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Highlights

• A pressure-velcity model to account for the no permeability constraint is pro-
posed for E-E simulations.

• The model is derived within a Reynolds-Averaged Two-Fluid model framework
and implemented within the open-source CFD toolbox OpenFOAM.

• The approach is capable of accounting for the strong near-wall inhomogeneity,
a flow feature that hitherto has been neglected in Eulerian-Eulerian modelling.

• The predictions reveal that the approach proposed herein can lead to a satis-
factory agreement across all turbulence statistics paving the way for the correct
prediction of more complex mechanisms.

• The source code of the recently developed solver ratfmFoam and supplementary
material used in this work is made available online.
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Abstract

This paper tackles the issue of image vorticity in turbulent Eulerian-Eulerian simula-
tions. A pressure-velocity model to account for the no permeability constraint on the
fluid- and particle-phase wall normal stress components is proposed. The pressure-
velocity model is derived with in a Reynolds-Averaged Two-Fluid model (RA-TFM)
framework and is implemented within the open-source CFD toolbox OpenFOAM.
We demonstrate that this approach is capable of accounting for the strong near-wall
inhomogeneity, a flow feature that hitherto has been neglected in Eulerian-Eulerian
modelling. Simulation predictions are validated against benchmark Direct Numer-
ical Simulation data and show a promising step forward in near-wall modelling in
Eulerian-Eulerian simulations. The predictions reveal that the approach proposed
herein can lead to a satisfactory agreement across all turbulence statistics paving the
way for the correct prediction of more complex mechanisms. Finally, the source code
of the recently developed solver ratfmFoam and supplementary material used in this
work is made available online.
Keywords: RA-TFM, Near-wall, Eulerian-Eulerian, v2f, turbulence

∗Corresponding author
Email address: mjr214@exeter.ac.uk (M. Riella )

Preprint submitted to Elsevier February 7, 2019



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction1

The near-wall behaviour of particle-laden fluid behaviour has been a challenging2

topic for researchers over the preceding decades. Modelling the highly inhomoge-3

neous near-wall region in a turbulent shear flow has proved difficult even in single4

phase flows [1]. One phenomenon in particular that has proven challenging is the so-5

called image vorticity [2, 3] that is caused by the kinematic blocking by the wall. This6

non-local effect on the Reynolds stress arises due to the physical inviscid boundary7

condition i.e. the no-flux condition on the normal component of velocity u · n = 0.8

This effect results in a highly anisotropic distribution amongst the Reynolds stress9

components in the vicinity of a wall, mainly it is felt as a suppression of energy10

transfer into the wall-normal component.11

To circumvent these issues Durbin [4] proposed a pressure-velocity model based on12

the Reynolds-Stress wall-normal component and an elliptical relaxation function to13

account for the kinematic blocking effect. In single-phase simulations this approach14

has proven fruitful [5, 6, 4, 7, 8, 9], with results showing distinct improvements over15

simulations with damping-functions and in particular wall-functions, as neither can16

account for the so-called stagnation-point anomaly or imposed pressure gradients.17

Owing largely to its maturity and complexity, research in turbulent near-wall18

fluid-particle modelling in an Eulerian-Eulerian (E-E) framework has been sparse.19

One notably study is that of Rizk and Elghobashi [10] in which a theoretical study20

was carried out to ascertain the effects of increasing volume fraction on the mean21

velocity profile. They found that the log-layer broke down in their model speculating22

that a standard wall-function may not be representative of particle-laden flow. This23

postulation was somewhat corroborated by Vreman et al. [11] who showed that the24

log-layer was retained but resulted in an adjustment of the von Karman “constant”.25

In addition to this, Benyahia et al. [12] showed that the effect of the particle phase26

could be included in the wall-function in an ad-hoc manner which allows the par-27

ticle phase to influence the fluid phase velocity when the particle-fluid co-variance28

remained correlated.29

The use of single-phase wall functions in E-E simulations are abundant in litera-30

ture [13, 14, 15, 16, 17]. The wall functions are applied to the fluid phase regardless31

of the volume fraction in which complicated one- or two-way coupling effects can32

play a role. Moreover, the universal form of the log-layer neglects pressure gradients,33

with the addition of particles an induced hydro-static pressure gradient can com-34

monly be found in the boundary layer. Attempts to circumvent this issue through35

damping functions have been used [18, 19, 10, 20]. This introduces further complica-36

tions with arbitrarily matching experimental/Direct Numerical Simulation (DNS) in37

new or more complicated geometries. The drawbacks of damping-functions are well38
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known i.e. their arbitrariness and dampening the incorrect scale [21].39

In the literature E-E simulations in the near-wall region rarely predict the correct40

turbulence statistics in the particle phase. Moreover, the particle-phase wall normal41

component can not be correctly predicted due to the k − ε modelling assumptions42

i.e. the eddy-viscosity approximation for the pressure-velocity redistribution terms.43

