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We study the strategic considerations of miners participating in the bitcoin’s protocol. We formulate and
study the stochastic game that underlies these strategic considerations. The miners collectively build a tree
which consists of a long path and potentially short branches out of it, and they are paid when they create a
node (mine a block) which will end up in the main path. Since the miners can hide newly mined nodes, they
play a game with incomplete information. Here we consider two simplified forms of this game in which the
miners have complete information. In the simplest game the miners release every mined block immediately,
but are strategic on which blocks to mine. In the second more complicated game, when a block is mined it is
announced immediately, but it may not be released so that other miners cannot continue mining from it. A
miner not only decides which blocks to mine, but also when to release blocks to other miners. In both games,
we show that when the computational power of each miner is relatively small, their best response matches
the expected behavior of the bitcoin designer. However, when the computational power of a miner is large,
he deviates from the expected behavior, and other Nash equilibria arise.

CCS Concepts: rTheory of computation→ Quality of equilibria; rInformation systems→ Electronic
commerce; Secure online transactions; rMathematics of computing→ Stochastic processes; rSecurity and
privacy→ Cryptography;
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1. INTRODUCTION
Bitcoin is the most successful decentralized digital currency. It was first presented in
the white paper [Nakamoto 2008] under the pseudonym Satoshi Nakamoto. Its back-
bone is the blockchain protocol which attempts to keep a consisted list of transactions
in a peer-to-peer network. The blockchain protocol successfully solves the real dis-
tributed problem of agreement, and has the potential to support novel applications
which require distributed computing across a network.

Game-theoretic issues are very important for the correct execution of the blockchain
protocol. This was realized at its inception when its creator, Nakamoto, analyzed in-
centives in a simple, albeit insufficient, model. Understanding these issues is essential
for the survival of bitcoin and the development of the blockchain protocol. In prac-
tice it can help understand their strengths and vulnerabilities and, in economic and
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algorithmic theory, it can provide an excellent example for studying how rational (self-
ish) players can play games in a distributed way and map out their possibilities and
difficulties.

Blockchain is a complicated protocol and it is far from trivial to distill its essential
game-theoretic properties; some “attacks” and vulnerabilities have been proposed but
there seems to exist no systematic way to discover them. In this work, we study two
models in which the miners (the nodes of the distributed network that run the pro-
tocol and are paid for it) play a complete-information stochastic game. Although the
miners in the actual blockchain game do not have complete information, our games
aim to capture two important questions that selfish miners ask: (a) what to compute
next (more precisely, which block to mine) and (b) when to release the results of com-
putation (more precisely, when to release a mined block). By considering only complete
information games, we may weaken the immediate applicability of the results, but we
obtain a clean framework for studying these issues with proper focus and in a rigorous
way.

We consider two stochastic games: (a) the immediate-release game in which every
miner releases immediately the blocks that he mines; in this game, the strategy of ev-
ery miner is to select an appropriate block to mine and, (b) the strategic-release game
in which miners not only can select which block to mine, but they can also withhold
releasing blocks; we add the interesting twist that they must immediately announce
a successful mining of a block but not the block itself; in this way, all miners have
complete information of the current situation but can mine only the blocks which have
been completely released by their discoverers. This interesting twist turns a very com-
plicated game of incomplete information into an attractive, highly non-trivial game
(which was partially analyzed in [Sapirstein et al. 2016]). We believe that although
this is not a realistic game, it is of great value in understanding the game-theoretic
aspects of the highly convoluted incomplete information game.

1.1. Our results
We consider two stochastic games whose states are rooted trees. The nodes of the tree
are blocks that have been mined in the past. At every time-step, each miner selects a
node of the current tree and tries to extend it by one new block. The probability that
a miner succeeds in mining a new block is proportional to the miner’s computational
power. The utility of a miner is the fraction of successfully mined blocks in the common
history, i.e., in the longest path from the root.

In the immediate-release game, the miner can select any node of the tree to mine,
while in the strategic-release, the miner can select only nodes that have been (declared)
released by their creator.

If a miner has computational power above a threshold, he may not mine a node
at the frontier (the set of deepest nodes) in the hope that his blocks will become the
accepted history instead of the already mined blocks. Also, he may not release a node
immediately in the hope that the computational power of the other miners will be
wasted in mining blocks which will not be part of the common history.

Our work focuses on the thresholds of the computational power above which FRON-
TIER (the honest strategy) is no longer the optimal strategy (the best response) when
every other miner is honest. We denote by h0 and ĥ0 the threshold for the immediate-
release and the strategic-release games, respectively.

— We prove that in the immediate-release setting the threshold is 0.361 ≤ h0 ≤ 0.455.
This implies that a miner with at most 36% of the total computational power can not
gain more than 36% of the total rewards, i.e., his fair share which he would gain by
being honest and following the suggested strategy FRONTIER; and that a miner with



computational power more than 46% will always deviate from the honest strategy.
An immediate consequence is that if every miner has computational power less than
h0, then FRONTIER is a Nash equilibrium. We have experimentally determined that
the actual threshold is close to h0 ≈ 0.42.

