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Abstract

Cystic fibrosis (CF) is a debilitating chronic condition, which requires complex and expensive

disease management. Exercise has now been recognised as a critical factor in improving

health and quality of life in patients with CF. Hence, cardiopulmonary exercise testing

(CPET) is used to determine aerobic fitness of young patients as part of the clinical manage-

ment of CF. However, at present there is a lack of conclusive evidence for one limiting sys-

tem of aerobic fitness for CF patients at individual patient level. Here, we perform detailed

data analysis that allows us to identify important systems-level factors that affect aerobic fit-

ness. We use patients’ data and principal component analysis to confirm the dependence of

CPET performance on variables associated with ventilation and metabolic rates of oxygen

consumption. We find that the time at which participants cross the gas exchange threshold

(GET) is well correlated with their overall performance. Furthermore, we propose a predic-

tive modelling framework that captures the relationship between ventilatory dynamics, lung

capacity and function and performance in CPET within a group of children and adolescents

with CF. Specifically, we show that using Gaussian processes (GP) we can predict GET at

the individual patient level with reasonable accuracy given the small sample size of the avail-

able group of patients. We conclude by presenting an example and future perspectives for

improving and extending the proposed framework. The modelling and analysis have the

potential to pave the way to designing personalised exercise programmes that are tailored

to specific individual needs relative to patient’s treatment therapies.

Introduction

Cystic fibrosis (CF) is the most common life shortening genetic disease in the Caucasian popu-

lation, affecting nearly 11,000 individuals in the United Kingdom (UK) [1] and predominantly

manifests itself throughout the respiratory, digestive and reproductive systems of the human

body. The genetic mutation responsible for CF results in reduced trans-epithelial chloride

transport, and increased sodium and water absorption, thus reducing the hydration status of
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the mucosal lining of the airway and digestive systems. The resultant viscous mucus is liable to

increased infection and further inflammation and a progressive decline in lung function [2].

Currently there is no cure for CF and therefore CF is a diseased that is managed with appropri-

ate medication, nutrition, physiotherapy and exercise. Enhanced aerobic fitness as represented

by maximal oxygen consumption ( _VO2max) is associated with lower risk of hospitalisation,

increased exercise tolerance, reduced residual volume, increased endurance of the respiratory

muscles, enhanced sputum expectoration and decreased rate of decline in pulmonary function

[3–7]. Furthermore, individuals with CF possessing a higher _VO2max are shown to have a

reduced mortality risk, as Nixon et al. [8] reported that adults with a _VO2max greater than 82%

of their predicted value had an 83% 8-year survival rate, compared to just 28% 8-year survival

rate for patients with a _VO2max less than 58% of their predicted value [8]. This enhanced sur-

vival has also been reported in a paediatric cohort, with a 100% survival rate after 7 years in

children with CF with a _VO2peak over 45 ml.kg-1.min-1 [9].

Given the importance of identifying and monitoring aerobic fitness, cardiopulmonary exer-

cise testing (CPET) is recommended to take place on at least an annual basis [10], to provide a

clinically useful prognostic evaluation of a patient’s functional capabilities. Even in mild to

moderate severity of CF, patients are known to demonstrate impairments in cardiac and respi-

ratory functions leading to exercise intolerance which are responsive to exercise training, and

can result in an enhanced quality of life, increased physical function and increased life expec-

tancy [11, 12].

Effective management of the disease is of critical importance due to an aging CF population

group (median predicted survival of children born with CF in the UK is currently 45 years [1])

and high medical care costs [13]. Exercise is widely acknowledged as a key management strat-

egy for CF, supported by mechanistic data on the systemic effects of exercise at the cellular

level in vivo in young patients with CF [6–8, 11, 14]. However, an integrated systems level

understanding of the limitations of aerobic fitness for CF patients is lacking. Measurement

techniques that do exist to quantify within-organ, real-time perfusion and intracellular oxy-

genation are invasive and unethical for use with paediatric patients, and current animal model

research provides limited direct relevance to paediatric pathology. In clinical practice, there is

significant interaction between cardiac, pulmonary and musculoskeletal function, which can

result in the functional improvement in one part of the combined system, but detrimental

effects on others [11]. Clinicians therefore inevitably have to adopt very imprecise guidelines

related to exercise prescription [15].

The use of modelling and simulation tools in clinical medicine is currently the subject of

intense research interest both in the UK and internationally [16–20], and the adoption of a sys-

tems biomedicine approach to build and validate novel multi-scale, organ-level, integrated, re-

usable and re-deployable models represents a paradigm shift in biomedical modelling and sim-

ulation. There are numerous organ level models in existence [21–24], however, to date there

have been limited attempts to either integrate these or to apply them to real clinical applica-

tions. There is ongoing basic science and clinical trial work providing data on the micro [25]

and macrovascular [26] changes associated with exercise. These data, although important,

have yet to be integrated quantitatively with other data streams. In particular, there has been

no previous work on the use of predictive modelling and simulation technologies for develop-

ing treatment strategies for CF patients.

