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Abstract

We consider a model of deterministic one-time parameter change in a continuous time autoregressive

model around a deterministic trend function. The exact discrete time analogue model is detailed and

compared to corresponding parameter change models adopted in the discrete time literature. The

relationships between the parameters in the continuous time model and the discrete time analogue

model are also explored. Our results show that the discrete time models used in the literature can

be justified by the corresponding continuous time model, with a only a minor modification needed

for the (most likely) case where the changepoint does not coincide with one of the discrete time

observation points. The implications of our results for a number of extant discrete time models

and testing procedures are discussed.

Keywords: Parameter change, continuous and discrete time, autoregression, trend break, unit

root, persistence change, explosive bubbles.

JEL Classification: C22.

1 Introduction

In recent years a wide variety of models for discrete time series data have been proposed in the

literature which seek to allow for structural change in the parameters of the model. In this paper, for

a relatively simple continuous time first order autoregressive process about a deterministic trend, we

demonstrate the impact of one-time deterministic parameter change in the autoregressive parameter,

the parameters of the deterministic trend, and the scale factor in the continuous time process on its

discrete time analogue.

We derive the discrete time analogue model for the one-time change model in continuous time

and show that this takes a similar form to the corresponding one-time change model specified directly

in discrete time, with the exception that the parameters of the former additionally vary, relative to

∗We are grateful to the Co-Editor, Steve Leybourne, and two anonymous referees for their helpful and constructive
comments on an earlier version. Both authors gratefully acknowledge financial support provided by the Economic and
Social Research Council of the United Kingdom under research grant ES/M01147X/1. Authors’ E-mail Addresses:
mchamb@essex.ac.uk (M. Chambers), robert.taylor@essex.ac.uk (R. Taylor)
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their values in both the pre- and post-break regimes, for the first discrete time observation point after

the changepoint, unless this coincides with one of the discrete time observation points. This is an

important exercise because it is implicitly assumed in the discrete time literature that the underlying

parameter change coincides with a discrete time observation point. This assumption is unlikely to hold

in practice and our set-up allows us to investigate the consequences of this for the discrete time models.

We also explore the relationship between the parameters in the continuous time model and its discrete

time analogue. We show that a one-time change in the autoregressive parameter in the continuous time

model induces breaks in both the autoregressive parameter and the innovation variance parameter in

the discrete time analogue. A one-time change in the autoregressive parameter also induces breaks in

the intercept and trend terms in the single equation discrete time analogue model. The implications

of these results for a number of extant discrete time models and testing procedures including unit root

tests, trend break tests, and bubble detection procedures are discussed.

The remainder of the paper is organised as follows. Section 2 outlines our continuous time model

which allows for a one-time deterministic change in its parameters. In section 3 exact discrete time

representations are derived for both single-equation (Dickey-Fuller) and components forms. The im-

plications of these results for a variety of associated discrete time estimation and testing procedures

are discussed in section 4. Section 5 concludes. Mathematical proofs are provided in the appendix.

2 The One-Time Deterministic Change Continuous Time Model

We consider a scalar random variable, y(t), that satisfies, for 0 < t ≤ T , the following components

representation in continuous time:

y(t) = µ0 + δ0t+ µ11(t>τT ) + δ11(t>τT )t+ z(t), (2.1)

dz(t) =
(
ρ0 + ρ11(t>τT )

)
z(t)dt+

(
σ0 + σ11(t>τT )

)
dB(t), (2.2)

where 1(x) is the indicator function that equals one if x is true and equals zero otherwise, dB(t) is the

increment (with variance dt) in a standard Brownian motion process, 0 < τL ≤ τ ≤ τU < 1 and T

denotes the data span. In this general framework a one-time deterministic change in the values of the

parameters of the model occurs at t = τT which may therefore affect any or all of the deterministic

trend function, the autoregressive parameter and the variance.

Remark 1: The deterministic component specified in (2.1) is the continuous time analogue of the

deterministic component specified in Model C of Perron (1989,p.1364), which allows for a change in

both the slope and level of the series. The continuous time analogue of the deterministic component

specified in Model A of Perron (1989), which allows only for a change in level, obtains setting δ1 = 0

in (2.1). Finally, the continuous time analogue of the deterministic component specified in Model B

of Perron (1989), which allows for a change in the slope of the trend function but with no change

in the underlying level, is given by imposing µ1 ≡ −δ1(τT ) in (2.1), which is equivalent to replacing