— Regarding the strategic-release setting, we prove rigorously that the corresponding
threshold is lower bounded by ĥ0 ≥ 0.308 (root of the polynomial p3 − 6p2 + 5p − 1).
A similar result was obtained recently by Sapirshtein, Sompolinsky, and Zohar in
[Sapirstein et al. 2016]. Their result is tighter and sets the threshold at 0.329. The
difference between our approach and the approach of [Sapirstein et al. 2016], is that
they provide an algorithm to compute an approximately optimal strategy and then
run their algorithm to estimate the threshold. The authors acknowledge the fact
that their “algorithm copes with computational limitations by using finite MDPs as
bounds to the original problem, and by analyzing the potential error that is due to
inexact solutions”. Our result on the other hand, gives an exact, albeit suboptimal
bound on the threshold and considers exact best responses in a purely mathematical
(not computational) way.

Open problems:. This work sets the stage and makes progress towards a systematic
study of these complicated stochastic games. But a lot of issues remain open. For exam-
ple, besides the obvious problem of tightening our results, there are a lot of interesting
questions about the Nash equilibria above the thresholds h0 and ĥ0.

1.2. Related work
The Bitcoin protocol was originally introduced in [Nakamoto 2008] and was built based
on ideas from [Back 1997] and [Dai 1998]. After the “creation” of Bitcoin several other
alternative electronic currencies followed, known as altcoins (http://altcoins.com/), e.g.,
litecoin, Primecoin etc. The Bitcoin white paper provides a probabilistic analysis of
double spending attacks while a more detailed analysis can be found in [Rosenfeld
2014]. Bitcoin’s design and research challenges are discussed in [Bonneau et al. 2015]
along with a presentation of the existing research. In [Tschorsch and Scheuermann
2015] an extensive and more introductory survey on distributed cryptocurrencies can
be found.

The works most relevant to ours are [Eyal and Sirer 2014] and [Sapirstein et al.
2016]. In [Eyal and Sirer 2014], the authors prove that a guaranteed majority of hon-
est miners is not enough to guarantee the security of the Bitcoin protocol. In particular,
they present a specific strategy called the Selfish Mine strategy and examine when this
strategy is beneficial for a pool of miners. It appears that (depending on the communi-
cation properties of the network and of the attackers) a fraction of at most 1/3 of the
total processing power is enough for a pool of miners to benefit by applying the Selfish
Mine Strategy. Hence, this constitutes a profitable attack against the Bitcoin protocol.
Following this work, in [Sapirstein et al. 2016] the authors examine ε-optimal strate-
gies for the attackers and not surprisingly they demonstrate that the profit threshold
– the minimal fraction of resources required for a profitable attack – is strictly lower
than the one induced by the Selfish Mine strategy. Their analysis also accounts for
possible communication delays in the network, the presence of which can diminish the
profit threshold, and it can be used to evaluate suggested protocol modifications. The
equilibria of the Bitcoin game are also considered in [Kroll et al. 2013]. The authors ob-
serve that any monotonic strategy is a Nash equilibrium (one of many), however they
make the underlying assumption that the time a miner spends mining blocks which
are eventually discarded costs him and decreases his utility.



A vast majority of previous work examines possible types of attacks against the
Bitcoin protocol and suggest adaptations of the protocol to ensure its security. We very
briefly mention some of these works here.

Successful pool mining related attacks are discussed in [Rosenfeld 2011] and [Cour-
tois and Bahack 2014]. In [Eyal 2014] the author considers attacks performed between
different pools where users are sent to infiltrate a competitive pool giving raise to a
pool game. See also [Lewenberg et al. 2015] for a (cooperative) game theoretic analysis
regarding pool mining. [Babaioff et al. 2012] deals with information propagation and
Sybil attacks. The authors propose a reward scheme which will make it in the best in-
terest of a miner to propagate the transactions he is made aware of and not duplicate.
[Kroll et al. 2013] considers an attack that can be performed from people that are only
interested in destroying Bitcoin, as opposed to other attacks performed by users try-
ing to increase their expected reward. This is called the Goldfinger attack. [Heilman
et al. 2015] focuses on the peer-to-peer network and examines eclipse attacks where
the attacker(s) isolates a node/user from the network and forces him to waste his com-
putational power thus participating in an attack without even being aware. Certain
deanonymization attacks have also recently been observed [Meiklejohn et al. 2013] by
analysing the transactional graph (see also [Fergal Reid 2012] and [Ron and Shamir
2013]).

In [Sompolinsky and Zohar 2015] an alternative conflict resolution method is de-
scribed, called Greedy Heaviest-Observed Sub-Tree or GHOST. A variant of GHOST
has been adopted by Ethereum, a distributed applications platform that is built on top
of block chains. The authors show that GHOST guarantees a 50% profit threshold as
opposed to the longest chain rule, thus securing Bitcoin. Moreover, [Eyal et al. 2014]
attempts to overcome certain scalability issues that arise in Bitcoin (block size and
interval vs latency and stability) by proposing a new scalable blockchain protocol.

