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Abstract
Transport generates a large and growing component of global greenhouse gas emissions
contributing to climate change. Effective transport emissions reduction policies are needed
in order to reach a climate target well below 2 ◦C. Representations of technology evolution
in current integrated assessment models (IAM) make use of systems optimisations that may
not always provide sufficient insight on consumer response to realistic policy packages for
extensive use in policy-making. Here, we introduce FTT: transport, an evolutionary technol-
ogy diffusion simulation model for road transport technology, as an IAM sub-component,
which features sufficiently realistic features of consumers and of existing technological tra-
jectories that enables to simulate the impact of detailed climate policies in private passenger
road transport. Integrated to the simulation-based macroeconometric IAM E3ME-FTT, a
plausible scenario of transport decarbonisation is given, defined by a detailed transport pol-
icy package, that reaches sufficient emissions reductions to achieve the 2 ◦C target of the
Paris Agreement.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10584-018-2262-7) contains supplementary material, which is available to
authorized users.

� J.-F. Mercure
J.Mercure@science.ru.nl

1 Department of Environmental Science, Radboud University, PO Box 9010, 6500 GL Nijmegen,
The Netherlands

2 Cambridge Centre for Environment, Energy and Natural Resource Governance (C-EENRG),
University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge CB2
3QZ, UK

3 Cambridge Econometrics Ltd, Covent Garden, Cambridge, CB1 2HT, UK
4 Department of Economics, Faculty of Social Sciences, Humanities and Social Science Building,

University of Macau, E21, Avenida da Universidade, Taipa, Macau, China

Climatic Change (2018) 151:109–129

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/187118608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10584-018-2262-7&domain=pdf
http://orcid.org/0000-0003-2620-9200
https://doi.org/10.1007/s10584-018-2262-7
mailto: J.Mercure@science.ru.nl


110 Climatic Change (2018) 151:109–129

1 Introduction

Road transport emits 17% of global greenhouse gas (GHG) emissions, a flow of carbon that
has grown historically by 2–3% every year over the past 20 years (IEA 2015a). Transport
also uses a major proportion of oil produced worldwide: 48% of global oil extraction powers
one form or another of motorised road transport (IEA 2015b).1 While developed economies
(e.g. USA, Japan) typically have low transport activity growth, middle-income nations (e.g.
Brazil, China, India) have fast growth rates (EI 2015). Policy for transforming the environ-
mental impact of transport is a key area to model in detailed integrated assessment models
(IAMs).

Traditionally, IAMs with high detail in energy end-use technologies have been based on
system cost-optimisation or maximisation of the utility of the representative agent.2 The
optimisation methodology used in IAMs is useful from a normative perspective as it helps
map out feasible space and determine what are desirable configurations from a societal
point of view (e.g. see IEA-ETSAP 2016a). For instance, optimisation can be useful in a
context of agenda setting. The carbon price is typically used as a control parameter that
internalises the climate externality, which moves the solution in technology space towards
decarbonisation.

However, optimisation interpreted in a strictly positive scientific sense implies assuming
consumers with infinite information about the whole system and no preferences tied to the
social context. In that work philosophy, such a representation may be deficient, as it seems
unlikely, from a behavioural science point of view, that choices of consumers could be
incentivised and coordinated by the chosen policy signal (the externality price) in exactly
the way that results from an optimisation calculation (Mercure et al. 2016). Optimisations
interpreted as positive descriptions may not be reliable for use for impact assessments of
policy scenarios, particularly if the modelled behaviour of agents is not sufficiently well
informed.

There are two major issues with current optimisation-based IAMs (Wilson et al. 2015;
McCollum et al. 2016; Pettifor et al. 2017b; Mercure et al. 2016):

1. Many IAMs are employed using typically one single policy lever for decarbonisation:
the carbon price (through assumed emissions trading), which is applied to all emitting
sectors including road transport. Real-world climate policy, however, features a much
richer diversity of sector-specific incentives, particularly in transport, where carbon
pricing is generally not used.

2. The collective response of agents to policy incentives (and their degree of access
to/interest in reliable relevant information) is assumed to be coordinated in such a way
that a system cost minimum or utility maximum is realised. In the real world, however,
agents are far from being coordinated in a total system cost perspective, but instead,

1158 EJ of oil was produced in 2013 and transformed into many products of which 42 EJ was gasoline and
51 EJ was diesel, of which 34 EJ and 42 EJ were used in road transportation.
2Cost-optimisation models include PRIMES (E3MLab 2015), MESSAGE (IIASA 2013), REMIND (PIK
2011), AIM-end-use (NIES 2012), TIMES (IEA-ETSAP 2016b), TIAM (UKERC 2011), GET (Grahn et al.
2013); utility maximisation (general equilibrium) models include GEM-E3 (E3MLab 2013), IMACLIM
(CIRED 2006), GEMINI (EPFL 2008); bottom-up technology models based on discrete choice theory
include IMAGE/TIMER (Bouwman et al. 2006), IMACLIM (CIRED 2006), CIMS (Rivers and Jac-
card 2006). Simpler IAMs such as DICE (Nordhaus 2013) and FUND (Anthoff and Tol 2014) are also
optimisations.
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act according to specific behavioural features that do not usually feature in IAMs. For
instance, no real decision-maker anywhere faces the global energy system cost and
related presumed trade-offs.

The question we ask then is, what kind of methodology could solve these problems,
that could be used at the scale of IAMs? Would using a different model structure enable to
model more detailed and multiple policy instruments, including their interactions? Can we
make model projections more consistent with recent technology diffusion data? To address
these questions, we introduce a new type of evolutionary model that simulates the diffusion
of transport technology, FTT: transport, as a sub-module of the IAM named E3ME-FTT-
GENIE (see Mercure et al. 2018a, b, for details of the IAM itself). FTT models the diffusion
of innovations calibrated on recent diffusion data and observed cost-distributions as a rep-
resentation of consumer heterogeneity. It offers a highly detailed set of possible policy
packages. Its strong path-dependence and high policy resolution allows to assess policy
interactions explicitly, with a modelling horizon of 2050.

In Section 2, we summarise the theoretical background and empirical basis of the model.
In Section 3, we show plausible endogenous projections of low-carbon vehicle diffusion
as a result of specific transport policies for fast decarbonisation consistent with a target
well below 2 ◦C.We conclude with a methodological recommendation for policy-relevance.
We provide a detailed model description and its parameterisation in the Supplementary
Information (SI).