δ11(t>τT )t in (2.1) by δ11(t>τT )(t− τT ) and setting µ1 = 0. �
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Remark 2: The formulation in (2.1)-(2.2) allows for a one-time change in any or all of the autore-

gressive, deterministic trend and scale parameters of the continuous time model. The results which

follow generalise in an entirely obvious way if we were to allow for multiple such deterministic changes

in these parameters. Suppose we allow for a finite number, m say, of such changepoints. Here, rather

than the two regimes which occur in the exact discrete time representation given in Theorem 1 we

would now obtain m + 1 such regimes each separated by an interregnum period of the type given in

(3.2) wherever the changepoint did not coincide with a discrete time observation point. This would

therefore allow, for example, for the possibility that the autoregressive parameter displays a break at

a different point in time from a break in the parameters of the deterministic trend function. �

Taking the differential of (2.1), substituting for dz(t) using (2.2) and for z(t) using (2.1), results

in the following stochastic differential equation for y(t):

dy(t) =
{(
δ0 + δ11(t>τT )

)
−
(
ρ0 + ρ11(t>τT )

) [(
µ0 + µ11(t>τT )

)
+
(
δ0 + δ11(t>τT )

)
t
]

+
(
ρ0 + ρ11(t>τT )

)
y(t)

}
dt+

(
σ0 + σ11(t>τT )

)
dB(t), 0 < t ≤ T. (2.3)

The two regimes are given by

dy(t) = [π0 + γ0t+ ρ0y(t)] dt+ σ0dB(t), 0 < t ≤ τT, (2.4)

where π0 := δ0 − ρ0µ0 and γ0 := −ρ0δ0, and

dy(t) = [π1 + γ1t+ α1y(t)] dt+ ν1dB(t), τT < t ≤ T, (2.5)

where π1 := δ0 + δ1 − (ρ0 + ρ1)(µ0 + µ1), γ1 := −(ρ0 + ρ1)(δ0 + δ1), α1 := ρ0 + ρ1 and ν1 := σ0 + σ1.

In what follows we assume that y(t) is a stock variable1 such that the observed sequence is obtained

at equispaced sampling intervals of length 0 < h ≤ 1 resulting in {yth = y(th)}Nt=1. The sample size is

N and Nh = T .2

The continuous time framework allows for the possibility that the changepoint does not coincide

with any observation point th but can lie at some point between two observations at times th − h
and th. While this may be less important for high frequency data it is potentially of value when

observations are made less frequently, say monthly or quarterly or even annually. For example, with

UK quarterly macroeconomic data, a new government that implements different policies following a

general election in the middle of a quarter may affect the model parameters at a point in time which

does not coincide with the observed process. The continuous time model defined in (2.1) and (2.2)

1Qualitatively similar results to those given in this paper for stock variables are also obtained for the case where y(t)
is a flow variable; the only change is that the resulting discrete time analogue models will be driven by errors which follow
moving average, rather than serially uncorrelated, processes. Furthermore the results concerning quasi-GLS detrending
for a stock variable derived in Chambers (2015) would also need appropriate modification for use in unit root testing
problems when the variable is a flow.

2The results which follow are derived for an arbitrary sampling interval length, h. In order to compare the resulting
discrete time models that obtain with those used in the extant discrete time literature, which do not take the sampling
frequency into account, we may simply set h = 1 which leads to the usual sample index t = 1, ..., T .
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allows for such possibilities.

The solution to (2.3), which is unique in the mean square sense,3 is given by

y(t) = exp
{(
ρ0 + ρ11(t>τT )

)
t
}
y(0)

+

∫ t

0
exp

{(
ρ0 + ρ11(t>τT )

)
(t− r)

}{(
δ0 + δ11(t>τT )

)
−
(
ρ0 + ρ11(t>τT )

) [(
µ0 + µ11(t>τT )

)
+
(
δ0 + δ11(t>τT )

)
r
]}
dr

+
(
σ0 + σ11(t>τT )

) ∫ t

0
exp

{(
ρ0 + ρ11(t>τT )

)
(t− r)

}
dB(r), t > 0. (2.6)

This solution enables the dynamic evolution of yth in terms of its past values to be determined. It

is convenient, in what follows, to assume that t0h < τT < t1h = (t0 + 1)h, i.e. that the changepoint

occurs at some point between the observations t0h and t1h where t1 := (t0 + 1). We will, however,

subsequently consider the specific cases where the changepoint coincides with one of these observation

points.

3 Exact Discrete Time Representation

In Theorem 1 we now provide the exact discrete time representation in single equation form for the

observed process.4 The result extends Theorem 2(c) of Bergstrom (1984) to a model with a time trend

as well as a breakpoint and different parameters in the two regimes. Corresponding results for the

corresponding components form representation will subsequently be discussed in Remarks 5 and 6.

