4-P.  Given that the 

microalgae in this study were nutrient limited, it is possible that following dark respiration during the 12 

hour dark period, the microalgae could not replenish intracellular resources consumed to sustain 

cellular metabolise and respiration, and in the long-term leading to a reduction in biomass between 

cycle 1 and 2.  This inference is based on the assumption that further to inorganic N being limited, so 

may have been carbon.  In addition to the dilute inorganic N and P concentrations in the PSW of cycles 1 

and 2, the initial COD concentrations were low relative to the concentrations recorded in the previous 

batch and small-volume semi-continuous WWPA+C.v treatments (Table 34).  Based on the trend in COD 

concentration for the WWPA+C.v treatments operated under batch mode (Section 5.3.3; Figure 5.7), it is  

reasonable to suggest that the bioavailable carbon in the wastewater of the WWPA+C.v treatment in 

this experiment was removed by the third day of treatment in each cycle.  Consequently, the microalgae 

will have been carbon and N limited, directly resulting in biomass loss as the required metabolites could 

not be replaced following their consumption in catabolic reactions.  However, analysis of the 

microalgae’s composition in regards to carbon, N and P content is necessary to drive firmer conclusions. 
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Figure 6.10 – Changes in C. vulgaris concentration in cell mL-1 and dissolved O2 concentration in mg L-1, of pot ale 
enriched PSW treated by semi-continuous operation under the conditions with microalgae (WWPA+C.v treatment) 
in 7 L internally illuminated reactor.  Each data point is the mean ±SD, of n = 3 independent replicates.  Some error 
bars are smaller than the symbols.  The dotted line represents the duration of each cycle. 
 

Table 34 – Initial and final COD concentrations in mg L-1 O2 of PSW treated under the condition with 
microalgae enriched with pot ale.  Each data point is a mean ±SD, of n = 3 independent replicates. 

Phase Cycle 1 Cycle 2 Cycle 3 Cycle 4 

Initial 289 ±3.8 240 ±11.1 383 ±3.5 368 ±7.2 

Final 113 ±1.5 118 ±2.9 205 ±3.5 284 ±10.1 

Removal efficiency (%) 60 50 46 22 

 

In regards to PO4-P, a small decline in concentration is observed during cycle 1 until day 3, at which 

point the concentration remained constant at approximately 1.5 ±0.5 mg L-1 for the remaining 2 days of 

the cycle (Figure 6.8).  In cycle 2, the concentration of PO4-P declined by a total of 0.5 mg over the 7-day 

treatment period reaching a concentration of 1.8 ±0.08 mg L-1 at day 12.  In all the reactors, the pH 

remained in the range of 6.6 to 7.3 over the 23-day duration of this experiment, suggesting that the 

small quantity of PO4-P removed was mainly by means of assimilation by the microalgal-bacterial co-

culture and not mediated by inorganic P precipitation [376]. 

A large variation in C. vulgaris growth and inorganic N and P removal is noticed for cycles 3 and 4 

compared to cycles 1 and 2.  In cycle 3, the concentration of NH3-N and PO4-P was high relative to the 

previous cycles, likely because the wastewater was collected during a period of dry weather.  The 
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concentration of NH3-N declined to below the detection limit during the 7-day duration of cycle 3, from 

9.5 ±0.3 to 0.09 ±0.1 mg L-1 (Figure 6.8).  The high NH3-N removal efficiency was associated with its re-

addition to the microalgae.  Boonchai et al., (2015) [605] recorded an improved response in N and P by 

Chlorella sp. when treating synthetic wastewater and grown under N-deplete conditions compared to 

the control culture which was grown in medium with excess N and P, for 40 hours prior to inoculation.  

