
UNIVERSITY OF ESSEX

DOCTORAL THESIS

Artificial intelligence in co-operative games

with partial observability

Author:

Piers R. Williams

Supervisors:

Dr Michael Fairbank,

Dr Simon M. Lucas

A thesis submitted for the degree of

Doctor of Philosophy

in the

School of Computer Science and Electronic Engineering

6th February 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/187116025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.essex.ac.uk
https://www1.essex.ac.uk/csee/

iii

UNIVERSITY OF ESSEX

Abstract

Faculty of Science and Health

School of Computer Science and Electronic Engineering

Doctor of Philosophy

Artificial intelligence in co-operative games with partial observability

by Piers R. Williams

This thesis investigates Artificial Intelligence in co-operative games that feature Partial Ob-

servability. Most video games feature a combination of both co-operation, as well as Partial

Observability. Co-operative games are games that feature a team of at least two agents,

that must achieve a shared goal of some kind. Partial Observability is the restriction of

how much of an environment that an agent can observe.

The research performed in this thesis examines the challenge of creating Artificial Intel-

ligence for co-operative games that feature Partial Observability. The main contributions

are that Monte-Carlo Tree Search outperforms Genetic Algorithm based agents in solv-

ing co-operative problems without communication, the creation of a co-operative Partial

Observability competition promoting Artificial Intelligence research as well as an investig-

ation of the effect of varying Partial Observability to Artificial Intelligence, and finally the

creation of a high performing Monte-Carlo Tree Search agent for the game Hanabi that uses

agent modelling to rationalise about other players.

HTTP://WWW.ESSEX.AC.UK
https://www1.essex.ac.uk/sh/
https://www1.essex.ac.uk/csee/

v

Acknowledgements
This is my opportunity to say thank you to the endless people behind the scenes supporting

me through my research as well as more directly assisting and collaborating on it.

I of course need to thank my supervisors: Dr Michael Fairbank, Dr Simon Lucas, and

Dr Diego Perez-Liebana. Without their guidance, time, and assistance none of this work

would have been possible. Special mention to my frequent collaborator and colleague

Joseph, for the daily discussions on various topics and strategies that have made this pos-

sible. I would also like to thank both the CSEE department at the University of Essex, and

the IGGI CDT for their support during these past years.

On a more personal note, I would like to thank my fiancé Hannah, who has supported me

throughout. When I went to start my three year undergraduate degree, extended it to a

fourth year, and then bolted on a four year PhD she has been there for me. I would also

like to thank both my own family and Hannah’s family for all the help getting away from

my research to relax.

vii

Contents

Abstract iii

Acknowledgements v

Contents vii

I Introduction and Background 1

1 Introduction 3

1.1 Introduction . 3

1.2 Organisation . 3

1.3 List of Papers . 4

2 Background 7

2.1 Partial Observability . 7

2.1.1 Symmetric or Asymmetric Partial Observability 9

2.2 Co-operation . 10

2.2.1 What does it mean to be Co-operative? 10

2.2.2 When to Co-operate . 13

2.2.3 Co-operative Games . 13

2.3 Communication . 15

2.3.1 Communication in Completely Observable Environments 15

2.3.2 Communication in Partially Observable Environments 17

2.4 Artificial Intelligence Competitions . 17

viii

2.4.1 Robot Soccer World Cup . 18

2.4.2 Robot Rescue Cup . 18

2.4.3 Ms. Pac-Man Vs Ghost Team . 19

2.4.4 Geometry Friends . 19

2.4.5 Multi-Agent Programming Competition 20

2.4.6 Trading Agent Competition . 20

2.4.7 Google AI Challenge . 21

2.4.8 General Video Game AI Competition 22

2.4.9 Showdown AI Competition . 23

2.4.10 microRTS Competition . 23

2.4.11 Visual Doom AI Competition . 24

2.4.12 The 2K BotPrize . 24

2.4.13 Hearthstone AI . 24

2.4.14 Hanabi . 25

2.4.15 StarCraft AI . 25

2.5 General Game Playing . 25

2.5.1 METAGAMER . 25

2.5.2 2005 - Stanford University . 26

2.5.3 General Video Game AI Competition 27

2.5.4 Alpha Zero . 27

2.6 Game Design . 27

3 Algorithms 31

3.1 Monte-Carlo Tree Search . 31

3.1.1 Selection Policy . 32

3.1.2 Default Policy . 34

3.1.3 Partially Observable Games . 35

3.1.4 Parallelisation . 36

3.1.5 Learning Domain Knowledge . 38

3.2 Genetic Algorithms . 39

ix

3.2.1 Fitness Calculation . 39

3.2.2 Candidate Solution Representation . 40

3.2.3 Genetic Operators . 40

4 Games in this Thesis 43

4.1 Tiny Co-op . 44

4.1.1 Objects . 45

4.1.2 Movement . 45

4.1.3 Maps . 46

4.2 Ms. Pac-Man Vs Ghosts . 49

4.2.1 Partial Observability . 50

4.2.2 Messaging . 51

4.2.3 Prior Research . 52

4.3 Hanabi . 57

4.3.1 Previous Research . 59

II Artificial intelligence in co-operative games with partial observability 61

5 Monte-Carlo Tree Search Applied to Co-operative Problems 63

5.1 Introduction . 64

5.2 Tiny Co-op Domain . 65

5.3 AI Agents . 65

5.3.1 Random . 65

5.3.2 MCTS . 65

5.3.3 Genetic Algorithms . 67

5.4 The Experiment . 69

5.5 Results . 69

5.6 Discussion . 74

5.6.1 Random . 74

5.6.2 MCTS . 74

x

5.6.3 GA . 75

5.6.4 The Maps . 75

5.7 Conclusions . 76

6 The Ms. Pac-Man Vs Ghost Team Competition 77

6.1 Introduction . 78

6.2 The Competition . 78

6.2.1 Sample Controllers for Ms. Pac–Man vs Ghosts 79

6.2.2 Sample Controller Experiment . 83

6.2.3 Sample Controller Results . 83

6.2.4 Competition Tracks . 84

6.2.5 Entrant Ranking . 84

6.3 Competition Results . 84

6.3.1 2016 . 85

6.3.2 2017 . 85

6.3.3 2018 . 86

6.4 External Research . 86

6.5 Conclusions . 87

7 Evaluating and Modelling Hanabi-Playing Agents 89

7.1 Introduction . 90

7.2 AI . 91

7.2.1 Production Rule Agents . 91

7.2.2 Other Agents . 97

7.3 Method . 99

7.3.1 Validation . 99

7.3.2 Full Test . 99

7.4 Results . 101

7.4.1 Validation . 101

7.4.2 Full Test . 102

xi

7.5 Discussion . 104

7.6 Conclusion . 106

8 Varying Partial Observability 107

8.1 Introduction . 107

8.2 Game Environment . 109

8.3 Artificial-Intelligence Experiments . 110

8.3.1 Results . 112

8.3.2 Discussion . 112

8.4 Human-Participation Experiments . 117

8.4.1 Setup . 118

8.4.2 Results . 120

8.4.3 Discussion . 122

8.5 Conclusions . 125

III Conclusions 127

9 Conclusions 129

9.1 Conclusions . 129

9.2 Future Work . 130

Bibliography 133

1

Part I

Introduction and Background

3

Chapter 1

Introduction

1.1 Introduction

The field of research into Artificial Intelligence (AI), and in particular AI in games has been

growing into an important field with conferences like CIG1 and journals like ToG2 leading

the charge. Games provide interesting benchmarks to develop AI algorithms but are in-

creasingly an important consumer of AI with the games industry beginning to recognise

the need for more intelligent Non-Player Characters (NPCs) in their virtual environments.

There are a wide variety of different types of games, each providing its own unique chal-

lenge to AI. Not all games provide full access to the environment, creating interest and dif-

ficulty by hiding particular pieces of information from the player or players. Other types of

game expect teamwork from the players rather then being solely adversarial. Some games

use both restrictions, and it is this type of game that this thesis concentrates on.

1.2 Organisation

This thesis is divided into two main parts. Part I introduces the reader to the main ideas

behind the thesis (Chapter 1) as well as introducing the background research (Chapter 2)

and explanations of various things discussed in the thesis (Chapters 3 and 4).
1IEEE conference on Computational Intelligence in Games
2IEEE Transactions on Games

4 Chapter 1. Introduction

Part II covers the main work done towards this thesis. Chapter 5 discusses the uses of Gen-

eral Game Playing (GGP) AI in a simple co-operative environment. Chapter 6 describes

the re-introduction of the Ms. Pac-Man Vs Ghost Team Competition as a Partial Observ-

ability (PO) co-operative AI competition to stimulate further research in the community.

Chapter 7 describes extensive evaluation of modern research as well as new techniques

in the card game Hanabi which is a PO co-operative game gaining research interest lately.

Chapter 8 details experiments performed with AI agents to investigate the effect of vary-

ing PO on difficulty in Ms. Pac–Man and then investigates two possible games on human

participants to validate the AI results.

1.3 List of Papers

The following list of published or accepted papers contributed towards this thesis. The

contributions they made are explained in bold font.

1. Piers R. Williams, Joseph Walton-Rivers, Diego Perez-Liebana and Simon M. Lucas

(2015). ‘Monte Carlo Tree Search Applied to Co-operative Problems’. In: CEEC’2015

- IEEE Conference on Computer Science and Electronic Engineering. IEEE CEEC. IEEE

Computer Society, pp. 219–224 Comparison of Algorithms and experimental co-

operative domain. Additional authors helped with creation of algorithms, experi-

ment running and paper writing.

2. Piers R Williams, Diego Perez-Liebana and Simon M Lucas (2016). ‘Ms. Pac-Man

Versus Ghost Team CIG 2016 Competition’. In: CIG’2016 - IEEE Conference on Compu-

tational Intelligence and Games. IEEE CIG, pp. 420–427 Introduction and description

of competition including new features to the engine. Introduction of some basic AI

and a comparison of performance between PO and Complete Observability (CO)

techniques.

1.3. List of Papers 5

3. Joseph Walton-Rivers, Piers R Williams, Richard Bartle, Diego Perez-Liebana and Si-

mon M Lucas (2017). ‘Evaluating and Modelling Hanabi-Playing Agents’. In: Con-

gress on Evolutionary Computation, 2017. CEC’17. IEEE Conference On. IEEE, pp. 1382–

1389 Introduction to Hanabi, including description of open source game engine

and evaluation of previous research into the game. Introduction of our own agents,

including an Information-Set Monte-Carlo Tree Search (IS-MCTS) agent that used

models of the other agents to predict what they would do. My main contributions

were to the general development of the framework and agents as well as contrib-

uting to paper writing.

7

Chapter 2

Background

This chapter provides a thorough background introduction to previous literature in sev-

eral areas. Section 2.1 introduces the reader to the concept of Partial Observability (PO),

Section 2.2 gives an overview of what it really means to be co-operative, while Section 2.3

discusses the effects of communication. Finally Section 2.4 details a number of Artificial

Intelligence (AI) competitions that feature PO or co-operation in them.

2.1 Partial Observability

PO is the impairment of the ability of an agents to completely observe the world that it

is situated within (Bertoli et al., 2001). There are a great many methods through which

agents can observe the world. Games typically focus on sight limitations in different ways,

as discussed in Table 2.1

The focus on sight within games is largely due to the simplicity with which it can be im-

plemented and the realism that it provides. Sight is also often the primary sense used by

gamers while playing. When there is either too many restrictions to observability or too

few restrictions to observability can spoil a game. Immersion would be broken if there

was too few observability restrictions, such as if a player could see clearly across an entire

map in a First-Person Shooter (FPS). Poker would be significantly less interesting with too

8 Chapter 2. Background

TABLE 2.1: Examples of PO in games.

First-Person Shooter The field of view presented to the player naturally restricts sight.
Often a shorter range “minimap” is provided with restrictions
that can vary from game to game.

Real-Time Strategy The game often calculates what all of the player’s units can see,
and then obscures the rest.

Platform Games The game often only presents a viewport with the character
within it, and progression through the game moves the view-
port.

Role-Playing Game The field of view is often restricted to whatever the character
could potentially see.

Horror The view is often dark and poorly lit. Enemies will purposefully
hide from the player until ready and combined with ominous
sound effects more can be said with the unseen than the seen.

many restrictions to observability, such as if the player could not see their own cards either,

reducing it to a game of chance.

PO can apply to more than just the visual sense that players use to observe the game.

Players are typically capable of hearing things within the game, and on some controllers

receive limited tactile feedback as well. All these things are observations of the game and

are used to enhance the experience for the player. There is also a distinct difference between

PO for human players, and PO for AI agents. AI agents do not have the same senses that

humans do, and often interact with the game through a defined Application Programming

Interface (API) instead. Limiting the information available through the API is PO for AI

agents. AI agents may have identical or different PO restrictions placed upon them by the

game in comparison to human players.

If games are created that make better use of partial observability and co-operation through

communication as mechanics, then there will be a higher demand for AI that can handle

this shift. Many games are still sold with single player modes which will require realistic

companion Non-Player Character (NPC) behaviour as well as opposition AI.

Games can be placed on a theoretical scale from No Observability to Full Observability.

For example, traditional Ms. Pac–Man is a fully observable game, while the card game

Poker is much nearer the no observability end of the spectrum. Figure 2.1 shows a number

2.1. Partial Observability 9

No Observability

Iterated Prisoners Dilemma

Tiny Co-op

Battleships

The Resistance

Poker Hanabi Portal 2

Counter Strike: Go

Draughts

Chess

Ms. Pac–Man

Full Observability

FIGURE 2.1: Games placed on a scale from no observability to fully observ-
able.

of possible games on such a scale. The values used for these scales are arbitrary and only

meant to give a rough idea.

If games can be placed on this scale, it stands to reason that the many possible variations of

a single game can also be placed on this scale. The competition for Ms. Pac–Man Vs Ghost

Team has a number of parameters and settings that alter the amount of information visible

to an agent ranging from full observability to nearly no observability. These are described

in more detail in Section 4.2. Figure 2.2 shows the various possible values for sight lim-

itations on a scale. Line-of-Sight (LOS) refers to a restriction where sight is prevented by

obstacles in the maze. Only the four cardinal directions up to either a distance limit or the

next wall is visible. Forward Facing Line-of-Sight (FF-LOS) refers to a LOS restriction that

only allows forward LOS. Radius refers to a restriction where anything within the distance

limit is visible, causing a circle of observability centred on the player.

2.1.1 Symmetric or Asymmetric Partial Observability

Symmetric PO would be the situation where all players in the game have the same abilities

to make observations as each other. It is not a requirement for this to be the case and

10 Chapter 2. Background

No Observability

FF LOS Low

FF LOS Medium

LOS Low

FF LOS Far

LOS Medium

Radius Low

LOS Far Radius MediumRadius Far

Full Observability

FIGURE 2.2: Combinations of PO mode and sight limit placed on a scale from
no observability to fully observable.

many games alter that either permanently or temporarily. Some FPS games allow players

to choose various perks or upgrades that can alter visibility. Being able to ”sneak" would

remove certain players from the minimap whilst other perks could allow temporary x-ray

vision to add observations.

Careful consideration of how much of an advantage PO gives one side compared to another

is important, for example in Ms. Pac–Man, the ghosts outnumber Ms. Pac–Man four to one.

The balance of PO in Ms. Pac–Man is investigated in more depth in Chapter 8.

2.2 Co-operation

Co-operation is an area of particular interest to a great many researchers. Competitions

in the area are very popular, and some have even reached recognition with the general

populace such as the Sony Robot Dog football. This section will describe what it means to

be co-operative in a general sense as well as computer games and competitions that have

sought to improve co-operative AI in general.

2.2.1 What does it mean to be Co-operative?

Co-operation, as defined in the Oxford English Dictionary at time of writing, is: “The action

of co-operating, i.e. of working together towards the same end, purpose, or effect; joint operation”.

2.2. Co-operation 11

This definition includes both passive co-operation and active co-operation.

Passive Co-operation

Passive co-operation is where agents strive towards the same goal, performing actions with

no respect to each other. These agents are simple to write and feature mostly in computer

games.

Games such as Real-Time Strategy (RTS) typically feature top level commander agents that

can be placed in alliances, though that only influences the list of legitimate targets.

FPS games typically feature a multitude of agents that are in teams opposing or fighting for

the player. Those fighting for the player typically stay close to the player but essentially just

shoot at the enemy players with no regard for the player’s goal. Enemy agents just typically

either hunt the enemy or guard a specific location, shooting at anything that opposes them.

This is passive, due to the lack of communication in their behaviour. Not all FPS games do

this, for example Battlefield 2142 used squads that took commands from the player.

Active Co-operation

Active co-operation is where agents communicate and use joint strategies in order to achieve

a goal or set of goals. Active co-operation can be seen in more advanced computer games

AI such as Empire Earth II (EEII) 1.

EEII was a RTS game that featured the ability for agents to construct battle plans on an

abstracted form of the game map. These plans allowed for co-ordinated manoeuvres and

importantly, the AI agents could understand these plans and act on them.

Portal 2 2 was a computer game released in 2011 that featured simple laboratory experi-

ments that the player had to complete as a technological lab rat. The multiplayer mode

was a major introduction in this game, featuring puzzles that required two test subjects

1Developer: Mad Doc Software, 2005
2Valve, 2011

12 Chapter 2. Background

to solve. Co-operation was a requirement, the puzzles couldn’t be solved alone. Commu-

nication was often needed, as timed switches forced the players to act in a co-ordinated

fashion.

Active Co-operation typically features in on-line modes, where all agents are controlled by

human players. These players were originally provided with textual chat within the game,

though that is often now joined with voice chat to enhance the experience. This allows

co-ordinated strategies, and can greatly improve the quality of play.

The Need for Co-operation

When is co-operation necessary? Co-operation is necessary in a situation where there are a

number of restrictions or constraints that don’t allow a single agent to perform the neces-

sary tasks. Some situations require co-operation from the rules. Nuclear missile controls

are often popularised to require two people with a key each that must be turned at the

same time. This is where a synchronised action is required. Other, less sinister situations

require synchronicity of action. A nut and bolt requires both the nut and bolt to be held

tight, with one or both of them turned. Failure to secure either end will result in the both

parts rotating and the nut not tightening on the bolt.

Games sometimes force players to co-operate, with Portal 2’s multiplayer mode requiring

synchronous activities frequently. One player would need to push a button, and elsewhere

in the game another player would have to react to the button push. One example is where

the button drops a cube that the second player has to jump off of a powered catapult at the

right time to be launched over a void and catch the cube. This is only possible if the second

player enters the catapult during a small window of time after the first player activates the

cube.

2.2. Co-operation 13

2.2.2 When to Co-operate

Co-operation can be considered to occur prior to an event or during the event. One ma-

jor example of prior co-operation is situations where multiple agents communicate and

agree strategy prior to commencing a task. This communication isn’t entirely necessary,

as often software agents will be using identical algorithms which is a form of prior co-

operation. Co-operation without communication can occur when agents have agreed a

strategy between them. This allows them to react to each other’s actions correctly without

explicitly communicating anything between each other. Using the same algorithm can

function as a form of agreed strategy, such as the exponential backoff used to prevent con-

tinued multiple transmissions of data on a network. Co-operation can also occur during an

event which is likely to be more flexible than prior co-operation although arguably more

complex to achieve. Co-operating during the completion of tasks can also have other neg-

atives such as taking valuable time needed to complete the task.

2.2.3 Co-operative Games

There are a great number of games that feature co-operation with the next few sections

covering some of these.

Physical Games and Sports

A huge number of physical sports games feature active co-operation, albeit it is often emer-

gent through communication as opposed to being defined in the rules of the game itself. A

full list is significantly too large to go into detail here, but some basic well known examples

follow.

Footballers often shout basic chat to each other to inform intent or request help, and all

members of the team share the same goal of maximising score difference.

14 Chapter 2. Background

TABLE 2.2: Table of Player types in Pandemic

Dispatcher Has ability to move another player without using an action or can
move any player a large distance as an action.

Medic Can treat all cubes in a city in a single action, or take no action if
the cure has been discovered.

Scientist Needs less cards of the same colour to discover a cure.
Researcher Can exchange cards with a player when in same city as them.
Operations Expert Can store a discarded card as a back up plan for use later.

Badminton is a sport that can be played as “doubles” and often the two players will have

strategies about which areas of the court they occupy or target, and will communicate to

stop both or neither player going for the shuttlecock.

Board and Card Games

Board and Card games are known for having great social interactions even with completely

competitive games. Some of these games are co-operative however.

Hanabi Hanabi is a game with custom cards that features a set of cards depicting fire-

works. There are five possible colours and numbers from 1-5 for each card. The aim of

the game is to play the cards in order for all 5 colours. The total score is the sum of the

maximum cards played for each colour. Players are able to see each others cards, but not

their own cards. The game of Hanabi and existing literature are described in more depth in

Section 4.3 and Chapter 7 respectively

Pandemic Pandemic is a board game for 2-4 players based around the premise of 4 dis-

eases breaking out across the world. The player’s goal is to stop as many of the diseases as

they can. Each player has a different role that is randomly selected as shown in Table 2.2.

Pandemic differs from Hanabi as the player’s differing capabilities mean they have to co-

operate in certain ways based on their role. This is rather different to Hanabi’s co-operation

model where all players have the same capabilities as each other.

2.3. Communication 15

TABLE 2.3: Table of some puzzle elements from Portal 2

Name Description

Door A door that blocks passage. Can be triggered to open by
a variety of items connected to it.

Heavy Duty Super Button A button that requires something heavy to activate
whatever is connected to it

Weighted Companion Cube Something heavy that stays put when left unattended

Video Games

Video games often contain co-operation as mentioned above though it is rarely forced upon

the players.

Portal 2 Portal 2 built on the success of the original Portal by adding a new campaign and

crucially a two player experience. It is this two player mode that is particularly interesting.

The simple premise of Portal games are that the player is stuck in test mazes designed to

test increasing numbers of puzzle elements. The puzzle elements vary in operation and a

few key items are described in Table 2.3.

2.3 Communication

Communication is important when considering the world as a PO environment and more

than one co-operative agent is present.

2.3.1 Communication in Completely Observable Environments

Communication can be useful, or even necessary in a Complete Observability (CO) envir-

onment. Consider two agents: A and B. A and B can see the entire environment that they

are in. They cannot, however, observe each other’s internal state. This information can,

however, be voluntarily communicated between them. Suppose that the agents are not ho-

mogeneous in capabilities, but have different programming allowing mastery of different

16 Chapter 2. Background

tasks. This information could be vital in organising which agent performs which actions in

the environment.

Internal state can be predicted from external observations, especially if you know how the

other agent will behave in a given situation, or have a reasonably accurate model of the

other agent.

People driving can predict what other drivers will due because we share the same strategy

for driving. For example, two drivers approaching a mini-roundabout know which driver

has to give way and which driver is allowed to continue un-interrupted.

In contradiction, two humans approaching each other in the street have no pre-agreed

strategy for who gives way, often leading to the irritating circumstances shown in Table 2.4.

In this case, we consider four possible actions for each human: turning left, turning right,

stopping, and continuing straight. Humans rarely stop, it impedes progress, so typically

will alter course either to the left or to the right. Optimally each human needs to choose

the same direction in order to avoid each other. There is no pre-agreed direction to choose

though, leaving the risk of collision at 50% with just these two options. A single human

continuing, with the other human avoiding gives slightly better odds, but again no pre-

agreed rules exist for this.