Theorem 1 Let y(t) be generated by (2.1) and (2.2). Then observations made at equispaced sampling

intervals of length h satisfy the following exact discrete time representation:

yth = c00 + c01th+ φ0yth−h + η0,th, t = 1, . . . , t0, (3.1)

yth = cb0 + cb1th+ φbyth−h + ηb,th, t = t1, (3.2)

yth = c10 + c11th+ φ1yth−h + η1,th, t = t1 + 1, . . . , N, (3.3)

where the autoregressive coefficients are given by φ0 := exp{ρ0h}, φb := exp{ρ0h+ ρ1(t1h− τT )} and

φ1 := exp{(ρ0+ρ1)h}, the intercepts are given by c00 := hφ0δ0+(1− φ0)µ0, cb0 := hφbδ0+(1− φb)µ0+

µ1−exp{(ρ0+ρ1) (t1h− τT )} (µ1 + δ1τT ), and c10 := hφ1 (δ0 + δ1)+(1− φ1) (µ0 + µ1), and the trend

parameters are given by c01 := (1− φ0) δ0, cb1 := δ1 + (1− φb) δ0 and c11 := (1− φ1) (δ0 + δ1). In

addition, the disturbances, η0,th, η1,th and ηb,t1h, are individually and mutually serially uncorrelated

3The form of the solution follows from a straightforward extension of Theorem 2(a) of Bergstrom (1984), while its
uniqueness in mean square follows by extending Theorem 2(b) of Bergstrom (1984) to the present model.

4The dependence of the parameters of the discrete time representation on the sampling interval h has been suppressed
purely for notational convenience.
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with variances given by, respectively,

ω2
0 := σ20

(exp{2ρ0h} − 1)

2ρ0
, ω2

1 := (σ0 + σ1)
2 (exp{2(ρ0 + ρ1)h} − 1)

2(ρ0 + ρ1)
,

and

ω2
b := σ20 exp{2(ρ0 + ρ1) (t1h− τT )}(exp{2ρ0 (τT − t0h)} − 1)

2ρ0

+(σ0 + σ1)
2 (exp{2(ρ0 + ρ1) (t1h− τT )} − 1)

2(ρ0 + ρ1)
.

�

Remark 3: It is clear from Theorem 1 that a break in the continuous time autoregressive parameter

affects all of the discrete time parameters in (3.1)-(3.3) including the disturbance variance, not just

the discrete time autoregressive parameter. Moreover, a break in the continuous time trend parameter

affects not only the discrete time trend parameter but also the intercept. In contrast, breaks in the

continuous time intercept and scale parameters affect only the discrete time intercept and innovation

variance parameters, respectively. In the interregnum interval that contains the break point, (t0h, t1h],

there is an additional term in the intercept in (3.2), arising from the final term in the expression for

cb0 in Theorem 1, involving the true break location τT . This occurs because the parameters governing

the evolution of the continuous time process change at this point within the sampling interval and

the presence of this additional term captures this feature. Notice that the trend, autoregressive and

innovation variance parameters in the interregnum period also differ from the corresponding values

of those parameters in the pre- and post-break periods. These observations have implications for the

conduct and interpretation of discrete time estimation and inference in cases where parameter breaks

are considered, including trend break estimation and testing, unit root testing, and bubble testing,

which we will discuss further in section 4. �

Remark 4: The model specified in (2.1) and (2.2) does not restrict the sign of the autoregressive

coefficients ρ0 and ρ0 + ρ1. The process y(t) is stationary/integrated/explosive according to whether

these coefficients are negative/zero/positive, respectively. Zero roots in continuous time translate into

unit roots in discrete time as is clearly seen by inspection of φ0, φb and φ1 which are all equal to

unity when ρ0 = ρ1 = 0 (or ρ0 + ρ1 = 0 in the case of φ1). In such cases the intercept (or drift)

coefficients are such that c00 = hδ0, cb0 = hδ0 − δ1τT and c10 = h(δ0 + δ1), while the discrete time

trend parameters are c01 = c11 = 0 and cb1 = δ1. Hence although only a drift term appears in the

pre- and post-break periods, a linear trend term appears during the interregnum period of the form

cb0 + cb1t1h = hδ0 + δ1(t1h − τT ). Observe that this value lies between c00 and c10 in view of the

fact that 0 ≤ t1h − τT ≤ h. Furthermore the variances in the zero/unit root cases can be found by

using the series expansion of exp{x} and noting that (exp{hx} − 1)/x = h + O(h2x); this results in