Therefore the aim of this study is twofold. Firstly, to analyse the physiological responses

to progressive exercise in patients with CF, with a view of determining predictors of perfor-

mance. Secondly, to develop a surrogate (statistical) model that allows the evaluation of how

CF impairs exercise tolerance relative to increasing ventilatory and metabolic demands.
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Specifically, how various ventilatory parameters quantitatively affect the gas exchange thresh-

old (GET) for a group of patients is explored.

Materials and methods

This study was a retrospective analysis of existing CPET data from 15 children and adolescents

with CF. Original ethics approvals was approved by South West NHS Research Ethics Com-

mittees [10/H0107/78; 13/SW/0166; 14/SW/0061] and written informed consent and assent

was obtained from parent(s)/guardian(s) and participants, respectively in accordance with the

Declaration of Helsinki.

CPET data

As part of original studies, all participants performed a valid [27] and reliable [28] combined

ramp incremental and supramaximal (Smax) CPET to determine _VO2max and the GET. This

protocol was performed on an electronically braked cycle ergometer, and required patients to

perform an initial exhaustive ramp incremental test at a pre-determined rate between 10–25

W�min-1, in order to elicit exhaustion in approximately ten minutes [29]. After a 3-min warm-

up at 10–20 W, participants completed this incremental test to the point of volitional exhaus-

tion, maintaining a cadence of 70–80 rpm throughout. Exhaustion was defined as a 10 rpm

drop in cadence for five consecutive seconds, despite strong verbal encouragement. Active

(5-min cycling at 20 W) and then passive seated recovery (10 min) then preceded the Smax

bout. Smax verification consisted of a 3-min warm-up (10–20 W), followed by a ‘‘step” transi-

tion to a constant work rate corresponding to 110% peak power output [30] obtained during

the ramp incremental phase.. Upon volitional exhaustion (defined previously), a 5-min active

recovery (slow cycling at 20 W) concluded the combined CPET session. _VO2max and the GET

were subsequently identified for all participants using established methods which are validated

for use in CF [31].

Models and simulations

Simulations are widely used in various fields of science and engineering because conducting

physical experiments is too costly, or highly time-consuming, or even impossible in some

cases [32]. In the case of CPET in CF patients, there are also ethical considerations, since the

test adds to the treatment burden many children and adolescents with CF already face.

Often, a primary goal of using model simulations is to perform quantitative studies such as

uncertainty quantification or sensitivity analysis. Such studies are crucially important in bio-

medicine, since there exists significant variation both between and within patient groups.

Through understanding and quantification of the uncertainty within the mathematical mod-

els, outcomes of patient-specific interventions can be better predicted. However, such investi-

gations require a large number of runs that makes it impractical if each run takes more than a

few seconds. To cope with this difficulty, one can use emulators, also known as surrogates, or

metamodels or response surfaces [33]. These provide a fast approximation of the input/output

relation governed by the underlying simulator. The most important classes of surrogate mod-

els have been described elsewhere [34–36].

The surrogate model employed in this study is based on Gaussian processes (GPs), which

have become increasingly popular over the last two decades [33]. A Gaussian Process (GP)

defines a probability distribution over functions where the true function is considered as a

particular sample path. GPs have been used in a wide range of applications from wireless com-

munication, to obtain position estimates for a mobile user [37]; metallurgy, to model the
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development of microstructure [38]; and in biology, to describe gene regulatory processes and

cell growth [39–41]. A GP defines a probability distribution over functions which is fully speci-

fied by its mean, μ, and covariance K [42], which are both functions of the input variables: μ =

μ(x), K = K(x,x’). While μ(x), could be any function (though in practice is often chosen to have

a polynomial dependence on x), the covariance function is required to be positive semi-defi-

nite [42]. Specifically, if Y is a GP defined on the space of input variables denoted by D, then

we write:

Y � GPðm;KÞ : mðxÞ ¼ E½YðxÞ�; Kðx; x0Þ ¼ CovðYðxÞ;Yðx0ÞÞ; 8 x; x0 2 D � Rd

The above can be regarded as “prior” distribution over function spaces. This can be seen

more clearly in Fig 1(a). In this subfigure, which shows a generic example of a GP, the bold red

line is the ‘true’ function f. Note that the true function is unknown—our aim is to construct a

model that approximates it. The thin grey lines are sample functions of a GP distribution

with μ(x) = 0 and a squared-exponential covariance function given by:

K x; x0ð Þ ¼ s2
Yd

i ¼ 1

exp �
jxi � x0ij

2

2F2

i

� �

;

Which is a popular choice in GP modelling. Here, σ controls vertical variability of sample
functions and Fi> 0, i = 1, . . ., d, governs the degree of smoothness of them along the input

dimension i. These parameters are usually unknown and estimated via maximum likelihood

method [42]. For exposition purposes, the example plot is restricted to the case d = 1, but the

approach is unchanged for d> 1.