2 Background, model andmethod

2.1 Behavioural information

Work is now developing to improve behavioural representations in IAMs (Wilson et al.
2015; McCollum et al. 2016; Pettifor et al. 2017a, b). However, in order to effectively inform
policy-making, it is also crucial to clearly delineate normative (i.e. “tell me what are the
components and I will tell you the best way to organise the system”) from positive (i.e. “tell
me the context and I will predict what people will choose”) modelling philosophies.

Of interest here, passenger road transport is not normally covered by a carbon price,
but many other policy types are used (regulatory, push and pull policies, see e.g. ICCT
2011). The ‘cost’ of vehicles as mitigation options in the traditional modelling sense is
not very well defined since the (lognormal) frequency distribution of vehicle prices spans
a range often much larger than its average (see Fig. 1 and the data in Mercure and
Lam 2015, and more data in SI Section 5.1). The heterogeneity of vehicle consumers is
large.

To better understand this requires using tools and knowledge from behavioural eco-
nomics as well as marketing research, which has been largely overlooked by IAMmodellers.
Wilson et al. (2015); McCollum et al. (2016); Pettifor et al. (2017a, b) make a compelling
argument for the inclusion of significantly more behaviourally relevant information and
functionality in existing IAMs, including a particular emphasis on heterogeneity, social
influence, and the number of policy instruments represented. This led to the development
of a new behaviourally rich model (Pettifor et al. 2017a, b). This plea applies to markets
for private vehicles, where the heterogeneity of consumers is high (Mercure and Lam 2015)
and social influence dynamics, typically not modelled, may well have as much explana-
tory power as prices (e.g. McShane et al. 2012; Wilson et al. 2015; Pettifor et al. 2017a).
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Fig. 1 Price data for vehicles in six major economies, reproduced from (Mercure and Lam 2015)

However, existing technological trajectories are also important to consider, due to their
momentum (see e.g. Geels 2005).

Whether agents are believed to minimise costs or not may not be the issue to resolve: the
result of agents individually optimising their costs and benefits does not necessarily lead to
a cost optimum at the system scale, i.e. to an optimising representative agent/social planner
(Kirman 1992). Mercure et al. (2016); Mercure (2018) show that, in a quantitative (as well as
qualitative) social theory, as soon as agents interact with one another and value the behaviour
of other agents when making consumption decisions, fads, fashions, bandwagon effects
arise that violate the premise of systems optimisation. These effects break the connection
between cost/utility-optimisation at the individual agent level, and optimisation at system
level, partly because the representative agent cannot exist.3 Multi-agent influence instead
leads to diffusion dynamics (as in Rogers 2010; see also the work on information contagion
by Arthur and Lane 1993; Lane 1997).

Wilson et al. (2015) and Pettifor et al. (2017a) review an extensive body of knowledge
on social influence in vehicle choice. It generates a system in which the state of diffusion is
not a simple function of input prices, but instead depends on the order of past events (path-
dependence, see Arthur 1989; Arthur et al. 1987). In systems optimisation, such increasing
returns generates multiple solutions and model instabilities (Gritsevskyi and Nakićenovi
2000): which ones are the ‘correct’ optimal outcomes? Broadly speaking, social influence
‘attracts’ agents towards the adoption of popular innovations and away from unpopular ones,
despite absolute costs and benefits (Arthur 1989; Arthur and Lane 1993; Brock and Darlauf
2001a, b).4 The value ascribed by consumers to the choices of others can be as influential
to their choices as the sum of the characteristics of the goods themselves.

3In other words, if agents behave following their peers to any degree, the aggregate macro-behaviour of a
group of cost/utility-optimising agents does not result in an optimum at the system level (and conversely),
since that optimal point ceases to exist.
4We acknowledge that heterogeneity in principle includes varying characteristics across adopter groups,
which also means that receptivity to social influence is itself heterogenous (see e.g. Donnelly and Ivancevich
1974). This is, however too detailed for the present study.
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This effect is not only generated by social influence: if one allows that the availability
of technology to agents may be restricted by existing market shares (availability follows the
size of the industry), which grow with technology diffusion (the more technologies diffuse,
the more agents can access them), then market shares partly determine the pace of diffusion,
a recursive problem of the same form. In this interpretation, each agent has a different set
of knowledge of technology options, stemming from access to a different set of options.
This makes the use of a representative agent impossible. Technology producers expand
production capacity following demand growth, and demand grows following technology
availability. In fact, in a model, it is not straightforward to empirically attribute the effects
of social influence, technology diffusion and industry growth dynamics. Whichever the root
source, these dynamical effects are mathematically crucial to represent correctly, as they
determine whether a model assumes that agents behave in a perfectly coordinated way or
not (i.e. whether a representative agent exists or not).

It is therefore potentially insufficient to better parameterise basic optimisation mod-
els with additional consumer behavioural information, if the methodology remains tied to
optimisation at the system level, which precludes bandwagon effects by construction. It is
noteworthy that the same recursive effects arise in animal population ecology (Kot 2001),
and in fact one finds that evolutionary modelling methods can achieve realistic consumer
representations with behavioural heterogeneity and social influence (Young 2001), without
the use of representative agents. We describe one here, deployed at IAM scale.

2.2 Technology diffusion as bandwagon effects

The FTT model uses a modified version of discrete choice theory in the form of an evo-
lutionary theory. It uses observed distributions of costs to represent agent heterogeneity (a
form of revealed preferences). It is based a on dynamical systems approach as opposed
to systems optimisation, minimising perceived costs at a bounded-rational agent level as
opposed to minimising whole system costs in standard models. After providing some
theoretical background, we describe the methodology in this section.

Discrete choice theory (DCT, Anderson et al. 1992; Domencich and McFadden 1975;
Ben-Akiva and Lerman 1985) is the main workhorse to regress choice by non-interacting
heterogeneous agents. Agents in a DCT model are assumed to have knowledge of, and have
access to all options available in the market (perfect information). The resulting multinomial
logit (MNL) can also be mathematically derived from a problem of utility maximisation
under a budget constraint when utility follows a constant elasticity of substitution (CES)
model (Anderson et al. 1992), where the elasticity is related to the heterogeneity of agents.
MNLs, CES and optimisation models5 thus share a common theoretical foundation, in
which agents do not interact with one another, and base choices on infinitely detailed
information. These models do not endogenously generate diffusion profiles consistent with
what is observed (S-shaped curves, e.g. see Nakicenovic 1986; Grübler et al. 1999), unless
externally constrained to (e.g. by just the right carbon price6).