In a more general topic, in [Garay et al. 2015] the authors analyze the Bitcoin proto-
col in depth. They identify its backbone, its main attributes and properties, which can
be used as the main block for achieving goals other than simply maintaining a public
ledger. They show that when the propagation delay in the network is relatively small,
an honest majority of users is enough to guarantee smooth operation of a proposed
protocol.

2. THE BITCOIN MINING GAME AND ITS VARIANTS
The game-theoretic issues of bitcoin mining can be captured by the following game-
theoretic abstraction. The parameters of the game are:

— the number n of miners or players
— the probabilities p = (p1, . . . , pn) that miners succeed in solving the crypto-puzzle;

these are proportional to their computational power and they sum up to 1:
∑n

i=1 pi =
1.

— the depth of the game d; the payment for mining a new block is not paid immediately,
but only after a chain of certain number of new blocks is attached to it; in the cur-
rent implementation of the Bitcoin protocol this number is d = 100. We will mainly
consider games with d =∞, but we will discuss briefly how they are affected by this
parameter.

Two more parameters could play a role in a more general model of the protocol.
The computational cost c∗ of mining a new block and the reward (payment) r∗ for it
(currently approximately 25 bitcoins). Here we assume that the reward r∗ is constant
and we scale all payments so that r∗ = 1. Also, if the expected gain is high enough to



entice a miner to participate1, its actual value is not important, since the miner tries
to maximize revenue.

Note that because of the distributed nature of the Bitcoin protocol, it is possible that
more than one miners succeed almost simultaneously to mine a new block. We choose
to ignore this aspect here; nevertheless, it is easy to generalize our model to a setting
where

∑n
i=1 pi < 1 and thus there is a non-zero probability at each step that no miner

will be awarded a block.
During the execution of the protocol, the miners build a tree of nodes/blocks to which

they try to add more blocks. The protocol aims to increase the height of this tree by one
every time a new node is created (every ten minutes on average) but this is not nec-
essarily consistent with the incentives of the players who might chose to mine blocks
that are not the deepest ones of the tree. Once a miner succeeds in creating a block,
the new node is supposed to be added to the tree. However if the miner is strategic, he
may have reasons not to add the newly discovered node to the tree. Therefore besides
the publicly known tree, each miner might have his own private tree.

Definition 2.1 (State). A public state is simply a rooted tree. Every node is labeled
by one of the players. The nodes represent mined blocks and the label indicates the
player who mined the block. Every level of the tree has at most one node labeled i
because there is no reason for a player to mine twice the same level.

A private state of player i is similar to the public state except it may contain more
nodes called private nodes and labeled by i. The public tree is a subtree of the private
tree and has the same root.

In the incomplete information case, the private states may also include the par-
tial knowledge that players have about the other players (knowledge about the prob-
abilities of other private trees, but also about their knowledge etc). This is a very
complicated case, and we do not treat it in this work. Instead we treat two complete-
information cases in which the private states of all miners are common knowledge:

Immediate-release model. Whenever a miner succeeds in mining a block, he re-
leases it immediately, and all miners can continue from the newly mined block.
Strategic-release model. Whenever a miner succeeds in mining a block, it becomes
common knowledge. However, the miner may decide to postpone the release of the
block. Until the block is released, other miners cannot continue mining from this
block, although they are aware of its existence.

While the second model has no counterpart in practice, we believe it is of high theoret-
ical interest as it can serve as an intermediate model between immediate-release and
strategic-release with incomplete information. The immediate-release model enables
the study of miners that follow the protocol in terms of block propagation but mine
strategically, while the strategic release allows us to extend the study to the game-
theoretic issues of block witholding. Although ideally we would want to study the lat-
ter under the incomplete information regime, we will defer this for future work since
the game becomes substantially more complex to analyze. It is important to stress that
any strategy in the full information setting is also a valid strategy in the incomplete
information setting. Importantly, if a strategy is not dominant in the full information
setting it cannot be dominant in the incomplete information setting.

We describe the set of strategies for the strategic-release case. The immediate-
release case is the special case in which the release function has been fixed to
immediate-release.

1The protocol must satisfy Individual Rationality. Rational participating players should have non-negative
expected utility.



Definition 2.2 (Strategy). A pure strategy of player i consists of two functions (µi,
ρi):

— the mining function µi which selects a node of the current public state to mine.
— the release function ρi which is a (perhaps empty) private part of the player’s state

which is added to the public state.
Both functions depend on the state of knowledge of the miner.

The suggested strategy by the designer of the protocol is the FRONTIER strategy.

Definition 2.3 (FRONTIER). We say that a miner follows the FRONTIER strategy
when he releases any mined block immediately and selects to mine one of the deepest
nodes.

In the expected execution of the protocol in which all players play the FRONTIER strat-
egy, the Bitcoin protocol creates a path. This is due to our simplifying assumption that
no players simultaneously mine a block. In practice, the FRONTIER strategy creates
something very close to a path, with occasional “orphan” blocks hanging from it.