This problem is often solved by a third party, such as in busy pedestrian areas. The London

underground is a good example of this. On most escalators there are signs indicating that

people wishing to stand still are to stand on the right, allowing a space on the left for

people that wish to walk up or down the escalator. Step sections in busy stations will also

often have a railing across the middle and indicators for which side is up, and which side

is down to reduce cross-flow.

Problems cannot always be solved with pre-arranged rules however. Sometimes agents

will find themselves in situations with unknown co-operative allies and a task to solve. In

these cases, it can be more advantageous to communicate with each other.

2.4. Artificial Intelligence Competitions 17

TABLE 2.4: Table showing possible interactions between two people on a
collision course. When both people stop, the situation is simply paused until

at least one person does something else.

First
Second

Avoids Left Avoids Right Stops Continues

Avoids Left Avoid Collide Avoid Avoid
Avoids Right Collide Avoid Avoid Avoid
Stops Avoid Avoid Paused Collide
Continues Avoid Avoid Collide Collide

2.3.2 Communication in Partially Observable Environments

Communication allows for the sharing of knowledge between two agents, increasing the

view of a PO environment and reducing the restriction on them. This makes it possible for

an agent to be aware of:

• Their own internal state

• The world around them

• Other agent’s internal state with a communication delay

• The world around other agents with a communication delay

These agents can also obtain the same benefits that CO agents can from communication,

although it may be less effective within a PO environment.

The primary benefit in a PO environment is the sharing of the world around each agent to

every other agent. Sharing this information greatly increases the total information available

to each agent, increasing their ability to reason about the world accurately.

2.4 Artificial Intelligence Competitions

Competitions provide a scoring technique against often current state of the art control-

lers for a problem domain within a strict set of constraints and often equal computational

budget.

18 Chapter 2. Background

Competitions are often good catalysts for an area of research, sometimes even with nothing

more than credit on offer for winning. A single large competition such as the Google AI

Challenge in 2011 had over 100 competitors and 7900 submissions. This is a huge amount

of people writing some high quality and well performing bots in order to take part. The

wealth of information available, with many bots having articles and tutorials on their func-

tions being written. 116 topics were made in the official forum for strategy alone in 2011.

The next sections describe individual relevant competitions that have been, or are being

organised.

2.4.1 Robot Soccer World Cup

Robot Soccer World Cup, often known as RoboCup, is an annual competition (Kitano et

al., 1997) that aims to promote AI research through a simple mandate - to produce a team

of robot players that can compete under FIFA3 rules to beat the winner of the most recent

World Cup.

The competition has grown a lot since conception, with multiple leagues now recognising

both robotic and simulated modes of play. The robots have also evolved to include bipedal

movement as well as quadrupedal.

2.4.2 Robot Rescue Cup

RoboCup also has a separate section for search and rescue challenges, aiming to promote

the development of robots that can assist in disaster zones. In the 2001 article (Kitano and

Tadokoro, 2001), the authors set out their vision for the rescue cup as a grand challenge for

Multi-Agent System (MAS). The scope of the problem is vast, with difficulties in a great

many areas including the poor condition of the environment that the robots are supposed

to operate in. A proposition for a simulator being developed in order for the AI agents to

operate in is also included. This challenge is heavily focused on massive teams of agents

3Fédération Internationale de Football Association

2.4. Artificial Intelligence Competitions 19

using active co-operation to solve goals. The environment is also vastly varied and unpre-

dictable - proving a challenge to directly code logic for.

2.4.3 Ms. Pac-Man Vs Ghost Team

The Ms. Pac–Man Vs Ghost Team competition originally ran from 2007 till 2011, based

around the popular 1980’s arcade game Ms. Pac–Man (Rohlfshagen and Lucas, 2011). The

competition allowed entrants to submit controllers for Ms. Pac–Man and in 2011 added the

ability to submit controllers for the ghost team. The game engine mimicked the original as

closely as it could, and was a CO environment.

The competition featured a number of sample controllers including one that emulated the

original game’s ghost team, which was written using a separate set of rules per ghost agent.

This didn’t involve communication, but would allow communication easily between the

individually controlled agents.

The competition was revived in 2016 running at CIG4 (Williams et al., 2016) and repeating

in 2017 at CIG. The competition added PO to the environment, and created a MAS structure

for the ghosts as well as controlled communication. This is described in more detail in

Section 4.2. The competition has gained good interest from the community, with over 40

entrants in 2017. The competition will run at CIG in 2018 for its third iteration.

2.4.4 Geometry Friends

Geometry Friends is a physics based 2D world whereby a circle and a rectangle are re-

quired to solve puzzles. The circle and the rectangle are each capable of different actions,

providing heterogeneous game play between them. Geometry Friends has run from 2013 -

2017.
4IEEE conference on Computational Intelligence in Games

20 Chapter 2. Background

The circle was given the ability to roll left, roll right or jump. Due to the physics-based

world, rolling was implemented through applications of torque and wouldn’t necessarily

cause a movement in the intended direction due to gravity or loss of contact with a ground.

The rectangle was given the ability to slide left, slide right or morph. Morphing maintained

area, but exchanged height for width or vice versa.

The primary track for the competition was to provide two co-operating agents, one for

each of the circle and square. Two additional tracks involved submitting a controller for

just one of either the circle or rectangle. The results from the 2014 competition paper (Prada

et al., 2015) concludes that the agents submissions that were received left lots of scope for

improvement, implying that the game had not been sufficiently well solved.

2.4.5 Multi-Agent Programming Competition

This competition is a competition operated annually by the AI group at Clausthal Univer-

sity. The problem domain is changed each year, with a number of publications from the

team and entrants available. The competition has run from 2005 - 2017 and had a number

of different scenarios, some of which ran for multiple years with minor tweaks (Behrens

et al., 2012; Ahlbrecht et al., 2013; Ahlbrecht et al., 2018). The scenarios used are listed in

Table 2.5. The competition is currently running for the year 2018 at time of writing.

All of the scenarios focused on teams of agents with the 2011 competition including vary-

ing types of agent that needed controlling. This heterogeneous population is a particular

challenge to MAS but one that is very appropriate in many types of computer games.

2.4.6 Trading Agent Competition

This competition is a MAS whereby each contestant submits an agent that takes the place of

a travel agent (Wellman et al., 2001). Each travel agent is given a list of 8 clients who all have

individual preferences for hotels, locations and entertainment. The agent is then required

2.4. Artificial Intelligence Competitions 21

TABLE 2.5: Scenarios from the Multi-Agent Programming Competition

Food Collectors (2005) A simple scenario with a grid world containing
either food or an agent. Each agent had partial ob-
servability of the world. Food appeared randomly,
and would require searching for. Food would be re-
turned to a depot by the agent.

Gold Miners (2006 - 2007) Similar to Food Collectors, but trees were added as
obstacles and to form mazes, as well as the addition
of the opposing team to the scenario. In 2007 agents
were allowed to carry multiple pieces of gold.

Cowboys (2008 - 2010) A new scenario involving teams of agents herding
cows into corrals. The cows were NPCs that were
programmed with flocking behaviours and were
scared of cowboys. From 2009, gates were added
to increase the challenge.

Agents on Mars (2011 - 2014) This challenge consisted of agents trying to co-
operate in order to occupy zones on the planet
Mars.

Agents in the City (2016 - 2018) This challenge involves agents earning money
across a realistic city. Each team has to earn as
much money as possible by completing jobs that in-
volve the acquisition, assembly, and transportation
of goods. Agents are specialised to different tasks,
as well as having different battery capabilities

to bid on tickets for all these things to match as best it can the client’s requirements. Each

agent is then scored on how well it constructs journeys for each client.

2.4.7 Google AI Challenge

The Google AI Challenge was a competition publicly run three times with the most recent

competition receiving a large number of entrants of high quality.

TABLE 2.6: Times and concept for each competition

Winter 2010 Tron Tron lightcycles, controlling a single cycle
Fall 2010 Planet Wars Basic RTS in space, multiple planets to control
Fall 2011 Ants RTS controlling ant colony with many units to handle

Most interesting are the Planet Wars and Ants scenarios. These featured multiple objects

that needed controlling, forming a large MAS, however almost all of the entrants used a

22 Chapter 2. Background

single AI to make all of the decisions for each unit.

2.4.8 General Video Game AI Competition

The General Video Game Artificial Intelligence (GVGAI) competition provides a video

game version of the Stanford General Game Playing (GGP) competition. The games in

GVGAI are based around traditional arcade games such as Frogger and Space Invaders. The

games are expressed in Tom Schaul’s Video Game Definition Language (VGDL) (Schaul,

2013), and converted into Java objects dynamically at runtime. This allows games to be

written very concisely, as much of the logic is contained within the system and available

for re-use and configuration. The agents are provided with a forward model for running

simulations of how an action sequence performs. The original python implementation in-

cluded a first person view point that gave a PO view though the competition lacks any PO

constraints.

The GVGAI competition has been run since 2014 with the first results being published

including sections from some of the top scoring agents (Perez-Liebana et al., 2016). The

competition now consists of multiple tracks covering learning, level generation and two

player games. Predominant tactics for agents are to use either tree search algorithms or

Rolling Horizon Evolutionary Algorithm (RHEA).

The competition has been expanding, now featuring a multitude of tracks to enter:

• Single Player Planning

• Learning

• Level Generation

• Rule Generation

• Two-Player Planning

The two player planning track is of particular importance here, as some of the games are

co-operative in nature. In these two player games, each agent has independent score and

2.4. Artificial Intelligence Competitions 23

either joined or independent win conditions. Some of the games are co-operative, some are

competitive. agents don’t know which type of game they are playing either.

2.4.9 Showdown AI Competition

This competition focuses on single player Pokemon fighting, where each agent is given 6

random Pokemon and has to fight another agent with another 6 random Pokemon. The

competition features a reasonable amount of observability restrictions, with the opponent

Pokemon and their known moves being un-observable until they are revealed, and their

exact statistics being un-observable permanently. It is therefore up to the agent to take what

observations it can in order to reduce uncertainty and make better decisions such as when

an opponent uses a move then an agent can add that information to its knowledge (Lee

and Togelius, 2017).

2.4.10 microRTS Competition

This is a competition that uses a custom Java RTS game engine that was designed to be as

basic as possible while still containing all the relevant characteristics of a RTS (Ontanón,

2013). There are three tracks running this year (Table 2.7).

TABLE 2.7: The three tracks in the microRTS competition.

Track Determinism Observability

Large state space Deterministic Full Observability
Partial Observability Deterministic Partial Observability
Non-Deterministic Non-Deterministic Full Observability

The PO track is of particular interest as scouting is a difficult task in RTS games. An agent

needs to balance use of resources in scouting to obtain information or building more cap-

able units of destruction.

24 Chapter 2. Background

2.4.11 Visual Doom AI Competition

This competition (VIZDOOM) provides only the same visual input to AI agents as the view

usually given to human players. The view is PO, as only a certain angle of view can be seen

in the direction that the player agent is facing. This competition asks agents to work with a

large amount of data in real time and work out how to correctly filter what is relevant and

what isn’t on screen. Two tracks were run in 2016 with a very restricted track using a single

weapon type and a known map as well as a less restricted track with multiple weapons,

items and unknown maps. The less restricted track will force agents to learn more general

strategies for Doom. The competition ran again in 2017 and 2018.

2.4.12 The 2K BotPrize

This competition (Hingston, 2010) runs on the Unreal Tournament 2004 FPS game. This

competition focused on human like performance instead of the absolute best performance

possible. The bots had access to a rich API and were judged by humans in a blind process

where the judges didn’t know they were viewing a human or AI agent.

2.4.13 Hearthstone AI

The popular online collectible card game, Hearthstone varies in a few ways to other card

games. In Hearthstone, each player chooses the deck of cards that they use from over 1000

possible cards. The makeup of each players deck is hidden from the other player as the

first form of PO. The current cards in each players hand are also hidden from other players

as the second form of PO in Hearthstone. The Hearthstone AI competition ran at CIG in

2018 for the first time (Hearthstone AI Competition).

2.5. General Game Playing 25

2.4.14 Hanabi

Hanabi is a PO co-operative card game described in detail in Section 4.3. The Hanabi com-

petition ran at CIG 2018 for the first time (Hanabi Agent Competition), and provides entrants

with a full Java based framework as well as numerous sample agents from the existing

literature.

2.4.15 StarCraft AI

The StarCraft AI competition (StarCraft AI Competition) has been running since 2010, and

is a RTS based competition that features PO forcing players to explore and scout ahead

to make intelligent decisions. The agents use the BWAPI to play Starcraft Broodwar games

against each other, and the PO, huge state space, and small time budgets combine to make

a truly difficult challenge.

2.5 General Game Playing

This section will describe a basic history of the field of GGP itself. GGP is the field of

writing computer AI agent that can play unseen games before, without requiring explicit

programming to handle different games. Traditional AI such as IBM Deep Blue was world

leading at playing Chess, but wouldn’t have been capable of making the opening move for

Checkers or even Tic-Tac-Toe.

2.5.1 METAGAMER

In 1993, Barney Pell outlined the first system and AI for playing multiple previously unseen

games in his doctoral thesis (Pell, 1993). It functioned by analysing the rules of the game

that were provided to it, and then using a simple tree search algorithm to play the game

with reasonable proficiency. Learning from self play is considered as a potential source of

26 Chapter 2. Background

improvement to the AI. Pell showed that when playing Chess and Checkers, METAGAMER

derived strategies that were similar to human play.

2.5.2 2005 - Stanford University

In 2005, the first General Game Playing competition was run at the AAAI5 Conference. This

competition focuses on board games written in the Game Description Language (GDL).

GDL is a variant of Datalog and describes the game state as a series of facts and the game

rules as a series of logical rules.

TABLE 2.8: List of winners of the Stanford GGP competition and their
primary technique

2005 Cluneplayer Depth first search with automatically constructed evaluation func-
tions from game GDL (Clune, 2007)

2006 Fluxplayer Depth first search with automatically constructed evaluation func-
tions from game GDL (Schiffel and Thielscher, 2006)

2007 Cadiaplayer MCTS (Finnsson and Björnsson, 2008)
2008 Cadiaplayer MCTS (Finnsson and Björnsson, 2008)
2009 Ary MCTS (Méhat and Cazenave, 2010)
2010 Ary MCTS (Méhat and Cazenave, 2010)
2011 TurboTurtle Unknown
2012 Cadiaplayer MCTS (Finnsson and Björnsson, 2008)
2013 TurboTurtle Unknown
2014 Sancho MCTS (Sancho goes Green)
2015 Galvanise Unknown
2016 WoodStock MCTS (Koriche et al., 2017)

As seen in Table 2.8, starting in 2007 the GGP competition saw a prevalence of Monte-Carlo

Tree Search (MCTS) based approaches. I was unable to find evidence of how TurboTurtle

or Galvanise were implemented, but once MCTS arrived on the scene it became the defacto

method for competing. It is also worth noting just how quickly after the early MCTS papers

were published that the first MCTS agents appeared.

5Association for the Advancement of Artificial Intelligence

2.6. Game Design 27

2.5.3 General Video Game AI Competition

As described in detail in Section 2.4.8, a large amount of academic research since 2014

has been conducted by entrants to the competition as well as simply by people using the

framework itself.

2.5.4 Alpha Zero

Silver et al. (2017) improved their earlier work on Alpha Go (Silver et al., 2016), generalising

the algorithm to more than a single domain. Alpha Zero is able to learn to play chess, shogi,

and Go at a superhuman level in under 24 hours. Alpha Zero is a MCTS algorithm that

uses self-taught board evaluation and move evaluation Deep Neural Networks (DNN).

2.6 Game Design

Adjusting the PO in Ms. Pac–Man will arguably create different versions of the original

game, and should be treated as a form of game design. Computer games are fundament-

ally games, and many techniques for designing games are equally applicable to computer

games such as Ms. Pac–Man. AI assisted game design is a field concerned with at least par-

tial automation of the game design process, such as using AI to tune game parameters like

PO in Ms. Pac–Man. This section will highlight relevant work on game design including

AI based game design, a technique that the experiments in this chapter will use.

Hunicke et al. define the Mechanics, Dynamics, and Aesthetics (MDA) framework and by

their definition the PO restriction added into Ms. Pac–Man is a mechanic, as the restriction

is a fundamental part of the control mechanism (Hunicke et al., 2004). Koster states that fun

comes from the pursuit of mastery of a game (Koster, 2013). If this is true then potentially a

more difficult game would be more difficult to master, but also provide a longer source of

fun as the player tries to master it. This is investigated in this chapter by trying to predict

fun using the difficulty that AI agents experience. Koster also makes the observation that

28 Chapter 2. Background

games are often linked, changing only by as little as a single element sometimes. This is

the process used to create PO Ms. Pac–Man for this chapter - the same game but with the

single element of visibility altered.

Nelson and Mateas describe a method to formalize game mechanics as well as how to gen-

erate games automatically that utilize those mechanics (Nelson and Mateas, 2007). The au-

thors make use of both WordNet and ConceptNet to reason about which verbs and nouns

make sense together. A working example is provided that produces games in the style of

Nintendo’s WarioWare series. Isaksen et al. give a method that explores the game space of

the popular mobile game Flappy Bird (Isaksen et al., 2015a; Isaksen et al., 2015b; Isaksen

et al., 2017). By varying multiple parameters such as jump height, tube spacing, and bird

speed they locate “playable” games and try to find the most different but still playable

locations in the design space. They use play testing to obtain a more subjective evaluation

of the different games and find that they are significantly different to the original game in

challenge, game feel, and theme. This is similar to the approach used in this chapter where

we vary the PO constraints and analyse the effects before using play testing to verify the

results. Khajah et al. used Bayesian methods to design games and evaluated them to max-

imise user engagement with the generated games (Khajah et al., 2016). Their evaluation

used participants that played the games for several minutes and then they had the option

to either stop or continue to play the game with no further compensation. Total play time

was used as well as a post-game survey. The results indicated that a user’s self-perception

of competence was critical.

There have been a number of studies on the effects that computer games have on people.

A large amount of this work has been on the psychological impact of games on both adults

and children, but a reasonable amount of research has been carried out on measuring en-

joyment in games. Naturally there is interest in discovering why games are fun, but so far

much of the research has simply focused on actually measuring fun itself. Beume et al.,

2008 compared algorithmic measurements (Yannakakis and Hallam, 2004) with question-

naire responses (Beume et al., 2008). They found that the algorithmic measurements were

2.6. Game Design 29

not suitable for measuring fun, and that better answers came from questionnaires. Ryan

et al. measure game enjoyment in a number of studies and find that the self-determination

theories: autonomy, competence, and relatedness predict enjoyment of games (Ryan et

al., 2006). Fang et al. developed a questionnaire that extends the work of Nabi and Kr-

cmar (Nabi and Krcmar, 2004) to measure affective, behavioural, and cognitive reactions

of respondents (Fang et al., 2008). This technique was then revised with the input of ex-

pert consultants as well as exploratory and confirmatory card sorting sessions. The final

version consisted of 11 questions to measure enjoyment in games.

31

Chapter 3

Algorithms

This chapter gives a detailed description of the more common algorithms used through-

out this thesis in a single place. Section 3.1 describes the anytime tree search algorithm

Monte-Carlo Tree Search (MCTS) that is frequently used in games and General Game Play-

ing (GGP) environments. MCTS features in Chapters 5 and 7. Section 3.2 covers Genetic

Algorithms (GAs) that are also often used in rolling horizon form to play games or as para-

meter tuners to train neural networks. A GA is used in Chapter 5

3.1 Monte-Carlo Tree Search

MCTS is a tree search algorithm originally proposed in 2006 (Coulom, 2007; Kocsis and

Szepesvári, 2006; Chaslot et al., 2008a).

MCTS is a tree search algorithm that in games is typically applied directly to the action

space. MCTS requires the ability to simulate action sequences and retrieve at least some

form of reward (or lack of) from the results of these simulations.

The absolute minimum that MCTS needs to operate is the ability to do three things. The

first is for the forward model Mt at time step t to provide the observed score rt. The second

is for the forward model Mt to provide the set of actions available St = {A0 . . . An} at time

step t. Finally the forward model Mt needs to provide the transition to St+1 = F(St, At).

32 Chapter 3. Algorithms

This means that you can see the score of a state, the available actions for a state, and the

resulting state obtained by applying an action to a state.

The basic steps for MCTS are:

1. Selection - Selection is the stage where the algorithm navigates the search tree, select-

ing optimal nodes (Based on the selection policy) until it reaches a leaf node.

2. Expansion - Expansion is the stage whereby the leaf node is expanded by adding one

of the remaining child states if it is not a terminal node.

3. Simulation - Simulation is the stage where the algorithm forwards the model until

a result is achieved. There is usually a policy that defines how the simulation is

made, with the simplest being random possible moves. This policy is often called the

‘default policy’

4. Back propagation - Back propagation is the stage where the results of the simulation

are propagated up the tree, so that they can influence the selection phase.

MCTS has been applied to a wealth of domains (Browne et al., 2012) and is one of the

primary algorithms in use for GGP (Finnsson and Björnsson, 2008). Primary advantages

are that, when given a sufficient forward model, MCTS does not require any strategic

knowledge about the game itself in order to play. This non reliance on strategic knowledge

is what gives MCTS the flexibility to perform well in GGP environments and is likely to be

a key algorithm for my own work.

3.1.1 Selection Policy

The selection policy is an important part of any MCTS algorithm. Early algorithms used

the simplest of policies, making just random choices when selecting nodes. The subsequent

sections discuss various alternative tree policies that have been proposed since.

3.1. Monte-Carlo Tree Search 33

Upper Confidence Bound applied to Trees

Upper Confidence Bound applied to Trees (UCT) is one the most common selection policies

applied to MCTS to the extent that it is considered implicit unless specified otherwise that

MCTS uses UCT. UCT applies the Upper Confidence Bound (UCB) algorithm, presented

by Auer et al., to the selection phase by viewing the choice of child node as being equivalent

to a Multi-Armed Bandit (MAB) problem (Auer et al., 2002). UCB was a well researched

algorithm for solving the MAB problem by balancing a desire to explore arms that had

not been visited often (in relation to others) and the desire to exploit arms that had proven

worthwhile.

UCT allows MCTS to build asymmetric trees that have been proven to converge on an

optimal solution, but providing good solutions much earlier than traditional search tech-

niques.

Sequential Halving applied to Trees

Sequential Halving applied to Trees (SHOT) takes the Sequential Halving algorithm and

uses it as a replacement for UCB (Cazenave, 2014).

Sequential Halving is based on sequentially eliminating moves from consideration. The

algorithm consists of rounds, and in each round all the moves that remain are sampled

equally. The results of this sampling, added to any previous sampling is used to sort the

moves and eliminate the worst performing half. The next round then begins - typically

allocating more budget per move than the previous round.

SHOT has numerous advantages over UCT. The first is the ability to parallelise the al-

gorithm much more efficiently, as only at the end of a round does the tree need to be

updated and used to perform calculations. This reduces the amount of time that a parallel

implementation requires locking and synchronising. SHOT spends significantly less time

in the tree, unlike UCT that traverses the tree every iteration.

34 Chapter 3. Algorithms

SHOT lacks a tuning constant, removing much of the work that is required of UCT in

finding the correct exploration constant to use for a particular problem domain. UCT is in

some circumstances very reliant on the correct exploration constant for good performance.