After 48 hours of treatment, a total of 82% TN and 92% TP were removed by the N-deplete Chlorella sp. 

culture and a total of 60% TN and 89% TP by the control Chlorella sp. culture.  This effect has also been 

described by Wang et al., (2016) [606] and proposed as a strategy to enhance NH3-N from wastewater 

by microalgae.  In this study the decline in NH3-N was not accompanied with an equivalent response in 

PO4-P assimilation by the microalgal-bacterial co-culture.  Only 1 mg PO4-P was removed from the 

wastewater over the 7-day duration of cycle 3, reaching a concentration of 3.7 ±0.09 mg L-1 by day 19 

(Figure 6.8).  Similarly no discernible change in C. vulgaris concentration was recorded in the whole 

cycle, whereas the biomass concentration increased from 169 ±0.01 mg L-1 at the beginning to 253 

±0.01mg L-1 at the end of cycle 3.  Re-addition of N in microalgae cultures has been reported to be a 

slow enhancer of protein content, with the activation and expression of enzyme necessary for N 

assimilating and storage [604, 607]. 

Although the increase in biomass concentration in cycle 3 may in part be an increase in microalgae 

density, it must be noted that the wastewater became more turbid, accompanied with a decolouration 

from green to yellow-green.  A main factor in this development will have been the fact that the 

wastewater was not filtered prior to use.  Consequently, as microalgal biomass was removed following 

each cycle and not recycled, an increase in total suspended solids may in part be attributed to the 

increase in biomass concentration.  The addition of fresh PSW will have also been accompanied by the 

addition of naturally occurring heterotrophic organisms.  In fact, small aggregates became visible with 

the naked eye as of day 2 of treatment in cycle 3, exhibiting a floc-like appearance.  The occurrence of 

this was not observed in the WWPA+C.v small-volume semi-continuous treatment.  A wastewater 

sample collected before the reactors were replenished with fresh PSW on day 12 (end of cycle 2) is 

shown in Figure 6.11A, and on day 19 (end of cycle 3) in Figure 6.11B.  Overall, a greater quantity of 

insoluble matter was observed at the bottom of each reactor in cycle 3 compared to cycle 2, prior to 

mixing and sample collection.  Moreover, compared to cycle 2 in which the increase in cell 

concentration was accompanied by an increase in dissolved O2, reaching 6.2 ±0.9 mg L-1 at day 12, the 

concentration of dissolved O2 declined to below 0.5 mg L-1 by the second day in the cycle 3 (Figure 6.10).  

The low dissolved O2 concentration in cycle 3 indicates a prevalence of heterotrophic carbon-oxidation 

over photosynthetic O2 evolution.  Based on the formation of small flocs, the increase in insoluble 

matter in the reactor and a substantial decline in dissolved O2 concentration, it can be suggested that 

the population of heterotrophic organisms had increased beyond a suitable ratio under which the 

microalgae could compete with.  Unfortunately, once the experiment had been set up it was noticed 

that the arrangement of the internalised LED strips fixed around the central pole resulted in a non-

uniformed distribution of light, with distinct dark zones occurring (Figure 6.12).  While this set-up 
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indicated not to be an issue in supporting growth and photosynthetic activity of the microalgae, based 

on the dissolved O2 and cell concentration increase in cycle 2, the attenuation of light to the microalgae 

due to the shading effects caused by an increase in suspended solids may have been conducive in 

reducing photosynthetic activity in cycle 3.  During cycle 4, the colour of the wastewater turned grey and 

was accompanied by a rancid odour.  As a result of microalgae showing no growth and effective removal 

of NH3-N and PO4-P the experiment was terminated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 – Depiction of the progressive decline in colouration of PSW treated under the conditions with 
microalgae and enriched with pot ale. Image A taken at the end of cycle 2 (day 12), and image B at the end of cycle 
3 (day 19). 
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Figure 6.12 – Reactor set-up for the large-volume semi-continuous WWPA+C.v treatment with internalised LED 
strips.  Red arrows denote dark zones.  Image taken on day 4. 

 

6.4 Conclusion 

The present study demonstrates that a static microalgae wastewater treatment process under semi-

continuous operation at bench scale was effective at removing inorganic N and P from PSW enriched 

with pot ale compared to those treatments without C. vulgaris, either enriched with or without pot ale.  

A complete removal of NH3-N (from 29.2 ±0.5 to 0.01 ±0.01 mg L-1) and 71% removal of PO4-P (from 6.7 

±.0.07 to 1.9 ±0.15 mg L-1) were achieved within 4 days (cycle 1) in the WWPA+C.v treatment.  