In the particle phase this is particularly problematic as the wall-normal component44

is known to govern segregation towards the wall [22, 23] and can inhibit the correct45

volume fraction distribution.46

A more fundamental explanation can be given when considering E-E (Two-Fluid47

Models) models. In the current E-E the correlated fluctuating component of the par-48

ticle phase is equated to the uncorrelated fluctuating energy of the particle phase.49

This error was first elucidated by Fevrier et al. [24] in which the partitioning effect of50

particle inertia was shown to give rise to two different contributions to the particle51

phase energy, namely correlated and uncorrelated energy. This distinction is crucial52

in both collisional and non-collisional flow Fox [25], Fevrier et al. [24] and has been53

shown to predict the correct physics in comparison with the current E-E models in54

which the distinction is not made Riella et al. [26].55

In the near-wall region this distinction can prove particularly crucial. As the56

Stokes number, St increases as the wall is approached the correlated particle-phase57

energy kp is dissipated into uncorrelated particle-phase energy Θp. This stokes de-58

pendent behaviour is vital to predicting the correct distribution of particle-phase59

energy in the near-wall region. Without accounting for this behaviour, in combina-60

tion with wall-functions or damping functions it is clear why the near-wall region has61

proven particularly challenging and has received little attention Peirano and Leckner62

[27].63

Within the context of near-wall modelling the turbulence constants may need to64

be changed to account for the presence of the particles. Bolio et al. [18] reported65

no significant changes in C1, C2, σk and σε. Despite this Fox [25] has shown that66

there in-fact is a small dependence on the Stokes number for homogeneous-shear flow67

- change in C2. In the near-wall region the picture is complicated further and no68

experimental or DNS data exists. In this study we do not consider the influence of69

the turbulence constants but it is recognised here that with increased mass loading70

and stokes number the constants may need to be changed. Within the near-wall71

region this is particularly uncertain and more research needs to be done.72

In this paper we propose a pressure-velocity model in both phases. Within the73

E-E framework we assume continuous inter-penetrating phenomena and both phases74

share their pressure field. Recognising this is crucial for justifying the modelling75

decisions. We propose that the pressure reflection caused by the wall is felt in both76
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phases and as a result we can derive a pressure-velocity model for each phase. The77

suppression of the wall-normal component enters the Reynolds stress transport equa-78

tion through the velocity-pressure gradient correlation and is a term that appears in79

the Reynolds stress equation for both phases.80

To investigate the applicability of the model we apply it to a benchmark channel81

flow case. The pressure-velocity model is derived and applied with a Reynolds-82

Averaged Two-Fluid Model framework [25, 26]. Predictions are compared against83

the Direct-Numerical-Simulation data of Marchioli and colleagues [28]. Two cases84

are simulated with increasing Stokes number to highlight the partitioning effect of85

particle inertia. Additionally, a mesh independence study is carried out, due to86

the necessary resolution of the mesh to resolve the boundary layer, to ascertain the87

sensitivity of the models predictions.88
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2. Numerical Model89

The RA-TFM governing equations along with the recently derived multiphase90

v2
f − f model [29] can be found in Table 1. The derivation of which can be found91

in Appendix A. Due to flow regime under consideration the buoyancy induced terms92

are neglected throughout this work. For a thorough description of the model the93

reader is referred to Fox [25]. The reader should note that the variables presented94

herein are the Phase-Averaged (PA) variables and their definitions can be found in95

Table 5.96

The particle phase turbulent kinetic energy transport equation reads:97

98

∂(αpρpkp)

∂t
+∇ · (αpρpkpup) = ∇ ·

(
µp +

µpt
σpk

)
∇kp + αpρpΠp − αpρpεp

+2β(kfp − kp)
(1)

The first term on the RHS is the particle phase turbulent kinetic dissipation99

energy flux. The second term Πp is kinetic energy production due to mean shear100

with the third term being its dissipation. The remaining term is the coupling terms101

due to velocity correlations. The coupling terms take the form of kfp =
√
kfkp and102

εfp =
√
εfεp. These terms represent the fluid-velocity covariance. The particle phase103

turbulent kinetic energy dissipation transport equation reads:104

∂(αpρpεp)

∂t
+∇ · (αpρpεpup) = ∇ ·

(
µp +

µpt
σpk

)
∇εp +

εp
kp

(Cε1αpρpΠp − Cε2αpρpεp)

+2β(εfp − εp)
(2)

The first term on the RHS is the particle phase turbulent kinetic dissipation105

energy flux. The second term Πp is kinetic energy production due to mean shear106

with the third term being its dissipation. The remaining term is the coupling term107

due to velocity correlations. The granular temperature transport equation reads:108

3

2

[∂(αpρpΘp)

∂t
+∇ · (αpρpΘpup)

]
= ∇ ·

(
κΘ +

3µpt
2Prpt

)
∇Θp + 2µpSp : Sp

−pp∇ · up + αpρpεp − 3βΘp − γ
(3)