Thus far, we have defined the prior distribution for the GP. It is clear from Fig 1(a) that, in

general, prior distributions are unlikely to provide a good approximation to the true function

f. We can compute the GP “posterior” distribution by incorporating data points (known as

“training data”) obtained from evaluating f at specific points, following a Bayesian framework.

The resulting posterior distribution of the GP, conditioned on the data, will be much closer to

the true function.

Fig 1. GP is a probability distribution over functions. The thick solid red line is the true function f and the thick

dashed black line is the GP “prior”. (a) Thin grey lines show sample functions of the GP. (b) Blue bullets indicate five

data points sampled from f. The GP distribution is updated using these sample data points. The thin grey dashed lines

show m(x) ± 2s(x).

https://doi.org/10.1371/journal.pone.0211219.g001
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Let y = {f(x1), . . ., f(xn)} be a set of function evaluations (or observations) at n locations

X = {x1, . . ., xn}. Here, function evaluations correspond to the GET location for a set of patients

during the CPET. Predicting with GP is obtained by conditioning it Y on sample points the

observations, i.e. O = {X, y} Y(x)|Y(x1) = f(x1),. . .,Y(xn) = f(xn). For any (new) z 2 D, this con-

ditional distribution has a normal distribution with the mean m(z) and variance s2(z) which

are used as the prediction and the associated uncertainty at z posterior, respectively. They are

expressed by distribution of Y(z)|O has a normal distribution with the following mean, m, and

variance, s2:

mðzÞ ¼ mðzÞ þ Kðz;XÞTKðX;XÞ� 1
ðy � μÞ ð1Þ

s2ðzÞ ¼ Kðz; zÞ � Kðz;XÞTKðX;XÞ� 1Kðz;XÞ ð2Þ

where T denotes the transpose operator, -1 is the inverse operator and μ = μ(X) is the vector of

the mean function at X. In addition, K(z,X) and K(X,X) are the covariance vector between Y
(X) and Y(z) and the covariance matrix between the observations. Fig 1(b) shows an example

of incorporating sample points to update the prior distribution shown in Fig 1(a). In this

generic example, the function f is evaluated at five distinct values of x, and the mean and vari-

ance of the GP are updated using (1)-(2).

At the evaluated points, indicated in blue (colour online), the true value of f is known and

so the variance of the GP at these points vanishes and m(x) = f(x). In between these points, the

variance increases, dependent on the distance (in terms of x) from a sampled point. The mean

of the GP, shown by the thick black dashed line now approximates the true function much

more closely (recall that the prior mean function in Fig 1(a) was zero everywhere), and

matches exactly at the evaluated points. The approximation can be further improved by incor-

porating more data points (function evaluations), particularly around those input values for

which the prediction variance s2(x) is high.

The data analysis was performed using Python (Anaconda Software Distribution. Version

2–2.4.0. Continuum Analytics, 2016. URL https://continuum.io) and MATLAB and Statistics

Toolbox Release 2016b, The MathWorks, Inc., Natick, Massachusetts, United States. The GP

model simulator was implemented in R (R Core Team (2013). R: A language and environment

for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL

http://www.R-project.org/.)

Results

Data analysis

To facilitate understanding, we first plot in Fig 2(a), raw data displaying the performance of

the participants. The work rate for each participant is increased at a rate that is either, a)

dependent on their performance in previous tests, or b) when a prior test is unavailable, at a

rate that is predicted to elicit exhaustion in approximately ten minutes [29]. This is done in

order to keep the expected duration of the test comparable to other participants. Note that this

means that the total energy expended by a given participant is not based on the duration of

the test alone. In Fig 2(b), we show how participant age affects overall test performance. We

observe a correlation between the two: the worst performing participants tend to be the youn-

gest, but this effect is insignificant at older ages. The colour coordination used in this figure

(red-worst performance! blue-average performance!green-best performance) will be used

throughout the remainder of this section, where performance is quantified by the total energy

transferred during the test.

Cardiopulmonary modelling in cystic fibrosis
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In Fig 3, we plot the ratio of _VO2 over total ventilation ð _VEÞ with respect to time. The mark-

ers on each of the time traces indicate the time of volitional exhaustion for that participant.

There are two features that stand out from this figure. Firstly, participants who perform better

have higher _VO2=
_VE ratios, suggesting that their oxygen uptake is more efficient than their

poorer performing counterparts. Secondly, in the recovery phase of the test (5 minutes follow-

ing volitional exhaustion) better performing participants exhibit a sharp decrease in _VO2=
_VE,

which is not observed in the poor performance group. Again, this suggests a more efficient uti-

lisation amongst the former group and that exhalation of CO2 is perhaps more significant to

total breathing following the test.