Additionally, a substantial reduction in COD concentration (74%) and a stable dissolved O2 concentration 

were reached, as well as an increase in C. vulgaris concentration.  However, results in the subsequent 

three cycles in the WWPA+C.v treatment highlight that inorganic N and P removal was less effective.  

This was accompanied by a lower concentration of C. vulgaris at the end of each cycle.  A similar 

observation was noted in the WW+C.v treatment.  The constant alkali conditions, which formed during 

each cycle in both the microalgae treatments, is suspected to be the cause of the decrease in inorganic 

N and P removal efficiencies and microalgal growth. 

A further experiment was conducted to evaluate the performance of the WWPA+C.v semi-continuous 

treatment process at 7 L in a reactor configured with internalised lights.  However, as a result of the 

inorganic N and P concentrations being low in the wastewater samples of the initial two cycles, poor 

performance and microalgae growth were observed throughout the duration of the experiment.  The 

initial imbalance in inorganic N availability was suggested to be the limiting factor affecting inorganic P 

removal and microalgae growth.  Consequently, it is possible that the culture conditions facilitated the 

growth of the native microflora of the wastewater at the expense of microalgal population.  This 
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inference was based on the observed decline in C. vulgaris and total biomass concentration between the 

cycles, and difference in colour (from green to grey) and odour. 

Overall, based on the experimental results, the stability of a static semi-continuous microalgae 

wastewater treatment process for long-term operation still remains to be determined.  Additional 

measures, such as biomass recycling, that would help increase the solids retention time and to control 

pH should be considered in order to sustain nutrient removal and abundance of the active microalgae 

population. 
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Chapter 7 – General Conclusion 

The application of microalgae to treatment municipal or industrial wastewaters for remediation of 

carbonaceous, nitrogenous and phosphorus materials was first proposed almost 70 years ago, operated 

as sewage oxidation ponds [63, 608].  In the decades since, a large body of work on the development of 

microalgae wastewater treatment processes has substantiated their application and efficiency, not only 

in respect to remediating the eutrophic fractions (i.e. carbon, N and P) contained in the wastewater, but 

also in pathogen reduction, toxic metal adsorption and removal of other emerging contaminants (e.g. 

pharmaceuticals, personal care products and trace organic compounds (i.e. phenol, etc.).  Despite their 

success, however, much of the applied research on using microalgae for wastewater treatment has 

focused on optimising the process to achieve high biomass yields and productivity for bioenergy 

production, either by selecting for naturally high energy-rich algal species or by evaluating their 

response to stress factors associated with the production of value-added products.  The use of 

wastewater as a medium in these studies is mainly used to reduce production cost, with the treatment 

thereof considered as a concurrent benefit and a secondary objective.  As a result, much of the work has 

been carried out (either in a laboratory setting or small-scale industrial trials) in optimal culture 

conditions in which the microalgae in photobioreactors are continuously mixed or aerated.  As detailed 

in Chapter 1, the application of continuous mixing or aeration in microalgae cultivation consumes a 

significant proportion of the total energy used.   This directly affects the economic viability and 

sustainability of a microalgae wastewater treatment process, as well as its competitiveness against 

established secondary processes widely used in the industry today.  A further aspect which must be 

considered is the stage in the treatment at which the microalgae are introduced.  The application of 

microalgae to treat secondary treatment effluent – i.e. after the energy intensive secondary treatment 

stage – would not result in the much-desired reduction in overall energy demands of wastewater 

treatment. 

To improve the economic feasibility of microalgal to treat wastewater, the research described herein 

aimed to evaluate the performance of a static microalgae treatment process.  In brief, initial 

experiments evaluated carbonaceous, nitrogenous and phosphorous removal of selected microalgae 

strains from PSW cultured in two modes: aerated and static.  The latter condition was performed in 

order to evaluate and identify any limitations this strategy may have on microalgal productivity and 

treatment performance in order to establish an energy-efficient and cost-effective microalgal treatment 

process compared to conventional wastewater systems.  Further experiments were carried out to assess 

the treatment efficiency of PSW by C. vulgaris in response to exogenous carbon loading under static 

culture conditions.  The major findings for each of the chapters are described below, followed by 

description of the impact of the work and suggestions for further work. 
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7.1 Summary of main findings 