The first term on the RHS is the PA granular temperature flux which is made109

up of two contributions, the granular temperature flux and the turbulent granular110

flux. The former is the granular conductivity of which there are various formulations111

in the literature. Here the formulation of Syamlal and O’Brien [30] is used as it112

correctly tends to zero in the dilute limit [31]. The latter term is the turbulent flux113
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and includes the particle turbulent viscosity. The second term is a laminar source114

term due to viscous stresses. The third term is a pressure dilation term which ac-115

counts for compressibility. The fourth term is of particular interest as it represents116

the turbulent particle kinetic energy dissipation which appears here as a positive117

source term. The physical interpretation of this means that as large scale particle118

turbulent kinetic energy is dissipated, small scale granular temperature is produced.119

The two remaining terms represent decrease of granular temperature due to drag120

and decrease of granular temperature due to inelastic collisions.121

122

2.1. Derivation of particle-phase pressure-velocity model123

In order to derive the transport equation for the particle-phase wall normal com-124

ponent one needs to begin at the exact RA Reynolds stress transport equation. It125

can be found by Reynolds-Averaging the PA velocity tensor transport equation and126

subtracting the PA particle-phase mean velocity tensor transport equation. A rigor-127

ous derivation can be found in [32] and for the sake of brevity will not be presented128

here.129

∂〈αp〉〈u′′p ⊗ u′′p〉p
∂t

+∇ · 〈αp〉〈up〉p ⊗ 〈u′′p ⊗ u′′p〉p = −∇ · 〈αp〉〈u′′p ⊗ u′′p ⊗ u′′p〉p

−〈αp〉(〈u′′p ⊗ u′′p〉p · ∇〈up〉p)︸ ︷︷ ︸
Production

+
1

ρp
∇ · 〈σp ⊗ u′′p〉 −

1

ρp
∇〈ppu′′p〉

+
1

ρp
〈pp∇u′′p〉

︸ ︷︷ ︸
pressure strain, φp,yy

− 1

ρp
〈σp · ∇u′′p〉

︸ ︷︷ ︸
dissipation, εp,yy

+〈αp〉β(〈u′′′f ⊗ u′′p〉p − 〈u′′p ⊗ u′′p〉p︸ ︷︷ ︸
velocity correlations

)

(4)

We postulate that an imaginary particle phase wall normal component transport130

equation can be derived with adequate closure to the terms presented in Eq. 4.131

Firstly, we recognise that the production term is a function of the mean flow gradients132

in the stream-wise direction therefore it is dropped.133

The velocity correlations which arise due to phase coupling are dominant in this134

work and have been shown to display the correct behaviour in one-way coupled135

flow Fox [25]. We therefore adopt the same form for their closure by setting the136

co-variance of the fluctuations 〈u′′′f ⊗ u′′p〉p = v2
fp =

√
v2
pv

2
f .137

Following the standard approach used in classic eddy-viscosity turbulence models,138

the divergence terms appearing in the transport equation are closed by the eddy-139

7
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diffusivity approximation [1].140

∇ ·
[
µpt
σpk
∇〈u′′p ⊗ u′′p〉p

]
≈ −∇ · 〈αp〉〈u′′p ⊗ u′′p ⊗ u′′p〉p +

1

ρp
∇ · 〈σp ⊗ u′′p〉

− 1

ρp
∇〈ppu′′p〉

(5)

Finally, the terms left to close are the pressure strain and dissipation terms. These141

terms are explicitly modelled in the v2
p − f transport equation and are grouped into142

a source term denoted kpf .143

kpf = φp,yy︸︷︷︸
pressure strain

− εp,yy︸︷︷︸
dissipation

+ αpρp6
v2
p

kp
εp (6)

The source term effectively redistributes turbulence energy from the stream-wise144

Reynolds stress component to the wall-normal component close to walls. This means145

that particle turbulence energy can only enter the wall-normal component through146

redistribution. The source term has been shown to overproduce in regions relatively147

far away from the wall and the correction of Davidson et al. [6] is employed.148

v2
psource

= min
{
kpf, −

1

T

[
(C1 − 6)v2

p −
2kp
3

(C1 − 1)
]

+ C2Πp

}
(7)

Now setting the wall-normal component of the fluid-phase Reynolds stress tensor149

〈u′′p ⊗ u′′p〉p to v2
p a transport equation can be written as:150

∂(αpρpv2
p)

∂t
+∇ · (αpρpv2

fup) = ∇ ·
(
µp +

µpt
σpk

)
∇v2

p + αpρpv2
psource

− αpρp6
v2
p

kp
εp

+2β(v2
fp − v2

p)

(8)

151

The reader should note that the third term is a sink term that is used to balance152

the source term kpf . This is a modification proposed by Lien and Kalitzin [8] and153

ensures that the source term kpf → 0 as it approaches the wall.154

Eq. 8 contains no sensitivity to the wall distance and thus a modified Helmholtz155

equation is constructed to form an elliptic relaxation equation. The form of this156

equation accounts for anisotropy close to walls and is also independent of Reynolds157

8
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number and y+ value which reads158

L2
p

∂2f

∂x2
− f =

C1

Tp

(
v2
p

kp
− 2

3

)

︸ ︷︷ ︸
φp,yy,S

−C2
Πp

kp︸ ︷︷ ︸
φp,yy,R

− 1

Tp

(
6
v2
p

kp
− 2

3

)