ω2
0 = σ20h, ω2

b = σ20(τT − t0h) + (σ0 + σ1)
2(t1h − τT ) and ω2

1 = (σ0 + σ1)
2h. Note that, if λ denotes

the proportion of the interregnum period prior to the break taking place, so that τT − t0h = λh and
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t1h − τT = (1 − λ)h, then ω2
b = λω2

0 + (1 − λ)ω2
1. Hence with zero/unit roots the variance in the

interregnum period is a weighted average of the pre- and post-break variances. �

Remark 5: The representations for yth in the pre- and post-break periods, given in (3.1) and (3.3)

respectively, are also consistent with a discrete time components representation. To demonstrate this,

evaluating (2.1) at an observation point in the pre-break period yields

yth = µ0 + δ0th+ zth, t = 1, . . . , t0, (3.4)

where zth = z(th). However, z(th) satisfies (2.2) and so its law of motion is given by

zth = φ0zth−h + η0,th, t = 1, . . . , t0, (3.5)

where φ0 = exp{ρ0h} and η0,th is the disturbance in (3.1). The discrete time components represen-

tation comprises (3.4) and (3.5). That it is consistent with (3.1) can be shown by noting from (3.4)

that zth = yth − µ0 − δ0th and then substituting for zth and its lag in (3.5):

yth − µ0 − δ0th = φ0 [yth−h − µ0 − δ0(th− h)] + η0,th.

Rearranging results in yth = hφ0δ0 + (1 − φ0)µ0 + (1 − φ0)th + φ0yth−h + η0,th, as required. Similar

operations applied to the post-break period yield the discrete time components representation for

t = t1 + 1, . . . , N :

yth = µ0 + µ1 + (δ0 + δ1)th+ zth, (3.6)

zth = φ1zth−h + η1,th; (3.7)

this can be shown to be consistent with the single-equation representation for yth given in (3.3). �

Remark 6: It is also possible to consider a components representation for the interregnum period at

time t1h. In this case the equation for yt1h is obtained from (2.1) directly as

yt1h = µ0 + µ1 + (δ0 + δ1)t1h+ zt1h, (3.8)

where zt1h = z(t1h). It is then a matter of relating zt1h to zt0h; as in the derivation of (3.2) this

can be achieved in two steps, the first of which relates zt1h to z(τT ) over the post-break part of the

interregnum period, the second relating z(τT ) to zt0h using the pre-break parameters. This gives

zt1h = exp{(ρ0 + ρ1)(t1h− τT )}z(τT ) + ηb1,t1h,

z(τT ) = exp{ρ0(τT − t0h)}zt0h + ηb0,τT .

Substituting the second expression in the first results in

zt1h = φbzt0h + ηb,t1h (3.9)
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where φb is defined in Theorem 1 and ηb,t1h = ηb1,t1h + ηb0,τT is the same as in (3.2). The components

representation for the interregnum period is, therefore, given by (3.8) and (3.9). However, the impli-

cation of this representation for the single equation representation of yt1h differs slightly from that

in (3.2). Replacing zt1h = yt1h − (µ0 + µ1) − (δ0 + δ1)t1h and zt0h = yt0h − µ0 − δ0t0h in (3.9) and

rearranging yields

yt1h = c̃b0 + cb1t1h+ φbyt0h + ηb,t1h, (3.10)

which differs from (3.2) in the intercept term where c̃b0 = hφbδ0 + (1− φb)µ0 + µ1. In fact, the

two intercepts are related by cb0 = c̃b0 − exp{(ρ0 + ρ1) (t1h− τT )} (µ1 + δ1τT ). The reason for this

difference lies in the treatment of the break in trend during the interregnum period. In the single

equation approach in Theorem 1 the trend component is present in the formulation when relating yt1h

to y(τT ) and then y(τT ) to yt0h; the additional terms in cb0 arise from the deterministic integrals that

appear in these representations. In the components approach the trend terms are only substituted into

the expression once zt1h has been related to z(τT ) and z(τT ) related to zt0h. The same autoregressive

coefficient and disturbance arise in both approaches but the different treatment of the linear trend

results in a difference in the intercepts. In this sense the components approach does not fully capture

the interaction of the trend break and the temporal aggregation over the interregnum period in the

way that the single equation approach does. Of course, such matters are not a concern in models

formulated directly in discrete time where it is only possible to identify breaks that correspond with

the observation points. The continuous time setting allows these breaks to occur and to be identified

within the sampling interval. �

Remark 7: Following Remark 1 it is also of interest to relate the exact discrete time representation

in Theorem 1 to Models A and B in Perron (1989). The pre-break representation is unchanged but

there are some differences that arise in the interregnum and post-break periods, as follows:

Model A (δ1 = 0): cb0 := hφbδ0 + (1− φb)µ0 − (exp{(ρ0 + ρ1) (t1h− τT )} − 1)µ1,

c10 := hφ1δ0 + (1− φ1) (µ0 + µ1) ,

cb1 := (1− φb) δ0, c11 := (1− φ1) δ0.
Model B (µ1 = −δ1τT ): cb0 := hφbδ0 + (1− φb)µ0 − δ1τT,

c10 := hφ1 (δ0 + δ1) + (1− φ1) (µ0 − δ1τT ) .

The trend coefficients, cb1 and c11, remain unchanged in Model B, as do all the discrete time variances

in both models. �

Theorem 1 contains an exact discrete time representation in the most general framework where a

break occurs within a sampling interval. It is important to demonstrate that it is also valid in the

case where no break occurs and in situations where the break location coincides with one of the end

points of the affected sampling interval i.e. at t0h or at t1h. We deal with these special cases in turn:

No break: this occurs when µ1 = δ1 = ρ1 = σ1 = 0. It is immediate from the definitions that, in

this case, φ1 = φ0, c10 = c00, c11 = c01 and ω2
1 = ω2

0, and so (3.1) and (3.3) are equivalent. Turning to

(3.2), it is also clear that φb = φ0, cb0 = c00, cb1 = c01 and ω2
b = ω2

0, hence (3.2) is equivalent to (3.1)
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as required. This model then corresponds to that considered in Theorem 2 of Bergstrom (1984) but

with the addition of a time trend.

Break at t0h: in this case, τT = t0h, and so the break occurs at the beginning of the break

period. The pre-break equation, (3.1), continuous to hold, as does the post-break equation, (3.3),

and so we need to demonstrate that (3.2) is equivalent to (3.3) in this case. We begin by noting that

t1h− τT = t1h− t0h = h and so φb = φ1 follows immediately. The intercept in this case is then

cb0 = hφ1δ0 + (1− φ1)µ0 + (1− φ1)µ1 − φ1δ1t0h

= hφ1 (δ0 + δ1) + (1− φ1) (µ0 + µ1)− φ1δ1t1h = c10 − φ1δ1t1h

(using t0h = t1h−h) while the trend coefficient is cb1 = δ1+(1−φ1)δ0. Combining the two terms results

in cb0 + cb1t1h = c10−φ1δ1t1h+ (δ1 + (1− φ1)δ0) t1h = c10 + c11t1h, as required. It is straightforward

to show that ω2
b = ω2

1 which demonstrates that (3.2) is equivalent to (3.3).

Break at t1h: here, τT = t1h and the break occurs at the end of the break period. The pre- and post-

break equations, (3.1) and (3.3), respectively, continue to hold, and so in this case we need to establish

that (3.2) is equivalent to (3.1). We note that t1h−τT = 0 and τT−t0h = h and it is straightforward to

see that φb = φ0. The intercept becomes cb0 = hφ0δ0+(1− φ0)µ0−δ1t1h = c00−δ1t1h, while the trend

coefficient is cb1 = δ1+(1− φ0) δ0. Combining yields cb0+cb1t1h = c00−δ1t1h+(δ1 + (1− φ0) δ0) t1h =

c00 + c01t1h, while it also holds that ω2
b = ω2

0, as required.

4 Some Implications for Methods in Discrete Time

The results in section 3 have important implications for a number of widely used modelling and

testing procedures performed on discrete time data. In particular, those relating to unit root tests

which allow for breaks in the deterministic trend function and the related issue of robust trend break

testing and associated trend break fraction estimation, and the recent literatures relating to change in

the autoregressive parameter, most notably tests and detection and dating procedures for persistence

change in macroeconomic data and for rational explosive bubbles in financial data.

4.1 Methods Relating to Trend Breaks

Perron (1989) shows that an unmodelled broken intercept and/or trend in the data renders standard

unit root tests non-similar and heavily biases these tests towards non-rejection of the unit root null

when applied to stochastically stationary series. For a known break date in discrete time, Perron

(1989) shows that these deficiencies can be resolved using a two-step procedure whereby the levels

data are appropriately detrended in the first step. For Models A, B and C of Perron (1989) this

entails running, in the second step, an augmented Dickey-Fuller [ADF] test on the residuals from

the OLS regression of the observed data yt, t = 1, ..., T , onto Zit(t0), i ∈ {A,B,C}, where Zit(t0) is

the set of deterministic regressors implied by either: Model A, ZAt (t0) := {1, t, 1(t>t0)}; Model B,

8



ZBt (t0) := {1, t, 1(t>t0)(t − t0)}; Model C, ZCt (t0) := {1, t, 1(t>t0) 1(t>t0)t}.5 Quasi-GLS detrended

analogues of this approach are developed in Perron and Rodŕıguez (2003). Here the first-step is

conducted using quasi-GLS, rather than OLS, detrending.