7.1.1 Microalgae selection for contaminant removal from wastewater (Chapter 4) 

The selection of a suitable microalgal strain is important in establishing a robust microalgae wastewater 

treatment process.  Therefore, the aim of the work described in Chapter 4 was to carry out a selection 

between C. vulgaris, A. obliquus and H. riparia species under the same experimental conditions, 

evaluating the aptitude to grow in unsterilized PSW in terms of biomass productivity and wastewater 

treatment efficiency.  The results of the laboratory experiments showed potential application for 

effective treatment by the strains C. vulgaris and A. obliquus.  Characterisation of the PSW revealed 

significant NH3-N and PO4-P reductions at respectively 6.08 and 0.63 mg L-1 d-1 in the WW+Air+C.v 

treatment, and 2.25 and 0.47 mg L-1 d-1 in WW+Air+A.o treatment.  The removal rates translated to an 

approximate efficiency of 98% in the WW+Air+C.v treatment and 86% in the WW+Air+A.o treatment.  A 

clear arithmetic phase of growth in C. vulgaris and A. obliquus was recorded in these treatments, at an 

approximate rate of 0.22 d-1.  In comparison, inorganic N and P removal rates by H. riparia in the 

WW+Air+H.r treatment were notable lower at 4 mg L-1 d-1 NH3-N and 0.18 mg L-1 d-1 PO4-P, with 

efficiencies of 54% NH3-N and 42% PO4-P.  The variation in removal efficiency and productivity between 

C. vulgaris, A. obliquus and H. riparia was in part explained by their individual morphological, 

phenological and genotypic features.  In previous studies, it has been demonstrated that cell size has an 

influence on the achievable maximum growth rate of a microalga [406–408].  As high N and P 

assimilation by microalga is closely related to growth, it was postulated that the high inorganic N and P 

removal by C. vulgaris was in relation to an improved acclimation and growth response because of its 

smaller cell size, compared to A. obliquus and H. riparia which are naturally bigger species.  Although it 

was not concluded that the species of C. vulgaris used produced algaenan, it was suggested that 

differences in its cell wall structure compared to A. obliquus or H. riparia improved the its resistance and 

negative interference to allelopathic interactions. 

In the static cultured treatments the removal efficiency of inorganic N and P did not manage to satisfy 

European Commission Directive limits.  Indeed, low removal rates ranging from 1.25 to 1.87 mg L-1 d-1 

NH3-N and 0.52 to 0.17 mg L-1 d-1 PO4-P were recorded in the microalgae treatments for the 7 day 

duration of the experiment.  As a consequence of the low removal rate final concentrations of NH3-N 

and PO4-P were respectively 18.2 ±0.2 and 1.67 ±0.04 mg L-1 in the WW+C.v treatment, and 19.2 ±0.1 

and 0.16 ±0.04 mg L-1 in the WW+A.o treatment.  Analysis of the PSW in these treatments highlighted 

the formation of an alkaline condition which occurred concurrently with the demise in inorganic N and P 

removal.  The pH in the WW+C.v treatment increased in the first day of treatment to 9.5 ±0.1 and 

further thereafter reaching a maximum of 10.9 ±0.1 by day 4.  Similarly, in the WW+A.o treatment pH 

increased at a more gradual rate over the whole treatment period, reaching 10.6 ±0.1 at day 7.  

Considering the main difference between the aerated and non-aerated culture modes was the provision 

of inorganic carbon supplied to the microalgae, in the form of CO2, it was inferred that the availability of 

a carbon source was the limiting factor in the wastewater used in this particular study.  Indeed, analysis 
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of the COD in the static microalgae treatments highlighted a limited capacity of the algae to reduce and 

therefore utilise the carbonaceous material in the PSW.  This was most likely because of the high 

variability and complexity in the compositions of the compounds.  Similar observations have been 

reported in the literature in which studies demonstrated a reduced efficiency and assimilation of 

inorganic N and P because of limited carbon resources, both as inorganic and organic carbon which are 

metabolised via photosynthesis and the TCA cycle respectively.  It was concluded from the results that a 

major limitation to the wastewater treatment efficiency by the microalgae under static cultivation was 

the low availability of carbon.  Among the selected strains, C. vulgaris was selected for further 

experiments in which the PSW was enriched with exogenous organic carbon with the aim of improving 

treatment performance. 