We next examine the effect that breathing patterns have on participant performance. Two

classical prognostic measures used for patients with cystic fibrosis are the forced vital capacity

(FVC), and the forced expiratory volume in one second (FEV1). These measures have been

shown to be well correlated with mortality and overall fitness of CF patient groups [43–45]. In

Fig 4, we demonstrate how these metrics are correlated with performance in the CPET test. In

Fig 2. (a) The work rate for each participant is increased at a rate dependent on their past test performance. (b) Participant age is correlated

with test performance for young participants, but not for older ones.

https://doi.org/10.1371/journal.pone.0211219.g002

Fig 3. Ratio of oxygen utilisation and total breathing throughout the test. Markers indicate the volitional

exhaustion times for each participant.

https://doi.org/10.1371/journal.pone.0211219.g003
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Fig 4(a), we observe good correlation between FVC and the maximum tidal volume (VT) of

breathing achieved throughout the test. This is unsurprising since participants are likely to be

trying to maximise their breathing depth close to their exhaustion point. However, notice that,

although the group with low FVC performed poorly, this measure was unable to separate

other participants. Fig 4(b) reiterates this result and also highlights the high correlation

between FEV1 and FVC.

In order to better classify the performance of the participants, we must instead look for

other factors. In Fig 5, we present the total breathing rate against the oxygen consumption

throughout the test. In Fig 5(a), we find a strong relationship between test performance and

respiratory pattern. Note that the curvature of the graphs suggests that an exponential fit,

rather than a linear one, is most appropriate for these data. In order to test this, we take loga-

rithms of the data and perform a linear regression, ignoring the first 180s of the test since par-

ticipants are here in the warm up phase (work rate is not increasing) and the final 60s of the

data prior to volitional exhaustion, since participants pass their respiratory compensation

point, inducing hyperventilation and erratic breathing. The results of the fit are shown in

Fig 5(b), where we can clearly see the dependence of performance on breathing pattern.

Fig 4. (a) Correlation of FEV1 with the maximal tidal volume achieved throughout the test. (b) Correlation between FEV1 and FVC

is high. Note that, although FVC and FEV1 are good predictors of poor test performance, they are unable to distinguish better

performing participants.

https://doi.org/10.1371/journal.pone.0211219.g004

Fig 5. (a) Total ventilation plotted against oxygen utilisation. We observe that breathing pattern is strongly correlated with test

performance. (b) Exponential curves are fitted through the raw data, further highlighting this dependence.

https://doi.org/10.1371/journal.pone.0211219.g005
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From the fitted curves, we can further explore the dependence of breathing patterns on per-

formance. Firstly, in Fig 6(a), we depict the slope of the fitted curve against the total energy

transfer. We find that the slope of the curve of log _VE against _VO2 alone does not capture all of

the variation in energy, which is highlighted by the relatively low coefficient of determination

(0.68). Instead, we plot in Fig 6(b) the oxygen consumption at a fixed rate of breathing against

the total energy. Here, we find a very good characterisation of the overall performance, with a

much higher coefficient of determination (0.86), confirming that those who utilise oxygen

more efficiently perform better.

Next, we examine the specific patterns of breathing exhibited by the participants, in particu-

lar, focussing on breathing depth and frequency. Initial characterisations of these patterns

seem to provide little information, as indicated in Fig 7(a). However, when we now also

include dependence of oxygen consumption, we find a near perfect classification of partici-

pants into the lowest performing groups, the best performing groups and the middle group.

These data are shown in Fig 7(b). Note that in this figure, the trajectories appear to be evolving

on a planar manifold, suggesting significant co-dependence between these three variables.

Given that there appears to be co-dependence between the variables used in Fig 7(b), a nat-

ural next step is to use principal component analysis (PCA) to account for these dependencies.

By projecting the data onto their principal components, we show in Fig 8 how well these

Fig 6. Slope of the fitted curves (log _VE against _VO2) from Fig 4(b) plotted against the total energy transfer during the test. We

find a relatively poor characterisation of the variance between performances. (b) By instead plotting the oxygen consumption at a

fixed rate of breathing, we better capture differences in performance.

https://doi.org/10.1371/journal.pone.0211219.g006

Fig 7. (a) Breathing patterns subdivided into the breathing rate and tidal volume. These data appear uninformative for

predicting test performance. (b) With the additional inclusion of the oxygen consumption at a fixed rate of breathing,

we find that these variables now almost perfectly capture variation in participant performance.

https://doi.org/10.1371/journal.pone.0211219.g007
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components capture the variation in participant performance. Given that there are only three

independent variables in our analysis, it is convenient to use spherical polar coordinates to

show how these quantify performance. The first of these components, θ, captures over 90% of

the variation in performance (Fig 8a), as does the normal component in the direction of

breathing frequency (Fig 8b). These results further indicate the importance of breathing fre-

quency, together with co-variation of oxygen consumption and tidal volume as predictors of

test performance.

