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A B S T R A C T 

Perception is a complex, neural mechanism that requires organization and interpretation of input 

meaning and it has been a key topic in medicine, neuroscience and philosophy for centuries. Gestalt 

psychology proposed that the underlying mechanism is a constructive process that depends on both 

input of stimuli and the sensory-motor state of the agent. The Bayesian Brain hypothesis reframed 

it as probabilistic inference of previous beliefs, which are revised to accommodate new 

information. The Predictive Coding Theory proposes that this process is implemented through a 

top-down cascade of cortical predictions of lower level input and the concurrent propagation of a 

bottom-up prediction error aimed at revising higher level expectations. The „Active Inference‟ 

theory explains both perception and action, generalising the prediction error minimisation process. 

In this focused-review we provide a historical overview of the topic and an intuitive approach to the 

new computational models. 
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1. Introduction: the history of perception 

“Nihil est in intellectu quod prius non fuerit in sensu” (De Anima, 388-

322 a.C.) [Nothing is in the intellect which before was not in the senses].  

This sentence, by the philosopher Aristotle, is perhaps the first attempt to 

describe the Perception mechanisms.  

Later, in the Middle Ages, this same hypothesis constituted the foundation 

of the Scholasticism philosophy by Thomas Aquinas (1225-1274). In the 

modern age, Empiricists John Locke, George Berkeley, and David Hume 

believed that the mind is a blank slate (“tabula rasa”) that is able to be 

imprinted by perceptual objects. 

According to this view, perception is a mere collection of data from the 

external world, and no active processes are required from the agent. It is 

worth noticing that the word perception  comes from the Latin word 

precipere, to collect;  however, Helmholtz (1860)[1] distinguished 

sensation, that can be reduced to sensory input, from perception that 

requires computations of the input in order to give them a meaning (or 

recognizing the causes of sensory input).  

 

 

 

 

Another philosophical current, Transcendental Idealism, first 

hypothesized the opposite thesis that the mind creates perceptions for 

itself by means of “innate categories” as exemplified by Kant, “,… if I 

remove the thinking subject, the whole material world must at once vanish 

because it is nothing but a phenomenal appearance in the sensibility of 

ourselves as a subject, and a manner or species of representation” 

(Immanuel Kant, Critique of Pure Reason, 1787).  However, all the 

hypotheses on perception were still lacking empirical evidence until the 

birth of Fechner‟s pioneering studies in the field of psychophysics (1889) 

[2]. The goal of this new empirical science was to investigate the 

relationship between stimulation and sensation, specifically the scaling of 

sensory magnitude (outer psychophysics). In the first half of the 20th 

century, the German school of Gestaltism joined these empirical methods 

with the idea that the brain itself has a generative role in perception. 

Gestalt Psychology (Gestalt, German: configuration, form) stated that 

perception is a constructive process. Based on experimental psychology of 

vision, and especially visual illusions, Gestalt psychologists hypothesized 

that while sensation is made up of every single low level object element, 

the percept, as a whole, depends on the interpretation of input meaning in 

light of previous experiences, emotions, and rewards.  
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An effective, if not overused, example to explain the concept can be found 

in the Kanizsa‟s illusory figures [3], in which distant elements induce the 

emergence of a perceived surface, when no true, luminance difference 

exists to form a complete shape (see figure 1). The neural mechanisms 

underlying this phenomenon is the so-called “intermediate vision” [4]  in 

which an effortless and automatic organization of the visual field occurs 

to generate the perception of a shape.  

 

 

 

Figure 1 - Kanizsa square 

 

2. The uncertainty boundary 

Even if Gestalt psychology is able to narratively explain why we actively 

construct the perception of a triangle when only three pac-men appear in 

front of our eyes, where the triangle category is „pre-built‟ in our brains, it 

cannot explain how we are able to perceive a stable, three dimensional 

reality in a world where objects are constantly overlapped, thus limiting us 

to detect only a small portion of any object. Crucially, this stable 

perception is only gained when a bi-dimensional bitmap is captured in the 

retina, which is limited by the small size of the fovea, thus, unable to 

acquire the whole scene in having to select which information to process. 

Moreover, execution of human action is not always precise as long eye 

movement often presents a successive, corrective saccade. In this 

condition of missing information and uncertain outcome, the brain is 

constantly asked to find the distal cause, the real state of the world, 

underlying its limited perceptions as well as defining and solving the 

problem of selecting the correct corresponding behavioural response.  