The game is played in phases. In each phase, each player i uses his mining function
µi to select a block to mine. We assume that exactly one player succeeds in mining
a block in each phase , and that the probability of success for each player is given
by the probabilities (p1, . . . , pn). The winner then adds the newly mined block to his
private tree as a leaf hanging from a previously existing node. He then applies his
release function which may add some of his private part of the tree (for example, the
newly mined node) to the public tree. This may trigger a cascade of releases from other
players. When the dust settles, we will have a new public tree, and each player will
have updated knowledge2. The phase ends at this point and a new phase begins.

Note that it is possible that the release function of the winning player may result
in an empty release. Since here we consider the complete information case, all min-
ers can immediately detect the end of the phase. In the incomplete information case
however this is not possible, although the miners can estimate the probability of this
happening, and that adds another complication in modeling strategic considerations
in the incomplete information regime.

Payments for mining new blocks are essential to incentivize the players to try to
mine new blocks. A miner who succeeds in mining a block is paid d phases later (cur-
rently d = 100); the delay is considered sufficient to guarantee that no long branches
off the main path exist. The description of the payment scheme seems sufficient under
the assumption that branches become stale quickly and that only the main trunk sur-
vives. With the term trunk we refer to a long path with ignored stale branches (i.e., the
sibling of a node that is paid for as well as its descendants will get no payment at any
point in time, thus they are effectively deleted).

A rigorous game-theoretic analysis of the Bitcoin protocol is quite complicated be-
cause of the potential strategic branching, and it requires a more precise definition
of payments. To be consistent with the non-game-theoretic considerations of the Bit-
coin protocol, we assume that at every level (i.e., height of the tree) only one node is
paid for, the first one which succeeds in having a descendant d generations later. In
graph-theoretic terms, a node u is paid for when its path from the root is extended by
a path of length d; when this happens every sibling (as well as its descendants) of node
u becomes stale.

2The releasing step is non-deterministic and, depending on the release functions and the order of applying
the release functions, may lead to different outcomes. However, this never happens in the cases we analyze
here.



Definition 2.4 (Payments). For some nodes of the tree, the miners who discovered
them will get a fixed payment (normalized to 1). The payments comply with the follow-
ing rules:

— the nodes that receive payment must form a path from the root. This immediately
adds the restriction that at every level of the tree exactly one node receives payment.

— among the nodes of a single level that satisfy the above path restriction, the first one
which succeeds in having a descendant d generations later receives payment.

Since only one node per level is paid for, the utility of a miner in the long run is defined
as the fraction of the total payment which he receives (his paid nodes over the total
number of paid nodes).

When a node is paid for, rational miners will completely ignore every branch that
starts at an earlier node. So in the long run, the tree essentially becomes the trunk
with a small tree of depth at most d at the end. We will call such a game truncated at
level d. Immediate-release truncated games are finite stochastic games.

We will also consider games that are not truncated at a specific level d. We have to
do this with care, since it is possible that two or more miners will continue expanding
their own branch forever and they will never agree. However, in our games this cannot
happen in an optimal play when one miner has probability less than 1/2. The reason
is that the utility of a miner is the fraction of the total payment he receives which is
expected to be 0 if he keeps mining his own branch forever (a case of gambler’s ruin).

3. THE IMMEDIATE-RELEASE GAME
In this section we determine the conditions which guarantee that the suggested FRON-
TIER strategy is a Nash equilibrium. We fix the strategy of all but one miners to FRON-
TIER and identify when FRONTIER is the best response of the remaining miner.

We can assume that all miners who follow the FRONTIER strategy by assumption act
as a single miner (as mentioned, we consider only the simplified setting where min-
ers do not simultaneously produce blocks). This gives rise to a two-player (two-miner)
game: Miner 1 is the miner whose optimal strategy (best response) we wish to deter-
mine and has relative computational power p (p fraction of the total computational
power), while Miner 2 is assumed to follow the FRONTIER strategy and have collective
relative computational power 1− p.

A (public) state is simply a rooted tree of width at most 2. In the immediate-release
case, after pruning away stale (abandoned) branches, the state is a long path (called
trunk) followed by two branches, one for each miner of lengths a and b (see Figure 1).
The lengths of these two branches determine the state and can be 0. Also because
Miner 2 plays FRONTIER, his path must be the longest one, except temporarily when
Miner 1 mines a block and moves ahead; in this case we have a = b+ 1, and when this
happens, Miner 2 abandons his path and continues from the frontier of the other path.
To summarize, the states of the game are the pairs (a, b) with 0 ≤ a ≤ b+ 1.

The set of states (a, b) can be partitioned into three parts (see Figure 1):

Mining states:. the setM in which both miners keep mining their own branch. State
(0, 0) belongs to M . Depending on the strategy of miner 1, additional states might
be included in M .
Capitulation states:. the set C of states in which Miner 1 gives up on his branch and
continues mining from some block of the other branch. When the game is truncated
at depth d, this set includes all states of the form (a, d), for a = 0, . . . , d.
Winning states:. the set W of states in which Miner 2 capitulates. Given that miner
2 plays FRONTIER it holds that W = {(a, a− 1) : a ≥ 1}.
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Fig. 1. One the left, a typical state (tree). On the right, the set of states form the optimal strategy for the
truncated game at d = 100. The upper-left green part is the set C of capitulation states, the diagonal red
line is the set W of winning states, and the orange part the set M of mining states.