(9)

159

The terms φp,yy,S and φp,yy,R are the so-called slow and rapid pressure-strain terms160

[33, 1] with the final term being used to ensure far field behaviour i.e. that the161

elliptic relaxation function diminishes away from walls. Solving a Poisson equation162

with a segregated solver can cause numerical issues due to its elliptical nature. This163

issue can be resolved by following Lien and Kalitzin [8] and introducing a sink and164

source term in kpf source term in the v2
p and f transport equation of the form, 6 v

2
p

kp
.165

This enables a Dirichlet boundary condition to be prescribed. The eddy viscosity is166

calculated from the solution of the v2
p − f model, again the correction proposed by167

Davidson et al. [6] is used.168

νpt = min
{
Cpµk

2
p/εp, Cµv

2
pTp

}
(10)

169

where the turbulent time and length scales are defined in analogy to those in the170

fluid phase, we can define a characteristic length and time scale based on the particle171

turbulent flow variables as:172

Tp = max
(
kp
εp
, 6

√
νf
εf

)
(11)

Lp = max
(
k

3/2
p

εp
, Cη

ν
3/4
f

ε
1/4
f

)
(12)

173

Both time and length scales are limited in regions close to the wall. In regions close174

to the wall kp need not be zero but due to one-way coupling used in this work the175

mean slip → 0 therefore the particles remain correlated. In regions close to the176

wall the particle characteristic time scale can reduce below the Kolmorgorov scale177

hence limiting is applied. It is instructive to note that as the particle relaxation178

time increases closer to the wall and the particles become less responsive to the main179

flow uncorrelated energy Θp is created. Hence, at the correlated macro-scale kp the180

production due to the velocity covariance is dominant but as the particle response181

9
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time increases uncorrelated meso-scale energy Θp is produced. As the fluid-particle182

flow remains correlated the scaling is retained.183

2.2. Model setup and solution184

The geometry comprises of two flat parallel walls. The computational domain185

of size 16πh x 2h, with x-, y- axes in the stream-wise and wall-normal directions,186

respectively. Four mesh resolutions are investigated with y+ = 0.5 kept constant187

throughout with an inflation ratio of 1.1 in the y direction. For smaller y+ values the188

computational cost increases dramatically due to the aspect-ratio and simulations189

become unfeasible.190

The wall boundary condition for εf can be found in Table 3. For the remain-191

ing model variables the following boundary conditions at the wall are prescribed,192

uf = kf = v2
f = f = 0. For the particulate phase a Neumann boundary condition is193

prescribed for the velocity and turbulence statistics. Both kp and εp are initialised as194

1/3rd of their fluid counterpart with Θp = 1.0 x 10−8m2s−2. At the inlet a Dirichlet195

boundary condition is prescribed for both phase velocities and a Neumann condition196

for pressure. At the outlet a Dirichlet boundary condition is prescribed for pressure197

and a Neumann condition for both phase velocities.198

The RA-TFM and the recently derived v2
p − f ; v2

f − f turbulence models are199

implemented into the open-source toolbox OpenFOAM [34]. The solver ratfmFoam200

is based on our previous work [26] and is made open-source. To handle the pressure-201

velocity coupling the Pressure Implicit with Splitting Operators (PISO) algorithm202

[35, 36] is used. The volume fraction is solved using Multi-dimensional Universal203

Limiter with Explicit Solution (MULES) [37] which is a flux-corrected transport al-204

gorithm which ensures robustness, stability and convergence. Time derivative terms205

are discretised using the first order accurate implicit Euler, gradients are discretised206

using the least squares scheme, convective terms are discretised using the second or-207

der central scheme (limitedLinearV/limitedLinear01). The former is used for vectors208

and the latter is used for bounding variables between 0 and 1. Finally, Laplacian209

schemes are discretised with the second order accurate central differencing scheme.210

Table 1: Table of simulated cases

Case dp [µm] ρp [kg/m3] St
1 20.4 1000 1
2 45.6 1000 5

10
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Table 2: RA-TFM governing equations

Governing equations of the particle-phase:

∂(αpρp)

∂t
+∇ · (αpρpup) = 0 (13)

∂(αpρpup)
∂t

+∇ · (αpρpupup) = ∇ · 2(µp + µpt)Sp + β
[
(uf − up)−

νft
Scfsαpαf

∇αp
]

−∇pp − αp∇pf + αpρp

[
1− αf

(
1− ρf

ρp

)]
g

(14)

Governing and phase-energy equations of the particle-phase:

∂(αfρf )

∂t
+∇ · (αfρfuf ) = 0 (15)

∂(αfρfuf )

∂t
+∇ · (αfρfufuf ) = ∇ · 2(µf + µft)Sf + β

[
(up − uf ) +

νft
Scfsαpαf

∇αp
]

−αf∇pf + αp∇pf + αfρf

[
1 + αp

(ρp
ρf
− 1
)]

g
(16)

∂(αfρfkf )