Last Good Reply

Last Good Reply (LGR) is a technique that keeps successful replies that occur in the play-

outs in memory to bias the move choices (Drake, 2009). This makes the assumption that,

regardless of state - answering a move x with move y is at least usually the best choice. This

is difficult to know for sure in GGP and may not prove overly useful. In a large number of

games, the current state is important. Tak et al. (2012) apply LGR to the GGP competition

and find that LGR has promise in GGP.

3.1.2 Default Policy

There are two primary methods for performing rollouts in MCTS (Browne et al., 2012).

Light rollouts consist of randomly choosing the move to operate and have two primary

advantages. This is the original, simpler, default policy implemented. The first advantage

is that random choice is incredibly fast to calculate, leading to more rollouts per second

compared to heavy rollouts. The second advantage is that random choice considers all

possibilities given enough budget. This allows optimal strategies to eventually be found1,

allowing MCTS to converge to optimality.

Heavy rollouts involve performing some decision making into filtering the list of all pos-

sible moves in order to reduce the action space and better approximate a reasonable player.

If a heuristic decides that a move is a bad idea, then the algorithm won’t waste cycles ex-

ploring those possibilities. This focuses the statistics that are generated on sensible por-

tions of the action space. Heavy rollouts do however rely on domain specific knowledge

1As t tends to infinity, which may not be useful

3.1. Monte-Carlo Tree Search 35

and aren’t often suitable for GGP. Some useful knowledge can however often be extrapol-

ated from Game Description Language (GDL) or from observations during the game that

can be used instead. Heavy rollouts can lead to MCTS missing optimal branches of the tree

if the heuristic is incorrect.

3.1.3 Partially Observable Games

In order to handle Partial Observability (PO) games, there are a number of possible en-

hancements to MCTS. Key to these techniques is the concept of determinising a PO game

state into a possible completely observable game state. It is often possible to generate all

the possible game states that an agent might find itself in. In Battleships, for example, we

can try all valid ship arrangements that do not contradict any information we currently

have such as existing hits or misses. This might show some positions as being more likely

to contain a ship than others. Determinising is the act of randomly choosing one possible

game state out of all the possible game states and creating a perfect information copy of it

to simulate with (Cazenave, 2005).

Determinised UCT

This technique creates N individual trees, giving each tree a unique determinised state at

the root (Cowling et al., 2012). The trees are explored as usual for MCTS and the move

chosen at the end of the algorithm is the move for which the number of visits from the root

across all trees is greatest.

Information-Set Monte-Carlo Tree Search

Information-Set Monte-Carlo Tree Search (IS-MCTS) is a technique similar to determinised

UCT but maintains a single tree, and changes the determinisation on each iteration of the

algorithm (Cowling et al., 2012). Special care is taken to ensure that moves already in the

36 Chapter 3. Algorithms

tree that are not possible in this iteration are ignored, as well as new moves not previously

considered included.

Monte Carlo Counterfactual Regret

Monte-Carlo Counterfactual Regret (MCCFR) is an enhancement to the Conterfactual Re-

gret (CFR) algorithm from Lanctot et al. (2009). CFR requires the entire game tree to work,

proving problematic on most games of interest in this thesis as their trees are too large to

expand. MCCFR samples blocks of paths from the root to a leaf, and computes counterfac-

tual regrets for these.

Partially Observable Monte-Carlo Planning

Silver and Veness (2010) propose the Partially Observable Monte-Carlo Planning (POMCP)

algorithm to provide the intelligence of full-width planning with lower performance re-

quirements. POMCP is the combination of monte-carlo belief state updates with PO-UCT.

3.1.4 Parallelisation

MCTS typically improves the optimality of its decision the more computational budget

that is provided to it. Parallelisation provides a way to obtain more iterations in a fixed

time budget than otherwise possible. MCTS typically plays more intelligently when given

more iterations to decide on a move. This means that parallelisation is a good way to play

games when given a fixed actual time budget on multi-core machines.

There are multiple approaches to parallelising MCTS, typically identified by which point

in the tree the switch to parallel code occurs.

3.1. Monte-Carlo Tree Search 37

Single Run Parallelisation

Cazenave and Jouandeau (2007) investigated this method of developing completely sep-

arate trees, and aggregating the results. This benefits from the low amount of communic-

ations needed between nodes which both simplifies the programming and enables a low

overhead to really get the most out of the available performance on tap. There is also the

additional benefit that the possibility for MCTS in non-deterministic games to miss certain

branches due to early poor scores can be avoided, as this is similar to multiple restarts in a

GA.

Multiple Runs Parallelisation

Cazenave and Jouandeau (2007) also investigated this method that involves a master thread

and worker threads whereby the master periodically aggregates the trees and re-distributes

it to the workers who then continue to work on the new aggregated tree. This is more com-

plex to code, and the authors had to divide the number of wins and games of the root

moves by the number of workers to provide better results.

At the Leaves Parallelisation

Cazenave and Jouandeau (2007) also investigated this method that involves developing

just one tree, traversing it on a single thread and then running multiple rollouts from the

chosen leaf node. This does not require complex parallel code writing but does not make

the best use of all the computing power available as there are many points where only a

single thread is operating as it traverses the tree.

Tree Parallelisation

Chaslot et al. (2008b) investigated this method that is the process of traversing and running

simulations from a single tree with multiple threads. This is complex to write, complex to

38 Chapter 3. Algorithms

debug, and difficult to get good performance from. Most of the performance gains come

from using the correct locking strategy although it can introduce large overheads.

Global Mutex This technique uses a single global mutex for the entire tree, locking access

for tree traversal and back propagation. This technique is simple, but would lead to a lot

of blocking with multiple threads waiting for the tree to become unlocked.

Local Mutexes This technique uses a mutex for each node of the tree that is being visited.

This allows different sections of the tree to be searched, but the asymmetric nature of MCTS

tree construction means that later in searches the same sections of the tree will be searched.

3.1.5 Learning Domain Knowledge

GGP agents are deprived of domain specific knowledge. Most research into Artificial In-

telligence (AI) has revolved around the application of domain specific knowledge in some

way being used to improve playing performance. The two primary GGP competitions

provide some limited and generic information about the games being played to the agents.

Méhat and Cazenave (2010) present the workings of Ary. This program used Prolog to

generate legal moves, apply moves, detect end of game states, and determine the score

for each player. These abilities allowed Ary to implement a forward model, making pos-

sible the MCTS algorithm. This use of domain knowledge was essential, as without it

there would have been little chance of the MCTS algorithm working correctly. The Gen-

eral Video Game Artificial Intelligence (GVGAI) Competition makes this sort of analysis

unnecessary with its provision of a forward model, as well as impossible with the non-

provision of the game description. Finnsson and Björnsson (2010) describe a number of

techniques for learning policies for MCTS node selection in GGP. Prior work that this pa-

per draws upon is the earlier papers on CADIAPLAYER (Finnsson and Björnsson, 2008).

Move-Average Sampling Technique (MAST) is a technique for biasing tree search towards

more promising branches by remembering statistics about individual moves, irrespective

3.2. Genetic Algorithms 39

of the location in the tree or game state. Tree Only Move-Average Sampling Technique

(TO-MAST) is similar to MAST except that statistics are only backed up the current path of

the tree. Predicate-Average Sampling Technique (PAST) is a technique that instead of gen-

eralising over individual moves, it generalises over moves and some predicates p. Biasing

is done towards moves with the most true predicates, and the best move when they are

equal. Sharma et al. (2008), uses self play between random AIs to learn the value of indi-

vidual moves within a new game from the GGP Competition. These values are then used to

influence the UCT algorithm into exploring moves indicated as better. The paper considers

allowing the AI to continue to update the learnt values during the competition. Silver et al.

(2016) describe the techniques used in the AI agent AlphaGo. This AI successfully won a 5

game match (4:1) against 9-dan ranked Lee Sedol. The essential improvements are the ex-

tensive use of off-line learning through the use of Deep Neural Networks (DNN) to learn

a significantly improved board evaluator that is able to assist the MCTS algorithm that is

the core part of decision making.

3.2 Genetic Algorithms

GA’s are a class of algorithms that are inspired by the natural process of evolution (Anderson-

Cook, 2005). GA’s evolve populations of candidate solutions until the search criteria is met.

The best candidate at the end of the search is then chosen. A number of genetic operators

can be defined to operate on the candidate solutions in order to alter them into new can-

didate solutions.

3.2.1 Fitness Calculation

Candidate solutions need to be evaluated to calculate their fitness. The best solution at the

end is often chosen for actual use. Fitness functions can be critical to the computational

cost of a GA because often hundreds or thousands of candidate solutions will be evaluated

for fitness. Designers will need to balance accuracy with computational cost sometimes.

40 Chapter 3. Algorithms

UP LEFT LEFT UP UP RIGHT

FIGURE 3.1: Diagram of a possible solution to a simple pathfinding task.

3.2.2 Candidate Solution Representation

Candidate solutions need to be represented in a form that makes them operable upon as

well as able to be evaluated for fitness. Typically the solutions is represented as a series of

genes. Each gene can represent something different and be as simple or complex as needed.

For a path finding algorithm, the candidate solution could be a series of moves from the

starting position for example as shown in Figure 3.1.

3.2.3 Genetic Operators

Genetic operators are a class of function designed to operate on candidate solutions. There

are three main types of operator that are described next.

Selection Rules

This class of operator determines which candidate solutions from the population are selec-

ted for operating upon. Some common selection rules are described.

Random Randomly selects a valid member of the population to be operated upon. Very

fast and easy to implement, however it does not take the fitness of a member into account.

Roulette Wheel Randomly selects a valid member of the population, where the chance

of being chosen is proportional to the fitness of the candidate solution (Zhong et al., 2005).

A performance issue with this technique is the requirement to evaluate every member of

the population’s fitness which can be computationally expensive.

3.2. Genetic Algorithms 41

FIGURE 3.2: Left: Diagram of single point crossover (R0oland, 2013a).
Right: Diagram of two point crossover (R0oland, 2013b)

Tournament Randomly selects n candidate solutions and returns the candidate solution

with the best fitness (Zhong et al., 2005). Not all candidates need their fitness calculated for

this method to work, so can be a faster technique than Roulette Wheel.

Crossover Rules

This class of operator determines how to combine 2 or more candidate solutions to create

one or more new candidate solutions. Single point crossover involves taking two parents,

selecting a point in their genome and creating two children that start with the genes from

one parent and switch to the genes from the other parent at the crossover point. This is

shown in a diagram in Figure 3.2. Two point crossover is similar, with a second point later

in the genome where the child switches back to the original parent. This can be generalised

to n-point crossover where n points are used to switch parent at.

Mutation Rules

This class of operator determines how to create a new candidate solution from a parent

candidate solution. The new candidate solution is typically very similar, i.e a mutation of

the parent candidate solution. Often mutations are a case of choosing either a new random

valid value for a gene, or in the case of numbers adding small values to the gene.

43

Chapter 4

Games in this Thesis

This chapter gives descriptions of the multiple game environments that are used in this

thesis.

Section 4.1 describes the Tiny Co-op domain that is a simple domain created for the work

in this thesis to test Monte-Carlo Tree Search (MCTS) and Genetic Algorithm (GA) Artifi-

cial Intelligence (AI) agents in a co-operative Partial Observability (PO) environment. To

ensure that the agents do not use too much information about the world to operate, the

ability to observe the environment is severely restricted with only the score being revealed

to agents in the forward model.

Section 4.2 gives a description of the Ms. Pac–Man environment that was modified by the

author to add a PO restriction. The domain then had messaging added to give the ghosts

the ability to co-operate with each other in their task to find Ms. Pac–Man. An overview of

prior research in the Ms. Pac–Man domain is also provided (Section 4.2.3).

Section 4.3 gives a description of the environment that was created to develop co-operative

agents for the card game Hanabi. This game poses the unusual challenge that the PO re-

strictions are applied to your own cards, and that communication is strictly controlled by

the game. Prior research in Hanabi is discussed in Section 4.3.1.

This chapter contributes to the thesis a simple co-operative environment (Tiny Co-op), a PO

modified version of the Ms. Pac–Man, and a co-operative card game (Hanabi) that makes

44 Chapter 4. Games in this Thesis

communication part of the game.

The sections of this chapter are adapted from:

Section 4.1 Piers R. Williams, Joseph Walton-Rivers, Diego Perez-Liebana and Simon M.

Lucas (2015). ‘Monte Carlo Tree Search Applied to Co-operative Problems’.

In: CEEC’2015 - IEEE Conference on Computer Science and Electronic Engineer-

ing. IEEE CEEC. IEEE Computer Society, pp. 219–224

Section 4.2 Piers R Williams, Diego Perez-Liebana and Simon M Lucas (2016). ‘Ms. Pac-

Man Versus Ghost Team CIG 2016 Competition’. In: CIG’2016 - IEEE Confer-

ence on Computational Intelligence and Games. IEEE CIG, pp. 420–427

Section 4.3 Joseph Walton-Rivers, Piers R Williams, Richard Bartle, Diego Perez-Liebana

and Simon M Lucas (2017). ‘Evaluating and Modelling Hanabi-Playing Agents’.

In: Congress on Evolutionary Computation, 2017. CEC’17. IEEE Conference On.

IEEE, pp. 1382–1389

4.1 Tiny Co-op

Tiny Co-op is a small, grid based world featuring obstacles, goals, and interactive items.

Two avatars are controlled independently by either AI agents or by a human controller.

Moves are polled for simultaneously from the agents, and executed sequentially in the

world. The main objective in Tiny Co-op is for all agents to visit each goal once. The score

for an agent visiting a goal for the first time is equal to one divided by the number of

goals and agents. This means that when every agent has visited every goal the team will

have scored exactly one point and the game can end. This score system also promotes co-

operation because all scores are shared, with no benefit to being the agent that obtains the

score. This should remove competition between agents.

4.1. Tiny Co-op 45

TABLE 4.1: Possible objects in Tiny Co-op.

Name Colour Description

Floor Grey Passable
Wall Black Impassable and fixed location
Agent Dark Yellow Moving objects controlled by players
Door Dark Blue Doors can either be open or closed. Doors are impassable and

visible when closed, and are passable and invisible when open.
Doors are controlled by corresponding buttons. When at least
one linked button is active, the door will be open

Button Red Buttons can be either active or inactive. Buttons are activated
by an agent residing on the same location as the button

Goal Bright Yellow Goals are passable objects that confer all agents with a portion
of the score when visited. Every agent must visit every goal at
least once to obtain maximum score. Revisiting a goal gains no
additional score

4.1.1 Objects

The complete list of objects in the Tiny Co-op environment are shown in Table 4.1. Each

object will fully occupy a single location in the grid world, rendered in a unique colour

per type of object (See Figure 4.1). Some objects have an ID associated - these are rendered

in text at the centre of the grid location. IDs are important for linking objects together - a

button with the same ID as a door will open that door when an agent is on that button.

FIGURE 4.1: An example of how objects are rendered in Tiny Co-op

4.1.2 Movement

Agents are able to perform one movement per turn, with both agents performing a move

in each turn. There are five available moves: up, down, left, right, and no-op. These are

described in detail in Table 4.2. Agent moves are evaluated in order of ID, with agent 0

going first. Agents cannot occupy the same location as each other, and an attempt to do so

will result in the agent with the highest ID not moving at all instead. The same rules apply

46 Chapter 4. Games in this Thesis

to agents that try to travel to a non-traversable area of the map such as walls or closed

doors.

TABLE 4.2: Table of moves in the Tiny Co-op domain

Name Vector Description

Left (-1,0) Move the agent one grid square to the left
Right (1, 0) Move the agent one grid square to the right
Up (0, -1) Move the agent one grid square up
Down (0, 1) Move the agent one grid square down
No-Op (0, 0) No movement

4.1.3 Maps

A number of test maps have been also created for this environment.

Single Door

This map is a basic map with only a single

door (blue). One of the two agents (gold)

must open the door for the other agent to go

through. The goal (yellow) can then be col-

lected before opening the door from the other

side to let the left agent through. This prob-

lem requires both pathfinding, as all prob-

lems require, and co-operation to solve.

4.1. Tiny Co-op 47

Pathfinding

This map is Single Door without the door,

and is designed to test an agent’s ability to

navigate the environment and locate the goal.

This problem does not require co-operative

behaviour, as both agents are able to reach the

goal without assistance from the other.

Symmetric Single Door

This map is a modification of Single Door to

place each agent closer to the button. The

goal has also been moved so that the button

can be opened on the way to the goal

Extended Side

This map is an extension of Single Door with

a second goal with more spread out rewards

48 Chapter 4. Games in this Thesis

Side By Side

This map is designed to be symmetric with

a goal that each agent can initially reach and

one that they cannot reach without help. The

symmetry can provide for clashes if both

agents try the same tactic

Butterfly

This map is designed to force each agent to

need to be let into a room, and out of it

again. Perfectly symmetrical, it is possible

for both agents to decide to either head for

the doors or the buttons, when ideally exactly

one agent should head for the button and the

other should head for the door. The left but-

ton will only open the left door, with the right

button operating the right hand door

Airlock

This map is designed to provide asymmetric

roles to the agents. The uppermost agent, in

the first position, must travel through the two

doors in order to reach the goal. The agent in

the second position must open the doors for

the airlock in order to allow the first agent to

reach the goal and the button that will allow

the second agent to reach the goal itself.

4.2. Ms. Pac-Man Vs Ghosts 49

4.2 Ms. Pac-Man Vs Ghosts

This is a software environment designed to mimic the Ms. Pac–Man arcade game with

the modification of adding PO constraints, to create a different but fun experience. The

environment was originally implemented for the second iteration of the Ms. Pac–Man Vs

Ghost Team competition (Rohlfshagen and Lucas, 2011). This section will describe the full

implementation of the game environment including the modifications made to it.

This game consists of 5 agents: a single Ms. Pac–Man, and 4 Ghost agents. The world is a

maze environment, with non-traversable walls. There is a ghost lair in the centre, where

the ghosts start and also respawn after being eaten. Pills are placed in the corridors for

Ms. Pac–Man to collect as well as larger power pills that, for a short period of time, allow

Ms. Pac–Man to consume the ghosts and score additional points. A view of the game is

shown in Figure 4.2. The various characters in the game are shown in Figure 4.3. Eating a

pill earns Ms. Pac–Man 10 points and eating ghosts earn 200 points for the first ghost but

doubling each time up to 1600 points for the fourth ghost. The maximum points s for a

maze where n is the number of pills in the maze is s = 10n + 4× (200 + 400 + 800 + 1600).

FIGURE 4.2: A view of the basic Ms. Pac–Man game

50 Chapter 4. Games in this Thesis

FIGURE 4.3: The various characters of the game, Left to Right: Blinky, Inky,
Pinky, Sue, and Ms. Pac–Man

(a) Radius (b) Line-of-Sight (c) Forward Facing
Line-of-Sight

FIGURE 4.4: The three modes of Partial Observability visualised.

4.2.1 Partial Observability

PO is the impairment of the ability of an agent to completely observe the world that it is

situated within. There are three different implementations of PO in the engine, shown in

Figure 4.4, and are currently applicable to all agents within a game equally. PO restrictions

are calculated based on the individual locations of each agent, so each ghost and Ms. Pac–

Man have unique areas that they can observe, but each area is calculated with the same

method.

Line-of-Sight

Line-of-Sight (LOS) is where the agents can see in straight lines up to a limit unless there

is an obstacle in the way. Obstacles are considered to be the walls in the maze. Ghosts

and pills do not count as obstacles. This applies to both Ms. Pac–Man and the ghosts and

means that they can see both forwards, backwards, and sideways. This method is simple

4.2. Ms. Pac-Man Vs Ghosts 51

to implement as well as fairly realistic, with agents not able to see around corners, like real

people.

Forward Facing Line-of-Sight

This is an additional restriction on LOS where the agent can only observe in the direction

that they are currently travelling.

Radius-Based Partial Observability

Radius-based PO is a simple technique where we consider that anything within a distance

d from the agent is considered visible. This allows agents to view other agents that are

around corners or behind walls. This is not particularly realistic, but does provide more

information to the agent than LOS.

4.2.2 Messaging

Communication is the cornerstone of teamwork and vital to the creation of co-operative

agents. In this game, the communication is heavily controlled by the game in order to

force agents to share information rather than attempt to control the actions of each other.

The communication component is composed of two main parts - the messenger and the

message. The messages allowed are presented in Table 4.3.

TABLE 4.3: Table of messages allowed in Ms. Pac–Man Vs Ghost Team. All
locations are represented as node indices of the node-graph, and headings

correspond to the four cardinal directions possible in the game.

Message Type Description
Pacman Seen A message informing others that Ms. Pac–Man has been seen.
Pacman Heading A message informing others which direction Ms. Pac–Man has been

seen heading.
I Am A message informing others where the sender is currently located.
I Am Heading A message informing others where the sender is currently heading.
Pill Not Seen A message informing others where there is not a pill

Messages can be either sent to a single recipient or broadcast to all ghosts on the map.

52 Chapter 4. Games in this Thesis

TABLE 4.4: Feature vectors for evolved neural network to play Ms. Pac–Man

Input Description
g1 . . . g4 distance to each predatory ghost
e1 . . . e4 distance to each edible ghost

x, y location of current node
pill distance to nearest pill

power pill distance to nearest power pill
junction distance to nearest junction

The time it takes for a message to be delivered can be calculated using td = ta + δc + (δx ×

δm) where td is the tick a message will be delivered, ta is the tick that a message arrives, δc

is the constant delay added to all messages, δm is the delay added to messages of this type,

and δx is the multiplier applied to message delays. This allows a level of configurability in

how quick the messages get delivered, for example all messages can be delivered equally

fast if δm = 0.

4.2.3 Prior Research

A following discussion investigates different approaches to playing Ms. Pac–Man, as either

Ms. Pac–Man or the ghost team.

Neural approaches

Neural techniques are inspired by theories about how neurons in the brain work together

to make decisions. Artificial neural networks work in this way, with a series of inputs go-

ing into the neural net and a series of outputs coming out of it. Inside the network, both the

way that the neurons are connected (topology) and the weighting of each connection has a

large influence on the final outputs. Lucas (2005) explored using a simple (N + N) Evolu-

tionary Algorithm (EA) with N = [1, 10] to train the weights of a neural network that was

used as a location evaluator to decide the next move for Ms. Pac–Man. The neural network

used a simple feature vector (Table 4.4) as input for each considered location. The location

with the highest score is chosen as the next move. Burrow and Lucas (2009) compared two

4.2. Ms. Pac-Man Vs Ghosts 53

different approaches to learning to play the game of Ms. Pac–Man. The two techniques

used were Temporal Difference Learning (TDL) and EA. These techniques were each used

to train a Multi-Layer Perceptron (MLP) that was then evaluated within the game. The EA

was subsequently shown to be superior to TDL. Schrum and Miikkulainen (2014) invest-

igated the use of modular neural networks to control Ms. Pac–Man. The agent was de-

veloped for the same simulator as used in the Ms. Pac–Man Versus Ghost Team. The final

result was that the best performing agents were those that evolved to lure ghosts to power

pills for easy eating, which is a common human tactic when playing. Wittkamp et al. (2008)

investigated using an online learning technique, Neuro-Evolution Through Augmenting

Topologies (NEAT), to evolve the controllers for the ghost team. Each ghost evolves separ-

ately, but shares the score of the team. The paper tries several different approaches, with

each one being an adaptation to the features or evaluation functions to try and bring out

certain behaviours. In the first experiment, the authors used a simple performance metric

using the number of lives that Pac–Man has remaining for the primary reward and distance

from ghost to Pac–Man (inversed when edible) for a secondary reward. This constructs a

chasing and evading set of ghosts that performed significantly better than the original ba-

sic AI. In the second experiment, the authors altered the performance metric to include

a tertiary score that promotes ghost dispersion. This resulted in worse performance than

the results from experiment 1 despite the reasonable idea that dispersed ghosts can trap

Pac–Man better. In the third experiment the metrics were largely tweaked to a new system.