Gas exchange threshold

Under steady state levels of exercise, the metabolic rate of production of CO2 is assumed to be

proportional to the utilisation rate of O2 via the cellular respiratory quotient, since (after the

initial rest-work transition) adenosine triphosphate (ATP) is replenished primarily via aerobic

metabolism pathways. As the work rate increases, this pathway becomes unable to supply suffi-

cient ATP to satisfy the required amount of energy and anaerobic pathways have to contribute

to overcome the shortfall. In so doing, they increase the levels of metabolic waste products,

such as lactate and also increase the overall production rate in CO2. The point at which this

occurs is known as the anaerobic threshold (AT) or sometimes can be referred to as the lactate

threshold. The lactate threshold can be estimated non-invasively by the determination of the

GET [46]. Within this study, the GET was successfully identified in all CPETs.

Anaerobic thresholds are well correlated with overall performance, as shown in Fig 9(a),

due to the fact that the anaerobic pathways are less efficient at producing ATP and because

build-up of lactate contributes significantly to fatigue. One of the major contributing factors in

defining GET is _VO2max, since this is indicative of the limit of the rate of oxidative phosphory-

lation. It thus comes as little surprise that _VO2max is the best single predictor of CPET perfor-

mance, as shown in Fig 9(b).

Gaussian processes-based modelling

Having completed a detailed data analysis and identified candidate predictors of CPET perfor-

mance we next use these predictors to inform a Gaussian Process-based model. In our model-

ling, we attempt to describe the influence of breathing patterns and _VO2 on the GET, since

this is shown to correlate well with overall test performance (see Fig 9). In mathematical terms,

we treat GET as our scalar output variable, with input variables comprising: baseline breathing

Fig 8. The first principal component obtained via PCA accounts for over 90% of the variation in test performance. (b) Similar

levels of variance are accounted for by taking only the normal component of the first principal component, θ, in the breathing

frequency direction.

https://doi.org/10.1371/journal.pone.0211219.g008
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rate and tidal volumes, and O2 consumption rates at a fixed ventilation rate, FVC, FEV1, and

the rate of changes in breathing rate and tidal at exercise onset, using the slopes calculated

based on the analysis presented in Fig 5(b). Thus, we have an output variable that dependents

on seven input variables, which we store in a vector x 2 D � Rd
, with d = 7. We now assume

that there exists a ‘true’ function f: D! R, such that GET = f(x).

GP emulator performance

The GP emulator was constructed using the data presented above, with GET calculated using

previously described methods [46]. These data were used to train the emulator. We consider a

first order polynomial regression for the mean μ(.) and the squared-exponential covariance

function for K(.,.). Since in this pilot study, we have a small number of participants, we use

leave-one-out cross-validation mean squared error (MSELOO) to assess the accuracy of our

emulator. It is defined as

MSELOO ¼
1

n

Xn

i ¼ 1

ðm� iðx
iÞ � f ðxiÞÞ

2
;

where m−i(xi) is the prediction obtained by the GP model based on all the training data points

except the i’th one [47]. The corresponding prediction uncertainty is denoted by s2
� 1
ðxiÞ. In

this work, MSELOO = 0.1676 which is around 12% of the global mean for GET. Fig 10

shows exact values (bullets) vs. m−i(xi) (asterisks) with the 95% confidence intervals, i.e.

m� iðxiÞ � 1:96s� iðxiÞ; for each patient, we use the emulator trained against the remainder of

the training data to approximate the AT value for that patient, given their input variables.

The emulator has reasonable accuracy, in spite of the small number of data used to train it.

In general, for high accuracy in GP emulator, the number of sample training data (correspond-

ing to the number of patients in our case) should be around ten times larger than the number

of input variables [48]. Clearly, there is a need to acquire further data points to improve the

predictive capabilities of the emulator. For each patient, the 95% confidence interval around

the predicted point contains the true value. However, the large variance in the GP estimates

for some patients (e.g. patient 8) highlights a need to extend this study to include more data to

refine estimates around these points, particularly to deal with the high variability of lung func-

tion parameters in this patient group [49].

Fig 9. (a) Quantifying the relationship between the anaerobic threshold and overall test performance. Thresholds were

calculated using an automated procedure based on previous methods [46] (b) _VO2max is the best single predictor of

overall test performance.

https://doi.org/10.1371/journal.pone.0211219.g009
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Combining patients’ data with mechanistic modelling

An alternative to the Gaussian Process-based modelling approach above would be to directly

use the experimental data in a mechanistic modelling framework. Next we present an example

of employing this alternative approach. During exercise, it is known that dead-space ventila-

tion rate, _VD increases [50]. Thin et al [50], demonstrated that this increase is significantly

greater in CF patients. Physiologically this is because, in CF patients, tidal volume, VT is lim-

ited. Therefore, there must be an increase in the frequency of breathing, BF, in order to main-

tain gas exchange.