Specialising our results in Theorem 1 and related results in Remarks 5, 6 and 7 to the case

where only the intercept and/or trend coefficients can display structural change and setting h = 1,

as in footnote 3, it is clear from a comparison with the corresponding discrete time models in Perron

(1989,p.1364), inter alia, that the two-step approaches developed in the discrete time literature remain

appropriate for data obtained by discrete time sampling from the continuous time model in (2.1)-(2.2).

This is because although in the single equation representation given in Theorem 1 the interregnum

observation at t = t1 in (3.2) will have different parameter values on the intercept and trend terms

from those which apply in either (3.1) or (3.3) (excepting the case where the changepoint coincides

with t0 or t1), this is not the case in the components form discussed in Remarks 5 and 6.

Where the break date occurs at an unknown point in discrete time, the approaches outlined above

have been extended in two separate ways. The first proposed in, inter alia, Zivot and Andrews (1992),

performs the approach outlined in Perron (1989) for all possible break dates within a pre-defined set

of dates and forms a unit root test based on the most negative of the resulting set of ADF statistics.

In contrast to the two-step approach of Perron (1989), however, Zivot and Andrews (1992) include

the deterministic variables directly in the ADF regression. As (3.2) shows, this is not appropriate

for data obtained by discrete time sampling from (2.1)-(2.2) (unless the breakpoint coincides with an

observation point) and the impulse dummy 1(t=t0+1) should be included in the ADF regression.

In the second approach the unknown location of the break in the deterministic trend function is first

estimated. An obvious estimator, discussed in Perron and Zhu (2005) and Kim and Perron (2009), is

the levels estimator obtained as the location which minimises the sum of squared residuals (SSR) from

the OLS regression of yt onto either ZAt (s), ZBt (s) or ZCt (s), according to which of Models A, B and

C is specified, taken over the set of possible break dates s ∈ {tL, tL + 1, ...., tU}, such that tL := bπT c
and tU := T − bπT c, with π ∈ (0, 1) a user-defined trimming parameter and b·c denoting the integer

part of its argument. The corresponding quasi-GLS estimator is considered in Carrion-i-Silvestre et

al. (2009). For Model C, a first difference estimator of the trend break location can also be used by

estimating the location of a level break in the first differences of the data. The foregoing estimators

are all based on static estimation. An alternative estimator, originally proposed in Hatanaka and

Yamada (1999) and discussed further in Kim and Perron (1998), minimises the SSR from the dynamic

OLS regression of yt onto either yt−1, Z
i
t(s) and 1(t=s+1) for i ∈ {A,C} or onto yt−1, Z

i
t(s), 1(t=s+1)

and 1(t≥s) for i = B. In each case, one then proceeds as above but using the estimated break date in

place of the true break date.6 It should again be clear that the estimators based on static regressions

all remain appropriate for data obtained by discrete time sampling from the continuous time model in

5In the case of Models A and C, in order to obtain ADF tests which are invariant to any serial correlation present in
the driving shocks, Vogelsang and Perron (1989) show that the impulse dummy variable 1(t=t0+1) (and, where the ADF
regression contains p lagged dependent variables, p lags of this impulse dummy) also needs to be included in the ADF
regression. When using GLS detrending the impulse dummy 1(t=t0+1) (and lags thereof) does not need to be included
in the second step ADF regression.

6Albeit for Models B and C, Kim and Perron (2009) show that the OLS levels estimator has to be trimmed around
the estimate of the break date.
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(2.1)-(2.2). For the dynamic estimator of Hatanaka and Yamada (1999), the dummy variable 1(t=s+1)

already included in the estimated regression accounts for the interregnum term in (3.2).

Allowing for unnecessary broken intercept and trend variables in the unit root test specification

leads to a loss of power to reject the unit root null when the data are stochastically stationary. As a

consequence, pre-tests for the presence of breaks in the deterministic trend function that are robust

to whether the series contains an autoregressive unit root or is stochastically stationary have been

proposed; see inter alia, Harvey, Leybourne and Taylor (2007), Perron and Yabu (2009) and Sayginsoy

and Vogelsang (2011). All of these pre-test methods are based on static regressions and so again will

remain valid as formulated for data obtained by discrete time sampling from (2.1)-(2.2).