In diffusion problems, it is specifically the case that agents do not have (or wish to have)
access to or knowledge of all existing options in the market, since some options are largely
unknown/untried innovations with small market shares and small production capacities, and

5Computable general equilibrium (CGE) and cost-optimisation (partial equilibrium).
6Many partial equilibrium (cost-optimisation) models can be described as ‘moving equilibrium’ models
(Young 2009), in which diffusion is driven by appropriately chosen external parameters producing the right
profiles.
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thus limited access. Production capacity for new technologies are not expanded instanta-
neously to respond to changes in consumer demand; they co-evolve over time. Widely used
products have a higher capacity for diffusion, as they are more visible and they have a larger
producing industry (Bass 1969; Fisher and Pry 1971; Mansfield 1961; Sharif and Kabir
1976; Marchetti and Nakicenovic 1978). These properties are core elements of innovation
diffusion theory (Rogers 2010).7 Bandwagon effects are a key component of transitions the-
ory (e.g. Geels 2002, 2005; Rotmans 2001; Turnheim et al. 2015), and agent-based models
(ABM, see Kohler 2009; Holtz 2011; Holtz et al. 2015).

Including interactions between agents (agents learning from each other, i.e. social influ-
ence) in a discrete choice model leads to diffusion dynamics of products in markets
(Mercure 2018, see also (Arthur and Lane 1993); and SI Section 3.3). Here, we use the so-
called ‘replicator dynamics’, a mathematical system used in evolutionary theory to describe
the selection process in evolutionary problems (evolutionary game theory, Hofbauer and
Sigmund 1998), derived in detail in SI Section 3.3, summarised here (see Mercure 2018;
2015; Safarzynska and van den Bergh 2010 and Young 2001, 2009 for broader discussions).
Its dynamical behaviour is consistent with empirical diffusion observations (e.g. Mansfield
1961; Fisher and Pry 1971; Nakicenovic 1986).

2.3 A bounded-rational discrete choice model with heterogenous agents

Consumers in vehicle markets are highly heterogenous, and this heterogeneity varies by
country, shown in Fig. 1 (see SI Section 5.1 and Mercure and Lam (2015)). This hetero-
geneity can be observed, amongst many other ways,8 through differentiated prices, which
typically increase exponentially with linearly increasing engine sizes (vehicle power, ibid).
Taking account of this heterogeneity is crucial in models to quantify the impact of pric-
ing policies on rates of adoption (e.g. subsidies). Indeed, if the distribution of prices spans
an order of magnitude, then purchase and/or fuel tax schemes will generate widely differ-
ent levels of incentives in different market segments, and the diffusion of new technologies
often starts in more affluent segments of the population. This can be modelled by using
distributed variables.

In this work, heterogeneity is ‘observed’ from the market (Fig. 1) because markets,
consumers and regulation co-evolve: entrepreneurs strive to better match the differenti-
ated tastes of consumers, while consumer tastes are influenced by how the market evolves.
Observed distributions of prices reflect consumer taste heterogeneity, related to a myriad of
socio-economic contextual variables (income, geography, culture, etc), which change over
time.

It is not necessary here to track every individual agent or agent type in order to represent
heterogeneity: DCT statistics can be used. ABMs do so, but using DCT is computationally
faster. However, in our bounded-rational model, agents do not know every vehicle model
type in the market (i.e. we reject perfect information)9 but, rather, consumers choose within
various subsets of the market. This means that every agent has a different set of knowledge,
which violates the premise of the standard MNL. Instead, modelling this is done using

7These are also common concepts in marketing research carried out by firms placing products, going back
to Smith (1956); Bass (1969).
8See for instance Aini et al. (2013); Baltas and Saridakis (2013).
9E.g. in Mercure and Lam (2015), we reviewed the characteristics of over 8000 different individual vehicle
models in registration data for the UK, from DVLA (2012a), and we are fully convinced from that experience
that consumers in the UK do not carry out such an exhaustive search when choosing a vehicle.
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chains of binary logits, with pair-wise comparisons of options, each weighted according to
the number of agents carrying out these comparisons. These weights are the market shares
of each vehicle type, reflecting the probabilities of consumer learning events, for example
through visual influence (as in McShane et al. 2012).

In such chains of binary logits, agent preferences between pairs are treated as distri-
butions of the perceived costs and benefits of technologies (the generalised cost), and
compared at every time step of the model. When faced with a choice between vehicle cat-
egories i and j , a fraction of agents making the choice will prefer technology i, denoted
Fij, while the rest will prefer j , denoted Fji, where Fij + Fji = 1. Denoting that option i

is perceived by that subset of agents to have a generalised cost Ci that follows a frequency
distribution fi(C −Ci), and cumulative distribution Fi(C −Ci), with mean Ci and standard
deviation σi (and similarly for option j ), the fraction of agents making the choice preferring
i over j is as follows:

Fij(�Cij) =
∫ ∞

−∞
Fj (C)fi(C − �Cij)dC, �Cij = Ci − Cj , (1)

which, if fi is a double exponential Gumbel distribution (as in standard DCT), yields the
classic binary logit (see Domencich and McFadden 1975). The standard deviation is treated
using the standard error propagation method:

Fij = 1

1 + exp
(
�Cij/σij

) , σij =
√

σ 2
i + σ 2

j . (2)

This is a logistic function of the ratio of the mean cost difference to the width of the price
distribution (SI Section 3.2). Any noticeable changes in aggregate preferences requires any
perceived cost difference to be larger than the combined standard deviations. This is how, in
choice models, rates of diffusion relate to heterogeneity, and is one way to model heteroge-
nous agents that cost-minimise individually, within their context, under social influence,
without using any systems optimisation algorithm. Price distributions, such as in Fig. 1 are
used for parameterising fj (C). FTT is thus parameterised by cross-sectional datasets (SI
Section 5.1).