Rank 1 was still Pac–Man’s lives, but Rank 2 and 3 aimed to reduced the count of edible

ghosts and increase the count of chasing ghosts. This provided interesting behaviour with

chasing ghosts moving towards vulnerable ghosts in order to deter or eat Pac–Man if he

tries to chase the vulnerable ghost. The inverse of this was also observed, with vulnerable

ghosts travelling towards chasing ghosts looking for protection. An interesting behaviour

that was observed was that ghosts attempted to protect power pills from being eaten in

the first place. All these experiments gave interesting behaviour but the best score was

obtained with the first experiment.

54 Chapter 4. Games in this Thesis

Tree-search approaches

Tree search is a technique that involves building game trees through simulations, typically

with statistics and heuristics to evaluate positions rather than fully expand the tree to the

games end. These statistics and heuristics are used to make decisions about how to play the

game. One particularly common tree search algorithm used in this thesis, MCTS, is covered

in more detail in Section 3.1. Samothrakis et al. (2011) used a 5-player maxn MCTS tree with

limited tree search depth. The paper experimented with both MCTS for Ms. Pac–Man and

for the ghosts. In order to better guide the MCTS a target node of the maze is chosen as a

"game preferred node" (gpn). This assigns a reward for reaching that node and no reward for

any other node. This allows Ms. Pac–Man to reach a terminal state in the game tree without

dying. The gpn is set when there are no pills or power pills within the tree search depth

limit. This leaves a simple reward function for Ms. Pac–Man of 1.0 if Ms. Pac–Man con-

sumes the last pill on the map, 0.8 if the preferred node is reached, 0 if Ms. Pac–Man died,

or 0.6 otherwise. The ghosts are rewarded for being close to Ms. Pac–Man and a top score

of 1 for Ms. Pac–Man being eaten by any of the ghosts. Pepels et al. (2014) described their

work in creating an entrant to the Ms. Pac–Man Versus Ghost Team competition (WCCI1’12

and CIG2’12). An MCTS agent is described in detail containing a number of enhancements

and alterations designed to improve performance specifically in Ms. Pac–Man. The first

enhancement described involved not considering reversal of direction outside of the first

level of the MCTS tree. This reduces the branching factor of the tree, and also guaran-

tees some progress be made along the map. Additionally, this will enable branches of the

tree to more directly reflect different game states. If Ms. Pac–Man takes 20 ticks, 15 of

which travelled forward and 5 backward then 10 steps forward would have been made.

The number of different combinations for order of moves would consist of a large num-

ber of leaf nodes corresponding to near identical game states - diluting the statistics. A

second enhancement consisted of storing additional statistics within each MCTS node, cor-

responding to the scores obtained through the use of different tactics. The “ghost-score”

1IEEE World Congress on Computational Intelligence
2IEEE conference on Computational Intelligence in Games

4.2. Ms. Pac-Man Vs Ghosts 55

tactic corresponds to score obtained by eating ghosts, the “pill-score” tactic corresponds to

the score obtained by eating pills, and the “survival-score” tactic corresponds to a reward

given for surviving. The tactic to use to bias the search is selected at each node. The “ghost-

score” tactic is selected if at that node Ms. Pac–Man is currently able to consume ghosts;

the “pill-score” tactic is the default tactic; and the “survival-score” tactic is applied when

the survival rate of the previous or current search is below the threshold Tsurvival . Rewards

were altered to account for time taken to achieve them. The third enhancement described

consisted of reusing search trees in subsequent ticks of the game. This information is worth

keeping in order to effectively expand the computational budget available to the algorithm.

The simulation phase of the algorithm contains rule based approaches to both the ghosts

and to Ms. Pac–Man. The paper experimented with each enhancement switched off and

provided a clear analysis of the effect of each one. The agent itself came second and first

place (chronologically) in the competitions that it entered. Nguyen and Thawonmas (2011)

presented their winning agent team that was entered into the CEC3 2011 Ms. Pac–Man vs

Ghost Team Competition. Pinky, Sue, and Inky were controlled with an MCTS agent while

Blinky was given a rule based agent. The MCTS agents were given a k Nearest Neighbour

(KNN) learned model of Ms. Pac–Man to use. Given the set of features about the current

game state, they were able to predict what Ms. Pac–Man would do.

Evolutionary approaches

Evolutionary techniques use methods inspired by natures way of problem solving. Solu-

tions are evolved through repeatedly mutating, cross-breeding, and selecting candidates

in a genetic pool. Over time, the candidates improve in fitness until a viable solution is

found. They are explored in more detail in Section 3.2. Handa and Isozaki (2008) used

fuzzy logic tuned by a 1+1 EA. The rules were tuned with the EA and consisted of a series

of predefined rules about avoidance and chasing as well as pill collecting. Alhejali and

3IEEE Congress on Evolutionary Computation

56 Chapter 4. Games in this Thesis

Lucas (2010) extended the work by Koza (1992) on Genetic Programming (GP) with Pac–

Man. Using Koza’s original functions, as well as implementing his suggested additions

and a small number of new functions, the authors found that when focusing on a single

maze, the controllers would typically eat the power pills and chase ghosts, but evolved

little strategy for consuming the standard pills. This lead to many agents losing interest

in the game and simply wandering until death. When the agents were asked to repeat the

first maze infinitely, being presented with a newly populated maze each time they suc-

cessfully cleared their current maze the agents evolved a different strategy that focused on

maze clearing to continue to obtain as many points as possible without dying. Alhejali and

Lucas (2013) studied the idea of using GP to evolve heuristic functions for a MCTS agent.

The GP system was strongly-typed with a variety of non-terminal and terminal nodes de-

signed to move Ms. Pac–Man, make decisions, or provide information about the game.

With this system, a wide variety of potential calculations can be made about the current

game state. The population was evaluated by running the candidates through games of

Ms. Pac–Man and the final scores recorded. Their results showed that allowing the can-

didates to be tested on longer games provided poorer results about 100 game ticks. Final

results provided an 18% increase in average score over using a random default policy for

Ms. Pac–Man.

Nature Inspired approaches

Nature inspired algorithms such as Ant Colony Optimisation (ACO) and other Swarm In-

telligence (SI) techniques work by mimicking the tactics used by other species in nature.

Often, these tactics are usable in games such as Ms. Pac–Man. Ants spend their lives col-

lecting food and avoiding predators, a similar task to that faced by either Pac–Man or Ms.

Pac–Man. Emilio et al. (2010) worked with ACO to design an agent for Ms. Pac–Man. Two

objectives are chosen to drive the agent: maximising pill collection and minimising being

eaten by ghosts. This leads to two types of ants used in the system: the collector ants max-

imising pill collecting, and the explorer ants minimising death. Collector ants also eat ghosts

4.3. Hanabi 57

if possible and include those points in their paths. At each iteration of the game the agent

launches an ant of each type in all adjacent positions to the current agent position. If the

agent is near a ghost then the best explorer ant is chosen to follow. If the agent is not near

a ghost then the best collector ant is followed. The ants themselves follow simple rules of

simply travelling to the next node, recording information about that node, listing it as vis-

ited, and then updating the local pheromones. Liberatore et al. (2014) look into the use of SI

and flocking to control the ghost team. Flocking is inspired by bird flocks and is the blend-

ing of three strategies to control an agent: Separation, Alignment, and Cohesion. These

keep the birds from colliding with each other, facing the same way, and close enough to be

together. The authors consider that a GA should be able to learn the correct balance of the

three strategies by playing a sequence of games. Two sets of weights are learned, one for

when the ghosts are edible, and another for when the ghosts are to be avoided.

4.3 Hanabi

Hanabi4 is a card game that has co-operative and PO characteristics. It won the prestigious

Spiel des Jahres award 2013 for best board game of the year.

Each game consists of a team of players trying to collaboratively create stacks of cards

that match in colour and increase in value consecutively. There can only be one stack per

colour. There are 50 cards in the standard deck with five colours and five possible values,

and example of which is given in Figure 4.5. The five colours in Hanabi are White, Yellow,

Green, Blue, and Red. The number of cards of each value is given in Table 4.5.

The team of players can contain either two, three, four, or five players. The number of

cards given to each player is five cards for two and three-player games, and four cards for

four and five-player games. Each player cannot see their own cards, but can instead see

the cards that the other players are holding. This is the main source of the PO in Hanabi.

Remaining cards are placed in the deck as the last source of PO in the game.

4Antoine Bauza, 2010

58 Chapter 4. Games in this Thesis

FIGURE 4.5: An example of a card from
Hanabi.

TABLE 4.5: Number of cards of each value in
each suit of Hanabi.

Card Value 1 2 3 4 5
Quantity 3 2 2 2 1

The team are given eight information tokens and three life tokens.

Each player takes it in turns to make a single action of their choice. The three different

actions are:

Tell Select a player and point to all their cards of a given number or suit. This costs

one information token. At least one card must be identified, so the lack of a

suit or number cannot be told.

Play Choose a card from the player’s own hand and play it. A new card is then

removed where possible from the deck and placed in the hand.

Discard Choose a card from the player’s own hand and add it to the discard pile. A

new card is then removed where possible from the deck and placed in the

hand. Discard is only possible if the team has less than 8 information tokens

remaining, and discarding earns one information token back for the team.

Playing a card doesn’t require the player to know exactly what it is - if it fits anywhere on

the table then it is a valid play. If the card turns out to not be playable, the team loses a life

token.

The game ends when either all the life tokens are spent, the score reaches 25, or the deck

runs out of cards and every player has taken their last go. When the deck runs out of cards,

each player including the player that took the last card receives one additional turn before

4.3. Hanabi 59

the game ends.

The game is scored by summing the top of each stack of cards, giving a maximum score of

25 for the standard game.

4.3.1 Previous Research

Osawa introduced rule-based agents focusing on the two-player version of Hanabi (Osawa,

2015). Some of these agents are implemented in this chapter (Section 7.2.1). Osawa found

that the consideration of other agent’s strategies improved performance. Cox et al. general-

ised the five player version of Hanabi into a mathematical game, to create a highly capable

agent (Cox et al., 2015). The agent does, however, require all agents to follow the same

strategy or chaos ensues. Bergh et al. played Hanabi and observed common tendencies

amongst players that could be expressed as rules. An intelligent exploration of parameters

and rule selection resulted in some rules showing more effectiveness than others, especially

that discarding when a hint is possible is not optimal (Bergh et al., 2016). This agent is im-

plemented in Section 7.2.1. Bouzy adapted the hat-guessing strategy to also use tree search,

improving scores even further (Bouzy, 2017). The authors additionally explored relaxing

the rule concerning telling that a player has no cards of a given rank or suit - allowing the

hat-guessing strategy to extend to less than five players.

61

Part II

Artificial intelligence in co-operative

games with partial observability

63

Chapter 5

Monte-Carlo Tree Search Applied to

Co-operative Problems

This chapter contributes to the thesis an experiment to see how standard Monte-Carlo Tree

Search (MCTS) handles a simple co-operative problem in a Partially Observable environ-

ment, that we call “Tiny Co-op” (Detail: Section 4.1, Recap: Section 5.2). This environment is

formed from a simple grid world with obstacles and interactive elements, as well as avatars

controlled by Artificial Intelligence (AI) agents. All avatars have to each reach every goal

that is present. In some cases it is necessary for the agents to behave co-operatively in order

to achieve these goals. All communication between the two agents is prevented, however

MCTS performs well when given enough computational time.

This chapter is adapted from:

Piers R. Williams, Joseph Walton-Rivers, Diego Perez-Liebana and Simon M. Lucas (2015).

‘Monte Carlo Tree Search Applied to Co-operative Problems’. In: CEEC’2015 - IEEE Con-

ference on Computer Science and Electronic Engineering. IEEE CEEC. IEEE Computer Society,

pp. 219–224

64 Chapter 5. Monte-Carlo Tree Search Applied to Co-operative Problems

5.1 Introduction

The main contribution of this chapter to the thesis is an experiment on how MCTS and

Genetic Algorithm (GA) agents perform when trying to solve a simple co-operative Partial

Observability (PO) problem without the ability to communicate with or observe each other.

Games that feature co-operation of some form between human players and AI agents are

commonplace. Most, however, feature very limited forms of co-operation that are typic-

ally scripted such as in most First-Person Shooter (FPS) games. Where FPS games typically

excel at co-operation is in online modes that enable teams of humans to play against each

other. Real-Time Strategy (RTS) games also often have a small number of features de-

signed for communication in a bid to facilitate co-operation. Two games that stand out

for co-operation are Rise of Nations1 and Empire Earth II2. Rise of Nations allowed a human

and an AI agent to control the same set of units and buildings, though no communication

was possible at all. This allowed a form of co-operation, but the AI operated to its own

agenda, often leading to the AI spending resources that the player was trying to save for a

particular item. Empire Earth II allowed for humans and AI agents to co-operate by letting

“plans” be drawn up between them that could also be followed by both the human and AI

agent. These allowed a fairly complex set of instructions to be created, despite the simple

interface.

A highly popular game that had an entire mode designed for co-operation between hu-

mans was Portal 23. This featured human sized lab-test mazes with elements that required

players to work together by activating buttons, moving cubes and using intra-dimensional

portals to get to the end goal. Both players were required to reach the goal in order to

complete the level.

1Big Huge Games, 2003
2Mad Doc Software, 2005
3Valve, 2011

5.2. Tiny Co-op Domain 65

FIGURE 5.1: Example of the Tiny Co-op domain.

5.2 Tiny Co-op Domain

The test-game introduced in this chapter, Tiny Co-op, was inspired by Portal 2. A reminder

of how the game looks is provided in Figure 5.1.

5.3 AI Agents

This section presents a set of AI agents designed to solve the problem domain. None of

the agents have the ability to communicate with other agents, with no messaging protocol

or the ability to observe the world either. Each avatar is controlled separately by a unique

instance of an agent.

5.3.1 Random

The Random agent simply uniformly chooses one of the possible five actions (four car-

dinal directions and staying still). This is one of the simplest to implement and serves as a

reasonable baseline for performance.

5.3.2 MCTS

This agent is a simple implementation of MCTS, with a fixed number of rollouts, tree

search depth limit, and a fixed rollout depth. The rollout depth is how far in total the

66 Chapter 5. Monte-Carlo Tree Search Applied to Co-operative Problems

forward model will be allowed to progress from the root node before the game state is

evaluated. No knowledge about the game is provided and the assumption is made, both

in the tree4 and in the rollouts, that the other agent will play randomly. The fixed rollout

depth makes an improvement to the number of iterations performed (from between 1-3 it-

erations without the fixed rollout depth to 500-600 iterations with the fixed rollout depth in

40ms 5). This greatly improves the ability of MCTS to make informed decisions. The score

at the end of a rollout is taken from the game state — so if MCTS does not see any agent

reach a goal, all branches will be equal. For the experiment, three variants were created us-

ing different parameters and are listed below as well as being summarised in Table 5.1. For

these agents, the total number of steps they can simulate the model forward is the addition

of the depth of their tree and the depth of their rollouts.

High MCTS

This agent is designed to be fast enough to execute in real time, while having the highest

budget possible. It performs 500 iterations per decision, with a tree depth of 10, and a

rollout depth of 45.

Medium MCTS

This agent is designed to be more restricted than High MCTS, while still having enough

budget to have some intelligence. It performs 200 iterations per decision, with a tree depth

of 5, and a rollout depth of 30.

Low MCTS

This agent is designed to be a heavily restricted form of High MCTS. It performs 75 itera-

tions per decision, with a tree depth of 3, and a rollout depth of 15.

4This is unusual but essentially the agent behaves as if it is playing a single player game where the other
agent is a non-deterministic part of the environment.

5Intel Core i5-3570, 8GB RAM, Windows 7 Enterprise 64bit

5.3. AI Agents 67

TABLE 5.1: Parameters for the three MCTS agents

Budget Rollouts Tree Depth
Limit

Rollout Depth

Small 75 3 15
Medium 200 5 30
High 500 10 45

5.3.3 Genetic Algorithms

The two GA agents are based on a Rolling Horizon Evolutionary Algorithm (RHEA) (Sam-

othrakis and Lucas, 2010). This type of agent will evolve candidates consisting of a list of

actions to execute, and use simulations to evaluate how good the list of actions is. Typically

this list is of a certain length, and, therefore, presents a horizon that the agent can simulate

to. The addition of macro actions is a technique used to improve the distance to the horizon

without increasing the length of the candidates. This is achieved by repeating each action

in the candidate solution n times (Perez et al., 2013). An additional effect of this technique is

that for n turns the action to make is known due to the repetitions, allowing the controller

to spend n turns computing the next sequence of actions to perform. The MacroGA agent

implements this behaviour.

MacroGA The MacroGA uses a population size of ten and tournament selection of size

three to evolve its solutions. The population size is kept low as evaluating candidates is

expensive. Each candidate consists of a string of 15 actions — with each action performed

three times in a row. This means that the MacroGA can simulate 45 ticks in the future. The

total length of the action sequences corresponds to a little less than the total simulation

depth of High MCTS.

VariES The VariES agent is designed to solve the shortcomings6 of the MacroGA agent.

The candidate representation is extended to include individual lengths for each macro ac-

tion, as well as a variable number of macro actions. This allows more complex sequences of

6The use of macro actions prevents MacroGA from executing single actions, leading to locations that are
inaccessible. Discussed in more detail in Section 5.5

68 Chapter 5. Monte-Carlo Tree Search Applied to Co-operative Problems

Lengths 1 4 3 2 5 1 1 2 4 3
Actions UP LEFT LEFT UP UP LEFT UP LEFT LEFT DOWN

Lengths 1 4 2 5 1 2 4
Actions UP LEFT LEFT UP LEFT LEFT DOWN

FIGURE 5.2: Example candidate for the VariES. Candidates can vary on any
of: the number of macro actions, the length of each individual macro action,

and the value of each individual macro action.

TABLE 5.2: Parameters for the VariES

Parameter Controls Value
minNum Number of Macro Actions 3
maxNum Number of Macro Actions 10
minLength Length of Macro Actions 1
maxLength Length of Macro Actions 5
numChance Chance of altering Number 0.25
lengthChance Chance of altering each length 0.8
actionChance Chance of altering each action 0.75
iterationBudget Number of iterations of the algorithm 500

actions than the MacroGA is capable of. An example of two candidates for this algorithm

are shown in Figure 5.2.

The main evolutionary technique used is also changed to a 1 + 1 Evolutionary Strategy

(ES) (Bäck et al., 2000). A 1 + 1 ES is a very simple Evolutionary Algorithm (EA) that

maintains a single candidate. On each iteration, the mutation operator is applied to this

individual, and it is saved as the new best candidate in case of an improvement in fitness

(and discarded otherwise). This kind of ES is much simpler than a full GA, requires much

less memory, and, due to a small computational cost within each iteration, is able to use

more of the available time budget due to each iteration taking less time. This allows more

regular checks of the time budget, and reduces the chance of overspending.

The algorithm is bounded by a number of parameters (shown in Table 5.2), and a fur-

ther tuning of these is possible future work in order to explore the full potential of this

algorithm. The absolute maximum simulation depth possible is 50 ticks, which is slightly

lower than High MCTS and slightly higher than MacroGA. Each algorithm is fundament-

ally different, so maintaining exactly the same parameters across them all was impossible.

5.4. The Experiment 69

5.4 The Experiment

A round-robin tournament between the following six agents was performed:

• Random

• High MCTS

• Medium MCTS

• Low MCTS

• MacroGA

• VariES

Each agent pair played 47 games7 on each of the seven maps8 (Section 4.1.3). Games ended

when the agents had either achieved a perfect score of 1, or reached the 2000 tick limit.

Final scores and the number of ticks taken to achieve that score were recorded for analysis.

5.5 Results

The data presented in the bar-graphs comes from a single data set, all, and that is addi-

tionally filtered to create another dataset named mirror. The mirror dataset is formed from

games where both agents were being controlled by the same type of agent. So games fea-

turing the pair: High MCTS and Medium MCTS, would not feature in mirror because the

two agents are different. The graphs show error bars, which are calculated as a 95% con-

fidence interval.

Figures 5.3 and 5.4 compare the ability of each agent to solve a simple path finding problem

against the same problem with the addition of the Door and Buttons. The MacroGA, with

its macro actions, is hindered by its inability to make single step moves, and has trouble

7Number of games determined by computing budget and time available
8For a total of 329 games in each pair and 11,844 games across the tournament

70 Chapter 5. Monte-Carlo Tree Search Applied to Co-operative Problems

FIGURE 5.3: Average score achieved in the Pathfinding map compared with the Single
Door map, on the mirror dataset

FIGURE 5.4: Average ticks taken to complete the Pathfinding map compared with the
Single Door map, on the mirror dataset

actually travelling straight to the target. The VariES does significantly9 better in Pathfind-

ing, due to its ability to perform variable-length step moves, combining the advantages of

macro actions with the ability to still make fine-grained moves when needed. Low MCTS

is the worst performing agent in Single Door, however the higher budget of Medium MCTS

9Significance being defined as two values being outside of each others error bars

5.5. Results 71

is enough to always score the maximum in Single Door. The High MCTS agent improves

only in average ticks taken to solve the task over Medium MCTS.

FIGURE 5.5: Average score of each AI Agent over all the maps

FIGURE 5.6: Average ticks taken for each AI Agent over all the maps

Figures 5.5 and 5.6 show the average score and ticks that each AI agent achieved over

all the maps in both the all and mirror datasets. The two more powerful MCTS agents

performed the best, doing much better than the competition. Figure 5.6 shows a similar

result, with the more powerful agents typically completing the maps in fewer ticks. The

72 Chapter 5. Monte-Carlo Tree Search Applied to Co-operative Problems

Random agent is the only deviant here — it outperformed the GA agents in score but was

worse in average ticks. The good results for Random are potentially due to the fact that all

three MCTS agents and both GA algorithms based their decisions on having Random as

an accomplice.

FIGURE 5.7: Recap of Airlock originally described in Section 4.1.3.

Airlock, shown in Figure 5.7, poses a particular problem for many of the agents (see Table 5.3).

The asymmetric nature of the level, and the delayed reward, caused great difficulty for the

group of agents. Relying on two button presses and the other agent to get through the

open doors - in order - greatly reduced performance. Only the High MCTS agent scored

well with an average of 0.97 on the mirror dataset compared to the next highest for Mac-

roGA of 0.17.

Table 5.3 shows each agent’s average score on each map with the mirror dataset. High

MCTS shows its strengths here, with only Airlock showing a sub-perfect score. Medium

MCTS matches High MCTS on 4 maps, showed some trouble with Butterfly and Extended

Side, as well as doing terribly on Airlock. Low MCTS shows where its poor overall score

has come from, not posting an average score at all on two maps10.