Finally, if we also allow the scale factor in (2.2) to display a one-time break then provided the

heteroskedasticity-robust wild bootstrap implementations of the foregoing unit root test procedures,

discussed in, for example, Cavaliere et al. (2011), are employed then these will remain valid without

alteration for data obtained by discrete time sampling from (2.1)-(2.2). The large sample properties

of the break fraction estimators and trend break pre-tests outlined above are unaffected.

4.2 Methods Relating to Breaks in the Autoregressive Parameter

Models allowing for deterministic changes in the autoregressive parameter have proved empirically

useful in both applied macroeconomics where they provide a framework for testing for persistence

change whereby a series admits a unit root in some periods but is mean reverting in other periods,

and in empirical finance where they underlie testing procedures for the presence of rational explosive

bubbles in price data.

A number of the methods proposed in the literature for persistence change testing and for detect-

ing explosive price bubbles have been developed which are based on the same underlying statistical

methodology which derives from the familiar ADF model where the autoregressive coefficient is al-

lowed to display deterministic breaks. The former is typified by, inter alia, Banerjee et al. (1992),

Leybourne et al. (1995) and Leybourne et al. (2007), and the latter by Phillips et al. (2011), Homm

and Breitung (2012), Phillips et al. (2015), and Astill et al. (2017), inter alia. In these approaches a

test is based not on a full sample ADF test statistic but rather on functions of sequences of subsample

ADF statistics. Most commonly these sequences are based on either recursive subsamples, backward

recursive subsamples, rolling subsamples, or rolling-recursive subsamples. In the case of persistence

change, left-tailed tests are based on the smallest sub-sample ADF statistic in the computed sequence

(i.e. the sub-sample ADF statistic which gives most weight to a stationary alternative). For bubble

detection, right-tailed tests are based on the largest sub-sample ADF statistic (i.e. the sub-sample

ADF statistic which gives most weight to an explosive alternative). In the persistence change tests, a

linear trend tends to be allowed for, possibly with a level and/or trend break, while in the explosive

bubbles literature an intercept is usually deemed sufficient.

It is clear from our results in Theorem 1 and Remarks 5 and 6 that, even without a one-time level

or trend break, the coefficients on the interregnum term in (3.2) will differ from those in (3.1) and

(3.3) in cases where the autoregressive parameter displays a one-time break that does not coincide
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with an observation point.7 As with the discussion in section 4.1, an implication of this is that for

data obtained by discrete time sampling from the continuous time model in (2.1)-(2.2) the subsample

ADF tests should be detrended (either by OLS or quasi-GLS) in levels (for the relevant subsample)

rather than by including the deterministic regressors directly into the subsample ADF regression. The

former is indeed done by Leybourne et al. (1995) and Leybourne et al. (2007) in the approaches

they propose, but the latter is done by Banerjee et al. (1992), Phillips et al. (2011), Phillips et al.

(2015) and Astill et al. (2017). Additionally, because the innovation variance differs across (3.1),

(3.2) and (3.3) when either the autoregressive parameter or the scale factor in (2.3) displays a break,

wild bootstrap implementations of the foregoing tests should be employed. Indeed, as Harvey et al.

(2011,p.549) argue “... volatility changes in innovations to price series processes could be induced by

the presence of a speculative bubble, but equally it could be the case that changes in volatility occur

without an explosive bubble period occurring.” For the case of the bubble detection test of Phillips et

al. (2011), wild bootstrap implementations have been developed in Harvey et al. (2016), although like

Phillips et al. (2011) they include the deterministic component in the subsample ADF regressions.

5 Conclusions

We have considered a simple model of deterministic one-time parameter change in a continuous time

autoregressive model around a deterministic trend function. The exact discrete time analogue rep-

resentation for this model was given and compared to extant parameter change models proposed in

the discrete time literature. These were shown to coincide, excepting the observation immediately

following the changepoint when the changepoint does not coincide with one of the discrete time ob-

servation points. The implication of these results for extant discrete time methods relating to models

of one-time parameter change were discussed.