Note that when Miner 1 capitulates and abandons his own branch, he can choose
to move to any state (0, s). Since the miner is rational, he will select the best of these
states (we assume that in case of a tie, he will always select the same state). It fol-
lows that without loss of generality we can describe fully the strategy of Miner 1 by
specifying the set of mining states M and the state (0, s) that is chosen when Miner
1 capitulates. The set of deterministic strategies of Miner 1 is exactly the set of pairs
(M , s), where M is the set of mining states and (0, s) is the landing state to which the
miner jumps from any capitulation state.

Let gk(a, b) denote the expected gain of Miner 1 when the frontier advances by k new
levels starting from an initial tree in which the branches of Miner 1 and 2 have lengths
a and b, respectively. It should be intuitively clear that, in the long run, the expected
gain per level should be almost independent of the initial state. As a result, for large
k, k′, it should be that gk(a, b) − gk′(a, b) is independent of a, b and thus it is merely a
function of k, k′. Furthermore, assuming that constant rewards are given and expenses
per block created remain constant, it will hold that gk(a, b) satisfies for any large k, k′,

gk(a, b)− gk′(a, b)

k − k′
= g∗.

for some constant g∗ which represents the expected gain per level in the long run. Based
on this we can define the expected gain as

gk(a, b) = k · g∗ + ϕ(a, b),

where the potential function ϕ(a, b) = limk→∞ gk(a, b)− k · g∗ denotes the advantage of
Miner 1 for currently being in state (a, b); that this limit exists follows from a straight-
forward argument3. The objective of Miner 1 is to maximize g∗.

For a strategy (M, s), we can define gk(a, b) recursively as follows. When the current
state is (a, b), there are three possibilities:

— If (a, b) ∈ M , both miners continue mining. With probability p, Miner 1 succeeds to
mine the next block first and the new state is (a+1, b); with the remaining probability
Miner 2 succeeds and the new state is (a, b+ 1).

— If (a, b) ∈ C, Miner 1 abandons his branch and the new state is (0, s). The trunk
increases by b− s blocks.

— If (a, b) ∈ W , Miner 2 abandons his branch and the new state is (0, 0). The gain for
Miner 1 is a · g∗. The trunk increases by a blocks.

3Since state (0, 0) is clearly recurrent, we can alternatively define ϕ(a, b) as the expected value gk(a, b)−k·g∗
until state (0, 0) is reached.



The frontier advances when either Miner 2 wins or when Miner 1 wins and a = b, thus
reaching a winning state. From the above consideration, we get

gk(a, b) =

{
gk−1(0, 0) + a a = b+ 1

max (maxs=0,...,b−1 gk(0, s), pgk(a+ 1, b) + (1− p)gk−1(a, b+ 1)) otherwise

and by definition g0(a, b) = 0. From this, we can get a similar recurrence for ϕ:

ϕ(a, b) =

{
ϕ(0, 0) + a− g∗ a = b+ 1

max (maxs=0,...,b−1 ϕ(0, s), pϕ(a+ 1, b) + (1− p)ϕ(a, b+ 1)− (1− p)g∗) otherwise

We also fix ϕ(0, 0) = 0; note that the potential of all states is non-negative.
We note that the above definitions do not take depth d into account (consider d =

∞). This is without loss of generality for the proof of Theorem 3.2 where we use this
recurrence, as proving that FRONTIER is best response for d = ∞ (i.e., when Miner
1 has a superset of available winning paths than for any constant d) implies that the
result also holds for any constant d.

3.1. FRONTIER is a NE iff p ≤ h0, where 0.361 ≤ h0 ≤ 0.455

If every miner plays FRONTIER, their expected gain is proportional to the probability
of mining a block and therefore proportional to their relative computational power pi.
For this we get the following proposition.

PROPOSITION 3.1. FRONTIER is a Nash equilibrium if, having fixed the strategy of
all miners except i to FRONTIER, the best response of a miner i has expected gain per
level equal to pi.

In this section we bound the threshold on the computational power of each miner so
that FRONTIER is a Nash equilibrium. The main result is the lower bound that follows.

THEOREM 3.2. In the immediate-release model, FRONTIER is a Nash equilibrium
when every miner i has relative computational power pi ≤ 1

3 (1− 8/(1 + 3
√

57)1/3 + (1 +

3
√

57)1/3) ≈ 0.361 (root of the polynomial 2p2 − (1− p)3).

Starting in a mining state, one of the two miners will eventually capitulate and join
the other branch.4 The probability that the miner wins such a race plays a significant
role in our analysis. A formal definition follows.

Definition 3.3. Let rM,s(a, b) denote the winning probability starting at state (a, b),
that is, the probability that a winning state will be reached before a capitulation state.

We will use the notation of r(a, b) for the optimal strategy (M , s), and r∞(a, b) when
the miner never capitulates (i.e., when C = ∅).