10Implying the agent spent the full 2,000 ticks without reaching a single goal

5.5. Results 73

TABLE 5.3: Average score for each AI Agent over each map on the mirror
dataset

Map Agent Score StdDev Ticks StdDev
Pathfinding

Random 1.00 0.00 374.21 249.09
High MCTS 1.00 0.00 16.06 4.32
Medium MCTS 1.00 0.00 17.49 4.62
Low MCTS 1.00 0.00 39.91 23.41
MacroGA 0.94 0.17 732.98 646.18
VariES 1.00 0.00 53.77 35.45

Side By Side
Random 0.64 0.15 1969.15 148.05
High MCTS 1.00 0.00 107.30 42.93
Medium MCTS 1.00 0.00 366.02 226.03
Low MCTS 0.58 0.12 2000.00 0.00
MacroGA 0.61 0.12 2000.00 0.00
VariES 0.62 0.21 1820.32 408.39

Symmetric Single Door
Random 0.32 0.35 1888.98 336.25
High MCTS 1.00 0.00 34.70 12.85
Medium MCTS 1.00 0.00 119.38 61.76
Low MCTS 0.86 0.29 1390.74 544.40
MacroGA 0.54 0.33 1866.60 330.76
VariES 0.40 0.50 1594.06 611.65

Butterfly
Random 0.39 0.16 2000.00 0.00
High MCTS 1.00 0.00 409.23 167.67
Medium MCTS 0.79 0.19 1786.40 167.67
Low MCTS 0.25 0.00 2000.00 0.00
MacroGA 0.39 0.17 2000.00 0.00
VariES 0.13 0.14 2000.00 0.00

Single Door
Random 0.30 0.32 1959.11 148.59
High MCTS 1.00 0.00 115.79 186.58
Medium MCTS 1.00 0.00 445.15 228.49
Low MCTS 0.00 0.00 2000.00 0.00
MacroGA 0.23 0.33 1950.21 186.58
VariES 0.12 0.32 1902.53 317.58

Extended Side
Random 0.30 0.29 1990.51 49.38
High MCTS 1.00 0.00 234.70 127.81
Medium MCTS 0.88 0.21 1254.77 589.86
Low MCTS 0.00 0.00 2000.00 0.00
MacroGA 0.31 0.25 1984.17 108.52
VariES 0.10 0.19 2000.00 0.00

Airlock
Random 0.09 0.19 2000.00 0.00
High MCTS 0.97 0.16 714.57 516.67
Medium MCTS 0.11 0.31 1958.47 147.85
Low MCTS 0.00 0.00 2000.00 0.00
MacroGA 0.17 0.28 1953.60 261.12
VariES 0.00 0.00 2000.00 0.00

74 Chapter 5. Monte-Carlo Tree Search Applied to Co-operative Problems

5.6 Discussion

The following subsections discuss the performance of different AI’s (Sections 5.6.1 to 5.6.3)

in detail. Map complexity is discussed in Section 5.6.4

5.6.1 Random

The Random agent performed poorly in this problem domain, finishing on average under

the 2000 tick limit and scoring less than half the maximum.

5.6.2 MCTS

The MCTS agents performed very well in this problem domain. As seen above, in Fig-

ure 5.6, the Medium MCTS and High MCTS agents provided the two quickest completion

times across all maps. The differences shown were significant, as well as being the only two

agents to have completed the levels in under 1000 ticks on average. Figure 5.5 showed that

the medium and high budget implementations scored significantly better than all other

agents. The Low MCTS agent performed poorly, scoring worse than the Random agent -

showing that there simply was not enough computational budget to perform well. This is

likely due to Random at least exploring the environment with a random chance of doing

the right moves, while the Low MCTS agent may simply spend a long time staying still

instead of going anywhere.

One possible reason for MCTS scoring so well in this problem domain is its use of statistics

over hundreds and thousands of simulations to provide it with the ability to act in such a

way that it handles all eventualities. Statistically, in certain situations MCTS would only

see rewards in the tree when it was situated on a Button. This tended to cause the MCTS

agent to travel towards Buttons, increasing the possibility that its own simulations would

cause it to be situated on the button. Eventually, most other AI agents would cross through

the open door.

5.6. Discussion 75

5.6.3 GA

The two GA algorithms did not perform very well in this problem domain. As seen in

Figure 5.5 and Figure 5.6, when tasked with solving the problem domain with another

identical agent, neither the MacroGA or VariES performed well at all. The VariES only per-

formed significantly better than either Random or MacroGA in Pathfinding. In all other

cases, VariES performed similarly to the standard MacroGA. The ability to mutate the

lengths of individual action sequences made the VariES a more flexible pathfinder that the

MacroGA but did not aid its ability to solve the co-operative problems present elsewhere

in the experiment.

The GA algorithms do not have the stored tree structure of MCTS with which to gain

the statistical model for what happens when they pursue certain actions. This leads to

a seemingly poor performance for the GA despite GAs and MCTS typically performing

equally well in other domains (Perez et al., 2013).

5.6.4 The Maps

The agents performed across the maps as expected - with maps containing goals behind

interactive elements proving the hardest. Airlock in particular was interesting with the

asymmetric roles designed to make the second agent open and close the doors in order

to allow the first agent to progress to the goal. Figure 5.8 shows each agent on the mirror

dataset, as well as the average score when the other agent is High MCTS in either of the

possible positions. It is clear that the presence of High MCTS is beneficial in both cases,

but it is particularly good for team performance when High MCTS is in the crucial second

position.

76 Chapter 5. Monte-Carlo Tree Search Applied to Co-operative Problems

FIGURE 5.8: Analysis of Airlock, showing each agent with High MCTS in
different positions as well as the mirror data set. The first player has a differ-
ent role in this map, providing the difference between the scores. The second
player has to use buttons to open doors for the first player. The first player is

powerless unless this is done for them.

5.7 Conclusions

In this chapter, we found that a strong MCTS agent can solve simple cooperative PO prob-

lems without requiring communication between agents. We also found that a number

of other AI techniques experienced difficulty when the problem became cooperative. We

hypothesised that MCTS’s use of a stored tree guiding its explorations (something that

GAs lack) was a major advantage in solving problems that rely on the other agent. GAs

were found to perform poorly in the experiment, despite being capable of finding the goal

without the co-operative obstacles.

77

Chapter 6

The Ms. Pac-Man Vs Ghost Team

Competition

This chapter introduces the revival of the popular Ms. Pac–ManVersus Ghost Team com-

petition. An updated game engine with Partial Observability (PO) constraints is presented

as well as a new Multi-Agent System (MAS) approach to developing ghost agents, and

several sample controllers to ease the development of entries. A restricted communication

protocol is provided for the ghosts, providing a more challenging environment than be-

fore but also allowing them to overcome some of the PO constraints. The addition of PO

to the co-operative ghost-team environment is the primary contribution of this chapter to

the thesis. Some preliminary results showing the effects of PO and the benefits of simple

communication are also presented. In addition to this, results from the competition are

presented.

This chapter is adapted from:

Piers R Williams, Diego Perez-Liebana and Simon M Lucas (2016). ‘Ms. Pac-Man Versus

Ghost Team CIG 2016 Competition’. In: CIG’2016 - IEEE Conference on Computational Intel-

ligence and Games. IEEE CIG, pp. 420–427.

78 Chapter 6. The Ms. Pac-Man Vs Ghost Team Competition

6.1 Introduction

Ms. Pac–Man is an arcade game that was immensely popular when released in 1982. An im-

provement on the original Pac–Man game; Ms. Pac–Man added better graphics, additional

mazes, and new Artificial Intelligence (AI) behaviour for the ghosts. The primary differ-

ence that interests academics and researchers is the addition of non-deterministic ghost AI

which vastly increased the challenge in creating an effective agent for Ms. Pac–Man.

Ms. Pac–Man has been the focus of two competitions in the past: The Ms. Pac–Man screen

capture competition and the Ms. Pac–Man Vs Ghost Team competition. The Ms. Pac–Man

screen capture competition periodically provided agents with a pixel map of the game

and requested the direction of travel from the agent. This competition only allowed the

entrants to submit agents for the Ms. Pac–Man character. The Ms. Pac–Man Vs Ghost Team

competition was based on a simulator that mimicked the original game reasonably closely

and provided agents with an Application Programming Interface (API) to interact with.

Entrants had to submit a controller for either the Ms. Pac–Man agent or the ghost team.

The ghost team controller would return 4 actions, one per ghost.

The new Ms. Pac–Man Vs Ghost team competition adds PO to Ms. Pac–Man. PO greatly

increases the challenge in creating good AI controllers. Limited information about the

ghosts makes it more difficult for Ms. Pac–Man to plan effectively. Limited information

about Ms. Pac–Man forces the ghosts to search and communicate effectively in order to

trap Ms. Pac–Man. In addition to the PO constraints, the competition now expects the

ghosts to be controlled individually by a team of agents. Further review of competitions

was provided in Section 2.4.

6.2 The Competition

This section will describe the implemented AI controllers for both PO and non-PO opera-

tion (Section 6.2.1), an initial experiment comparing the effect of PO on score (Sections 6.2.2

6.2. The Competition 79

and 6.2.3), and the way the competition will be organised (Sections 6.2.4 and 6.2.5).

6.2.1 Sample Controllers for Ms. Pac–Man vs Ghosts

Having implemented PO for both Ms. Pac–Man and the ghosts, new controllers were

needed as examples for people entering the competition. These new controllers, and those

used in the experiments in this chapter, are described here.

StarterPacman (COP)

This is the original basic controller for the previous competition and works only in Com-

pletely Observable environments. This controller follows a very basic algorithm with some

simple sequential rules as shown in Algorithm 1. The controller will avoid ghosts that are

too close, chase ghosts that are edible, or travel to the nearest pill.

Algorithm 1 StarterPacman basic algorithm
function GETMOVE()

limit← 20
nearestGhost← GETNEARESTCHASINGGHOST(limit)
if nearestGhost then

return NEXTMOVEAWAYFROM(nearestGhost)
end if
nearestGhost← GETNEARESTEDIBLEGHOST(limit)
if nearestGhost then

return NEXTMOVETOWARDS(nearestGhost)
end if
nearestPill← GETNEARESTPILL()
return NEXTMOVETOWARDS(nearestPill)

end function

StarterGhosts (COG)

This is the original basic controller for the previous competition to control the four ghosts.

It is a “puppet-master” style algorithm, meaning it is a single block of logic that generates

moves for all four of the ghosts. The controller follows some basic strategies if a ghost is

allowed to make a move as shown in Algorithm 2. The ghosts will run away from Ms.

80 Chapter 6. The Ms. Pac-Man Vs Ghost Team Competition

Pac–Man if she is able to eat the ghost, or near a power pill (Potential to eat ghost). If the

previous rule doesn’t apply then the ghost will 90% of the time chase Ms. Pac–Man and

10% of the time move randomly.

Algorithm 2 StarterGhosts basic algorithm
function GETMOVE()

pacman← GETPACMANINDEX()
if ISEDIBLE() OR PACMANCLOSETOPPILL() then

return NEXTMOVEAWAYFROM(pacman)
end if
if NEXTFLOAT < 0.9 then

return NEXTMOVETOWARDS(pacman)
else

return NEXTRANDOMMOVE()
end if

end function

POPacman (POP)

This is a modification of the StarterPac–Man where each strategy is followed if it is possible

as shown in Algorithm 3.

Algorithm 3 POPacman basic algorithm
function GETMOVE()

limit← 20
nearestGhost← GETNEARESTCHASINGGHOST(limit)
if nearestGhost 6= NULL then

return NEXTMOVEAWAYFROM(nearestGhost)
end if
nearestGhost← GETNEARESTEDIBLEGHOST(limit)
if nearestGhost 6= NULL then

return NEXTMOVETOWARDS(nearestGhost)
end if
nearestPill← GETNEARESTPILL()
if nearestPill 6= NULL then

return NEXTMOVETOWARDS(nearestPill)
end if
return NEXTRANDOMMOVE()

end function

Other than modifying the original strategies with guards against null, it was clear that a

new default strategy was needed. This is because within the PO game, it was possible

6.2. The Competition 81

to proceed through the previous strategies without returning a move. This new default

strategy was to simply return a random move.

Starter Pacman One Junction

This is a starter agent added to provide a demonstration of determinising the game state

and forwarding the resulting state to provide a basic one junction lookahead (Algorithm 4).

The state is forwarded to the next junction rather than a single step of the game as this was

considered to be too small a distance between decisions.

Algorithm 4 Starter Pacman One Junction algorithm
function GETMOVE()

bestScore← -1
for move : MOVES do

score← EVALUATEJUNCTIONINDIRECTION(move)
if score > bestScore then bestScore← score bestMove←move
end if

end for
return bestMove

end function

POGhosts (POG)

This is a modification of the StarterGhosts where each strategy is followed if it is possible

in the PO case. If there is no information available to the ghost, then the ghost will behave

randomly at intersections as shown in Algorithm 5.

POCommGhosts (POGC)

This is a modification of the POGhosts that attempts to communicate each tick in order

to improve its chances. If this ghost can see Ms. Pac–Man then it will send a message

to everyone else. If it can’t see Ms. Pac–Man then it will check if anybody else has seen

it. If someone else has seen Ms. Pac–Man then it pretends it can see Ms. Pac–Man and

follows the original POGhosts strategy outlined above. The pseudo code for this is shown

in Algorithm 6.

82 Chapter 6. The Ms. Pac-Man Vs Ghost Team Competition

Algorithm 5 POGhosts basic algorithm
function GETMOVE()

pacman← GETPACMANINDEX()
if pacman then

if ISEDIBLE() OR ISPACMANCLOSETOPOWERPILL() then
return NEXTMOVEAWAYFROM(pacman)

end if
if NEXTFLOAT < 0.9 then

return NEXTMOVETOWARDS(pacman)
end if

else
return NEXTRANDOMMOVE()

end if
end function

Algorithm 6 POCommGhosts basic algorithm
function GETMOVE()

if PACMANINFONEEDSRESET(GETCURRENTTICK()) then RESETPACMANINFO()
end if
pacman← UPDATEPACMANLOCATION()

HANDLEMESSAGES()
pacman← GETPACMANINDEX()
if pacman 6= NULL then

if ISEDIBLE() OR PACMANCLOSETOPPILL() then
return NEXTMOVEAWAYFROM(pacman)

end if
if NEXTFLOAT() < 0.9 then

return NEXTMOVETOWARDS(pacman)
end if

else
return NEXTRANDOMMOVE()

end if
end function

The threshold used to determine when to forget Ms. Pac–Man’s location needs tuning.

Every value from 0 to 200 was put to a test on 4000 games against the COP agent and

33, 300 games against the POP agents. The results are displayed in Figure 6.1 and show

that the value of 50 is a good value against these two agents. Interestingly the data against

the POP algorithm is significantly noisier than COP. This is presumably due to COP being

deterministic and POP being non-deterministic.

6.2. The Competition 83

FIGURE 6.1: Tuning results of POGC against COP(Left) and POP(Right) both
with error bars.

6.2.2 Sample Controller Experiment

A round-robin of games between the two Ms. Pac–Man agents (COP, POP) against the

three ghost teams (COG, POG, POGC) was run with 1000 repeats for each pairing. The

Complete Observability (CO) agents were given the full view of the environment, while

the PO agents were given the restricted view of the environment. These basic controllers

may not represent the best agents for the game, but they do provide simple comparisons

between them as they rely on the same strategies. The only difference between them is the

addition of PO. Where PO was enforced, it was the Radius restriction with a sight limit of

50.

6.2.3 Sample Controller Results

The results of the experiment are presented in Table 6.1. It is clear that for the same

strategies, PO is a large handicap to the agent. Against COG, adding PO to Ms. Pac–Man

caused the score to drop from 3, 895.67 to 1, 753.52. Adding communication abilities to

the PO ghosts allowed CO Ms. Pac–Man to achieve only 3, 895.67 points on average com-

pared to 17, 257.24 points when the ghosts couldn’t communicate. This is a huge difference

84 Chapter 6. The Ms. Pac-Man Vs Ghost Team Competition

between two very simple algorithms and clearly shows the benefits of communication in

this scenario.

TABLE 6.1: Table of results after 1000 runs of different controllers

Agents Mean Score Std. Error
COP Vs COG 3895.67 48.23
COP Vs POG 17257.24 280.49
COP Vs POGC 5769.30 77.41
POP Vs COG 1753.52 26.97
POP Vs POG 2708.15 37.98
POP Vs POGC 2349.34 30.32

6.2.4 Competition Tracks

The Ms. Pac–Man Vs Ghost Team competition featured two main tracks. The first track

allowed participants to submit code to control Ms. Pac–Man operating within PO con-

straints. The second track allowed participants to submit 4 controllers, one for each ghost,

that would operate under PO constraints.

6.2.5 Entrant Ranking

Entrants were evaluated regularly and had Glicko2 ratings calculated while the competi-

tion was still open for entry. At the close of the competition, the top n agents were eval-

uated in a round robin tournament. The value of n was chosen based on available com-

putational hardware. In the event that the Glicko2 ratings were used to select entry into

the round robin, the ratings were given time to settle after the close of entry in case some

submissions were recently updated and had changed skill levels.

6.3 Competition Results

This section will discuss the results obtained from running the Ms. Pac–Man Vs Ghost

Team competition. The competition ran at CIG1 in 2016 (Section 6.3.1), 2017 (Section 6.3.2),
1IEEE conference on Computational Intelligence in Games

6.3. Competition Results 85

and 2018 (Section 6.3.3).

6.3.1 2016

There were two entrants to the Ms. Pac–Man track, but unfortunately no entrants to the

ghost team track in 2016. Both entrants performed significantly better than the sample

agents and scored less than 500 points between them. Full results are displayed in Table 6.2.

TABLE 6.2: Results from the 2016 competition

Agent Average Minimum Maximum
GiangCao 6348.85 1000 15940
dalhousie 5878.50 1140 13620
POP 2447.75 580 6730
Random 1629.85 250 5830

6.3.2 2017

In 2017 there was a large number of entrants to both the Ms. Pac–Man track and the ghost-

team track. 29 Ms. Pac–Man agents2, and 18 ghost teams successfully competed3. Trun-

cated results are presented in Table 6.3. The results here are not comparable with the pre-

vious year’s results due to the co-evaluation of agents but there is a healthy difference

between agents in both tracks. Further analysis of the performance of these agents is per-

formed in Chapter 8.

TABLE 6.3: Top 5 from each track in 2017. Full results available at
http://www.pacmanvghosts.co.uk/results.html

Ms. Pac–Man Agent Average Score Ghost Agent Average Score
SubtleBattle 10 260.38 MaFr 2223.86
giangrocker 9147.60 TiIsFePre 2853.79
thunder 8861.12 thunder 3047.42
ToSc 8388.80 POGC 3243.27
BaHe 8245.39 NiStTiTi 3276.37

2Only three of which were the sample agents
3Only two of which were the sample agents

http://www.pacmanvghosts.co.uk/results.html

86 Chapter 6. The Ms. Pac-Man Vs Ghost Team Competition

6.3.3 2018

In 2018 there were less entrants, however a new entrant successfully took the top spot of

the Pac–Man track. The ghost track was a little disappointing, with the supplied starter

agents taking the top two spots. Full results are displayed in Table 6.4.

TABLE 6.4: Results from each track in 2018.

Ms. Pac–Man Agent Average Score Ghost Agent Average Score
Squillyprice01 7736.63 StarterGhostComm 3859.13
GiangCao 7516.63 StarterGhost 4288.25
thunder 6733.13 thunder 4864.81
PacMaas 6275 user76 4948.88
StarterPacMan 5865.5
StarterPacMan One-
Junction

1134.25

StarterNNPacMan 535
user76 120

6.4 External Research

The original paper (Williams et al., 2016) and framework have been used in external re-

search. Garduño Hernández (2017) combined a Genetic Algorithm (GA) with case based

reasoning and found a high performing ghost team for the framework. Domınguez-Estévez

et al. (2017) used Q-learning with the Q-table replaced with case based reasoning, and

found that they could either survive in the game for a long time or reach high scores, but

not both in the same agent. Dockhorn and Kruse (2017) used coevolution and Genetic Pro-

gramming (GP) to create solutions for both the ghost team and Ms. Pac–Man with success

creating a diverse set of agents. Dienstknecht (2018) used a Deep Neural Networks (DNN)

merged with Monte-Carlo Tree Search (MCTS), similar to Alpha Go, and found that DNN

can improve MCTS in Ms. Pac–Man. The agent was submitted to the 2018 competition as

PacMaas. Zhang et al. (2018) used a new GP approach to evolve behavioural trees to play

Ms. Pac–Man and found that it was superior to prior GP techniques for behavioural trees.

6.5. Conclusions 87

6.5 Conclusions

This chapter introduced the Ms. Pac–Man Vs Ghost Team competition, describing the new

rules in detail as well as reviewing past research into Ms. Pac–Man AI. The addition of PO

to an already co-operative environment (ghost-team) and incentivising research into this

problem through a competition is the primary contribution towards this thesis. The chapter

also presents and discusses an initial experiment with basic AI conducted under the new

constraints. Finally the competition results so far are presented, showing the amount of

interest the competition has had.

89

Chapter 7

Evaluating and Modelling

Hanabi-Playing Agents

In this chapter, the use of agent modelling in the hidden-information, collaborative card

game Hanabi (Section 4.3) is explored. Agent modelling involves considering how other

agents will behave, in order to influence an agent’s own actions. A number of rule-based

agents, both from the literature and of our own devising, in addition to an Information-Set

Monte-Carlo Tree Search (IS-MCTS) (Section 3.1.3) agent are implemented. Poor results are

observed from IS-MCTS, so a new, predictor version that uses a model of the agents with

which it is paired is constructed. A significant improvement in game-playing strength is

observed from this agent in comparison to IS-MCTS, resulting from its consideration of

what the other agents in a game would do. In addition, an intentionally flawed rule-based

agent is created to highlight the predictor’s capabilities with such an agent compared with

others.

The bulk of this work is adapted from:

Joseph Walton-Rivers, Piers R Williams, Richard Bartle, Diego Perez-Liebana and Simon M

Lucas (2017). ‘Evaluating and Modelling Hanabi-Playing Agents’. In: Congress on Evolu-

tionary Computation, 2017. CEC’17. IEEE Conference On. IEEE, pp. 1382–1389.

90 Chapter 7. Evaluating and Modelling Hanabi-Playing Agents

7.1 Introduction

The purpose of this work is to examine the effect of being able to predict teammate ac-

tions in a co-operative Partially Observable game. Hanabi is a good game for research into

agent modelling because players are explicitly restricted in how they can communicate

with their teammates, leaving modelling of what they believe that other agents will do as

the only option for predicting their behaviour. Hanabi has attracted interesting research

in recent times due to the challenges of creating Artificial Intelligence (AI) that can play

effectively (Section 4.3.1).

Hanabi disfavours greedy play - choosing to play a card instead of providing a hint can

be worse than saving the play action for later and using a tell action this turn. If the next

player is likely to throw away a useful card unless you inform them of some of its attributes

it would be a poor choice to play a card even though it would obtain a point for the team.

In addition, choosing to tell could enable multiple players to play cards. For example,

Table 7.1 demonstrates a situation where it is far better for P1 to inform P2 of their 2’s

instead of playing the red two. The + and - symbols indicate if a player knows or doesn’t

know the colour and value of a card. P1 knows they have a Red 2 and P3 knows they have

a Blue but not the value of the Blue 1 in their hand. This allows a sequence of play actions

(P2 play B2, P3 play B3, P4 play B4, P1 play R2) which is far better than the greedy action

of (P1 play R2).