2.4 The replicator dynamics equation of evolutionary theory

We take Si as the market share of option i (the number of units of type i in the fleet, with
respect to the total). We evaluate exchanges of market shares between technology categories
as time goes by, the magnitude of which is determined by preferences Fij, while the rate
originates from the fleet turnover. At each time step dt, the amount of shares flowing away
from category i into category j is proportional to the number of vehicles of type i requir-
ing replacement, itself proportional to the market share Si . The number of agents replacing
vehicles of type i exploring the possibility of purchasing a vehicle of type j is a subset of
all agents who have access or have reliable knowledge of option j , which is proportional
to the market share of option j (see Mercure 2015). Being probabilistic, shares flow simul-
taneously in opposite directions but with typically unequal magnitude (if preferences are
exactly 50%/50%, then the net flow is zero). The expression that results for the net flow is
the replicator dynamics equation (also called Lotka-Volterra, SI Section 3.3):

�Sj→i = SiSj

Fij

τi

�t, ⇒ dSi

dt
=

∑
j

SiSj

(
Fij

τi

− Fji

τj

)
. (3)
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This is a dynamical equation that is path-dependent and hysteretic (Mercure 2018).10 Costs
and policy incentivise agents to make choices that orient the trajectory of diffusion, and the
trajectory has momentum.11 Costs are influenced by learning curves, typically stronger for
new technologies, reinforcing diffusion and path-dependence. The mathematics describe a
system in perpetual flow without equilibrium, and indeed, problems of technology diffusion
do not have steady states.12 Innovations come and go, as the popularity of novelty products
rises and later declines. This equation is derived in detail in two distinct ways in the SI
Section 3.3.

2.5 Cost distributions database andmicro-model of vehicle consumer choice

Price distributions for private vehicles are typically log-normally distributed (see Fig. 1,
Mercure and Lam 2015 and SI section 5.1). Cost-comparisons in the FTT binary logit are
thus made between cost distributions in logarithmic space, using an appropriate transfor-
mation (SI Section 3.2). Consumer decisions are not made solely based on vehicle prices;
future operation and maintenance costs are taken into account, with a discount rate, as well
as non-pecuniary benefits. It can never be fully clear what intuitive or quantitative evalua-
tions are carried out by vehicle consumers when taking decisions (and evaluation methods
may differ across the population). For modelling tractability, we require a suitably general,
statistical and flexible micro-model that can encompass all sorts of heterogenous behaviour.
We use comparisons of the net-present values in log scaling, which we denote as the Lev-
elised Cost Of Transportation (LCOT). It expresses a discounted cost of generating a unit
of transport service:13

log

[
τ∑

t=0

Ii + VTi + CT(αi) + Fui(t)FT(αi, t) + MRi + RTi (t)

(1 + r)t

/
τ∑

t=0

1/(1 + r)t

]
+γi,

(4)
where time t refers to moments in a hypothetical future at which agents expect costs to
take place during vehicle type i’s lifetime τ (i.e. not real time), r is the consumer discount
rate, Ii is the vehicle price, VTi is a vehicle specific one-off registration tax, CT(αi) is a
registration tax based on the fuel economy αi , Fui is the expected fuel costs, FT is the fuel
tax, MRi is repair costs and RTi is a yearly road tax. The LCOTi is the mean of the combined
distributions of these cost components.14 It is paired with its standard deviation �LCOTi ,
calculated using the root of the sum of the squares of all variations. Phase-out regulations are
approximated by setting Fij = 0, i.e. overriding consumer choices, preventing further sales
of a particular vehicle category (see SI Section 3.5 for details on our policy representations).

The costs explicitly represented in the above equation are not sufficient to realistically
model technology diffusion, since many other pecuniary and non-pecuniary costs are valued

10Meaning that shares are not single valued functions of perceived costs, they also depend on configurational
history: many sets of Si can occur with each set of Ci , depending on what Si and Ci have been in the past.
11By momentum we mean that the system has some degree of inertia that prevents it from changing direction
very rapidly.
12This can be expressed in a myriad of ways, e.g. from the network structure of technology evolution (Grübler
1998), from an evolutionary perspective (Young 2001, 2009; Hofbauer and Sigmund 1998), from the scaling
dynamics of innovation (Arthur and Polak 2006), or from the presence of multi-agent interactions (Mercure
2018).
13In dollar per person-kilometre ($/pkm).
14Every term is distributed; however the distribution of car prices dominates variations.
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by agents, as we find empirically, for which we have no explicit data, to explain observed
technological trajectories. An adjustment to this equation is necessary in order for FTT:
transport to match diffusion trajectories observed in recent years (see our global historical
diffusion database, SI section 5.2). Since FTT is a path-dependent simulation, its formu-
lation would be inconsistent if it suggested a change of diffusion trajectory at the start of
the simulation. Indeed, to be self-consistent, historical data must determine the diffusion
trajectory in the first few years or decade of the simulation.

An additional parameter is determined empirically, γi , which represents all unknown
constant pecuniary and non-pecuniary cost components, and policies in place, that are not
explicitly represented or included in Eq. 4, needed to match the modelled diffusion trajec-
tory to the observed trajectory, in order to ensure consistency with diffusion theory. γi has
the unique value set that makes the diffusion rate (dSi/dt) continuous across the transition
from historical data to simulated data for Si at the start year of the simulation. γi is deter-
mined with a methodology described in SI section 5.5. As with econometric parameters, γi

is assumed not to change over the simulation period. This is not necessarily fully satisfac-
tory; however, there exists no reliable scientific basis upon which to predict distant future
changes in γi , which we consider best of current knowledge.

2.6 The FTT: transport database

Data gathering for the FTT:transport vehicle price database is described in detail in (Mer-
cure and Lam 2015) and SI Section 5. Light duty vehicle types were classified as petrol
and diesel, compressed natural gas (CNG), hybrid, electric vehicles (EV) and motorcy-
cles. Each category was sub-divided into three consumer classes: economic (Econ, below
1400cc), mid-range (Mid, between 1400 and 2000cc) and large engine vehicles (Lux, above
2000cc),15 each of which has its own vehicle price distribution as an explicit representation
of agent heterogeneity (see SI Section 2 for detailed UK data). We stress that it is not the
engine size classification that we ascribe to heterogeneity, but rather, the fact that prices are
distributed, whereas the engine size classification mainly serves presentational purposes.
Motorcycles were divided as either above or below 125cc. Hypothetical future higher effi-
ciency vehicle categories are added using scenario defined fuel efficiencies based on current
targets.16

2012 data for new registrations per vehicle model type were obtained from either national
statistics or from (Marklines 2014) and matched, model by model, to recent prices obtained
online (Mercure and Lam 2015). Vehicle price data were matched to sales numbers for 18
representative regions, used as proxies for 53 out of E3ME’s 59 regions based on economic
and regional similarities, following data availability. Data for other countries were used by
proxy based on market similarities (SI section 5). Historical total yearly distances driven
nationally and total numbers of vehicles registered in national fleets were obtained from
(EI 2015; Eurostat 2015). Historical shares per vehicle category for 53 E3ME regions were
obtained by merging several datasets (EI 2015; Marklines 2014; Eurostat 2015), and cover
2004 to 2012, while total fleet sizes and yearly sales cover 1990 to 2012 (detailed procedure
given in SI Section 5.2, the historical data itself provided separately in the Suppl. Excel data
file).