7.1.2 - Effects of carbon enrichment on inorganic N and P removal from PSW by C. vulgaris (Chapter 5) 

The addition of a bioavailable organic carbon source to PSW had a significant effect on C. vulgaris 

inorganic N and P removal efficiency under static culture conditions.  In an initial experiment conducted 

on PSW enriched with glucose, to an equivalent COD concentration of 300 mg L-1 O2, the concentration 

of NH3-N and PO4-P was reduced below the detection limit by day 2 in the microalgae treatment 

(WWG+C.v).  Here, the NH3-N declined from an initial concentration 28.6 ±0.1 to 0.1 ±0.05 mg L-1 and 

the PO4-P from an initial concentration 3.2 ±0.02 to 0.1 ±0.01 mg L-1 by day 2.  In addition, exogenous 

glucose promoted cell productivity and biomass yield, as well as a more stable pH profile for the 5 day 

duration of the experiment (ranging between 6.6 and 9.3).  Conversely, in the WW+C.v treatment 

without enrichment with glucose the concentration of NH3-N and PO4-P decreased to a final value of 

15.5 ±0.5 mg L-1 and 0.8 ±0.01 mg L-1 respectively.  From these results it was clear that whilst C. vulgaris 

naturally aided in inorganic N and P removal from the PSW by means of assimilation, the addition of 

glucose significantly improved their capability.  According to metabolic pathways, the absorbed glucose 

was utilised in the assimilation and anabolism of NH3-N to amino acids via its metabolism in the 

glycolysis pathway and TCA cycle.  Conversion of glucose in these biochemical pathways assisted in 

replenishing the intermediates 2-oxoglutarate and oxaloacetate which are sequester from the TCA cycle 

in the GS-GOGAT pathway for glutamate synthesis (i.e. anaplerotic reactions).  Furthermore, the 

metabolism of glucose was a source of ATP and NADH generation critical to PO4-P assimilation and 

integration into RNA for protein translation necessary for cell growth and maintenance. 

Further experiments were carried out on different wastewater grab samples to evaluate the 

reproducibility of the static microalgae process treating organic carbon enriched PSW, to take into 

account the natural fluctuations in the composition of wastewater (i.e. biological/chemical).  In addition 

to enriching with glucose, treatments with glycerol and intermittent CO2 injection were also included to 

compare between the use of a different organic and inorganic carbon source.  From the results, 

performance of the microalgae treatments enriched with organic carbon for all three PSW batches 

yielded consistent responses of inorganic N and P removal, at an efficiency of 90% and above.  The 

observed effect was accompanied with promising microalgae growth and favourable pH conditions in 
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the wastewater for the duration of the experimental period.  In comparison, no significant difference in 

contaminant depuration and microalgae growth was observed between the CO2 enriched microalgae 

treatment (WWCO2+C.v) and the microalgae only treatment (WW+C.v).  The average inorganic removal 

efficiencies in the WWCO2+C.v treatments and WW+C.v treatments were 55% and 33% for NH3-N, and 

63% and 70% for PO4-P, respectively.  The difference in treatment response between the inorganic 

carbon and organic carbon treatments can be explained by the effect of high CO2 concentration on non-

acclimated microalgae.  Based on microalgae physiology a high CO2 concentration supplied to non-

acclimated algae, as is the case in these experiments, can negatively influence photosynthetic efficiency 

and respiration, directly affecting the ability of the microalgae to assimilate N, P and carbon.  Therefore 

the tolerance of C. vulgaris to high CO2 concentrations limited the ability of the alga to sequester the 

inorganic carbon in an appropriate manner for utilisation in inorganic N and P assimilation and growth. 