TABLE 7.1: Scenario demonstrating value of non greedy play.

Table B1 R1 G0 Y0 W2
P1 ? ? ? R2 + +
P2 W4 - - B2 + - W4 - - Y2 - -
P3 Y2 - - B3 + + B1 + - R1 - -
P4 B4 + + B1 + - W1 - - G2 - -

7.2. AI 91

7.2 AI

This section will provide descriptions for how the different agents operate and are imple-

mented in Hanabi, split into two main categories. Section 7.2.1 describes the use of Produc-

tion Rule Agents while Section 7.2.2 describes the remaining agents including IS-MCTS

based approaches.

7.2.1 Production Rule Agents

A number of the AI agents implemented in this framework operate as a Production Rule

Agent (PRA). A PRA operates by:

1. Starting with an ordered list of rules

2. Consulting the next rule from the list on what to do in the current situation

3. If the rule provided an action, perform the action

4. Otherwise move to the next rule from the list and repeat from step 2.

These rules are summarised by Figure 7.1.

Load next rulestart

Check if fires

Return action

Rule Remaining Return null

Yes

No

Yes

No

FIGURE 7.1: The operation of a Production Rule Agent

92 Chapter 7. Evaluating and Modelling Hanabi-Playing Agents

A rule in its most basic form is a mapping from a game state to either an action or null.

Rules are kept simple, focusing on simpler tasks than playing the whole game, forming

partial AI units. When a rule returns an action it is indicating that that is what that rule has

determined should be performed at the time. When the rule returns null then that is the

rule determining that it cannot make a decision. It usually requires a number of rules to

create an agent, due to the specialist nature of each rule. Many agents use the same rules,

so a description of each rule is presented once here before discussing individual agents:

• PlaySafeCard: Plays a card only if it is guaranteed that it is playable. Playable means

that the agent is able to determine with certainty that the card is safe to play, whether

or not that player can determine exactly what that card is.

• OsawaDiscard: Discards a card if it cannot be played at the end of the turn. This will

discard cards that we know enough about to disqualify them from being playable.

For example, a card with an unknown suit but a rank of 1 will not be playable if all

the stacks have been started. This rule also considers cards that cannot be played

because their pre-requisite cards have already been discarded.

• TellPlayableCard: Tells the next player a random fact about any playable card in

their hand.

• TellRandomly: Tells the next player a random fact about any card in their hand.

• DiscardRandomly: Randomly discards a card from the hand.

• TellPlayableCardOuter: Tells the next player an unknown (to that player) fact about

any playable card in their hand.

• TellUnknown: Tells the next player an unknown fact about any card in their hand.

• PlayIfCertain: Plays a card if we are certain about which card it is and that it is

playable.

• DiscardOldestFirst: Discards the card that has been held in the hand the longest

amount of time.

7.2. AI 93

• IfRule(λ) Then (Rule) [Else (Rule)]: Takes a Boolean λ expression and either one

or two rules. The first rule will be used if the λ evaluates to true. If it is false, and a

second rule was provided, then that rule will be used instead.

• PlayProbablySafeCard(Threshold ∈ [0, 1]): Plays the card that is the most likely to

be playable if its playability is at least as probable as Threshold.

• DiscardProbablyUselessCard(Threshold ∈ [0, 1]): Discards the card that is most

likely to be useless if its playability is less probable than Threshold.

• TellMostInformation(New? ∈ [True, False]): Tells whatever reveals the most in-

formation, whether this is the most information in total or the most new information.

• TellDispensable: Tells the next player with an unknown dispensible card the in-

formation needed to correctly identify that the card is dispensible. This rule will only

target cards that can be identified to the holder as dispensible with the addition of a

single piece of information.

• TellAnyoneAboutUsefulCard: Tells the next player with a useful card either the

remaining unknown suit of the card, or the remaining unknown rank of the card.

• TellAnyoneAboutUselessCard: Tells the next player with a useless card either the

remaining unknown suit of the card, or the remaining unknown rank of the card.

The following agents will now be introduced: Internal, Outer, Cautious, IGGI, Piers, Flawed,

and Bergh Rule.

Internal

This is a faithful implementation of the agent presented by Osawa that shares the same

name (Osawa, 2015). It features memory of the information it has been told about its own

hand but does not remember information about what other players have been told. The

rules used in order are:

1. PlaySafeCard

94 Chapter 7. Evaluating and Modelling Hanabi-Playing Agents

2. OsawaDiscard

3. TellPlayableCard

4. TellRandomly

5. DiscardRandomly

Outer

This is an implementation of the agent presented by Osawa with the same name (Osawa,

2015). It features knowledge of what the other agents have been told already as well as

what it has been told, to avoid repeating tell actions. The rules used in order are:

1. PlaySafeCard

2. OsawaDiscard

3. TellPlayableCardOuter

4. TellUnknown

5. DiscardRandomly

Cautious

This is an agent derived from human gameplay. The agent plays cautiously, designed to

never lose a life. The rules used in order are:

1. PlayIfCertain

2. PlaySafeCard

3. TellAnyoneAboutUsefulCard

4. OsawaDiscard

5. DiscardRandomly

7.2. AI 95

IGGI

This agent is a modification of Cautious. The alteration to a deterministic discard function

greatly aids the predictability of this player. The rules used in order are:

1. PlayIfCertain

2. PlaySafeCard

3. TellAnyoneAboutUsefulCard

4. OsawaDiscard

5. DiscardOldestFirst

Piers

This is an agent designed to use IfRules to improve the overall score. Otherwise, it is similar

to IGGI. The rules used in order are:

1. IfRule (lives > 1 ∧ ¬deck.hasCardsLeft) Then (PlayProbablySafeCard(0.0))

2. PlaySafeCard

3. IfRule (lives > 1) Then (PlayProbablySafeCard(0.6))

4. TellAnyoneAboutUsefulCard

5. IfRule (information < 4) Then (TellDispensable)

6. OsawaDiscard

7. DiscardOldestFirst

8. TellRandomly

9. DiscardRandomly

The first IfRule is designed as for exclusive use in the end game: if there is nothing left to

lose, try to gain a point. This derives from human play, where typically during the end

96 Chapter 7. Evaluating and Modelling Hanabi-Playing Agents

game we make random plays if we know there is a playable card somewhere in our hand.

This rule is more accurate, as it uses all the information it has gathered during play to

calculate probabilities.

The second IfRule simply risks playing a card if there is a reasonable chance of its being

safe.

The third IfRule is designed to try to provide more intelligent tell actions. If there is nothing

useful to tell and we are low on information, we set another agent up to be able to discard

cards that are not needed. This means that the agents can burn through cards that are not

helpful so as to try to obtain useful cards from the deck.

Flawed

This is an agent designed to be intelligent but with some flaws: it does not possess intel-

ligent tell rules, and has a risky play rule as well. Understanding this agent is the key to

playing well with it, because other agents can give it the information it needs to prevent it

from playing poorly. The rules used in order are:

1. PlaySafeCard

2. PlayProbablySafeCard(0.25)

3. TellRandomly

4. OsawaDiscard

5. DiscardOldestFirst

6. DiscardRandomly

Giving information is the key to getting this agent to work intelligently. Without informa-

tion, the intelligent rules can’t fire, thereby leaving this agent to tell randomly and discard

randomly which is not a great strategy.

7.2. AI 97

Bergh Rule

This is the best rule-based agent created by Bergh et al. It was created by observing from

human play that there are four main tasks (Bergh et al., 2016):

1. If I’m certain enough that a card is playable, play it.

2. If I’m certain enough that a card is useless, discard it.

3. Give a hint if possible.

4. Discard a card.

Bergh et al. used a Genetic Algorithm (GA) to evolve the best options for each section,

resulting in the following rules as an implementation:

1. IfRule (lives > 1) Then (PlayProbablySafeCard(.6)) Else (PlaySafeCard)

2. DiscardProbablyUselessCard(1.0)

3. TellAnyoneAboutUsefulCard

4. TellAnyoneAboutUselessCard

5. TellMostInformation

6. DiscardProbablyUselessCard(0.0)

7.2.2 Other Agents

These agents are implemented without the use of a PRA and include the tree search agents.

Legal Random

This agent makes a move at random from the set of legal actions available to it at any given

time step.

98 Chapter 7. Evaluating and Modelling Hanabi-Playing Agents

MCS

This agent is a simple Monte Carlo Search (MCS) that uses a provided agent for the rol-

lout phase. MCS is a technique that uses the Upper Confidence Bound (UCB) equation to

select actions in a single step lookahead, with policy informed rollouts to evaluate those

positions. It is essentially Monte-Carlo Tree Search (MCTS) with a tree depth limit of one

turn. In this chapter, we name the agent MCS-[agent] to indicate which agent provided the

rollout policy. For example, a MCS agent using IGGI as a rollout policy would be named

MCS-IGGI. The agent has a one-second time limit to return a move.

IS-MCTS

This agent uses a MCTS technique for handling games with partial observability known as

IS-MCTS (Cowling et al., 2012).

IS-MCTS is a modification to MCTS in which, on each individual iteration of the algorithm,

the partially-observable game state is determinised into one of the possible fully-observable

states. This state remains consistent for the selection, expansion, rollout, and back-propagation

phases before being replaced by a new determinisation in the next iteration. The imple-

mentation uses a time limit for returning moves of one second per move, and achieves

between 30, 000 and 60, 000 iterations in that limit depending on the game state.

Predictor IS-MCTS

This agent was provided with a copy of each of the agents that it was paired with to use

in its prediction. The predicted agents were initialised with random seeds: this corres-

ponds to the predictor’s having knowledge of each agent’s overall strategy but having no

knowledge of its internal workings.

7.3. Method 99

The Predictor IS-MCTS agent modifies the selection, expansion, and rollout phases of

MCTS when considering nodes for other agent turns. The modifications remove the ori-

ginal selection policy for other agents’ turns and replaces it with a query to the agent’s

model to discover what that agent would do in that situation. The rollout phase is simil-

arly modified for the agent’s turns to use the model, while the predictor agent uses random

for its own turns in the rollouts. When making moves for its own turn during the rollout,

the predictor agent defaults to the legal random selection method used by IS-MCTS. The

implementation maintains the one-second-per-move limit of IS-MCTS.

7.3 Method

This section will describe the method behind the two experiments (Sections 7.3.1 and 7.3.2).

7.3.1 Validation

In order to first validate our framework and AI implementations, we performed experi-

ments using re-implementations of the Osawa and Van den Bergh agents. This involved

recreating the experiments that they described in their papers and checking that we ob-

tained similar results.

7.3.2 Full Test

The set of agents under test contained a mix of current research on Hanabi as well as some

rule-based agents of our own. Not all of the possible MCS algorithms were tested due

to computational budgets1 There is also a mix of strong and poor agents for balance. We

tested all of the agents from this list:

• Legal Random

1We also at the time didn’t know Piers would outperform IGGI. The testing then revealed that MCS barely
added anything to the algorithm it was based on, leaving no reason to re-run the experiment with MCS-Piers

100 Chapter 7. Evaluating and Modelling Hanabi-Playing Agents

• Outer

• IGGI

• Piers

• Flawed

• Bergh Rule

• MCS-Legal Random

• MCS-IGGI

• MCS-Flawed

• IS-MCTS

• Predictor IS-MCTS

In each experiment, one of the agent was selected from the list above and the remaining

agents were selected as a group from the list below. For example, in the first experiment

the Legal Random agent would be alone with four IGGI agents — a concept we call pairing.

The agents above were all paired in turn with:

• Legal Random

• Outer

• IGGI

• Piers

• Flawed

• Bergh Rule

• Internal

200 random seeds were chosen, and for each seed every agent under test played two games

with every agent with which it was paired. Each pairing did this for standard Hanabi rules

7.4. Results 101

with 2, 3, 4, and 5 players. Each agent under test played from a randomised position (first,

second, third, fourth, or fifth) determined by the seed. This ensured that each agent under

test was in the same position for the same seed. Every agent therefore played 200 (number

of unique seeds) * 4 (2, 3, 4, or 5 player games) * 7 (Number of unique paired agents) * 2

(number of reruns) = 11200 games.

The configuration, final score, and other basic state information were logged to a file upon

completion of the game. The results were collated per agent and the mean score and num-

ber of turns taken were calculated. Additional information was also stored about the final

state of each game including the number of lives remaining and the information tokens

remaining. When there were no lives remaining at the end of the game, this indicated that

the game ended because the players ran out of life tokens.

The full (human readable) game traces for each game were also stored, for evaluating agent

behaviour and the effectiveness of strategies.

7.4 Results

Results from the individual tests are given in this section. Section 7.4.1 presents the results

from the Validation test, while Section 7.4.2 presents the results from the Full Test test.

7.4.1 Validation

TABLE 7.2: Results of the validation tests

Agent Our Average Their Average N Games N Players

Internal 10.12 (SD 1.98) 10.97 (SD 1.94) 102 2

Outer 13.83 (SD 2.23) 14.53 (SD 2.24) 102 2

Bergh Rule 16.95 15.4 104 3

The validation results are in Table 7.2. The two Osawa agents obtained similar results

in our system to those reported in the original paper. The Bergh Rule agent performed

102 Chapter 7. Evaluating and Modelling Hanabi-Playing Agents

differently, appearing to be somewhat improved in our system. While there is no apparent

reason for this, we have verified that the algorithm is the same as described in their paper,

and also that our implementation of Hanabi is correct. It is possible that the values are not

significantly different, but the error in their calculation is unknown.

7.4.2 Full Test

Table 7.3 shows the full results for this test. Predictor IS-MCTS outperformed IS-MCTS

in this experiment, with an average score of 10.74 versus IS-MCTS’s score of 5.9. MCS

typically performed very similarly to the agent it was provided with for its rollouts; little

benefit was apparent from using MCS with these agents over simply using their rules in the

first place. Overall, Piers performed the best but not significantly better than MCS-IGGI,

IGGI and Bergh Rule. The Flawed agent was only a little better than Legal Random.

TABLE 7.3: Results with Score and Standard Error of the Mean for each
agent. Agents are sorted by score. N=11200

Agent Score (2.d.p) Sem (2.d.p)

Piers 11.18 0.06

MCS-IGGI 10.97 0.06

IGGI 10.96 0.06

Bergh Rule 10.88 0.06

Predictor IS-MCTS 10.74 0.06

Outer 10.2 0.05

IS-MCTS 5.9 0.04

MCS-Legal Random 5.45 0.04

MCS-Flawed 5.06 0.04

Flawed 5.02 0.04

Legal Random 4.59 0.04

The Predictor IS-MCTS really shows its benefit with the Flawed agent as its partner. Table 7.4

shows each agent when paired with Flawed, with Predictor IS-MCTS in the clear lead

ahead of other agents.

7.4. Results 103

TABLE 7.4: Table of results with Score and Standard Error of the Mean for
each agent paired with Flawed. Agents are sorted by score. N=1600

Agent Score (2.d.p) Sem (2.d.p)

Predictor IS-MCTS 4.82 0.10

IGGI 3.26 0.07

Piers 3.24 0.07

Bergh Rule 3.23 0.07

MCS-IGGI 3.21 0.07

Outer 2.96 0.06

IS-MCTS 1.80 0.05

MCS-Legal Random 1.78 0.05

MCS-Flawed 1.67 0.05

Legal Random 1.65 0.04

Flawed 1.59 0.05

Table 7.5 shows all the agents’ average scores over each player count. Most agents tend

to follow one of two trends: either performing better when there are more players in the

game, or performing worse. Those that improve are typically poor players, with each new

player added to the game on average being better than them. Those that decline are the

opposite: more players added means more poorer players in the team. Predictor IS-MCTS

isn’t the only agent to exhibit trouble with two player games: with Outer experiencing

some difficulty (despite having been designed for two-player games) and Bergh Rule dis-

playing a more prominent drop in performance. In 3, 4, and 5 player games, the Predictor

IS-MCTS is the best player from the set of agents.

104 Chapter 7. Evaluating and Modelling Hanabi-Playing Agents

TABLE 7.5: Average scores for each agent over 2, 3, 4 and 5 player games
sorted alphabetically. Bold scores indicate the statistically highest scores for

that column. Scores presented with standard error of mean.

Agent 2 3 4 5

Flawed 3.52±0.06 4.69±0.08 5.43±0.09 6.45±0.09

IGGI 11.76±0.12 11.29±0.11 10.71±0.11 10.09±0.11

IS-MCTS 4.8±0.07 5.44±0.08 6.24±0.09 7.14±0.1

Legal Random 1.68±0.03 4.3±0.06 5.83±0.08 6.53±0.08

MCS-Flawed 3.61±0.06 4.72±0.08 5.43±0.09 6.48±0.09

MCS-IGGI 11.79±0.11 11.34±0.11 10.68±0.11 10.09±0.11

MCS-Legal Random 3.84±0.06 5.14±0.08 5.87±0.09 6.95±0.1

Outer 10.55±0.1 10.64±0.11 9.99±0.11 9.62±0.1

Piers 11.91±0.11 11.67±0.12 10.89±0.12 10.26±0.11

Predictor IS-MCTS 8.36±0.1 12.14±0.11 11.43±0.11 11.02±0.11

Bergh Rule 10.55±0.11 11.76±0.12 10.91±0.12 10.29±0.11

7.5 Discussion

The Predictor IS-MCTS agent outperformed the IS-MCTS agent. This is mostly due to

it being better able to take advantage of the effect of communication actions. As agents

cannot see their own hands, the only way they gain information about their hands is via

tell actions which then inform their decision process. When IS-MCTS appraises the moves

of other agents in its tree, it considers all possible outcomes from that state. Some of these

states will never occur in the real game because the paired agent would never select that

action. The model that is available to Predictor IS-MCTS prunes the search to branches that

are likely to occur in the game, resulting in more accurate statistics for the same number of

iterations (Figure 7.2). The more deterministic the model, the lower the branching factor for

the tree will be. Smaller branching factors concentrate the rollouts, resulting in potentially

more accurate statistics regarding those positions. More accurate statistics should result in

more intelligent game play.

7.5. Discussion 105

TABLE 7.6: Average scores for Mimicking (AgentUnderTest is Agent, Agent-
Paired is Agent) against Prediction (AgentUnderTest is Predictor IS-MCTS,
Agent is AgentPaired). Two-player games have been excluded from these

results

Agent Mimicking Prediction

Flawed 1.65 4.7

IGGI 15.1 15.7

Legal Random 1.25 1.9

Outer 12.18 13.89

Piers 16.17 16.39

Bergh Rule 16.26 16.51

Interestingly, Predictor IS-MCTS’s poor overall score appears to come largely from two-

player games, for which it scores significantly lower than usual. This can be explained by

the decreased rollout length present in these games. The more players in the game, the

fewer random moves2 will be made in the rollouts (selecting random moves tends to end

games very quickly with low scores, as exemplified by Legal Random).

0

0

0

Tell 1

1

Play 1

Tell 1

0

0

Tell 1

1

Play 1

Discard 1

· · ·· · ·

(A) IS-MCTS

0

0

1

Play 1

Tell 1

0

0

Tell 1

0

Tell 2

Discard 1

· · ·

(B) Predictor IS-MCTS

FIGURE 7.2: Game trees from same state for both agents paired with Cau-
tious illustrating the difference in tree size between IS-MCTS and Predictor

IS-MCTS

Prediction is shown to be an improvement over mimicking strategy in Table 7.6. This table

excludes two-player games because of Predictor IS-MCTS’s poor scores in 2 player games,

so as to give a fairer overview. Even with intelligent agents, Predictor IS-MCTS provides a

benefit compared to an agent using the same strategy as the rest of the team.

2Predictor IS-MCTS uses random as the rollout policy for its own moves

106 Chapter 7. Evaluating and Modelling Hanabi-Playing Agents

7.6 Conclusion

In conclusion, we found that agent modelling significantly improves playing strength for

tree search algorithms such as MCTS in the game of Hanabi. These results are consistent

with the findings from Barrett et al., 2011.

This should be transferable to other co-operative games, though further testing would be

required for this.

107

Chapter 8

Varying Partial Observability

8.1 Introduction

The primary research question this chapter investigates is how does varying the amount

of Partial Observability (PO) in a game affect fun and difficulty. Secondarily, it invest-

igates how well Artificial Intelligence (AI) agents can predict the human experience as

part of an AI assisted game design experiment. To do this, we experimented using both

AI agents and human players in the Ms. Pac–Man Vs Ghost Team Competition frame-

work (Chapter 6). First the AI agents tested a range of possible PO environments, before

human participants test between two PO environments. The human experiment was split

into two sub-experiments, each changing only a single variable in isolation. The first sub-

experiment changed the mode of PO imposed on the user and the second sub-experiment

changed the presence of communication, a minor form of observation, within a PO envir-

onment.

The Ms. Pac–Man Vs Ghost Team competition was started to promote high quality research

into AI in a co-operative PO environment. Competitors could submit either a Ms. Pac–Man

agent or a ghost team of four agents. These agents were then played against each other in a

round robin to form rankings. The legacy of the competition is that it has provided a num-

ber of different ready-made AI agents that have already been evaluated in a competitive

setting. This made the work of this chapter possible.

108 Chapter 8. Varying Partial Observability

Communication can be a vital tool for agents working in a team, especially if those agents

are within a PO environment. In the PO Ms. Pac–Man game, communication occurs via the

message-passing Application Programming Interface (API) which, for example, allows the

ghost AIs to share information about where Ms. Pac–Man was last seen. Communication is

also a form of observation and varying the amount of communication available to an agent

will vary the amount of the environment that they can observe.

Agents have to make decisions from a number of variables, and when working in a team

some of those variables rely on predictions of what co-workers will do in the future, as

shown previously in Chapter 7. In a Completely Observable environment and working

with purely reactive deterministic agents, it is possible to perfectly predict all agents’ ac-

tions. With this knowledge, an agent can then plan its own actions to best achieve the team

goal. Non-determinism in co-workers can often be reasoned about with algorithms such

as Monte-Carlo Tree Search (MCTS) Chapter 5). When an agent has capabilities beyond

being purely reactive(for example, when it has hidden internal state upon which to base its

decisions) it can be harder still to co-operate with, and communication can be a solution to

allow co-ordination between such agents.

The rest of this chapter is structured as follows:

• Section 8.2 - details the game environment that is used for the experiments as well as

specific modifications made for these experiments.

• Section 8.3 - describes an experiment performed with a series of agents from the most

recent iteration of the competition to evaluate the difficulty of various PO configura-

tions.

• Section 8.4 - describes an experiment whereby human participants play the game

in two different configurations and then answer a questionnaire to determine how

difficult and enjoyable they found the different games.

• Section 8.5 - gives a conclusion to the pair of experiments.

8.2. Game Environment 109

(a) Radius (b) Line-of-Sight (c) Forward Facing
Line-of-Sight

This restriction shows only
what the agent can see in a

circular fashion with the
sight limit determining the
radius of the circle of sight

that can be seen.

This restriction shows only
what the agent can see in

the four cardinal directions
up until the next maze

obstacle or the sight limit;
whichever is nearer

This restriction is the same
as LOS but only works in
the cardinal direction the
agent is currently facing.

FIGURE 8.1: The three modes of Partial Observability visualised. Duplicate
of Figure 4.4.

8.2 Game Environment

The game environment is the Ms. Pac–Man Vs Ghost Team Competition code-base as de-

scribed in Section 4.2. This is a close approximation of the original arcade version of Ms.