This problem can be mathematically modeled as a Markov Decision 

Problem (MDP) with partially observable input (POMDP), in which states 

are not directly observable but have to be inferred from observation [5]  

As it can be easily understood, a neural process disregarding the 

probabilistic nature of interaction can‟t be the basis of perception, whose 

input are stochastic variables (i.e. neural noise in the detection system, 

noticeable in conditions with too much or too little light or distant 

objects).  

 

3. The bayesan brain hypothesis 

The basis of the Bayesian Brain Hypothesis [6] is the idea of perception as 

a process of unconscious probabilistic inference about the cause of the 

incoming neural signals. For example, when we see a movement in a 

wood with our peripheral vision, our Bayesian Brain behaves as a 

probabilistic Inference Machine that represents and updates the spatial 

location not as a set of three coordinates, but as a conditional probability 

density function of the coordinates*. In other words, our perceptual system 

will infer the probability P(m=(x,y,z)|s) that the movement took place at 

different positions m=(x,y,z), considering the observed sensory signal s 

coming from the receptors.  It will also represent other variables of 

interest as part of a more complex distribution e.g. if the cause c of the 

movement was the wind w or a boar b e.g. P(p=(x,y,z),c=w|s). A similar 

probabilistic inference can take place even if we were to observe 

somebody starting to move his hand toward two nearby glasses, in which 

case the brain would infer the probability distribution of position h and 

direction d of the hand as well as identity g of the glass to be grasped (e.g 

left glass l) P(h=(x,y,z), d=(u,v,w),g=l|s) [7]. Note that in all these cases 

the distribution on different variables are connected, e.g. if the left glass is 

full and the right one is empty, the hand is more likely to be approaching 

the left one: 

 

P(h=(x,y,z),d=(u,v,w),g=l|s,l=full,r=empty)/P(p=(x,y,z),d=(u,v,w),c=r|s,l

=full,r=empty)>>P(h=(x,y,z),d=(u,v,w),g=l|s)/P(p=(x,y,z),d=(u,v,w),c=r|

s) 

 

Once additional sensing signals e.g s1 are received, our Bayesian Brain 

uses its probabilistic model of the world to update its estimation on the 

state of the world w or movement position m and to generate predictions. 

This inference will follow the Bayes rule P(m|s1)~P(m)P(s1|m). In this 

case, P(m) would represent the distribution on the position of the 

movement, the belief, before observing s1. Accordingly, P(p) is named 

prior.  The model in this equation is represented by the other factor 

P(s1|p), which is named likelihood, the probability of sensory signals 

given their causes. It intrinsically represents a (probabilistic) prediction of 

the sensory input s1 when it is known that the real position is p.  

This update process can be seen as a an hypotheses comparison process 

[8] . Two hypotheses or values of p1 and p2 will respectively generate 

different predictions or more exactly induce different distributions for s1 

P(s1|p1) and P(s1|p2). The prediction nearer to the observed sensory input 

s0, i.e. has higher value P(s1=s0|p), will favour the corresponding 

hypothesis. Thus, perception can be seen under the metaphor of 

hypothesis comparison, in which the previous likelihood model is inverted 

to infer the posterior probability of the causes, given the sensory data. 

 

 

 

 
* This means that for each object and position in space and orientation 

we assign a weight, or probability, that is the real configuration of the 

object given what has been sensed. Also, the probabilities may be 

connected, e.g the probability of the position of a book is connected to 

the probability of the position of the shelves containing it. 



EUROMEDITERRANEAN BIOMEDICAL JOURNAL 2018,13 (33) 145–149                                                                                                      147 

 

4. Why Does Perception Avoid Prediction Errors?: The 

Free Energy Principle and the Active Inference Theory 

An intuitive manner in which to evaluate the performance of perception is 

by measuring the (relevant) mismatch between expected and actual results 

of an interaction. This obviously also covers the simple case of passive 

observation, interaction with „no-action‟, with the mismatch between 

predicted and actual evolution of the environment without the agent 

intervention. When this intuition is followed, the aforementioned way of 

updating hypotheses and changing beliefs is optimal. Perception also 

requires adaptation and the same approach is at the base of different 

mechanisms of self-organization which can be seen as improvement of 

performance in changing and diverse environments.  

This intuition is at the base of many formal measures of (perception) 

performance adopted across different fields that can be intuitively 

described in terms of (weighted) prediction error, which can be 

formalized as the difference between a sensory input and a prediction [9] . 

Why does the prediction error need to be weighted? 

Remembering the condition of uncertainty in which the brain operates, the 

formally correct way of evaluating the prediction error should consider 

how confident the agent was in its predictions both in taking action and 

when updating its beliefs.  