Fig 11(a) shows the changes in these ventilatory parameters at rest and during peak exercise

for the 15 CF patients. This figure indicates that tidal volume is decreased in the CF patients as

the disease severity increases. Thus, it seems reasonable to suggest that the size of increase in

_VD with exercise is dependent on the severity of the disease. We can now consider this in the

case of the 15 CF patients tested. For each of these patients a work rate was prescribed depen-

dent on their previous performances (see Fig 2). We incorporate the work rate data in the

mechanistic model by Timischl [51] in order to predict _VE for each individual patient (see S1

File for details on the mechanistic model). It is important to note that Timischl’s original

model ignores the dead-space (i.e. assumes _VD = 0). Figure A in S1 File shows that generally

for CF patients whose disease is less severe (those in green) _VE is captured better with no venti-

latory dead-space than those whose disease is more severe. We therefore suggest incorporating

the dead space by modelling _VD using a linear function of the form, _VD = _VDB
+ a × W(t),

where _VDB is the base level of _VD for each patient, a is a scaling parameter based on the severity

of the disease and W(t) is the work rate. We anticipate that for those patients whose disease

progression is less severe a relatively low scaling factor will be needed and for those whose con-

dition is more severe, a much larger one. To determine the values of _VDB and a we use the

available experimental data. It is known that, _VD = BF × VD. As shown in Fig 11(a) the avail-

able data allows us to obtain values for BF and VD both at rest and during exercise. We can

therefore determine a value for _VDB as follows, _VDB = BF (Rest) × VD (Rest), and a value for a

Fig 10. Predictions (asterisks) vs. exact values (bullets). Red bars show the 95% confidence intervals, mi(xi) ± 1.96 si(xi) around the

predicted value, where mi and si are GP prediction mean and standard deviation based on all but the i’th data point.

https://doi.org/10.1371/journal.pone.0211219.g010
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as follows, a = (BF (Exercise) × VD (Exercise)) / W (Exercise). Next, we simulate the model

with this added ventilatory dead-space (model predictions are shown in Figure B in S1 File).

This allows us to obtain predictions for the total ventilation ( _VE) for each individual patient as

shown in Figure B in S1 File. The results from these simulations in turn allow us to predict

alveolar ventilation, _VA, for each patient as shown in Fig 11(b). In Fig 11(b) we plot _VE from

the data, along with the predicted by the modified model simulations values for _VD. Then

using _VA = _VE − _VD to find _VA, we can predict the changes in _VA during exercise for the 15

CF patients.

This is an example of how individual patient’s data could be used in a mechanistic model

framework in order to predict individual patients’ characteristics, in this case associated with

ventilatory parameters and hence lung function.

Discussion

Our primary long-term modelling aim is to eventually use the models to evaluate how CF

impairs exercise tolerance relative to increasing ventilatory and metabolic demands. Our pre-

dictive models could also be used to evaluate therapies and their effect on exercise perfor-

mance. Ultimately, we hope that this will form a series of steps to design better exercise

treatment that is tailored to specific individual needs relative to patient’s treatment therapies, a

treatment modality that is affordable, and personalised [52]. It is interesting to note that in

spite of the small number of data points used to train our GP emulator, the accuracy as com-

puted by the leave-one-out cross-validation mean square error is high. This observation

implies that the relationship between GET and our chosen input variables is ‘smooth’ (in that

there are no large, sudden changes in GET as our input variables vary) [53]. In turn, this pro-

vides further evidence that our chosen input variables are good predictors of GET for this

patient group.

Fig 11. (a) Tidal volume (VT), an estimate for the dead volume (VD) and Breathing frequency BF from the data.

(b) Changes in ventilatory parameters during exercise for the 15 CF patients using the proposed form of
_VD = _VDB + a × W(t). In the case of _VE the solid dots represent values extracted from the data, for _VD and _VA these

represent values taken from model simulations (see S1 File). In all cases the red stars represent the group mean.

https://doi.org/10.1371/journal.pone.0211219.g011
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The data analysis and modelling results have highlighted the dependence of CPET perfor-

mance on variables associated with ventilation and metabolic rates of O2 consumption. We

believe that this is the first attempt to mathematically model the relationship between ventila-

tory dynamics, _VO2 and performance in CPET within a group of children and adolescents

with CF. Whilst it is clear that there is much work to be done in this area, we hope that this

will serve as a starting point for improved modelling for CF, not only in the arena of GP emu-

lators, but also in the domain of mechanistic modelling, which we shall describe briefly. But

one of the benefits of modelling includes the ability to utilise existing data sets at a time when

there are limited resources and time for a patient group who can be very sick and unable to

engage in research.

Perspectives for GP improvements

In our simulator, we have used the GET as our output (dependent) variable. Another choice

for this could be the performance in the CPET or _VO2max, since these are the primary biomark-

ers for gauging aerobic fitness. However, the use of the GET has been shown to have high

agreement with the lactate threshold (another surrogate for the AT), and related to disease

severity in CF [54]. Furthermore, as reported in Fig 9(a), the GET location for a given patient

correlates well with their overall performance in this test. Importantly, by constructing a pre-

dictive model to approximate the GET values for a patient, we can hope to further extend this

to identify contributions of aerobic and anaerobic pathways in supplying ATP to meet the

demand imposed during the exercise test.