The same experimental design was employed to investigate the suitability of deproteinated pot ale as an 

alternative carbon source to glucose or glycerol for the enrichment of PSW.  Across the three pot ale 

enrichment PSW batches treated with C. vulgaris (WWPA+C.v) the pattern of inorganic N and P removal 

was similar to the response recorded in the microalgae treatments with glucose or glycerol.  However, it 

must be noted that when comparing the experimental runs, higher initial concentrations of these 

inorganics did not lead to their reduction to levels as low as those achieved when their initial 

concentrations were lower, hence suggesting that the capacity of the microalgae in this respect for 

treating PSW may be limited by the availability of organic carbon.  Furthermore, the efficiency of NH3-N 

depuration from the PSW by the microalgae in these treatments (WWPA+C.v) was observed to have an 

influence on the PO4-P removal efficiency.  For instance, in the WWPA+C.v treatment of the initial 

experimental run (R4) the NH3-N concentration declined from 20.9 ±0.09 to 0.09 ±0.0 mg L-1 and PO4-P 

from 9.8 ±0.02 to 0.5 ±0.06 mg L-1.  The removal of inorganic N and P in the repeated WWPA+C.v 

treatments was respectively; from 47.8 ±0.09 to 17.7 ±0.9 NH3-N mg L-1, and from 9.1 ±0.06 to 3.9 ±0.17 

PO4-P mg L-1 in the experimental run R5; and from 35.2 ±0.03 to 4.7 ±0.2 NH3-N mg L-1 and from 7.2 ±0.2 

to 2.3 ±0.2 PO4-P mg L-1 in the experimental run R6.  When the profile of the inorganic N and P 

concentrations were juxtaposed with the profile of their respective COD concentration, the cessation in 

COD removal corresponded to the cessation in inorganic removal.  It was concluded from the results 

that the removal capacity of NH3-N and PO4-P that can be achieved by the microalgae was dependent on 

the concentration of pot ale added under the present experimental design.  Since the enrichment of pot 

ale in the PSW was fixed at a ratio of 1:150 v/v (approximate COD equivalent of 250 mg L-1 O2) it was 

concluded that this quantity of carbonaceous material promoted the assimilation of approximately <30 

mg NH3-N and <6 mg PO4-P by the algal cells. 

7.1.3 Semi-continuous treatment (Chapter 6) 

It is important for microalgae treatment process not only to be sustainable but also capable of 

continuous treatment of wastewater.  To this end, the organic carbon enriched static microalgae 

treatment process was assessed in a semi-continuous manner for four consecutive cycles.  In the small-
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volume experiment, the initial cycle of the WWPA+C.v treatment demonstrated removal efficiency 

consistent with that observed in the previous organic carbon enriched microalgae treatments under 

batch operation.  However, a decline in removal efficiency was noted in the subsequent cycles.  The 

underlying reason for this was ascribed to the high pH levels that occurred within each cycle and the 

potential influence of repeated exposure to copper in the pot ale.  As the microalgae were not recycled 

or replenished between cycles, the prolonged exposure will have negatively affected the cells health as 

well as facilitated the formation of free NH3.  A slight decline in biomass was noted in the subsequent 

cycles as a result which will have affected the overall capability of the microalgae treatments at 

remediating inorganic N and P from the wastewater.  In the large-volume semi-continuous WWPA+C.v 

treatment, the dilute composition of the wastewater samples collected for the initial two cycles 

highlight that the effectiveness of the system is strongly affected by low concentrations of inorganic N 

and P. 

7.2 Impact of research study 

The findings obtained from this study have considerable implications towards improving the 

sustainability and treatment performance of municipal wastewater by microalgae.  The application of 

microalgae as a treatment stage in present wastewater treatment trains is predominantly implemented 

as a tertiary process after the energy intensive secondary treatment stage, with the aim to reduce the 

concentrations of inorganic N and P.  Consequently, their application is not considered a viable option 

by the wastewater industry as the additional cost in microalgae cultivation (i.e. mixing/aeration) and 

complexities in operation do not align to the concept of a circular economy model in respect to energy 

reduction and improving sustainability of wastewater treatment.  The aspiration is to move towards 

solutions with wider environmental benefits which contribute to the delivery of a circular economy.  The 

results obtained in this thesis demonstrated that the application of microalgae to treat PSW without 

aeration offers a key area to develop low energy biological wastewater treatment compared to 

conventional secondary processes.  For instance, in the static microalgae treatments treating organic 

carbon enriched PSW, significant reductions in inorganic N and P were attained.  In some of the 

wastewater samples used the level of reduction in these compounds was below the required limit set by 

the UWTD (European Commission, 1991).  This observation is potentially relevant for countries in the 