∂t
+∇ · (αfρfkfuf ) = ∇ ·

(
µt +

µft
σfk

)
∇kf + αfρfΠf − αfρfεf

+2β(kfp − kf )

(17)

∂(αfρfεf )

∂t
+∇ · (αfρfεfuf ) = ∇ ·

(
µt +

µft
σfk

)
∇εf +

εf
kf

[
Cε1αfρfΠf − Cε2αfρfεf

]

+2β(εfp − εf )
(18)

∂(αfρfv
2
f )

∂t
+∇ · (αfρfv2

fuf ) = ∇ ·
(
µf +

µft
σfk

)
∇v2

f + αfρfv
2
f source

− αfρf6
v2
f

kf
εf

+2β(v2
fp − v2

f )

(19)

L2∂
2f

∂x2
− f =

C1

T

(
v2
f

kf
− 2

3

)
− C2

Πf

kf
− 1

T

(
6
v2
f

kf
− 2

3

)
(20)

11
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3. Results and Discussion211

3.1. Influence of mesh resolution212
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Figure 1: Mean fluid stream-wise velocity
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convergence
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Figure 3: Fluid wall-normal fluctuation velocity
convergence

To ascertain the influence of the mesh’s resolution four different mesh sizes are213

compared; 1500, 3750, 7500 and 18750 cells pertaining to 25x50, 50x75, 75x100 and214
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1250x150 in the x- and y- direction, respectively. Simulations are run for 500s of215

real flow time with all flow statistics being averaged through flow sampling. Flow216

sampling takes place after 100s and is used to ascertain temporal sensitivity of the217

solution. For the sake of brevity only the fluid flow statistics are shown here. Figs. [1-218

3] show that with incremental increases in mesh resolution the results tend towards219

a converged solution. The final two mesh resolutions reveal no change across all220

three flow variables. These two mesh resolutions indicate that the solution is mesh221

independent and no further enhancement of the resolution will change the solution.222

For the sake of computational cost, and with no loss of accuracy, the former mesh223

consisting of 7500 cells is used throughout this work.224

13
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3.2. Fluid phase225
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Figure 4: Mean fluid stream-wise velocity
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Figure 5: Fluid stream-wise fluctuation velocity
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Figure 6: Fluid wall-normal fluctuation velocity

Fig. 4 shows the calculation of the mean fluid-phase velocity. There is a satis-226

factory prediction of the mean velocity spanning from the viscous wall region to the227

log-law region. This crucial region for predicting a number of phenomena i.e. heat228

transfer, particle-wall interaction and compressible flows can be accurately modelled229

with the vf − f model. From y+ < 1 there exists two mesh cells which explains the230
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perceived lack of gradient in this region, as mentioned in Section 2.2 a computational231

limit is set for small values of y+, although the fluid-phase velocity components do232

correctly tend to 0 as the wall is approached. It is an artifact of the lack of resolution233

for very small values of y+ and the logarithmic scaling.234

In Fig. 5 the stream-wise fluctuation velocity is shown. Qualitatively the model235

is in good agreement especially for an E-E simulation. Despite this two main dis-236

crepancies can be seen: the under-prediction in the peak of fluid-phase turbulent237

kinetic energy and the over-prediction of the turbulence decay in the free-stream.238

Two explanations that perhaps feed into each other can be suggested. The first, if239

one invokes continuity across the span of the channel it can be imagined that if the240

production was increased the decay would increase. Thus we can postulate that if241

the production was increased a larger peak would be displayed and as a result a242

steeper gradient of decay would be shown.243

The peak is governed by the production term, Πf which is a function of the244

fluid-phase turbulent viscosity and mean velocity gradients. The latter can be influ-245

enced through numerical schemes - in particular the calculation of the gradient [35].246

Secondly, due to the relatively small Reynolds number of the flow, Reτ = 150 the247

turbulence model can fail to capture the correct turbulent kinetic energy behaviour.248

This is due to the model being calibrated for high Reynolds number. In Durbin [4]249

it is shown that for low Reynolds number flow the model over-predicts turbulence in250

the free stream - a finding that is consistent with damping functions. It should be251

noted that they also over-predicted the peak which was not the case in this study.252

It would seem that an element of both are at work, therefore with calibrating of253

the turbulence constants a more accurate fit could be obtained. It is also worth254

mentioning that in the data of Marchioli et al. [28] the peak is the region in which255

the greatest variance was reported. This is true of both phases and highlights the256

difficulty in predicting a reliable value.257

The near-wall behaviour of the wall-normal component has been accurately cap-258

tured in Fig. 6. A slight underproduction is seen in the peak across the range259

40 < y+ < 80 which is expected as the value of the stream-wise fluctuating com-260

ponent is also under-predicted. As discussed the wall-normal component receives261

turbulent kinetic energy through redistribution - therefore the under-prediction is262

experienced in both components. Overall excellent agreement with the DNS data is263

found, this provides promising evidence for the application of the v2 − f model to264