Let‟s consider the condition when an agent is betting with an unfair coin 

where tails appears 90% of the time. He could bet a different amount of 

money on both sides. The optimal strategy would be to bet on the option 

in proportion to the related confidence. If the confidence reflects the 

environment statistics (coin), on average the agent will not lose any 

money. In this case, the losing option prediction, having only 10% of 

confidence in the wrong result, should produce a minimal update of its 

beliefs, and believe that the tail is slightly more probable than 90%. 

However, with 10% probability that heads will be tossed and a prediction 

error with high confidence will be processed and reduce the confidence in 

the tail result. However, when initial beliefs are wrong the average 

prediction error will be high till when the predictions confidence matches 

with the actual environment statistics after multiple updates. Minimization 

of prediction error translates in estimation of the posterior distribution in 

Bayesian statistics. 

However, estimation of the posterior distribution easily becomes 

intractable and any physical system must adopt an approximation. 

Variational Bayes is an approximation adopted in Statistical Physics, 

Machine Learning, Artificial Intelligence and recently in Computational 

Neuroscience which selects the approximating „variational‟ posterior from 

a limited family of distributions, i.e. the recognition density, that has the 

minimum distance from the actual posterior.  

 

 

 

 

 

 

 

 

To compute this distance, it relies on a function named „variational free 

energy†‟ that is a non negative quantity easier to compute and provides an 

upper bound (is always greater than) to the distance between a target and a 

proposal distribution ‡ . Another important feature of variational free 

energy is that it is an upper bound of the surprise of sensory input. 

Minimising free energy can thus be connected to minising, or better 

bounding, entropy of the input signal, which under some assumptions is 

the average of the surprise. 

This point is particularly interesting. In fact, the relationship between 

entropy and organism behaviour goes back to Shoeringer [11], who wrote 

in his book „ What Is Life? The Physical Aspect of the Living Cell‟ 

observing that living creatures are not only extremely complex and 

organised, but also spontaneously spread and that they replicate these 

conditions generating a continuous minimisation of entropy § . Also, 

evolution has been seen as a mechanism of complexity increase and 

entropy decrease. Apart from the connection between entropy and 

organisms, as extremely complex and self-organising systems, a more 

important point may be that the connection comes from the homeostatic 

imperative for living organisms to resist external perturbations and keep 

their state within a limited set of desired conditions (e.g. body 

temperature). In statistical terms this means that organisms aim at keeping 

their own state predictable or, in other words, with limited entropy (e.g. 

the set of body temperature allowed is limited, thus limiting entropy). 

These connections lead to the basic intuition of Active Inference, that not 

only perception and learning are aimed at minimizing free-energy, but the 

same is also true for action. According to Active Inference, or the 

minimum free energy principle, actions are realised to keep the organism 

in a predictable condition given its priors. This is connected to the recent 

development in Artificial Intelligence and Machine Learning showing the 

equivalence between planning and inference problems [13],[14]. This 

unifies perception and the control process under the same variational 

inference formulation which can then rely on the same neural machinery 

for implementation.  

Under this assumption, understanding the brain becomes understanding 

the form of the hierarchical priors involved in the definition of the system. 

These are now particularly important. These priors not only encode the 

objective structure of the world, as it is often assumed in robotics, they 

 

 

 
† The name free energy come from the origin of the variational methods 

in statistical physics where the distribution of interest had form for 

which the expression of the variational free energy was similar to that of 

thermodynamics with an energy minus entropy [10] .  
‡ Note that while the Active Inference proposal initially suggested the 

explicit use of variational bayes inference and proposed that the cortex, 

and the brain in general, is performing it through a specific type of 

variational bayes message passing, any bayesian inference 

(approximation) can be seen as minimising variational free energy. 
§  This idea may seem to contradict the second  principle of 

thermodynamics, stating that entropy in isolated systems always 

increases, however organisms are open systems continuously 

exchanging energy and mass with the surrounding environment. 

Decrease of entropy in an organism takes place at the cost of energy 

(e.g. sunlight) and external entropy. While entropy decreases in other 

non isolated systems, such as crystals, the idea of characterising life as a 

process that minimises entropy and obtains higher levels of complexity 

was also at the base for NASA projects aimed at detecting life in outside 

Earth. [12]  
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now include beliefs on the states that the agent is supposed to stay in, e.g. 

staying at the right temperature, not being hungry or bleeding, etc. Under 

this assumption, the brain has to maximize only one common currency, 

variational free-energy, with which it can evaluate, compare and choose 

between all the different possible drives (sex, fear, hanger, etc). To 

understand the importance of using a free-energy formulation and 

discovering the actual form of the priors, a specific example can be of 

interest: the Dark Room - a condition where the agent may forever 

observe the same input. This would reduce entropy to zero. However, if 

the priors of the agent do not represent this condition, if his generative 

model does not cover it, the surprise will still be high and the free energy 

will not be minimized. On the other hand, reaching a position with high 

probability according to the agent model, where the variational 

approximation is close to the posterior, would decrease free-energy.  