European Union as the implementation of more stringent effluent standards is being proposed with the 

aim to improve water quality.  However, optimisation of the proposed static microalgae treatment 

process to achieve consistent removal of inorganic N and P under fluctuations in wastewater 

composition is needed.  If this can be achieved adoption of a low energy biological wastewater 

treatment process by microalgae would be viable.  Further benefits of the assessed static microalgae 

treatment process include the high generation of O2 by photosynthesis as well as the suppression of a 

nitrification/denitrification reaction in the process, with the latter aspect having the advantage of 

reducing operational cost and complexity of a wastewater treatment process. 
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7.3 Suggestions for future work 

The use of algae of as the biological treatment stage in a wastewater treatment train, to reduce 

nitrogenous, phosphorous and carbonaceous material, has the potential to operate at a lower footprint 

in terms of energy consumption and greenhouse gas generation compared to conventional biological 

wastewater treatment processes.  Irrespective of these requirements in the cultivation and operation of 

a microalgae wastewater treatment process, a major challenge that still limits the application of 

microalgae to treat wastewater is the non-sterile environment associated with the process.  Although 

the work in this thesis demonstrated a robust and reproducible trend in inorganic N and P removal using 

monocultures of microalgae as the inocula, future work would benefit by improving the stability of the 

microalgae community used by adopting a native microalgae-bacterial consortium.  To this end, a 

naturally forming microalgae-bacterial consortium should be grown and used from a sample of the 

wastewater that it is intended to treat.  The main reason being that native algal-bacterium consortia are 

demonstrated to have higher treatment efficiencies in regards to contaminant depuration, as well as 

faster settling rates leading to improved effluent characteristics (i.e. lower turbidity) compared to non-

native wastewater microalgal-bacterial consortia [259, 609].  In respect to the latter parameter, bacteria 

whose growth and abundance in microalgal-bacterial flocs were permitted to establish naturally 

improved the flocculation and settling characteristic of the biomass [609].  This has major implications 

on the operating cost of a microalgae treatment process.  For instance in the commercial production of 

microalgae biomass, its separation from the aqueous phase is estimated to account between 20% to 

30% of the total operating expenditure, usually achieved via centrifugation [609].  In a study by Su et al., 

(2012) [366] evaluating the settleability of microalgae, algae biomass settling rate was enhanced when 

co-cultured with an inoculum of natural occurring activated sludge bacteria, exhibiting a reduction in 

TSS concentration from 1.64 to 0.05 g L-1 within 30 minutes compared to a reduction from 1.68 to 0.41 g 

L-1 in the algae only culture.  This level of reduction is within the maximum TSS concentration limit of 

0.05 g L-1 set by the UWTD [14].  Although the assessment and discussion pertaining to the 

establishment and settling characteristics of microalgal-bacterial consortium was out of the scope of this 

thesis, researchers should be encouraged on the co-culturing of natural community of algae and other 

microorganisms such as yeasts, fungi and bacteria in order to create stable communities that perform in 

a predictable manner while filling all ecological niches to limit the potential for contamination and 

culture crashes.  Therefore, future work should assess the organic carbon enriched wastewater 

treatment strategy on a naturally formed microalgal-bacterial consortium in regards to both its 

treatment performance and settling characteristics, in order to further reduce operating cost and 

improve treatment efficiency. 

Furthermore, by using an established community of microorganisms, including the microalgae, for 

wastewater treatment, known transcription factor(s) expressed by certain microorganisms in the 

consortium could be used as indicators of community health in response to variations in wastewater 

composition.  Various compounds which may be present in the wastewater have been identified to 
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induce oxidative stress responses within algae thereby affecting cellular metabolic pathways and other 

essential cellular functions [610].  To monitor the health of the microalgal-bacterial consortium, a 

quantitative PCR assay could routinely be used to monitor the expression of known genes involved in 

oxidative stress response, for example the antioxidant enzyme ascorbate perioxidase in algae cells.  This 

would be beneficial to the treatment process as it would permit relatively quick changes in operating 

parameters such as light intensity, HRT, STR and aeration which may alleviate against the acute change 

in wastewater composition and aid in stabilising the treatment performance.  Adoption of such an assay 

would require further understanding and identification of genes and their transcription factor(s) 

involved in the response mechanism to known compounds ubiquitous to wastewater, for example 

pharmaceuticals and personal care products. 