E-E modelling.265
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3.3. Particle phase statistics266
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Figure 7: Mean particle stream-wise velocity, St
= 1
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= 5
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Figure 9: Particle stream-wise fluctuation
velocity, St = 1
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Figure 10: Particle stream-wise fluctuation
velocity, St = 5
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Figure 11: Particle wall-normal fluctuation
velocity, St = 1
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Figure 12: Particle wall-normal fluctuation
velocity, St = 5

For the channel flow simulated in the work of Marchioli et al. [28] the fluid-particle267

co-variance terms dominate the particle-phase energy by providing the major con-268

tribution to their production via drag. As the particle phase is one-way coupled269

with the fluid phase the particles will be dragged along by the fluid and experience270

no feedback effect on the fluid phase. Even in such a flow it has been shown the271

need to partition the particle inertia into correlated and uncorrelated motion Fevrier272

et al. [24]. In the model used throughout this partitioning is denoted by kp and Θp,273

respectively.274

Figs. 7-8 shows the prediction of the particle-phase mean velocity of which shows275

excellent agreement with the DNS data. The prediction of the mean velocity is well276

captured across the range of y+ with the main discrepancy coming from the mesh277

resolution as discussed previously. Due to the close to non-existent slip velocity,278

owing to the geometry and governing physics, it is apparent that the von Neumann279

wall boundary condition results in the correct near-wall behaviour. Owing to the280

smoothness of the channel no effects due to roughness were incorporated, for further281

discussion the reader is referred to Vreman [38].282

Figs. 9-10 reveal that the model is capable of capturing the Stokes dependent283

behaviour, which manifests itself in an increase in the peak of turbulent kinetic en-284

ergy, although the increase is not as large as that seen in the DNS. We recognise here285

that this increase of particle-phase turbulent kinetic energy is due to the increase in286

uncorrelated energy, Θp. As the particle response time increases the particles become287

uncorrelated with the main flow. This phenomenon has also been reported by Vance288
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et al. [39], Fevrier et al. [24] who showed that with increasing Stokes number an289

increasing fraction of the fluctuating energy was found in the random-uncorrelated290

motion, Θp.291

We find that the increase in particle response time coupled with the dispersion292

enhances the "de-correlation" which is why the main increase is seen across y+ < 60.293

The energy is re-partitioned into the near wall region showing an increase in the peak294

of the turbulent kinetic energy. As a result over the y+ > 60 there is an increase295

in the gradient of turbulent kinetic energy decay, a feature that was not captured.296

It is interesting to note that this re-partitioning of the particle-phase energy is not297

especially felt in the mean-velocity profile.298

In Fig. 10, even though an increase in the peak seen at y+ ≈ 11.6 is apparent the299

behaviour approaching the free-stream is at odds with the DNS data. The lack of300

turbulent kinetic energy decay is most apparent across y+ > 60. It is clear that the301

distribution of the turbulence energy changes quite considerably with larger response302

times and a sharper gradient of decay is shown. This suggests that an adjustment303

of the the turbulent decay constant could be made a function of the particle Stokes304

number.305

As shown in Marchioli and Soldati [40] preferential concentration is shown for306

Stokes number 5, a feature that was also seen in the simulation. We find in our307

simulations that with increasing particle response time particles tended to drift to-308

wards the wall becoming preferentially concentrated. A phenomenon that is well-309

established in the literature Reeks [22]. This behaviour was determined by the drift310

velocity as expected, which is a function the gradient of volume fraction and Stokes311

number. Figs. 11-12 show the particle-wall normal fluctuation velocity components.312

A satisfactory prediction across both simulations can be seen. The main discrepancy313

is the lack of peak in the former although the trend is captured elsewhere.314

4. Conclusions315

In this work we have presented a pressure-velocity model for both the particle-316

and fluid-phase for use in Eulerian-Eulerian simulations. The turbulence model was317

derived within a Reynolds-Averaged Two-Fluid Model framework and applied to318

channel flow. Throughout it has been shown that accounting for the kinematic319

blocking effect leads to promising results. Across both fluid and particle turbulence320

statistics a good agreement was shown, in particular the wall-normal energy compo-321

nent of each respective phase was well produced. A result that has hitherto alluded322

E-E simulations. The results were validated against benchmark Direct Numerical323

Simulation of Marchioli et al. [28] and show strong qualitatively and quantitatively324
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agreement. The RA-TFM shows the correct Stokes dependence behaviour exhibited325

in the particle-phase turbulence statistics. The current predictions show encouraging326

results and efforts should be made to extend the approach for more complex flow327

regimes i.e. two-way coupling.328

5. Code repository329

The source code of the ratfmFoam solver and supplementary material can be330

downloaded from [41] and is distributed under the terms of the GNU General Public331

License v3.332
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7. Appendix A336

We begin with the exact RA Reynolds Stress transport equation for the fluid337

phase which is found by Reynolds-Averaging the PA velocity tensor transport equa-338

tion and subtracting the PA fluid-phase mean velocity tensor transport equation.339