The initial exploration of results highlighted that both ventilation parameters and metabolic

rates of O2 consumption were the primary factors influencing test performance. It is clear that

_VO2 should play a significant role in determining the GET location, since it is a proxy for oxi-

dative phosphorylation which is the main pathway for ATP synthesis in steady state exercise.

As a measure of oxygen uptake efficiency in our model, we use the oxygen consumption rate

at a fixed total ventilation rate (that being 0.822 L�s-1) as an input (independent) variable for

each patient.

There are a number of ventilatory input variables incorporated in our simulator. Given

their potential importance as clinical biomarkers, highlighting the limitations of lung capacity

and function, we include FVC and FEV1 as input (independent) variables. During the aerobic

exercise test, participants spend three minutes cycling at a minimal work rate, over which we

quantify their baseline breathing frequency and baseline tidal volume by taking the means of

these variables over this period. To capture the dynamics response associated with the exercise,

the rates of change of breathing frequency and tidal volume are calculated, based on the fits

obtained in Fig 5(b). The rates of change of these ventilatory variables indicate how individual

participants respond to changes in work rate and were shown in Fig 7(b) to discriminate

between participant performances. Moreover, differences in rates of change of breathing fre-

quency and tidal volume have previously been shown to be significantly different between con-

trol groups and CF groups [50], suggesting that these are potentially key biomarkers for

assessing aerobic fitness in patients with CF.

At present, the GP model is conditioned on specific data points for each patient. An

improvement to the GP could be made by instead conditioning with respect to distributions.

Given that repeated tests are often performed for the same individual, so that multiple sample

points are provided for each participant, we can consider a fit to a probability distribution cap-

turing the variability in the identified variables. This approach has advantages compared to

standard GP models, such as avoiding problems associated with over fitting and regularisation
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(which is important for the inverting ill-conditioned covariance matrices that often arise dur-

ing the application of [1, 2, 55]).

Perspectives for mechanistic modelling

In order to better understand and characterise the difference between performances, it would

be extremely informative to construct and simulate a mechanistic mathematical model, based

upon on an ordinary differential equation (ODE) framework, describing the relationship

between the cardiopulmonary system and the metabolic dynamics of skeletal muscle. By

describing the relationships between different organ-level systems, the model would be able to

identify the patient-specific rate-limiting factors defining aerobic fitness. Moreover, analysis of

the model could be used to suggest treatment strategies to improve these factors and thus pre-

dict how patients will improve under such regimes.

At the individual organ level, there are a plethora of models describing individual dynamics

of the level of the heart [56–59], lung [60–63] and systemic metabolic demand [64–70]. There

also exist a number of models describing such interactions between cardiopulmonary and

metabolic systems [51, 71–74] in a variety of settings, including heart failure and mechanical

ventilation. A core feature in all of these models is the nonlinear interactions between the con-

stituent model compartments that encompass the distinct tissues. An important consequence

of this is that the model must be studied as whole, in an integrated fashion, to truly understand

the body’s response to exercise.

With respect to the present question, there are a number of limitations of the existing

modelling approaches. Most significantly, none have been designed with either an adolescent,

or a CF patient group in mind, and the nuances of these patient groups will have to be factored

into to any model development. In particular, these models have relatively simple, empirical

models to describe changes in ventilation, which may not capture well the breathing dynamics

of our patient group. Moreover, to the best of our knowledge, no model considers the changes

in ventilation separated into breathing frequency and depth that have been shown by us and

others [50] to be critical to overall test performance.

In our analysis, we have demonstrated that the GET location is a critical factor in determin-

ing overall patient aerobic fitness. Many of the mathematical exercise models describe only

steady-state exercise, in which aerobic pathways meet most of the ATP demand [51, 71–74].

As such, these models are inadequate to capture the dynamics we describe here. Another com-

mon topic of study is the dynamic response at exercise onset, which again, does not meet the

current need to describe the GET crossing point [75–78].

Of the mathematical models that describe the contribution of anaerobic pathways to ATP

production, some assume that the shortfall in meeting ATP demand via oxidative phosphory-

lation is met entirely by anaerobic pathways [79], yet this is clearly not so, since ATP levels

in skeletal muscle post-exercise may be up to 30% lower than pre-exercise values [80]. Mathe-

matical models that factor in fatigue brought about by anaerobic metabolism are generally

phenomenological in nature, and it is difficult to quantify these models against real patient

data [79, 81, 82]. Moreover, these models mostly fall outside the arena of ODE-based model-

ling and so dynamical properties are difficult to infer from them.