Although it must be acknowledged that the use of a microalgal-bacterial consortium with good settling 

characteristics may not be practical under static culture conditions, ironically in practice the static 

microalgae treatment process evaluated in this work will require mixing to a certain degree if 

implemented at an industrial scale.  In this regard intermittent aeration is advised as it reduces the 

energy consumption for aeration.  For instance, a 33% to 50% reduction in electricity cost for aeration 

was reported by [611] in macroalgae cultures supplied with intermittent aeration (16 hours on: 8 hours 

off) compared to continuous aerated cultures.  Thus, further development should be carried out in a 

reactor configuration that is aerated intermittently, potentially coupled with CO2 injection.  This would 

have a dual benefit of providing a means of maintaining microalgal-bacterial flocs in suspension during 

the treatment phase of the process and provide an economic and effective means of pH control.  

Although the work described in this thesis provided an insight into the treatment response of a static 

microalgae wastewater treatment process, a major limitation to the inference of its suitability as a 

process was the lack of pH control in the treatments, which is one of the important culture parameters.  

In general, it is highly recommended that subsequent experiments assess the effects of various 

parameters such as osmotic, pH, O2 and temperature on the treatment efficiency and biomass 

productivity to obtain the optimal conditions for industrial scale cultivation.  Furthermore, long term 

studies of the static microalgae treatment process in various reactor configurations designed with 

internalised lights could offer a better insight towards optimising culture performance and indirectly 

treatment efficiency, especially in regards to substantiating the effects of biofilm growth inside the 

reactors. 

The treatment performance of a microalgal-bacteria consortium in PSW enriched with other organic 

carbon sources is necessary to establish this process in geographical locations restricted by the supply of 

pot ale.  While deproteinated pot ale was a suitable choice for enrichment in the present work to 

theoretically control the treatment cost, it is not necessary an economical source for use outside of 

Scotland.  According to previous research, various other food industry by-product streams, including 

industrial by-product streams from the fruit processing industry, dairy industry and brewing industry 

including molasses streams, contain high concentrations of saccharides.  Besides the enrichment of 
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saccharides, certain food industry by-product streams may not contain toxic compounds such as copper 

or exhibit an unbalanced concentration of inorganic N or P as in the case of pot ale, which was described 

as an effect that negatively impact on algal growth and treatment efficiency in the semi-continuous 

experiments.  However, analysis of alternative by-product streams containing high concentrations of 

organic carbon in regards to how they are utilised by algal cells would be beneficial in respect to 

optimising the process through establishing suitable microalgal-bacterial communities.  For instance, 

extracellular hydrolases secreted by wastewater-borne bacteria may be required to convert 

polysaccharides, such as starch, sucrose, and cellulose, into glucose suitable for microalgae assimilation 

and metabolism.  This strategy, however, would require establishing an appropriate community of 

relevant and suitable bacteria which can associate in a beneficial manner with the algae through 

exposer experiments.  Therefore, in future, the use of alternative food industry by-product streams as a 

source of organic carbon for enrichment in PSW to be treated by a microalgal-bacterial consortium 

require studies analysing the bio-conversion of algae indigestible carbon. 

A final route of further investigation would be to conduct a life cycle assessment (LCA) of the static 

microalgae wastewater treatment process, ideally using experimental data on contaminate depuration 

using a naturally formed microalgal-bacterial consortium.  The use of LCA would provide insight on the 

overall sustainability of a static microalgal-bacterial treatment process (or intermittently aerated 

process) by considering the processing method, its energy investment and environmental impact 

compared to conventional secondary biological treatment process.  Downstream biomass processing for 

methane gas generation or as a source of fertiliser following further processing, such as curing the 

biomass, would be invaluable towards improving the overall sustainability and environmental impact of 

the treatment process by contributing to a circular economy model. 
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