The probability rM,s(a, b) can be defined recursively as follows:

rM,s(a, b) =


p · rM,s(a+ 1, b) + (1− p) · rM,s(a, b+ 1), (a, b) ∈M,

1, (a, b) ∈W,
0, (a, b) ∈ C.

The next simple lemma which bounds the probability r(a, b), plays a central role in
our analysis:

4This happens even when d is unbounded. For a miner with relative computational power pi < 1/2 who
never capitulates, the expected gain is 0, as he is engaged in a gambler’s ruin situation. Lemma 3.4 shows
that the probability of winning drops exponentially with the distance of his branch from the frontier.



LEMMA 3.4. The following holds for every state (a, b):

r(a, b) ≤ r∞(a, b) =

(
p

1− p

)1+b−a

.

PROOF. The inequality follows from the fact that the miner has more opportuni-
ties/paths to reach a winning state when he never gives up.

Regarding the equality, we essentially want to solve the recurrence for r∞

r∞(a, b) =

{
1 when a = b+ 1

p · r∞(a+ 1, b) + (1− p) · r∞(a, b+ 1) otherwise.

Consider the quantity l = 1 + b − a which captures the distance of state (a, b) from
the set of winning states. This quantity decreases by one when the miner succeeds in
mining a block, and increases by one when the opponent succeeds. Since we consider
r∞, the case in which the miner never gives up, the situation is a gambler’s ruin ver-
sion: the quantity l behaves as the position of a biased random walk on a half-line with
an absorbing state at 0, probability p of moving away from the absorbing state, and
probability 1− p of moving towards the absorbing state. The probability r∞(a, b) is the
probability of reaching the absorbing state starting at position l = 1 + b− a which can
be easily computed to be ( p

1−p )l.

The next lemma gives a very simple necessary and sufficient condition for the poten-
tial function so that FRONTIER is a Nash equilibrium. Intuitively, the condition states
that Miner 1 capitulates from state (0, 1), so no other state except (0, 0) will ever be
reached.

LEMMA 3.5. Strategy FRONTIER is a best response for Miner 1 if and only if
ϕ(0, 1) = ϕ(0, 0).

PROOF. From the definition of ϕ, we have:

ϕ(0, 0) = pϕ(1, 0) + (1− p)ϕ(0, 1)− (1− p) g∗

ϕ(0, 1) = ϕ(0, 0) + 1− g∗.

It follows that ϕ(0, 1) − ϕ(0, 0) = (g∗ − p)/(1 − p). Since FRONTIER is best response if
and only if g∗ = p (recall Proposition 3.1), the lemma follows.

We now derive a very useful relation between the expected optimal gain of a pair of
states and the winning probability of one of them.

LEMMA 3.6. For every state (a, b) and every nonnegative integers c and k:

gk(a+ c, b+ c)− gk(a, b) ≤ c · r(a+ c, b+ c).

Conversely for p < 1/2, there is εa,b(k) which tends to 0 as k tends to infinity, such that

gk(a+ c, b+ c)− gk(a, b) ≥ c · (r(a, b)− εa,b(k)) .

PROOF. We focus on the first inequality since the proof of the second inequality
follows from similar reasoning. Suppose that the current state is (a, b) and Miner 1
continues playing not in the optimal way, but by simulating the strategy that he would
follow had the current state been (a + c, b + c). The crucial observation is that the
simulation can be carried out because the strategy of the other miner, based only on
the difference b− a, is unaffected.

Let ḡk(a, b) be the gain for the next k levels using this potentially suboptimal strat-
egy. Let also r̄ be the probability that Miner 1 will reach a winning before a capitulation



state (within the next k levels). Then we must have

ḡk(a, b) = gk(a+ c, b+ c)− c · r̄.

Now, since the simulated strategy cannot be better that the optimal strategy, it is
clear that gk(a, b) ≥ ḡk(a, b). Furthermore, the probability r(a + c, b + c), which is the
probability that Miner 1 wins the race even if more than k levels are used, is at least
equal to r̄. These two bounds give the first part of the lemma:

gk(a, b) ≥ ḡk(a, b) = gk(a+ c, b+ c)− c · r̄ ≥ gk(a+ c, b+ c)− c · r(a+ c, b+ c).

The second inequality follows from similar considerations and in particular by starting
in state (a + c, b + c) and simulating the strategy as being in state (a, b). The term
εa,b(k) is needed because now we want to bound the probability r̄ from below: r̄ =
r(a, b) − εa,b(k), where εa,b(k) is the probability that Miner 1 will win the race in more
than k levels. This probability tends to 0 as k tends to infinity; in particular for p < 1/2,
this is bounded by the probability that a gambler with initial value a and probability
of success p < 1/2 will win against a bank of initial value b after Θ(k) steps.

The second part of the previous lemma will not be used in this work, but it may
prove helpful to tighten our results. The following corollary is a direct consequence of
the first part of the lemma.

COROLLARY 3.7. For any state (a, b) and nonnegative integer c

ϕ(a, b) ≥ ϕ(a+ c, b+ c)− c · r(a+ c, b+ c).