Pac–Man. It has a few minor deviations from the original game such as missing the bonus

fruits and not giving Ms. Pac–Man the slight cornering advantage that resulted from the

pixel-perfect collision system originally present in the arcade game1. There is a consider-

able API available in the engine to provide utility functions for path-finding and informa-

tion gathering critical to the AI agents.

The Ms. Pac–Man engine supports three types of PO, each with a sight limit enforced. They

are Radius, Line-of-Sight (LOS), and Forward Facing Line-of-Sight (FF-LOS), as shown in

Figure 8.1.

1The use of pixels for collision led the rounder Ms. Pac–Man to be able to turn a corner slightly earlier than
the ghosts, giving a small speed boost.

110 Chapter 8. Varying Partial Observability

8.3 Artificial-Intelligence Experiments

The AI experiments investigate the effect of varying PO on Ms. Pac–Man’s scores, as a

crude measurement of difficulty for both the ghost team and Ms. Pac–Man. A series of

games were run consisting of each possible permutation of the following five independent

variables:

• POType - This is the type of PO used, and can take any of the three values in Fig-

ure 8.1.

• Sight Limit - This is the number of nodes in the graph that the POType uses to limit

the visibility. Takes values from 5 to 50 with a step of 5.

• Ms. Pac–Man agent - This is the agent controlling the Ms. Pac–Man character with

the possible agents shown in Table 8.1.

• Ghost team agents - This is the agent controlling the ghosts with the possible agents

shown in Table 8.2.

• Communication - Communication was either on or off.

For POType and Sight Limit the constraints were applied equally to both the Ms. Pac–Man

agent and the ghost team agents. They were calculated individually, so that the restrictions

were from each agents different points of view, but the restriction itself was kept the same.

For example, if the POType chosen was Radius with a sight limit of 50, then each of the

ghosts and Ms. Pac–Man was able to see each node up to a distance of 50 from their own

individual location. The constraints were applied equally to both the Ms. Pac–Man agent

and the ghost team in order to reduce the search space, with 10 different values for Sight

Limit and 3 different values for POType then differing constraints would have significantly

increased the number of varieties tested.

The set of agents for both Ms. Pac–Man and the ghost team were decided by choosing the

best five agents each from the respective tracks of the 2017 Ms. Pac–Man Vs Ghost Team

Competition, as well as a middle placing agent and the bottom placing agent. These agents

8.3. Artificial-Intelligence Experiments 111

TABLE 8.1: Ms. Pac–Man agents used.

Agent Technique

SubtleBattle One Step Lookahead

giangrocker MCTS

thunder Beam Search

ToSc State Machine

BaHe State Machine

ImHa Multi-Objective MCTS

MaFr MCTS

TABLE 8.2: Ghost Team agents used.

Agent Technique

MaFr MCTS

TiIsFePr State Machine

thunder Rule Based

POGC Rule Based

NiStTiTi State Machine

POG Rule Based

FlBe State Machine

represent a variety of good agents, middle agents, and poor agents, which have all been

tested in an open public competition on the same code base. The original competition that

these agents competed in was run with the LOS PO restriction and a sight limit of 50 with

communication enabled for the ghost team. The entrants were aware of the restrictions that

would be used on their AI agents. The agents chosen are listed in Tables 8.1 and 8.2 along

with the basic technique they use. This was either described as part of the submission

process, or manually determined by code inspection. At time of writing, the agents have

not been described in published work.

112 Chapter 8. Varying Partial Observability

8.3.1 Results

The total number of games played was 3 (types of PO) ×10 (number of sight limits) ×7

(number of Ms. Pac–Man agents) ×7 (number of ghost team agents) ×2 (Communica-

tion on or off) ×100 (repeats)= 294, 000 games. However some games were incomplete

as occasionally2 the AI agents crashed. This could happen since the AI agents were run-

ning beyond their design specification (e.g, having communication switched off, or using

a different PO mode from the original competition). The result was 174,871 successfully

recorded games.

Figures 8.2 to 8.4 show game scores obtained for each one of the three types of PO restric-

tion, with a separate data series for each Ms. Pac–Man agent averaged over all of the ghost

agents at each sight limit. Figures 8.5 to 8.7 show the same, but with a separate data series

for each ghost agent, averaged over all of the Ms. Pac–Man agents at each sight limit. In all

cases the background shading indicates the 95% confidence interval.

Figure 8.8 shows the score difference between having or not having communication, at a

sight limit of 50 on the LOS PO restriction.

It is important to remember at all times that the scores correspond to Ms. Pac–Man’s score

- so when data on ghosts is presented a lower score indicates that the ghosts performed

better.

8.3.2 Discussion

To investigate whether the difference in ability between Ms. Pac–Man and the ghost team

is due to an advantage in increased sight, we compiled a graph showing on average how

many nodes of the maze’s graph were visible to either the ghost team (accounting for over-

lapping vision) or Ms. Pac–Man in Figure 8.9. It is important to remember that the ghosts

cannot directly share this visibility, and there is a small delay on the information that they

2A single crash on any of the thousands of turns required to complete a game would invalidate the entire
game’s result.

8.3. Artificial-Intelligence Experiments 113

FIGURE 8.2: Effect of increasing “radius” sight limit on scores achieved by
various Ms. Pac–Man agents. Background shading indicates error margins.

FIGURE 8.3: Effect of increasing “LOS” sight limit on scores achieved by
various Ms. Pac–Man agents. Background shading indicates error margins.

can share. The two lines for FF-LOS are indistinguishable from each other while for LOS

the ghosts have on average twice the number of nodes visible at one time. For the LOS and

FF-LOS modes, very little is gained as the sight limit increases. This is likely due to the fact

that the agents are most often in tight little corners with obstacles being the limiting factor

rather than the sight limit itself. Radius gives another story, showing a reasonable increase

114 Chapter 8. Varying Partial Observability

FIGURE 8.4: Effect of increasing “FF-LOS” sight limit on scores achieved by
various Ms. Pac–Man agents. Background shading indicates error margins.

FIGURE 8.5: Effect of increasing “radius” sight limit on scores achieved by
various ghost agents. Background shading indicates error margins.

as the sight limit increases. It is worth mentioning that the ghosts on average can see over

twice as much of the map as Ms. Pac–Man for all the sight limits.

In the case of the Radius restriction most Ms. Pac–Man agents perform worse as the sight

8.3. Artificial-Intelligence Experiments 115

FIGURE 8.6: Effect of increasing “LOS” sight limit on scores achieved by
various ghost agents. Background shading indicates error margins.

FIGURE 8.7: Effect of increasing “FF-LOS” sight limit on scores achieved by
various ghost agents. Background shading indicates error margins.

limit increases with a corresponding increase in performance of the ghost agents (Fig-

ures 8.2 and 8.5). This is likely due to the ghosts enjoying over twice the benefit of ex-

tra sight than Ms. Pac–Man does (Figure 8.9). In LOS most Ms. Pac–Man agents perform

roughly the same across the board with fairly flat lines as sight limit increases (Figure 8.3).

The same is repeated for the five agents that completed games in FF-LOS (Figure 8.4).

116 Chapter 8. Varying Partial Observability

FIGURE 8.8: Effect of communication on scores by ghost agents (lower is
better) at a sight limit of 50 on LOS. Error bars shown correspond to 95%

confidence intervals

FIGURE 8.9: Average number of board nodes visible to the agents, in differ-
ent PO modes, as sight limit increases.

One of the better agents from the competition, giangrocker, shows a significant benefit with

additional sight limits (Figures 8.2 and 8.3). In the LOS mode, giangrocker needs the full

50-node sight limit to reach the same levels of performance as BaHe and SubtleBattle (Fig-

ure 8.3) whilst with the Radius PO restriction (Figure 8.2) giangrocker overtakes all other

agents at the 20-node sight limit and gains an impressive lead. This improvement as sight

8.4. Human-Participation Experiments 117

increases is, to a lesser degree, shown in the other two MCTS agents (ImHa and MaFr). In-

creasing the sight limit in the Radius restriction results in a large gain in information for the

agent. MCTS in a PO environment has to make educated guesses about the environment in

order to build its tree, with the accuracy of those guesses reducing the number of possible

games the algorithm has to reason over. This reduction means that a higher proportion of

the tree is relevant to the game leading to more accurate calculations made with that tree.

This gives a likely reason for MCTS agents benefiting more from increasing the sight limits,

in comparison to the other ghost agents.

Many agents struggled to complete some games, especially those under the FF-LOS restric-

tion 3. For example, Figures 8.4 and 8.7 show missing data series corresponding to some

agents; Figures 8.2 and 8.3 as well as partially Figure 8.5 show some data series do not ex-

tend fully across the x-axis. The error logs showed exceptions in the controller code, and it

is worth mentioning that the competition they were designed for did not include FF-LOS.

The effect of communication being switched on or off (Figure 8.8) shows that there is a

significant difference for two agents (POGC and TiIsFePr). We can see that all ghosts show

at least an insignificant positive gain (lower score) with communication on, which indicates

that the ghost AIs are using the message-passing API successfully to share knowledge of

the game board so as to increase their team performance.

8.4 Human-Participation Experiments

This experiment tasks participants with playing the role of a single ghost, in a small se-

lection of games that have altered PO or communication in them, and then filling out a

questionnaire to obtain results. The participants played as a ghost so that they could en-

gage in communication with the team of ghosts, something that playing as Ms. Pac–Man

would not allow.
3We acknowledge that the failure of some agents more often than others could have potentially skewed the

data but errors are shown on the graphs to mitigate this

118 Chapter 8. Varying Partial Observability

8.4.1 Setup

In total, 20 people4 completed the visibility experiment and 19 people5 completed the com-

munication experiment.

The participants were given a short presentation containing detailed instructions on how

to operate the game, as well as what the various location aids on the screen mean. Human

players found it surprisingly difficult to get used to playing the role of a ghost, for ex-

ample due to the inability of ghosts to reverse direction, and the difficulty for experienced

Ms. Pac–Man players to focus on their ghost and pursuit, instead of on Ms. Pac–Man and

fleeing. The participants were therefore allowed to play three practice games in a fully ob-

servable environment, to get accustomed to the control system and ghost behaviour, before

starting the main experiment. This was to try and isolate the difficulty of the controls from

the observability.

The experiment was conducted in as strict and consistent a manner as possible. All data

was gathered on the same machines in the same room and configuration. The participants

were tested individually, where each participant took control of the first ghost (Blinky).

The remaining three ghosts were controlled by the POGC agent. The Ms. Pac–Man agent

was the simple starter agent POPacman from Chapter 6.

Each participant took just one of two comparison experiments, where they compared two

variants of the game, and then filled out a questionnaire about their experience. The first

comparison-experiment investigated visibility and the participant played a version of the

game with PO in Radius mode, and a version of the game with PO in LOS mode, for com-

parison. These are described as Game Radius with Communication (Radius+) and Game

LOS with Communication (LOS+) respectively. The second comparison-experiment in-

vestigated communication and the participant played a version of the game in PO LOS

mode with communication switched on and a game in PO LOS mode with communication

4M/F: 15/5, Age: [18-24: 11, 25-34: 5, 35-49: 2, 50-64: 2]
5M/F: 16/3, Age: [18-24: 10, 25-34: 5, 35-49: 2, 50-64: 2]

8.4. Human-Participation Experiments 119

switched off. These are described as Game LOS+ and Game LOS without Communic-

ation (LOS-) respectively. The four games that participants interacted with are describe

in Table 8.3. After completing the games, the participants were given the questionnaire.

In total, each participant played three distinct games: the practice game and then two of

Game Radius+, Game LOS+, or Game LOS-.

The game used modified visuals to give the PO view required, as well as to visualise com-

munication from other ghosts. The modifications include covering non visible areas of the

map with a dark grey colouring, as well as the display of “location aids” to represent mes-

sages passed by the ghost team. These include a yellow circle to indicate the last observed

location of Ms. Pac–Man, and coloured squares to indicate the locations of each ghost.

These location aids were only displayed to the user when the communication mode was

switched on. A green circle was added to help the player focus on their own ghost. These

modified visuals are shown in Figure 8.10. The player used standard keyboard controls to

steer their ghost (i.e. arrow keys or WASD keys).

Communication is a critical part of the ghost strategy for handling PO. When communic-

ation is switched on in the game, messages are automatically sent on behalf of the player

requiring no extra effort or skill from the player. These messages are shown as location

aids on screen for the user and are accessible through the API to the AI agents.

Within each comparison experiment, the order that participants played the two games was

randomised. To simplify things from the participant’s point of view, the two game variants

they played were referred to simply as “First Game” or “Second Game” during the experi-

ment and in the subsequent questionnaire. The participants were asked to play two games

of the first game followed by two games of the second game. This was then processed into

either Game Radius+, Game LOS+, or Game LOS- as appropriate.

The questionnaire given to participants differed slightly between the two experiments.

Both forms contained questions taking a user id, the scores obtained in the games, the age

range of the participant, and the gender of the participant. Shared questions are shown

in Table 8.4. The additional questions for the visibility experiment are shown in Table 8.5,

120 Chapter 8. Varying Partial Observability

FIGURE 8.10: The graphical changes to the game environment to display
required information to human participants.

TABLE 8.3: Settings for the four games in the Human Experiment.

Setting:

Game:
Practice Radius+ LOS+ LOS-

PO Radius Radius LOS LOS

Sight Limit ∞ 50 50 50

Location Aid No Yes Yes No

Ghost AI POG POGC POGC POG

and the additional questions for the communication experiment are shown in Table 8.6.

The questionnaire focuses on asking questions comparing the player experience between

the two game variants under comparison.

8.4.2 Results

The results for the various questionnaires have been compiled, calculated, and displayed

in Tables 8.7 and 8.8.

The results show significance on a number of the questions given to participants. Those

8.4. Human-Participation Experiments 121

TABLE 8.4: Questions for both experiments. Some housekeeping questions
are omitted.

Question Options

5 In all three games the controls were the
same. How difficult did you find the con-
trols?

5 point scale “Easy”(1)→ “Difficult”(5)

6 Which game did you enjoy the most? First Game / Neither / Second Game

7 Which game did you find the most diffi-
cult?

First Game / Neither / Second Game

8 Which game did you find the most frus-
trating

First Game / Neither / Second Game

9 In which game did you feel the most
claustrophobic?

First Game / Second Game / Didn’t Feel
/ Equally Claustrophobic

TABLE 8.5: Additional questions for the visibility experiment. Questions
re-ordered from questionnaire so that Question 10 matches between experi-

ments better.

Question Options

10 In which game did you find the location
aid most useful?

First Game / Second Game / Didn’t
Find Useful / Equally Useful

11 In which game did you find the location
aid more noticeable?

First Game / Second Game / Didn’t No-
tice / Equally Noticeable

TABLE 8.6: Additional questions for the communication experiment.

Question Options

10 Did you find the location aid in the first
game useful?

Yes / No / Didn’t Notice

completing the visibility experiment gave a small preference that they enjoyed Game Ra-

dius+ the most and significantly6 found Game LOS+ the most difficult to play. In both

experiments, participants did not feel claustrophobic.

6All significance tests are performed using χ2 tests with a null hypothesis that answers are uniformly dis-
tributed. In the questions with more than two answers, significance is individually tested between all pairs of
answers. P-values are not correct for multiple comparisons.

122 Chapter 8. Varying Partial Observability

TABLE 8.7: Results of the questionnaire.

Experiment Question Results (%)

Visibility 5. Game Controls 1(30.00) 2(15.00) 3(30.00) 4(20.00) 5(5.00)

Communication 1(31.58) 2(36.84) 3(21.05) 4(5.26) 5(5.26)

Visibility 6. Enjoyment Radius+(50.00) N(10.00) LOS+(40.00)

Communication LOS+(57.89) N(5.26) LOS-(36.84)

Visibility 7. Difficulty Radius+(10.53) LOS+(78.95) N(10.53)

Communication LOS+(42.11) LOS-(52.63) N(5.26)

Visibility 8. Frustration Radius+(10.53) LOS+(42.11) N(42.11)

Communication LOS+(21.05) LOS-(31.58) N(47.37)

Visibility 9. Claustrophobia Radius+(5.26) LOS+(21.05) DF(68.42) EC(5.26)

Communication LOS+(10.53) LOS-(26.32) DF(63.16) EC(0.00)

Visibility 10. Usefulness of Location Aid Radius+(52.63) LOS+(21.05) DFU(5.26) EU(21.05)

Communication Yes(84.21) No(10.53) DN(5.26)

Visibility 11. Noticability of Location Aid Radius+(36.84) LOS+(26.32) DN(5.26) EN(31.58)

TABLE 8.8: Average scores obtained in the human experiments.

Experiment Radius+ LOS+ LOS-

Visibility 4323 5993

Communication 5842 5421

In the visibility experiment participants found the location aid most useful in Game Ra-

dius+ rather than Game LOS+. The communication experiment concluded with signific-

ance that the location aid was useful when it was present in Game LOS+.

8.4.3 Discussion

The following subsections will individually discuss parts of the results. It is important

to remember that while Game LOS+ was used in both experiments, the answers are all

comparative.

8.4. Human-Participation Experiments 123

Difficulty

Difficulty was measured in two ways for each experiment. The first method mirrors the

AI experiments by obtaining score information for each participant. The second method is

measured by question 7 and partially by question 8’s focus on frustration that could be an

indicator of difficulty.

Looking at the scores (Table 8.8) obtained, Game Radius+ is the easiest for humans with an

average of 4323 which is much lower than the averages for Game LOS+ (5993, 5842). Game

LOS- interestingly on average scores better with 5421, despite the game being theoretically

harder due to not featuring communication. Game LOS- was predicted to be harder by the

AI experiments (Figure 8.8). It is possible that the additional on-screen information proved

to be more distracting than useful to people which is a problem AIs will not suffer from.

The two cohorts found Game LOS+ similarly difficult when looking at achieved scores

with close averages of 5889 and 5765.

Looking at the questionnaire results for the visibility experiment, the participants found

that Game LOS+ was the most difficult with significance while the communication experi-

ment was inconclusive between Game LOS+ and Game LOS-. The AI experiments showed

a much smaller gap between Game Radius+ and Game LOS+ and a large gap in scores

between Game LOS+ and Game LOS-.

Enjoyment

While there are no AI results covering enjoyment, question 6 from the questionnaire covers

enjoyment of the games for humans. Enjoyment in the visibility experiment showed that

Game Radius+ was slightly better than Game LOS+ but results were mixed. The commu-

nication experiment proved similarly mixed with Game LOS+ taking the lead nonetheless.

The AI scores for these games showed that the more difficult games for AI tended to be

those that the participants liked the least.

124 Chapter 8. Varying Partial Observability

Communication

Communication is measured for humans through both questions as well as the scores

in the communication experiment. The effect of AI communication was measured by

scores alone. As mentioned previously humans performed worse with communication

than without, contrasting the AI results who performed better.

In the visibility experiment, players found the location aid more noticeable and more useful

in Game Radius+ than they did in Game LOS+. These results are perhaps counter-intuitive,

expecting the location aids to be more useful as vision decreases. In the communication

experiment the results are more one sided, with the majority saying that it was useful to

have communication. Filtering the data to obtain scores for Game LOS+ and Game LOS-

for those participants that stated that communication was useful yielded averages of 5407

for Game LOS+ and 5279 for Game LOS-7. Therefore despite believing communication

was useful, on average it was not beneficial to the scores. This is an interesting result with

no definitive reason why this might be the case. Comments from the participants hint at

a potential information overload, perhaps making the communication hints a distraction8

that cost them game performance.

Frustration

In both experiments9, more participants found the most restrictive game visually (Game

LOS+ for the visibility experiment and Game LOS- for the communication experiment) the

most frustrating, but the majority found neither game to be frustrating.

7The scores are very noisy but it would take an unfeasible number of participants to bring the error to a
reasonable level.

8Possibly divided attention
9One participant indicated both game Radius+ and LOS+ and so is not reflected in the table

8.5. Conclusions 125

Claustrophobia

In both experiments, the majority of participants declared that they did not feel claustro-

phobic in either game.

8.5 Conclusions

In conclusion we found that altering the amount of PO within the game of Ms. Pac–Man

changes the balance of the game with most ghost team agents performing worst with the

lower limits of visibility. AI experiments have shown that an advantage in the amount of

the map that is visible tends to be an important influence on the performance of agents

depending on their particular strategies.

Secondly we found that the presence of communication for the ghost team is beneficial for

AIs but conversely found that it appears to hinder human performance despite the majority

of participants declaring communication to be useful. This result reinforces the notion that

it is challenge that players enjoy in many cases, rather than simply winning easily. It is

also possible that the communication improves the feeling of control in the game, leading

to less situations of random searching for the Ms. Pac–Man and more chasing which could

lead to improved enjoyment.

Finally it is recommended that the use of AI proxies as indicators for human enjoyment

should be done cautiously. There are aspects of human game playing that are difficult to

emulate in AI agents such as the inability for humans to focus on all of even a small game

state at once or the lightning fast reflexes of an AI. Making more human-like game AI in

general is an important goal to enable more accurate estimation of the human player’s ex-

perience, and whether this is best done by building AI agents that model specific aspects of

perception and cognition, or by using general learning agents trained on human behaviour

is an open question.

127

Part III

Conclusions

129

Chapter 9

Conclusions

This chapter will conclude the thesis, as well as discuss some future work.

9.1 Conclusions

This thesis has examined the use of Artificial Intelligence (AI) agents within co-operative

environments with Partial Observability (PO) constraints. Early experiments showed that

in the Tiny Co-op domain, Monte-Carlo Tree Search (MCTS) agents were superior in hand-

ling the co-operative aspect of the puzzles than the Genetic Algorithms (GAs) (Chapter 5).

The construction of the Ms. Pac–Man Vs. Ghost Team competition has raised the profile

of research into PO in games as well as co-operation in games. The competition has run

successfully for three years with a reasonable number of entrants submitting high quality

agents (Chapter 6).

Moving into the simpler environment of Hanabi, where communication and PO are a part

of the game mechanics, we found that MCTS benefited greatly from the addition of a model

of the agents that MCTS was playing the game with (Chapter 7).

Final experiments with PO in the Ms. Pac–Man environment tested a barrage of AI agents1

1Drawn from the 2017 competition entrants

130 Chapter 9. Conclusions

across a range of different PO restrictions. It was found that the more of the map is vis-

ible, the better the ghost agents tended to perform, with the exception of MCTS Ms. Pac–

Man agents that gained more intelligence from the additional visibility than the ghost

agents (Section 8.3). Human participant experiments were also performed, finding that

communication for the ghost team proved detrimental to performance, despite question-

naire results showing that the participants found communication to be useful (Section 8.5).

9.2 Future Work

There is a lot of scope for future work to add to the research performed in this thesis. In

the Tiny Co-op domain, the best agent presented (High MCTS) had scope for improvement,

as well as the addition of more complex puzzles. Both the size of the environment and the

variety of interactive elements can be increased for further research.

The Ms. Pac–Man Vs. Ghost Team competition has performed well, with a strong number

of entrants each year. It does need, however, some changes to improve research interest.

It would be good to see better support for deep learning techniques, possibly as part of a

learning track. Another avenue of further work in the competition would be to introduce

restrictions to number of messages that the ghosts can send, forcing the agents to work

within a budget.