A rigorous derivation can be found in [32] and for the sake of brevity will not be340

presented here.341

∂〈αf〉〈u′′′f ⊗ u′′′f 〉f
∂t

+∇ · 〈αf〉〈uf〉f ⊗ 〈u′′′f ⊗ u′′′f 〉f = −∇ · 〈αf〉〈u′′′f ⊗ u′′′f ⊗ u′′′f 〉f

−〈αf〉(〈u′′′f ⊗ u′′′f 〉f · ∇〈uf〉f )︸ ︷︷ ︸
Production

+
1

ρf
∇ · 〈σf ⊗ u′′′f 〉 −

1

ρf
∇〈pfu′′′f 〉

+
1

ρf
〈pf∇u′′′f 〉

︸ ︷︷ ︸
pressure strain, φf,yy

− 1

ρf
〈σf · ∇u′′′f 〉

︸ ︷︷ ︸
dissipation, εf,yy

+〈αf〉β(〈u′′′f ⊗ u′′p〉p − 〈u′′′f ⊗ u′′′f 〉p︸ ︷︷ ︸
velocity correlations

)

(21)
The velocity correlations which arise due to phase coupling are modelled analo-342

gously to those terms found in the kf−εf transport equations. We set the co-variance343

of the fluctuations 〈u′′′f ⊗u′′p〉p = v2
fp =

√
v2
fv

2
p. Following the standard approach used344
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in classic eddy-viscosity turbulence models, the divergence terms appearing in the345

transport equation are closed by the gradient-diffusion hypothesis [1].346

∇ ·
[
µft
σfk
∇〈u′′′f ⊗ u′′′f 〉f

]
≈ −∇ · 〈αf〉〈u′′′f ⊗ u′′′f ⊗ u′′′f 〉f +

1

ρf
∇ · 〈σf ⊗ u′′′f 〉

− 1

ρf
∇〈pfu′′′f 〉

(22)

Finally, the terms left to close are the pressure strain and dissipation terms. These347

terms are explicitly modelled in the v2
f − f transport equation and are grouped into348

a source term denoted kff .349

kff = φf,yy︸︷︷︸
pressure strain

− εf,yy︸︷︷︸
dissipation

+ αfρf6
v2
f

kf
εf (23)

The source term effectively redistributes turbulence energy from the stream-wise350

Reynolds stress component to the wall-normal component close to walls. This is351

intuitive as previously discussed, when one considers a fully developed turbulent352

boundary layer as the wall-normal Reynolds stress component’s production is zero353

due to the mean stream-wise flow gradient. This means that turbulence energy can354

only enter the wall-normal component through redistribution. The source term has355

been shown to overproduce in regions relatively far away from the wall and the356

correction of Davidson et al. [6] is employed.357

v2
f source

= min
{
kff, −

1

T

[
(C1 − 6)v2

f −
2kf
3

(C1 − 1)
]

+ C2Πf

}
(24)

Now setting the wall-normal component of the fluid-phase Reynolds stress tensor358

〈u′′′f ⊗ u′′′f 〉f to v2
f a transport equation can be written359

∂(αfρfv2
f )

∂t
+∇ · (αfρfv2

fuf ) = ∇ ·
(
µf +

µft
σfk

)
∇v2

f + αfρfv2
f source

− αfρf6
v2
f

kf
εf

+2β(v2
fp − v2

f )
(25)

360

The reader should note that the third term is a sink term that is used to balance361

the source term kff . This is a modification proposed by Lien and Kalitzin [8] and362

ensures that the source term kff → 0 as it approaches the wall.363

Eq. 25 contains no sensitivity to the wall distance and thus a modified Helmholtz364
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equation is constructed to form an elliptic relaxation equation. The form of this365

equation accounts for anisotropy close to walls and is also independent of Reynolds366

number and y+ value which reads367

L2∂
2f

∂x2
− f =

C1

T

(
v2
f

kf
− 2

3

)

︸ ︷︷ ︸
φf,yy,S

−C2
Πf

kf︸ ︷︷ ︸
φf,yy,R

− 1

T

(
6
v2
f

kf
− 2

3

)

(26)

368

The terms φf,yy,S and φf,yy,R are the so-called slow and rapid pressure-strain terms369

[1, 33] with the final term being used to ensure far field behaviour i.e. that the elliptic370

relaxation function diminishes away from walls.371

One drawback of employing a methodology that requires the solution of Poisson’s372

equation is its elliptic nature. When solving the equation with a segregated solver as373

in this work a numerical problem arises as information from upstream is not available.374

To circumvent these issues Lien and Kalitzin [8] introduced the 6
v2f
kf

as a sink and375

source in kff source term in the v2
f transport equation. It is also introduced in the376

transport equation of f . This ensures that f correctly tends to 0 at a wall allowing a377

Dirichlet boundary condition to be prescribed. The eddy viscosity is calculated from378

the solution of the v2
f − f model, again the correction proposed by Davidson et al.379

[6] is used.380

νft = min
{
Cfµk

2
f/εf , Cµv

2
fT
}

(27)

381

where the turbulent time and length scales are defined as382

T = max
(
kf
εf
, 6

√
νf
εf

)
(28)