It should be intuitively clear that the gain gk(a, b) is non-decreasing in a as having
mined more blocks cannot hurt the miner. Therefore we get the following useful fact
which can also be easily proved by double backwards induction on b and a.

PROPOSITION 3.8. The potential ϕ(a, b) is non-decreasing in a.

The following three lemmas use the above results to provide explicit bounds on the
potential of states (1, 2), (0, 2), and (0, 1) under certain assumptions on the best re-
sponse of Miner 1 and his computational power.

LEMMA 3.9. For every p:

ϕ(1, 2) ≤ 2p2 − p
(1− p)2

+ g∗
1

1− p
. (1)

PROOF. Consider the potential of state (1, 1). We know that

ϕ(1, 1) ≥ pϕ(2, 1) + (1− p)ϕ(1, 2)− g∗(1− p) = p(2− g∗) + (1− p)ϕ(1, 2)− g∗(1− p).

On the other hand, from Corollary 3.7 and Lemma 3.4 we can bound it from above by
ϕ(1, 1) ≤ ϕ(0, 0) + r(1, 1) ≤ p

1−p . By putting the two bounds together and eliminating
ϕ(1, 1) we get the lemma.

LEMMA 3.10. For p < (3−
√

5)/2 ≈ 0.382, if state (0, 2) is a mining state, i.e. (0, 2) ∈
M , then

ϕ(0, 2) ≤ 2p2 − (1− p)3

(1− p)2
. (2)

It follows that for p < 1
3 (1−8/(1+3

√
57)1/3+(1+3

√
57)1/3) ≈ 0.361 (root of the polynomial

2p2 − (1− p)3), state (0, 2) is not a mining state.



PROOF. To bound ϕ(0, 2) we use the bound for ϕ(1, 2) from the previous lemma and
a bound for ϕ(0, 3). To bound ϕ(0, 3) we use the monotonicity property of ϕ(a, b) with
respect to a and apply Corollary 3.7 and Lemma 3.4 to ϕ(1, 3):

ϕ(0, 3) ≤ ϕ(1, 3) ≤ ϕ(0, 2) + r(1, 3) = ϕ(0, 2) +
p3

(1− p)3
.

Assuming now that (0, 2) is a mining state, we get:

ϕ(0, 2) = pϕ(1, 2) + (1− p)ϕ(0, 3)− g∗(1− p)

≤ pϕ(1, 2) + (1− p)ϕ(0, 2) + (1− p) p3

(1− p)3
− g∗(1− p)

and by solving for ϕ(0, 2):

ϕ(0, 2) ≤ ϕ(1, 2) +
p2

(1− p)2
− g∗ 1− p

p

≤ 2p2 − p
(1− p)2

+ g∗
1

1− p
+

p2

(1− p)2
− g∗ 1− p

p

=
3p2 − p
(1− p)2

− g∗ (1− p)2 − p
p(1− p)

.

The coefficient of g∗ is negative for p ≤ (3 −
√

5)/2, so we can replace it by p to get the
first part of the lemma (recall that g∗ is always greater or equal to p).

For the second part of the lemma, it suffices to observe that for p < 1
3 (1 − 8/(1 +

3
√

57)1/3 + (1 + 3
√

57)1/3) the expression 2p2−(1−p)3
(1−p)2 is negative. Since the potential

cannot be negative, it follows by contradiction that (0, 2) 6∈M .

LEMMA 3.11. For p < (3 −
√

5)/2, if (0, 1) is a mining state, then (0, 2) is also a
mining state and

ϕ(0, 1) ≤ (1− p)ϕ(0, 2)− p1− 3p+ p2

1− p
. (3)

PROOF. First we bound ϕ(0, 1) if we assume that (0, 1) ∈M :

ϕ(0, 1) = pϕ(1, 1) + (1− p)ϕ(0, 2)− g∗(1− p)
= p(pϕ(2, 1) + (1− p)ϕ(1, 2)− g∗(1− p)) + (1− p)ϕ(0, 2)− g∗(1− p)

≤ (1− p)ϕ(0, 2)− p1− 3p+ p2

1− p

where we used the bound for ϕ(1, 2) from above and ϕ(2, 1) = 2− g∗. Towards a contra-
diction assume now that (0, 2) 6∈ M . That is, the miner capitulates at state (0, 2) and
moves to either state (0, 1) or state (0, 0). Since the miner can move to state (0, 0) in
two steps by first moving to state (0, 1), we can assume without loss of generality that
he moves to state (0, 1) and therefore ϕ(0, 2) = ϕ(0, 1). By substituting this in the above
expression we get

ϕ(0, 1) ≤ −1− 3p+ p2

1− p
< 0

for p < (3−
√

5)/2, a contradiction.



We are now ready to prove the main result of this section. We use the bounds pro-
vided by the previous three technical lemmas (together with Lemma 3.5) to prove that
Miner 1 capitulates from state (0, 1), and that FRONTIER therefore is his best response.

PROOF OF THEOREM 3.2. For p ≤ 1
3 (1 − 8/(1 + 3

√
57)1/3 + (1 + 3

√
57)1/3), Lemma

3.10 establishes that (0, 2) is not a mining state. But then from Lemma 3.11, neither
state (0, 1) is a mining state, or equivalently, FRONTIER is the best-response strategy
of Miner 1.