15We show in Mercure and Lam (2015) that engine sizes strongly relate to prices, hence this classification.
16Due to lack of detailed or reliable shares data worldwide, plug-in hybrids are not represented explicitly but
are instead lumped together with EVs. Due to lack of shares and cost data, fuel cell vehicles are not currently
included but may be included in the future as a dominant design forms and reliable costs can be obtained.
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2.7 Projecting vehicle sales, fuel use and emissions with E3ME

FTT:transport is built as a sub-module of E3ME (see Cambridge Econometrics 2014), itself
able to calculate global emissions and coupled to the climate model GENIE1 (Holden
et al. 2013), making it a fully detailed IAM (see Mercure et al. 2018a, b for a full model
description). E3ME is a non-equilibrium macroeconometric simulation model based on
a demand-led Post-Keynesian structure (Pollitt and Mercure 2017), theoretically coherent
with the evolutionary simulation basis of FTT. The degree to which vehicles are used is
assumed not to depend strongly on their types of engines, and is calculated by regress-
ing total vehicle use (in veh-km/y) with respect to fuel prices and income, and projecting
these to 2050, using fuel prices and income endogenously determined by E3ME. The num-
ber of vehicles purchased does not strongly depend on vehicle type composition of the
fleet, and thus vehicle sales are regressed and projected against income and average vehi-
cle prices, the first endogenously determined by E3ME.17 Elasticities from the literature
were used to constrain regression parameters and avoid spurious results. Fleet sizes are
calculated using projected sales and a survival function derived from DVLA (2012a) data
(SI Section 4.3).18

Resulting demand profiles vary substantially across regions. As a general rule, fast grow-
ing economies with fast growing fleets (e.g. China, India, Brazil) have a higher response
to price changes than slow-growing developed economies where fleets do not grow (e.g.
UK, USA), which applies to both the demand for vehicles and the demand for travel (SI
Section 5.4).

FTT is fully integrated to E3ME with several dynamical feedbacks to the global eco-
nomic simulation. In E3ME, income, prices, fuel use, investment, employment and more
quantities are calculated endogenously globally, in 59 regions, 70/44 sectors (EU/non-EU
countries), 23 fuel users and 12 fuels. E3ME calculates global fuel use and combustion
emissions, where fuel use for electricity generation is simulated using the sister model
FTT:power. Thus, the combination of FTT:power, FTT:transport, FTT:heat and E3ME pro-
vides a relatively high definition dynamical coverage of global fossil fuel use and emissions.
Disposable income is calculated based on wages, GDP, price levels and employment. Fuel
prices are derived from endogenous dynamical fossil fuel depletion and cost calculations
(see our model inMercure and Salas 2013). Fuel use from road freight transport is accounted
for, but there technological change is not modelled in as much detail; biofuel mandates form
the main freight decarbonisation mechanism (see SI Section 3.4).

2.8 Summary of improvements over incumbent models

We summarise here the novel improvements that FTT:transport provides over standard
methods:

1. FTT endogenously projects current diffusion trends with a path-dependent diffusion
profile (S-shaped).

17These regressions did not include variables such as the extent of road network, congestion, urban vs rural
population ratios, omitted due to the difficulty of obtaining such data consistently for 59 E3ME regions
worldwide. Note that these variables change only slowly over time and therefore would not significantly
improve the reliability of our parameters.
18FTT calculates vintage effects due to the age of vehicles and the fact that fuel efficiencies were lower in
the past, based on evidence from our UK dataset (DVLA 2012b).
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2. Diffusion is driven by choices of endogenously modelled heterogenous consumers under
bounded rationality and social influence, not a representative consumer.

3. The diffusion trajectory is tied to recent historical data but does not strongly depend on
technological assumptions.

4. A bounded-rational choice framework enables to model many forms of policy instru-
ments and composite packages (currently eight different policy levers are implemented),
and strong policy interaction is observed.

5. Diffusion trends cannot be made discontinuous by a sudden change or break in the
policy regime, due to endogenous diffusion inertia.

3 Policy strategy andmodel results

3.1 Policies for decarbonising private personal transport

Policies for transport decarbonisation currently take four forms: (1) improving the efficiency
of conventional ICE vehicles, (2) promoting technological change towards lower emissions
vehicles with alternate engine types, including kick-starting new markets, (3) substituting
the fuel for lower carbon content alternatives (biofuel blends), and (4) policies to curb the
amount of driving. In order to reach the 2 ◦C target with over 66% probability, global CO2
emissions must be reduced to well below 5.5 GtC in 2050 (Meinshausen et al. 2009; Zick-
feld et al. 2009; Rogelj et al. 2013). Since road transport emissions make roughly 17% of
emissions, transport emissions must likely be reduced to well below 1 GtC in 2050, starting
from 1.5 GtC in 2016. This necessitates at least a partially electric composition of vehicle
fleets, since calculated biofuel potentials are not guaranteed sufficiently large to replace the
whole current use of � 170 EJ of liquid fossil fuels (Hoogwijk et al. 2009; Mercure and
Salas 2012). Efficiency policies for conventional ICE vehicles are not likely sufficient to
meet the 2 ◦C target. Using a combination of technology push, pull and regulatory policies
appears a priori to be a reasonable strategy.

Efficiency standards are traditionally imposed using regulatory policy. In the model, this
corresponds to controlling the nature of substitutions in new vehicle sales, leaving existing
vehicles in the fleet to operate until the end of their statistical lifetime. This can be used in
the model to force phase-in of a number of existing environmental innovations to existing
conventional technologies, for instance targeting the fuel economy and phasing out older
technologies (SI Section 3.5).