L = max
(
k

3/2
f

εf
, Cη

ν
3/4
f

ε
1/4
f

)
(29)

383

Both time and length scales are limited in regions close to the wall. This is achieved384

by introducing a dependency on Kolmogorov scales which are only active in regions385

very close to the wall i.e. y+ < 5. This ensures that a singularity is not introduced386

into the solution matrix and that the scales collapse at the wall.387
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Nomenclature388

CD drag coefficient, [−]
Rep particle Reynolds number, [−]
dp particle diameter, [m]
ui velocity, [ms−1]
pi pressure, [Pa]
g0 radial distribution coefficient, [−]
t time, [s]
ki turbulent kinetic energy, [m2s−2]

Greek letters389

αi volume fraction, [−]
αp,max maximum particle volume fraction, [−]
β momentum exchange coefficient, [kgm−3s−1]
εi turbulent kinetic energy dissipation, [m2s−3]
Θp granular temperature, [m2s−2]
κp particle fluctuation energy, [m2s−2]
κΘs diffusion coefficient for granular energy, [kgm−1s−1]
µi shear viscosity, [kgm−1s−1]
µi,t turbulent shear viscosity, [kgm−1s−1]
νi kinematic viscosity, [m2s−1]
νi,t turbulent kinematic viscosity, [m2s−1]
ρi density, [kgm−3]
σf fluid phase stress tensor,[kgm−1s−2]
σp particle phase stress tensor, [kgm−1s−2]
τd particle relaxation time, [s]

Subscripts390

f fluid
i general index
p particle
x x direction
y y direction
z z direction
i, yy wall normal component w.r.t each phase
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Superscripts391

′′ PA particle velocity fluctuation
′′′ PA fluid velocity fluctuation

Special notation392

〈·〉 Reynolds averaging operator
〈·〉i phase averaging operator associated with phase i
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Table 3: Model characteristics & turbulence variables.

β =
ρpαp
τd

=
3

4

αpαfρfur
dp

Cd

Cd =

{
24
Rep

[
1 + 0.15Re0.287

p

]
if Rep < 1000

0.44 if Rep ≥ 1000

uprms = κp = kp + 3/2Θp

St = τd/τf

τf = kf/εf

e = 1

Πp = 2νptSp : Sp +
2

3
kp∇ · up

Πf = 2νftSf : Sf +
2

3
kf∇ · uf

εf → 2νf
kf
y2

T = max
(
kf
εf
, 6

√
νf
εf

)

L = max
(
k

3/2
f

εf
, Cη

ν
3/4
f

ε
1/4
f

)

Cε1 Cε2 Cµ C1 C2 CL Cη βε Cfµ Cpµ σk σε
1.6 1.9 0.22 1.4 0.3 0.23 70 1 0.09 0.09 1 1

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4: Definition of variables.

κp = kp + 1.5Θp

µf = ρfνf

µft = αfρfνft = αfρfCµv
2
fT

µp = αpρpνp =
2µpdil

(1 + e)g0

[
1 +

4

5
(1 + e)g0αp

]2
+

4

5
α2
pρpdpg0(1 + e)

(Θp

π

)1/2

µpdil =
5
√
π

96
ρpdpΘ

1/2
p

µpt = αpρpνpt = αpρpCµv2
fT

pp = ρpαpΘp + 2(1 + e)ρpα
2
pg0Θp

γ =
12(1− e2)go√

πdp
α2
pρpΘ

3/2
p

κΘ =
2

(1 + e)g0

[
1 +

6

5
(1 + e)g0αp

]2
κΘ,dil + 2α2

pρpdpg0(1 + e)
(Θp

π

) 1
2

κΘ,dil =
75

384

√
πρpdpΘ

1/2
p

g0 =
[
1−

( αp
αp,max

) 1
3
]−1

Sp =
1

2
[∇up + (∇up)T ]− 1

3
∇ · upI

Sf =
1

2
[∇uf + (∇uf )T ]− 1

3
∇ · ufI

kfp = βk
√
kfkp

εfp = βε
√
εfεp

v2
fp = βv

√
v2
fv

2
p
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Table 5: Definition of phase-averaged variables.

αp = 〈αp〉

αf = 〈αf〉

up = 〈u〉p

uf = 〈u〉f

Θp = 〈Θ〉p

kp =
1

2
〈u′′p · u′′p〉p

kf =
1

2
〈u′′′f · u′′′f 〉f

εp =
1

ρpαp
〈σ̄p : ∇u′′p〉

εf =
1

ρfαf
〈σ̄f : ∇u′′′f 〉

σp = µp[∇up + (∇up)T ]− 1

3
µp∇ · upI

σf = µf [∇uf + (∇uf )T ]− 1

3
µf∇ · ufI

u′′p = up − 〈up〉p

qΘ = 〈qΘ〉p =
κΘ

αpρp
∇Θp

u′′′f = uf − 〈uf〉f

〈up〉p = 〈αpup〉/〈αp〉

〈uf〉f = 〈αfuf〉/〈αf〉

u′′pu
′′
p = 〈u′′pu′′p〉p
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