How can our Bayesian Brain avoid these surprising states considering that 

information comes from the outside world?  

The Free Energy crucially depends on both sensory states (which are 

related to external world) and the recognition density (i.e. internal 

Bayesian models, which is determined by the internal representation 

capability of the agent and his sensorimotor trajectory). So the brain must 

manipulate both, by acting on sensory states, for example by selectively 

sampling only data that are predicted (and maximizing the probability of 

desired observations),  and on recognition density by changing conditional 

expectations about what is sampled.  See figure 2 for a mathematical 

explanation. 

However, it must be considered that any behaviour must be optimized in 

order to be efficient. Optimization can be performed by both reducing 

expected costs or maximizing expected reward. 

Coming back to the view of Perception as POMDP, it should be noticed 

that different approaches to the latter have been proposed in the field of 

Game theory, Machine learning, and Economics, as an „optimal control‟ 

problem (i.e. the mathematical treatment of acting to minimise expected 

costs).  

 

 

Figure 2 - diagram explaining the free energy principle (Modified 

from Friston K, 2010)[26] 

 

 

5. The Neurobiological Implementation and Predictive 

Coding 

Models have proposed that this idea can be at the base of neural response 

as well as connectivity adaptation. A relevant example of the power of 

prediction error minimization in explaining both perception and its 

adaptation in the brain was presented by Rao and Ballard in 1999 [15] as a 

predictive coding neural architecture. Using minimization of prediction 

error to define both neural connectivity and dynamics, they were able to 

simulate several features of „extra classical‟ (see Rao and Ballard 1999 for 

details) response in the visual cortex. This was achieved using a 

hierarchical neural architecture where, consistently with neuroanatomy, 

top-down connections come from high order extrastriate cortex trying to 

predict neural activity in lower order areas, while bottom-up stream codes 

for prediction errors (unpredictable and thus salient information). These 

prediction errors lead to modify expectations in higher levels in order to 

generate better explanations for lower levels.  Other similar examples, 

based on information theory and machine learning, comprise the work of 

Mumford [16] and that of Dayan and colleagues [17].  It is also worth 

noting that animal learning theory points to a similar mechanism, while 

viewing dopamine neurons as coders of reward prediction error [18]. 

Moreover the same mechanism has been proposed as the basis of 

addiction behaviour [19]. Friston instead suggests that dopamine encodes 

how important the observed prediction error signal is [20]. Going back to 

the example of the bet, the dopamine signal would be higher when the 

confidence in the observation reward, or punishment, was high, but the 

outcome falsifies the expectation. In this theory the final cost, which also 

refers to actions, is absorbed into prior beliefs about future states that 

inform posterior beliefs about future control. 

An interesting application of this approach in Neuroscience selects the 

variational density from the family of hierarchical gaussian distributions. 

This family has strong representational power, i.e. can describe many 

phenomena, and has several analytical properties that made it useful in 

other fields (as an example, brain imaging [21]). Like in Rao and 

Ballard‟s work (1999), they also have a neural implementation which is 

quite intuitive. The Gaussian family can be described with two quantities: 

the mean and variance. Thus, these are the two top-down signals that must 

be encoded in the neural architecture.  

Consistently with anatomical and functional evidences that show 

extensive bidirectional (top-down and bottom-up) connections among 

cortical nodes [22], on this basis, the Hierarchical** Bayesian Network 

(HBN) hypothesis [23] states that in order to minimize prediction error 

each node can modify the state of the generative model (i.e. updates it) 

until the sampled input match the model and the most likely causes of 

sensory input have been identified. These quantities are putatively 

embodied by neural network as  associative plasticity.  Moreover, the 

system must also encode another quantity, the uncertainty itself (for 

example, the amplitude of random noise in the acquiring system) which at 

neural level could be encoded as post-synaptic gain [24].  

 

 

 

 
** In hierarchical form, the output of one level acts as an input to the 

next.  
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The HBN model has been proven to fit in with many neurophysiological 

data, such as associative plasticity, mismatch negativity, P300 in EEG and 

behavioural data like priming [21]. Moreover, it has been used as a model 

for illusory phenomena, like mirror-touch synaesthesia [25].  
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