Purchase taxes or rebates are often used as a demand-pull policy to level the corporate
playing field, and create space in the market for new, more expensive low-carbon tech-
nologies. Registration taxes can also re-allocate purchases along the price-engine size axis
(Mercure and Lam 2015). If taxes applied to the vehicle price are made proportional to
vehicle rated emissions, a ‘carbon tax’ results on future expected lifetime emissions of the
vehicle. Meanwhile, a tax on fuels matches more closely an actual carbon tax, but may be
less effective per dollar paid at influencing the type of vehicles purchased, depending on
consumer time preference.

Promoting diffusion in markets where particular types of low-carbon vehicles do not
exist, using price policies, does not typically work if manufacturers and infrastructure is
not present to allow it. In this case, large institutions (e.g. government) can kick-start mar-
kets, where for example, public or private institutions purchase or impose the purchase of
a fleet of a particular type (e.g. natural gas buses, electric municipality vehicles or taxis),
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jump-starting later diffusion, which would not happen otherwise. Such strategies are
common in many countries (SI Section 3.5).

In FTT, policy formulations currently take eight possible forms: regulations, standards,
registration/fuel/road taxes, subsidies, biofuel mandates, and public procurement (kick-
start). As an example, we used several of these types of policies to create one possible
coherent framework that achieves worldwide decarbonisation, with the following strategy
(detailed numbers given in the Suppl. Excel data file):

1. Setting the fuel efficiency standard of new liquid fuel vehicles to amongst the best
currently available, in each vehicle engine size class, with near term compliance
deadlines.

2. Phasing out by regulation the sale of low efficiency liquid fuel vehicles starting in 2018.
3. Introducing electric vehicles in all markets in which they do not exist (in our historical

data), in all consumer classes, with procurement policies by 2020.
4. Aggressively taxing the registration of new liquid fuel vehicles proportionally to rated

emissions, in order to re-orient consumer choices (here we used 100$/(gCO2/km) in
constant 2012USD), starting in 2020.

5. Increasing taxes on fossil liquid fuels to acquire better control of the total amount of
driving (here we used a value increasing from $0.10 to $0.50 per litre of fuel between
2018 and 2050 in constant 2012USD).

6. Increasing biofuel blend mandates gradually until they reach up to 70% all regions in
2050.

One advantage of using a non-optimisation diffusion model is that policy interactions
can be assessed explicitly, and synergies between instruments can be observed. Here, each
of these layers of policy plays a specific role, and none of them can achieve decarbonisation
task on their own; they influence the effectiveness of each other. Thus, they only work
when applied simultaneously in a coordinated manner. For example, taxing registrations of
vehicles based on emissions will drive consumers to the best available, and a key opportunity
would be missed if only marginally higher efficiency vehicles were available for purchase.
In this case, kick-start policies for EVs take a crucial role to enable the full effectiveness
of taxes at reducing emissions, especially in developing countries. Furthermore, the biofuel
mandate can only be increased to large values if the liquid fuel consumption of the fleet
declines, otherwise the demand for biofuels could imply future issues of excessive land-use
changes for biofuel production (e.g. see Searchinger et al. 2008; Fargione et al. 2008).

3.2 Exploring the impact of policy strategy by layers

We explore in this section how the six steps above can deliver sufficient cuts, focussing
on the UK, the USA and China (Fig. 2). The UK fleet has a significant number of diesel
vehicles, a growing fleet of hybrids and a nascent diffusion of electric vehicles. China,
dominated by petrol (gasoline) engines, sees its large fleet of motorcycles decline and an
emerging diffusion of CNG vehicles. The USA is dominated by large conventional petrol
(gasoline) engines, with growing hybrid and electric fleets. These trends, observed in our
historical data, continue in the baseline scenario of FTT, in which a slowdown of consump-
tion of liquid fuels already takes place due to existing diffusion dynamics of alternative
engine vehicles having already acquired momentum. These baseline diffusion profiles lead
to a globally peaking liquid fuel consumption in the 2030s, leading to stranded fossil fuel
assets worldwide (see Mercure et al. 2018b, but not due to biofuels; described in the next
section).
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Substantial efficiency changes are currently taking place in vehicle fleets around the
world, due to efficiency changes and the gradual adoption of hybrid, CNG and EV drive-
trains. In FTT:transport, this is projected to reduce current emissions by 56%, 65% and 72%
in 2050 in the UK, China and the USA respectively, in the baseline. It is to be noted that
these changes are mostly the result of technological trajectories observed in recent histori-
cal data, which the model projects into the future, as no new policies are explicitly included
in the FTT:transport baseline. Many policies currently being adopted or adopted recently
will alter these trajectories. For instance, the rise of CNG in China is likely to become
replaced by EVs with the support of new policies (Ou et al. 2017), but this is not included in
our baseline.19 To accelerate that, policy for decarbonisation described above first involves
regulations to phase out from the market less efficient engine types and force in emission
standards across engine size classes (steps 1–2). Without other policies, this contributes
additional reductions of 0%, 7% 13% over the baseline trends in 2050 for the UK, USA

19A detailed review of all existing policies in 59 regions, representing a substantial challenge, is in progress
but has not yet been completed nor integrated to our baseline, and it is clear that very recent policies not
explicitly included here could affect our projected technological trajectories. This doesn’t affect the validity
of our methodology.
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and China respectively, modest additional impacts effectively due to the modest efficiency
targets achievable with ICE engines.

Tax policies are applied (policy steps 4–5) to both (1) rated emissions and (2) fuel con-
sumption. Fuel taxes do comparatively little to incentivise changes of technology, mainly
due to our average consumer discount rate of 15%.20 However, they contribute to curbing
driving.

Taxes on registration of vehicles proportional to emissions per kilometre have a higher
impact on guiding consumer choices towards low-carbon vehicles, in particular as they
become more available through their diffusion: in FTT, the more they are adopted, the more
the tax becomes effective at incentivising their adoption. EVs take considerable time to
diffuse, and what is observed is that an intermediate layer of diffusion of intermediate emis-
sions vehicles arises. In the UK and the USA, they are hybrids, while in China and India,
they are CNG. The tax also incentivises changes of engine category; however, this is limited,
as consumers can typically save more tax money by changing engine type rather than engine
size, while their preference for vehicle class remains (due to the γi parameters). With regis-
tration tax policies, the strategy must involve providing choice to consumers, as otherwise it
only achieves raising tax income without sufficient change in emissions, particularly where
EVs are not widely available. Note that similar results could be achieved using tax/feebate
combinations.