Developing a mathematical model to describe the integrated behaviour of all of the relevant

organs, whilst remaining biophysically plausible, but without requiring excessive or invasive

parameterisation, is a difficult task. The proposed model should include descriptions of the

cardiovascular system, the ventilatory system and simple models of metabolism at the tissue

level. Specifically, dynamic variables should include alveolar, arterial, venous and tissue level

partial pressures/concentrations of O2 and CO2, cardiac output, ventilation and metabolic
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rates oxygen utilisation and CO2 production. Partial alveolar gas pressures can be linked to

data collected during the test, and the work rate can then be provided as inputs to the model.

Note that these variables are similar to those included in previously defined models [51, 71–

74] and the aim is to extend these to describe the dynamics observed in patients with CF. The

proposed model schematic is displayed in Fig 12.

Of critical importance to the overall model construction is the development of a simple, yet

realistic model of cellular metabolism, to overcome the issues discussed earlier. The model

should respect the different metabolic processes that occur in the muscle tissue, in particular:

glycolysis, phosphocreatine breakdown and synthesis and oxidative phosphorylation, in a sim-

plistic fashion that is amenable to being fit to CPET data. Whilst there are models that describe

the biochemical reactions associated with these processes, and importantly, their stoichiometry

[65, 68, 70, 73, 83], quantifying their associated rate constants in vivo is a near-impossible task,

and so efforts must be made to develop a model that incorporates the relevant metabolic

dynamics whilst being simple enough to be fit to data.

With knowledge of the integrated system, attempts can also be made to describe other

important exercise-based processes, such as lactate buffering and recycling (as a fuel source)

[68, 84, 85] and the overall muscle fatigue brought about by the combination of all of these

factors. Only by systematically exploring the dependence of aerobic fitness of all of the fac-

tors described in this section can we begin to understand the system in an integrated

fashion.

Fig 12. Schematic of the variables and processes in the proposed ODE-based mathematical model. Adapted from

Timischl [51] and Batzel et al. [86].

https://doi.org/10.1371/journal.pone.0211219.g012
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Limitations

A limitation with the current study is the utilisation of a relatively small sample size, and this is

most likely contributing towards aforementioned errors in prediction. Future studies should

seek to utilise CPET collected annually in CF centres, to develop larger, multi-centre, samples

whereby a uniform exercise protocol is utilised. Given that utilisation of CPET is now recom-

mended and endorsed for regular use by international medical societies [87], and individual

CF centres are reporting upon experiences of using CPET [88], large-scale utilisation of such

data is a feasible target.

The findings presented here are derived from a smaller sample, and therefore the models

presented are only preliminary models of this patient cohort; however, our study provides a

unique examination into the aerobic and anaerobic signatures of individual patients with CF

in response to progressive exercise.

As models improve, as well as the quality of fits to data (through increased sample sizes),

these can be used in a prognostic setting to predict potential improvements in aerobic fitness

that may arise due to therapeutic intervention. Moreover, with proper mechanistic modelling

of the primary organs affected in CF, there exists the potential to optimise treatment for this

patient group by identifying the limiting factors of aerobic fitness. Finally, whilst this study

provides an insight into metabolic process during exercise, future research and models must

account for additional variables predictive of function and mortality (e.g. genotype, body com-

position, pancreatic sufficiency, infection status, exacerbations [89, 90]) and co-morbidities

(CF-related diabetes [91], pulmonary arterial hypertension [92]) existent within CF, notably

those that may affect exercise tolerance.

Conclusions

In conclusion, our proposed stimulator allows for the reproduction of the physiological obser-

vations of ventilation and metabolic rates of O2 consumption acquired during a CPET in

relation to people with CF. The modelling framework was able to successfully replicate the

relationship between ventilatory dynamics, lung capacity and function and performance in

CPET within a group of children and adolescents with CF. In particular, by using the Gaussian

processes (GP) the GET, a well-known physiological threshold marker of exercise intensity, as

well as other important measurements such as breathing frequency and tidal volume, at the

individual patient level were accommodated into the model. The stimulator has the potential

to be suitable for future applications of the investigations of drug therapies or other physical

interventions on exercise performance.

Supporting information

S1 File. Cardiopulmonary responses to maximal aerobic exercise in patients with cystic

fibrosis. Figure A: Model simulations of _VE assuming VD = 0, compared to the recorded data

value of _VE obtained during the CPET. The thin red line gives _VE as measured from the data

and the bold coloured line gives _VE as simulated by the model. The colour given to each

patient is the same as given in Fig 2 in the main text of the paper. Figure B: Model simulations

of _VE using the proposed linear model of VD, compared to the recorded data value of _VE

obtained during the CPET. The thin red line gives _VE as measured from the data and the bold

coloured line gives _VE as simulated by the model. The colour given to each patient is the same

as given in in Fig 2 in the main text of the paper. Fitted parameter values can be found below.

Cardiopulmonary modelling in cystic fibrosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0211219 February 13, 2019 16 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0211219.s001
https://doi.org/10.1371/journal.pone.0211219


Table A: Parameter values. Table B: Calculated values of _VDB
and a for the linear model of

ventilatory dead-space. Table C: Definitions of model parameters.
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