Agents in Hanabi using techniques such as MCTS are still performing below the maximum

possible score for a game, leaving room for improvement. More advanced techniques can

be researched here, as well as further work on learning the models that helped the Predictor

IS-MCTS agent perform so well. This would reduce its reliance on being given a perfect

model, which is an unrealistic situation.

The exploration of Ms. Pac–Man needs expanding into other games and types of games

to try to correlate patterns and variations between games. If similar results are found in

similar games it would be possible to derive stronger guidelines about the use of PO within

games as a mechanic, opening the way to offer new and interestingly different ways to

9.2. Future Work 131

play many classic games. Chapter 8 found that more difficult games for AI tended to be

the less enjoyable games for participants, and the exact nature of this link would need a

full experiment in multiple games ideally to investigate properly. Chapter 8 also explored

some ways that PO could be altered in the game of Ms. Pac–Man. There are presumably a

number of other interesting ways such as asymmetric PO between the ghost team and Ms.

Pac–Man. This would represent a much finer grained approach to changing the game, and

potentially provide better results. The use of PO as a game mechanic has been discussed at

length but there are other things that could be used as well. The effect of communication

within a PO environment is worth deeper analysis, with different types of communication

as well as tweaking various parameters such as message delay, cost of delivery, or chance

of successful delivery. Altering these parameters could provide an interesting effect on the

game, potentially adding some strategy to balancing communication with the cost that is

not currently present.

Finally there is an increasing amount of interest in Real-Time Strategy (RTS) games, such as

Starcraft II, which feature hundreds of units that each have their own visibility restrictions

and must work together as a team. A lot of the early research so far has been to control

the teams with a single AI, but it could be possible to use some of the techniques from this

thesis to work with a multi-agent system instead.

133

Bibliography

Ahlbrecht, Tobias, Jürgen Dix, Michael Köster and Federico Schlesinger (2013). ‘Multi-

agent programming contest 2013’. In: International Workshop on Engineering Multi-Agent

Systems. Springer, pp. 292–318.

Ahlbrecht, Tobias, Jürgen Dix and Niklas Fiekas (2018). ‘Multi-agent programming contest

2016’. In: International Journal of Agent-Oriented Software Engineering 6.1, pp. 58–85.

Alhejali, Atif M and Simon M Lucas (2010). ‘Evolving Diverse Ms. Pac-Man Playing Agents

Using Genetic Programming’. In: Computational Intelligence (UKCI), 2010 UK Workshop on.

IEEE, pp. 1–6.

– (2013). ‘Using Genetic Programming to Evolve Heuristics for a Monte Carlo Tree Search

Ms Pac-Man Agent’. In: Computational Intelligence in Games (CIG), 2013 IEEE Conference

on. IEEE, pp. 1–8.

Anderson-Cook, Christine M (2005). Practical genetic algorithms.

Auer, Peter, Nicolo Cesa-Bianchi and Paul Fischer (2002). ‘Finite-Time Analysis of the Mul-

tiarmed Bandit Problem’. In: Machine learning 47.2-3, pp. 235–256.

Bäck, T, D.B Fogel and Z Michalewicz, eds. (2000). Evolutionary Computation 1: Basic Al-

gorithms and Operators. Institute of Physics Publishing, Bristol.

Barrett, Samuel, Peter Stone and Sarit Kraus (2011). ‘Empirical evaluation of ad hoc team-

work in the pursuit domain’. In: The 10th International Conference on Autonomous Agents

and Multiagent Systems-Volume 2. International Foundation for Autonomous Agents and

Multiagent Systems, pp. 567–574.

Behrens, Tristan, Michael Köster, Federico Schlesinger, Jürgen Dix and Jomi F Hübner

(2012). ‘The Multi-Agent Programming Contest 2011: A Résumé’. In: Programming Multi-

Agent Systems. Springer, pp. 155–172.

134 Bibliography

Bergh, Mark JH van den, Anne Hommelberg, Walter A Kosters and Flora M Spieksma

(2016). ‘Aspects of the cooperative card game Hanabi’. In: Benelux Conference on Artificial

Intelligence. Springer, pp. 93–105.

Bertoli, Piergiorgio, Alessandro Cimatti, Marco Roveri and Paolo Traverso (2001). ‘Plan-

ning in nondeterministic domains under partial observability via symbolic model check-

ing’. In:

Beume, Nicola et al. (2008). ‘Measuring flow as concept for detecting game fun in the Pac-

Man game’. In: Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Com-

putational Intelligence). IEEE Congress on. IEEE, pp. 3448–3455.

Bouzy, Bruno (2017). ‘Playing Hanabi Near-Optimally’. In: Advances in Computer Games.

Springer, pp. 51–62.

Browne, Cameron B et al. (2012). ‘A Survey of Monte Carlo Tree Search Methods’. In: Com-

putational Intelligence and AI in Games, IEEE Transactions on 4.1, pp. 1–43.

Burrow, Peter and Simon M Lucas (2009). ‘Evolution Versus Temporal Difference Learning

For learning to Play Ms. Pac-Man’. In: Computational Intelligence and Games, 2009. CIG

2009. IEEE Symposium on. IEEE, pp. 53–60.

Cazenave, Tristan (2005). ‘A phantom-go program’. In: Advances in Computer Games. Springer,

pp. 120–125.

– (2014). ‘Sequential Halving Applied to Trees’. In:

Cazenave, Tristan and Nicolas Jouandeau (2007). ‘On the Parallelization of UCT’. In: Pro-

ceedings of CGW07, pp. 93–101.

Chaslot, Guillaume, Sander Bakkes, Istvan Szita and Pieter Spronck (2008a). ‘Monte-Carlo

Tree Search: A New Framework for Game AI.’ In: AIIDE.

Chaslot, Guillaume MJ-B, Mark HM Winands and H Jaap van Den Herik (2008b). ‘Parallel

Monte-Carlo Tree Search’. In: Computers and Games. Springer, pp. 60–71.

Clune, James (2007). ‘Heuristic Evaluation Functions for General Game Playing’. In: AAAI.

Vol. 7, pp. 1134–1139.

Coulom, Rémi (2007). ‘Efficient Selectivity and Backup Operators in Monte-Carlo Tree

Search’. In: Computers and games. Springer, pp. 72–83.

Bibliography 135

Cowling, Peter I, Edward J Powley and Daniel Whitehouse (2012). ‘Information set monte

carlo tree search’. In: IEEE Transactions on Computational Intelligence and AI in Games 4.2,

pp. 120–143.

Cox, Christopher et al. (2015). ‘How to make the perfect fireworks display: Two strategies

for hanabi’. In: Mathematics Magazine 88.5, pp. 323–336.

Dienstknecht, M (2018). ‘Enhancing Monte Carlo Tree Search by Using Deep Learning

Techniques in Video Games’. PhD thesis. Maastricht University.

Dockhorn, Alexander and Rudolf Kruse (2017). ‘Combining cooperative and adversarial

coevolution in the context of pac-man’. In: Computational Intelligence and Games (CIG),

2017 IEEE Conference on. IEEE, pp. 60–67.

Domınguez-Estévez, Fernando, Antonio A Sánchez-Ruiz and Pedro Pablo (2017). ‘Training

Pac-Man bots using Reinforcement Learning and Case-based Reasoning’. In:

Drake, Peter (2009). ‘The last-good-reply policy for Monte-Carlo Go’. In: Icga Journal 32.4,

pp. 221–227.

Emilio, Martin, Martinez Moises, Recio Gustavo and Saez Yago (2010). ‘Pac-mAnt: Op-

timization based on ant colonies applied to developing an agent for Ms. Pac-Man’. In:

Computational Intelligence and Games (CIG), 2010 IEEE Symposium on. IEEE, pp. 458–464.

Fang, Xiaowen, Susy Chan, Jacek Brzezinski and Chitra Nair (2008). ‘Measuring enjoyment

of computer game play’. In: AMCIS 2008 Proceedings, p. 306.

Finnsson, Hilmar and Yngvi Björnsson (2008). ‘Simulation-Based Approach to General

Game Playing.’ In: AAAI. Vol. 8, pp. 259–264.

– (2010). ‘Learning Simulation Control in General Game-Playing Agents.’ In: AAAI. Vol. 10,

pp. 954–959.

Garduño Hernández, Daniel et al. (2017). ‘Study of artificial intelligence algorithms applied

to the generation of non-playable characters in arcade games’. B.S. thesis.

Hanabi Agent Competition. URL: http://hanabi.aiclash.com/ (visited on 14/01/2019).

Handa, Hisashi and Maiko Isozaki (2008). ‘Evolutionary fuzzy systems for generating bet-

ter Ms. PacMan players’. In: Fuzzy Systems, 2008. FUZZ-IEEE 2008.(IEEE World Congress

on Computational Intelligence). IEEE International Conference on. IEEE, pp. 2182–2185.

http://hanabi.aiclash.com/

136 Bibliography

Hearthstone AI Competition. URL: https://dockhorn.antares.uberspace.de/wordpress/

(visited on 14/01/2019).

Hingston, Philip (2010). ‘A new design for a turing test for bots’. In: Computational Intelli-

gence and Games (CIG), 2010 IEEE Symposium on. IEEE, pp. 345–350.

Hunicke, Robin, Marc LeBlanc and Robert Zubek (2004). ‘MDA: A formal approach to

game design and game research’. In: Proceedings of the AAAI Workshop on Challenges in

Game AI. Vol. 4. 1.

Isaksen, Aaron, Dan Gopstein, Julian Togelius and Andy Nealen (2015a). ‘Discovering

unique game variants’. In: Computational Creativity and Games Workshop at the 2015 In-

ternational Conference on Computational Creativity.

Isaksen, Aaron, Daniel Gopstein and Andrew Nealen (2015b). ‘Exploring Game Space Us-

ing Survival Analysis.’ In: FDG.

Isaksen, Aaron, Dan Gopstein, Julian Togelius and Andy Nealen (2017). ‘Exploring Game

Space of Minimal Action Games via Parameter Tuning and Survival Analysis’. In: IEEE

Transactions on Computational Intelligence and AI in Games.

Khajah, Mohammad M, Brett D Roads, Robert V Lindsey, Yun-En Liu and Michael C Mozer

(2016). ‘Designing engaging games using bayesian optimization’. In: Proceedings of the

2016 CHI Conference on Human Factors in Computing Systems. ACM, pp. 5571–5582.

Kitano, Hiroaki and Satoshi Tadokoro (2001). ‘Robocup rescue: A Grand Challenge for Mul-

tiagent and Intelligent Systems’. In: AI magazine 22.1, p. 39.

Kitano, Hiroaki, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda and Eiichi Osawa (1997).

‘Robocup: The robot world cup initiative’. In: Proceedings of the first international conference

on Autonomous agents. ACM, pp. 340–347.

Kocsis, Levente and Csaba Szepesvári (2006). ‘Bandit Based Monte-Carlo Planning’. In:

Machine Learning: ECML 2006. Springer, pp. 282–293.

Koriche, Frédéric, Sylvain Lagrue, Éric Piette and Sébastien Tabary (2017). ‘WoodStock: un

programme-joueur générique dirigé par les contraintes stochastiques’. In: Revue d’intelligence

artificielle–no 307, p. 336.

Koster, Raph (2013). Theory of fun for game design. " O’Reilly Media, Inc."

https://dockhorn.antares.uberspace.de/wordpress/

Bibliography 137

Koza, John R (1992). Genetic programming: on the Programming of Computers by means of Nat-

ural Selection. Vol. 1. MIT press.

Lanctot, Marc, Kevin Waugh, Martin Zinkevich and Michael Bowling (2009). ‘Monte Carlo

sampling for regret minimization in extensive games’. In: Advances in neural information

processing systems, pp. 1078–1086.

Lee, Scott and Julian Togelius (2017). ‘Showdown AI competition’. In: Computational Intel-

ligence and Games (CIG), 2017 IEEE Conference on. IEEE, pp. 191–198.

Liberatore, Federico, Antonio M Mora, Pedro A Castillo and Juan Julián Merelo Guervós

(2014). ‘Evolving evil: optimizing flocking strategies through genetic algorithms for the

ghost team in the game of Ms. Pac-Man’. In: Applications of Evolutionary Computation.

Springer, pp. 313–324.

Lucas, Simon M (2005). ‘Evolving a Neural Network Location Evaluator to Play Ms. Pac-

Man.’ In: CIG. Citeseer.

Méhat, Jean and Tristan Cazenave (2010). ‘Ary, a General Game Playing Program’. In: Board

Games Studies Colloquium.

Nabi, Robin L and Marina Krcmar (2004). ‘Conceptualizing media enjoyment as attitude:

Implications for mass media effects research’. In: Communication theory 14.4, pp. 288–310.

Nelson, Mark J and Michael Mateas (2007). ‘Towards automated game design’. In: Congress

of the Italian Association for Artificial Intelligence. Springer, pp. 626–637.

Nguyen, Kien Quang and Ruck Thawonmas (2011). ‘Applying Monte-Carlo Tree Search

To Collaboratively Controlling of a Ghost Team in Ms Pac-Man’. In: Games Innovation

Conference (IGIC), 2011 IEEE International. IEEE, pp. 8–11.

Ontanón, Santiago (2013). ‘The combinatorial multi-armed bandit problem and its applic-

ation to real-time strategy games’. In: Ninth Artificial Intelligence and Interactive Digital

Entertainment Conference.

Osawa, Hirotaka (2015). ‘Solving Hanabi: Estimating Hands by Opponent’s Actions in Co-

operative Game with Incomplete Information’. In: Workshops at the Twenty-Ninth AAAI

Conference on Artificial Intelligence.

138 Bibliography

Pell, Barney (1993). ‘Strategy Generation and Evaluation for Meta-Game Playing’. PhD

thesis. University of Cambridge Ph. D. thesis.

Pepels, Tom, Mark HM Winands and Marc Lanctot (2014). ‘Real-Time Monte Carlo Tree

Search in Ms Pac-Man’. In: Computational Intelligence and AI in Games, IEEE Transactions

on 6.3, pp. 245–257.

Perez, Diego, Spyridon Samothrakis, Simon Lucas and Philipp Rohlfshagen (2013). ‘Rolling

Horizon Evolution versus Tree Search for Navigation in Single-Player Real-Time Games’.

In: Proceedings of the 15th annual conference on Genetic and evolutionary computation. ACM,

pp. 351–358.

Perez-Liebana, Diego et al. (2016). ‘The 2014 general video game playing competition’. In:

IEEE Transactions on Computational Intelligence and AI in Games 8.3, pp. 229–243.

Prada, Rui, Phil Lopes, João Catarino, João Quitério and Francisco S. Melo (2015). ‘The

Geometry Friends Game AI Competition’. In: CIG’2015 - IEEE Conference on Computa-

tional Intelligence and Games. IEEE CIG. Tainan, Taiwan: IEEE Computer Society, pp. 431–

438.

R0oland (2013a). Single Point Crossover. URL: https://en.wikipedia.org/wiki/File:

OnePointCrossover.svg (visited on 16/01/2019).

– (2013b). Two Point Crossover. URL: https://en.wikipedia.org/wiki/File:TwoPointCrossover.

svg (visited on 16/01/2019).

Rohlfshagen, Philipp and Simon M Lucas (2011). ‘Ms Pac-Man versus Ghost Team CEC

2011 Competition’. In: Evolutionary Computation (CEC), 2011 IEEE Congress on. IEEE, pp. 70–

77.

Rose, Andrew and Steve Draper. Sancho goes Green. http://sanchoggp.blogspot.co.uk/

2014/06/sancho-goes-green.html. Accessed: 2015-09-28.

Ryan, Richard M, C Scott Rigby and Andrew Przybylski (2006). ‘The motivational pull

of video games: A self-determination theory approach’. In: Motivation and emotion 30.4,

pp. 344–360.

Samothrakis, Spyridon and Simon M Lucas (2010). ‘Planning using online evolutionary

overfitting’. In: Computational Intelligence (UKCI), 2010 UK Workshop on. IEEE, pp. 1–6.

https://en.wikipedia.org/wiki/File:OnePointCrossover.svg
https://en.wikipedia.org/wiki/File:OnePointCrossover.svg
https://en.wikipedia.org/wiki/File:TwoPointCrossover.svg
https://en.wikipedia.org/wiki/File:TwoPointCrossover.svg
http://sanchoggp.blogspot.co.uk/2014/06/sancho-goes-green.html
http://sanchoggp.blogspot.co.uk/2014/06/sancho-goes-green.html

Bibliography 139

Samothrakis, Spyridon, David Robles and Simon Lucas (2011). ‘Fast Approximate Max-n

Monte Carlo Tree Search for Ms Pac-Man’. In: Computational Intelligence and AI in Games,

IEEE Transactions on 3.2, pp. 142–154.

Schaul, Tom (2013). ‘A Video Game Description Language for Model-based or Interactive

Learning’. In: Proceedings of the IEEE Conference on Computational Intelligence in Games.

Niagara Falls: IEEE Press.

Schiffel, Stephan and Michael Thielscher (2006). ‘Automatic Construction of a Heuristic

Search Function for General Game Playing’. In: Department of Computer Science, pp. 16–

17.

Schrum, Jacob and Risto Miikkulainen (2014). ‘Evolving multimodal behavior with modu-

lar neural networks in Ms. Pac-Man’. In: Proceedings of the 2014 annual conference on genetic

and evolutionary computation. ACM, pp. 325–332.

Sharma, Shiven, Ziad Kobti and Scott Goodwin (2008). ‘Knowledge Generation for Im-

proving Simulations in UCT for General Game Playing’. In: AI 2008: Advances in Artificial

Intelligence. Springer, pp. 49–55.

Silver, David and Joel Veness (2010). ‘Monte-Carlo planning in large POMDPs’. In: Advances

in neural information processing systems, pp. 2164–2172.

Silver, David et al. (2016). ‘Mastering the game of Go with deep neural networks and tree

search’. In: Nature 529.7587, pp. 484–489.

Silver, David et al. (2017). ‘Mastering chess and shogi by self-play with a general reinforce-

ment learning algorithm’. In: arXiv preprint arXiv:1712.01815.

StarCraft AI Competition. URL: https://www.cs.mun.ca/~dchurchill/starcraftaicomp/

index.shtml (visited on 14/01/2019).

Tak, Mandy JW, Mark HM Winands and Yngvi Björnsson (2012). ‘N-grams and the Last-

Good-Reply Policy applied in General Game Playing’. In: Computational Intelligence and

AI in Games, IEEE Transactions on 4.2, pp. 73–83.

VIZDOOM. URL: http://vizdoom.cs.put.edu.pl/ (visited on 14/01/2019).

https://www.cs.mun.ca/~dchurchill/starcraftaicomp/index.shtml
https://www.cs.mun.ca/~dchurchill/starcraftaicomp/index.shtml
http://vizdoom.cs.put.edu.pl/

140 Bibliography

Walton-Rivers, Joseph, Piers R Williams, Richard Bartle, Diego Perez-Liebana and Simon M

Lucas (2017). ‘Evaluating and Modelling Hanabi-Playing Agents’. In: Congress on Evolu-

tionary Computation, 2017. CEC’17. IEEE Conference On. IEEE, pp. 1382–1389.

Wellman, Michael P et al. (2001). ‘Designing the Market Game for a Trading Agent Com-

petition’. In: Internet Computing, IEEE 5.2, pp. 43–51.

Williams, Piers R., Joseph Walton-Rivers, Diego Perez-Liebana and Simon M. Lucas (2015).

‘Monte Carlo Tree Search Applied to Co-operative Problems’. In: CEEC’2015 - IEEE Con-

ference on Computer Science and Electronic Engineering. IEEE CEEC. IEEE Computer Soci-

ety, pp. 219–224.

Williams, Piers R, Diego Perez-Liebana and Simon M Lucas (2016). ‘Ms. Pac-Man Versus

Ghost Team CIG 2016 Competition’. In: CIG’2016 - IEEE Conference on Computational In-

telligence and Games. IEEE CIG, pp. 420–427.

Wittkamp, Markus, Luigi Barone and Philip Hingston (2008). ‘Using NEAT for continuous

adaptation and teamwork formation in Pacman’. In:

Yannakakis, Georgios N and John Hallam (2004). ‘Evolving opponents for interesting in-

teractive computer games’. In: From animals to animats 8, pp. 499–508.

Zhang, Qi, Jian Yao, Quanjun Yin and Yabing Zha (2018). ‘Learning Behavior Trees for

Autonomous Agents with Hybrid Constraints Evolution’. In: Applied Sciences 8.7, p. 1077.

Zhong, Jinghui, Xiaomin Hu, Jun Zhang and Min Gu (2005). ‘Comparison of performance

between different selection strategies on simple genetic algorithms’. In: Computational

Intelligence for Modelling, Control and Automation, 2005 and International Conference on In-

telligent Agents, Web Technologies and Internet Commerce, International Conference on. Vol. 2.

IEEE, pp. 1115–1121.

	Abstract
	Acknowledgements
	Contents
	I Introduction and Background
	Introduction
	Introduction
	Organisation
	List of Papers

	Background
	Partial Observability
	Symmetric or Asymmetric Partial Observability

	Co-operation
	What does it mean to be Co-operative?
	When to Co-operate
	Co-operative Games

	Communication
	Communication in Completely Observable Environments
	Communication in Partially Observable Environments

	Artificial Intelligence Competitions
	Robot Soccer World Cup
	Robot Rescue Cup
	Ms. Pac-Man Vs Ghost Team
	Geometry Friends
	Multi-Agent Programming Competition
	Trading Agent Competition
	Google AI Challenge
	General Video Game AI Competition
	Showdown AI Competition
	microRTS Competition
	Visual Doom AI Competition
	The 2K BotPrize
	Hearthstone AI
	Hanabi
	StarCraft AI

	General Game Playing
	METAGAMER
	2005 - Stanford University
	General Video Game AI Competition
	Alpha Zero

	Game Design

	Algorithms
	Monte-Carlo Tree Search
	Selection Policy
	Default Policy
	Partially Observable Games
	Parallelisation
	Learning Domain Knowledge

	Genetic Algorithms
	Fitness Calculation
	Candidate Solution Representation
	Genetic Operators

	Games in this Thesis
	Tiny Co-op
	Objects
	Movement
	Maps

	Ms. Pac-Man Vs Ghosts
	Partial Observability
	Messaging
	Prior Research

	Hanabi
	Previous Research

	II Artificial intelligence in co-operative games with partial observability
	Monte-Carlo Tree Search Applied to Co-operative Problems
	Introduction
	Tiny Co-op Domain
	AI Agents
	Random
	MCTS
	Genetic Algorithms

	The Experiment
	Results
	Discussion
	Random
	MCTS
	GA
	The Maps

	Conclusions

	The Ms. Pac-Man Vs Ghost Team Competition
	Introduction
	The Competition
	Sample Controllers for Ms. Pac–Man vs Ghosts
	Sample Controller Experiment
	Sample Controller Results
	Competition Tracks
	Entrant Ranking

	Competition Results
	2016
	2017
	2018

	External Research
	Conclusions

	Evaluating and Modelling Hanabi-Playing Agents
	Introduction
	AI
	Production Rule Agents
	Other Agents

	Method
	Validation
	Full Test

	Results
	Validation
	Full Test

	Discussion
	Conclusion

	Varying Partial Observability
	Introduction
	Game Environment
	Artificial-Intelligence Experiments
	Results
	Discussion

	Human-Participation Experiments
	Setup
	Results
	Discussion

	Conclusions

	III Conclusions
	Conclusions
	Conclusions
	Future Work

	Bibliography