It is useful, and possibly necessary in many regions, for the authorities to kick-start the
EV market, by sectoral regulation or public procurement, where the industry and infrastruc-
ture is absent.21 We note that a kick-start policy nucleates simultaneously (i) a market, (ii)
a network of supporting industry, and (iii) a social diffusion process, which subsequently
co-evolve with the diffusion process itself. In many regions, sales of economic EVs are non-
existent in the data, but this will not remain so indefinitely. In the model, mass diffusion of
EVs takes-off after 2040, at which point the fuel consumption of the whole fleet declines
substantially.

Remaining fossil fuel use is reduced further by the use of biofuel mandates at 70%
(100%) by volume. Altogether, these combined policies lead to 88% (98%), 96% (99%) and
91% (91%) emissions reductions based on 2016 levels for the UK, the USA and China.

3.3 Global road transport decarbonisation, fuel use and emissions

The composition of the global fleet is given in Fig. 3, top row. Given fleet turnover rates and
existing trends, it is unlikely that emissions can be reduced with the diffusion of EVs alone
sufficiently by 2050 to reach a climate target well below 2 ◦C or a 1.5 ◦C target.

Instead, emissions are reduced with successive waves of diffusion of innovations, of ever
lower carbon intensity. Policy step 6 involves the use of relatively high biofuel percentage
blends (70%, 20% is in the baseline) in liquid fuels, a policy that has been controversial in

20Consumer discount rates in vehicle purchases are controversial (Busse et al. 2013; OECD 2010) and could
lie anywhere between 5% and 40%. However, the fact that some studies identify high discount rates signals
that some consumers take relatively little consideration of future fuel savings when purchasing a vehicle. At
15%, the incentive of a fuel tax, per unit of carbon taxed, is comparatively much smaller than that for a tax
at registration time (e.g. see the supplementary information in Mercure and Lam 2015).
21In the model, in many regions, small and mid-size EVs have zero market shares (zero sales in 2012,
e.g. in India, China, Brazil), and thus, policy step 3 involved exogenously introducing non-zero shares. Our
assumption is that in 2020, 0.01% shares are purchased by governments to kick-start the EV markets. We did
not include infrastructure costs.
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Europe and elsewhere (e.g. Searchinger et al. 2008; Fargione et al. 2008). Indeed, a high
biofuel mandate does not appear realistic in the baseline. However, in a 2 ◦C scenario, by
2030, total liquid fuel use declines significantly due to the diffusion of more efficient com-
bustion technologies, including hybrids, as well as CNG and EVs displacing conventional
engines. Even when including freight transport, biofuel blend percentages can in fact be
increased to 70% in 2050, while maintaining global liquid biofuel use for transport below
27 EJ.22 This enables to decarbonise road transport to below 0.43 GtC/y by 2050 (72% of
2016 global transport emissions, Fig. 3 middle row, 83% with 100% biofuel mandates).23

This is consistent with at least the 2 ◦C target, possibly even the 1.5 ◦C target, depending on
emissions from other sectors.

Figure 3, bottom row, shows that the use of middle distillates peaks in the baseline,
reflecting existing technology diffusion trends. With regulations, taxes and biofuel blends,
the use of liquid fossil fuels for road transport declines to below 10 EJ/y (70% biofuel

22For reference, around 50 EJ of bioenergy is currently used globally for traditional heating and cooking
(IEA 2015b).
23Note furthermore that total use of biofuels declines post-2050 due to increasing diffusion of electric vehi-
cles and the gradual phase out of ICE engines. We do not include in the transport sector land-use change
emissions. Land-use modelling is required to estimate what an additional 27 EJ of biofuel production means
for land-use change and agriculture emissions.
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blends) or 1 EJ (100% biofuel blends) in 2050 (86% below the 2016 value with 70% bio-
fuels, 99% with 100% biofuel blends), leading to drastic reduction of demand for crude oil
(Mercure et al. 2018b). Biofuel use due to the biofuel mandate remains below 27 EJ with
baseline blends, and below 38 EJ with 100% blends, peaking in around 2040 due to fleet
efficiency improvements and displacement of the combustion engine by other technologies.
The use of natural gas remains comparatively low (< 18 EJ), due to a relatively low global
share of CNG. The use of electricity, in a scenario where electric cars make up 33% of the
fleet in 2050, remains comparatively small at 14 EJ, (with respect the E3ME 2050 total
electricity demand of 140 EJ), due to the very high conversion efficiency of EVs. The result
is that transport electrification significantly reduces global energy use, and does not imply
an excessive or unmanageable new load for the power sector.24 Reaching the 2 ◦C target
remains, however, contingent on power generation and land-use decarbonising.25

3.4 Reflections on themodel

Standard cost-optimisation models are normative and search parameter space for a system
state that achieves a set of system and political objectives. Meanwhile, a positive model
offers a representation that attempts to guess what future states of an existing system may
look like, given its present state and evolution trajectory, and decisions taken to alter that
trajectory. In the world of IAMs, almost all models are of the normative optimisation type,
and often have relatively low policy resolution. However, the development of new climate
policy requires, in most national policy processes, impact assessment of detailed policy
frameworks. This unavoidably demands the use of positive models that model complex
policy packages and can give policy-makers indications of current trajectories and potential
outcomes of the various policy options considered.

Here, we have shown that this can be achieved, but with a different type of modelling
framework, in comparison to standard methods. We used a model without representative
agent, based on dynamical systems without equilibrium, to explore the evolution of the
global road passenger vehicle fleet, based on trajectories observed in our historical database.
We found that indeed, results are different from those using standard methods. For exam-
ple, EVs diffuse faster than in optimisation models, even when these include substantial
amounts of behavioural information (Pettifor et al. 2017b) in both the current trajectory, and
in a decarbonisation scenario (more comparisons to other models given in SI Section 6.2).
Furthermore, oil demand for transport peaks in the current trajectory, substantial efficiency
changes are already taking place due to the popularity of new technologies, such as hybrids.
Thus, we can expect that using this type of method can provide a critical lens with which to
look at all types of models used for advising policy-making, in particular IAMs.