Although the continuous time model we have analysed in this paper is relatively simple, it nonethe-

less provides valuable insights into the properties of discrete time models of parameter change, pro-

viding a theoretical justification for a number of extant models of parameter change and statistical

methods for discrete time data. Similar issues also arise in the temporal aggregation of discrete time

models and so our results (suitably modified) have applicability beyond the temporal aggregation of

continuous time models alone. Additionally, in empirical work using ADF regressions, it may be nec-

essary to use additional lags in the regression to account for the observed serial correlation in the time

series of interest. This can be achieved by considering a higher-order stochastic differential equation –

say of order p – in (2.2), which would result in an autoregression in discrete time of order p. Some care

would need to be taken, however, because, as pointed out by one of the referees, this would typically

lead to p interregnum points, rather than one. It is hoped that the results in this paper will encourage

further research in this area.

7Empirical applications of bubble testing have tended to use monthly price data, so even here it seems, a priori, very
unlikely that the break would happen to occur at an observation point.
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A Appendix

Proof of Theorem 1. For t = 1, . . . , t0, y(t) satisfies

y(t) = exp {ρ0t} y(0) +

∫ t

0
exp {ρ0(t− r)} [µ0 + δ0r] dr + σ0

∫ t

0
exp {ρ0(t− r)} dB(r).

Evaluating at the point th and splitting the integrals over (0, th] into integrals over (0, th − h] and

(th− h, th] we find that yth = c0,th + φ0yth−h + η0,th, where

c0,th =

∫ th

th−h
exp {ρ0(th− r)} [µ0 + δ0r] dr, η0,th = σ0

∫ th

th−h
exp {ρ0(th− r)} dB(r).

By a change of variable c0,th can be written

c0,th =

∫ h

0
exp{ρ0s}[µ0 + δ0(th− s)]ds

=

(∫ h

0
exp{ρ0s}ds

)
µ0 +

(∫ h

0
exp{ρ0s}ds

)
δ0th−

(∫ h

0
exp{ρ0s}sds

)
δ0,

and evaluating these deterministic integrals yields c0,th = c00 + c01th. A similar procedure applies for

t = t1 + 1, . . . , N in which case y(t) satisfies

y(t) = exp {(ρ0 + ρ1)t} y(0) +

∫ t

0
exp {(ρ0 + ρ1)(t− r)} [µ0 + µ1 + (δ0 + δ1)r] dr

+(σ0 + σ1)

∫ t

0
exp {(ρ0 + ρ1)(t− r)} dB(r).

This results in yth = c1,th + φ1yth−h + η1,th, where

c1,th =

∫ th

th−h
exp {(ρ0 + ρ1)(th− r)} [µ0 + µ1 + (δ0 + δ1)r] dr,

η1,th = (σ0 + σ1)

∫ th

th−h
exp {(ρ0 + ρ1)(th− r)} dB(r).

A similar change of variable and evaluation of the deterministic integrals yields c1,th = c10 + c11th.

It remains to determine the equation relating yt1h to yt0h. We begin by relating yt1h to the unob-

served value of the process at the break point, y(τT ); we have, defining α1 = ρ0 + ρ1 for convenience,

yt1h = exp {α1(t1h− τT )} y(τT ) +

∫ t1h

τT
exp {α1(t1h− r)} [µ0 + µ1 + (δ0 + δ1)r] dr

+(σ0 + σ1)

∫ t1h

τT
exp {α1(t1h− r)} dB(r). (A.1)
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Next we relate y(τT ) to the previous observation, yt0h, which yields

y(τT ) = exp {ρ0(τT − t0h)} yt0h +

∫ τT

t0h
exp {ρ0(τT − r)} (µ0 + δ0r) dr

+σ0

∫ τT

t0h
exp {ρ0(τT − r)} dB(r). (A.2)

Substituting (A.2) into (A.1) yields an expression of the form yt1h = cb,t1h + φbyt0h + ηb,t1h, where

cb,t1h =

∫ t1h

τT
exp {α1(t1h− r)} [µ0 + µ1 + (δ0 + δ1)r] dr

+ exp {α1(t1h− τT )}
∫ τT

t0h
exp {ρ0(τT − r)} [µ0 + δ0r] dr,

φb = exp {α1(t1h− τT )} exp {ρ0(τT − t0h)} = exp{ρ0h+ ρ1(t1h− τT )},

ηb,t1h = (σ0 + σ1)

∫ t1h

τT
exp {α1(t1h− r)} dB(r)

+σ0 exp {α1(t1h− τT )}
∫ τT

t0h
exp {ρ0(τT − r)} dB(r).

Evaluation of the deterministic integral defining cb,t1h yields the deterministic terms as required.

Finally, the disturbances are individually and mutually serially uncorrelated as they are defined in

terms of integrals of dB(t) over non-overlapping intervals, while their variance properties follow by

evaluating the relevant integrals. 2
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