Perhaps the key advantage of this model is that outcomes are more dependent on
observed technological trajectories, and less reliant on technological assumptions, such as

24Total electricity demand was of order 80 EJ in 2016 and may increase to between 130 EJ (2◦C) and
170 EJ (baseline) in 2050, according to E3ME; more electricity is saved through decarbonisation than what
is demanded by transport. We do not consider changes in intermittency of power demand due to EVs, which
could be substantial.
25Due to relative combustion efficiencies between power plants and internal combustion engines, fleet elec-
trification reduces emissions even if the power sector is coal intensive. Thus we do not quote full life-cycle
emissions from transport. Baseline power generation emissions from FTT:Power in our model increase by
1% when decarbonising transport alone, while total emissions go down by 8%. However we do not consider
likely that stringent decarbonisation policies would be adopted for transport but not for power generation.
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costs, in comparison to optimisation models. We demonstrate this in SI Section 6.1 with an
extensive sensitivity analysis. We observe that changing technological parameters generate
outcome variations generally of lower magnitude than the parameter variations introduced.
In particular, varying the γi values for non-pecuniary costs has relatively low impacts on
results (outcome changes << parameter variations). Adding or removing new or hypothet-
ical technological options also has a relatively low impact on outcomes. This is a reflection
of strong model path-dependence as opposed to parameter dependence. This is further
explained in SI Section 3 on model theory.

The converse of this property regards the model’s validity range in time. With a dynami-
cal systems model, one can quantify the time span over which one should expect projections
to be valid, with a cone of uncertainty that increases with time from the present day. Given
that this model takes part of its parameterisation from recent technological trajectories, the
further we model in time, the less reliable projections become. The validity range is deter-
mined by the degree of systemic inertia, which in this case is of about 30 years. We discuss
the validity range in time of the model in SI Section 6.3, where we explain why a maximum
modelling horizon of 2050 is appropriate.

The model also enables a relatively easy method to implement and analyse a large range
of policy instruments fairly closely to their actual legal definitions, from regulatory instru-
ments to some types of push and pull strategies. Here, we currently have eight types of
policies and used several of them to construct one possible global decarbonisation sce-
nario. It is clear that many other such scenarios can be designed, and assessed alongside
one another, each with pros and cons. We note, however, that it is most likely not possible
to find an ‘optimal’ policy package when one does not have a representative agent, but has
a huge policy space.26 Meanwhile, we also find that strong policy interaction arises in the
model, through the fact that it is non-linear and based on a diffusion/bandwagon effect the-
oretical basis. While this complicates policy analysis, we believe that it is closer to reality.
A comparison to other model results is given in SI Section 6.2.

We note, however, that we do not achieve the degree of detail of most other IAMs in
other important domains, such as infrastructure (Waisman et al. 2013), travel time budgets
(Daly et al. 2014), rural/urban splits and range anxiety (McCollum et al. 2016; Pettifor et al.
2017b), other non-pecuniary costs and behavioural features (Pettifor et al. 2017a, b), while
we represent modal shift and freight only partially (other studies reviewed in SI Section 2).
Furthermore, to model more accurately technological trajectories, we would need to review
and include explicitly, for all 59 regions, all transport policies that have been implemented
between the start date of the simulation and the present day, a substantial challenge. These
are areas that are under development or that can be improved in future work, in a more
mature version of the model. We note, however, that including some of these could con-
flict with our own methods (possible implicit double-counting). For instance, we consider
the provision of infrastructure (e.g. for EVs) part of the diffusion process, where for exam-
ple, kick-start programs imply infrastructure developments. Similarly, rural/urban splits are
implicitly accounted for in our distributed cost data; however, they may generate constraints
that we do not represent. The difference in model results that some of these would imply are
not fully clear to us, for instance where modal shifts reduce the number of road vehicles, or
freight electrification, which could reduce emissions substantially.

26Optimising all possible scenarios that can be generated by FTT, with its huge policy parameter space,
appears challenging with our computing power, simply due to its degree of non-linearity, which we argue is
quite representative of the real world.
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4 Conclusion

Emissions reductions consistent with the 2 ◦C target of the Paris Agreement have been
extensively demonstrated to be technically feasible (IPCC 2014). However, policy frame-
works to reach these goals are not yet clearly established across the world, even where
emissions targets are the most stringent. Existing IAMs, rich in technology options, have
been used to explore the technically feasible parameter space for decarbonisation. However,
the representation of specific policy instruments or realistic portfolios, and their represen-
tation of behaviour in agent decision-making in their current use has not been extensive,
leaving a gap for advising policy-making.

Here, we presented a model that overcomes many of these issues, with a global trans-
port simulation model that projects the diffusion of innovations based on historical data
and choices of heterogenous agents making individual choices, which is part of a global
IAM. Instead of optimising a whole system, this model projects its evolution based partly
on observed trajectories of technology diffusion, partly on a representation of consumer
choices that includes agent heterogeneity, social influence and non-pecuniary aspects. This
model type enables a finer representation of specific transport policy instruments that are
pecuniary, regulatory or of the technology push type.

We used this model to assess the impacts of a chosen portfolio of transport policies that
leads to emissions reductions consistentwith a policy target of 2 ◦C, and possibly even 1.5 ◦C.
We find that in such a non-optimisation representation of agent decision-making, policies
interact and enable each other. This opens a door to finer model-based analysis of composite
transport policy packages, while remaining focused on climate change and global emissions.

We conclude by suggesting that decreasing returns are now emerging with cumulative
efforts at mapping the feasible decarbonisation parameter space by modelling optimisations
of the transport sector, while demand is increasing for finer detailed impact assessment of
possible policy packages. This potentially requires to alter modelling methodologies that
are used for analysing climate policy. It also demands to clearly delineate normative analy-
sis, in which one identifies policy objectives, to positive analysis in which the goal is impact
assessment of proposed policies, both of which play a different role in the policy cycle.
However, this exercise also highlights the limited validity range that decreases in time of
any non-prescriptive modelling strategy. In an effective science-policy bridge, IAMs must
attempt to assess the impacts of possible composite policy packages that are currently con-
sidered by policy-makers. We argue that this is only possible through the use of positive
behavioural science and models, and showed that this is possible with a relatively simple
non-optimisation modelling framework.
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