3.2. Upper bound
The main theorem of this section, Theorem 3.2, shows that if each miner i has relative
computational power pi < 0.361, FRONTIER is a Nash equilibrium. On the other hand,
it is intuitively clear that if a miner has computational power close to 1/2, he will have
some advantage if he does not play FRONTIER, against miners who play FRONTIER.
Recall that h0 denotes the maximum relative computational power of each miner for
which FRONTIER is a Nash equilibrium. Experimental results stated in Table I, based
on computing the potential ϕ, show that h0 = 0.418.

Table I. The threshold for
different values of d.

threshold
d = 2 0.5
d = 3 0.454
d = 5 0.432
d = 10 0.422
d = 15 0.42
d =∞ 0.418

Our work in this section is to estimate the threshold h0. Providing rigorous lower
bounds for h0—as we do in Theorem 3.2—does not appear to be easy since it involves
a non-trivial Markov decision process. However, it is not too hard to obtain good upper
bounds of h0 as it suffices to come up with a mining strategy that has expected gain
g∗ greater than p. Here we provide a simple such upper bound which can be directly
extended to get an upper bound of h0 close to 0.418.

THEOREM 3.12. When Miner 2 plays FRONTIER, the best response strategy for
Miner 1 is not FRONTIER when p ≥ 0.455.

PROOF. It suffices to consider a fixed mining strategy (M, s) that has expected gain
per step g∗ greater than p. We consider a mining strategy truncated at d = 3, i.e., the
miner capitulates at every state (a, b) with b ≥ 3.

We select M = {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2)} and s = 1 and define the potential for
this strategy as follows:

ϕ(0, 0) = 0,

ϕ(0, 1) =
g∗ − p
1− p

,

ϕ(a, b) = ϕ(0, 1), for every (a, b) ∈ C
ϕ(a, b) = a− g∗, when a = b+ 1

ϕ(2, 2) = pϕ(3, 2) + (1− p)ϕ(0, 1)− g∗(1− p),
ϕ(1, 2) = pϕ(2, 2) + (1− p)ϕ(0, 1)− g∗(1− p),
ϕ(1, 1) = pϕ(2, 1) + (1− p)ϕ(1, 2)− g∗(1− p).



We need to select g∗ and verify that this is the correct potential. In particular, we need
to verify that for all mining states (a, b) ∈ M we have ϕ(a, b) ≥ ϕ(0, 1), which holds
when

g∗ =
p2(2 + 2p− 5p2 + 2p3)

1− p2 + 2p3 − p4
.

We can also verify that for p ≥ 0.455, the expected gain g∗ is strictly greater than p,
which establishes that the strategy (M, s) is a better response than FRONTIER.

The strategy employed in the proof of the theorem is optimal for the truncated game at
d = 3 when p ≈ 0.455. As we mentioned above, one can compute the optimal strategy
for the finite games truncated at d = 4, 5 and so on, to get better and better upper
bounds. These bounds converge relatively quickly to h0 = 0.418.

4. THE STRATEGIC-RELEASE GAME
Similarly to the immediate-release case, we wish to identify conditions such that
FRONTIER is a Nash equilibrium. To do so, we again assume that all but one miner,
say Miner 1, use the FRONTIER strategy, and then examine the best response of Miner
1. Since all honest miners select the same block to mine and release it immediately
once it is mined, they essentially act as one miner, and it is sufficient to consider the
case of two miners.

As in the immediate-release case, the tree created by the two miners has width 2.
The trunk is permanently fixed and can be safely ignored; hence, the situation is cap-
tured by the two branches of the execution tree in addition to a bit of information
regarding each block in Miner 1’s branch specifying whether or not Miner 1 has re-
leased this block. In particular, this situation can be captured by a triple of numbers a,
ar and b, where a and b denote the number of blocks mined by Miner 1 and the honest
miner, respectively (the length of the two branches), while ar ≤ a denotes the number
of the released blocks on Miner’s 1 branch (note that they are consecutive blocks start-
ing from (0, 0)). Since the honest miner immediately announces the mined blocks, all b
blocks on his branch are always released. Also, contrary to the immediate-release case,
it can be a > b+ 1.

Under the assumption that Miner 2 follows the FRONTIER strategy, we know that
if Miner 1 has released ar ≤ b blocks, then Miner 2 will not abandon his path, but if
ar > b then the honest miner will immediately capitulate. So, without loss of generality
we can assume that if a ≤ b then ar = a while if a > b, then ar = b, otherwise the honest
miner would have immediately abandoned his path, and the game would be at state
(a− ar, 0). In other words, we can always consider ar = min{a, b}; hence we can capture
the state of the game by the tuple (a, b) as in the immediate-release case.

Let ĝk(a, b) denote the expected gain of Miner 1 when the branch of the honest miner
in the execution tree is extended by k new levels starting from an initial tree in which
the non-common parts of the paths have length a and b, but Miner 1 has only released
the first min{a, b} blocks on his path. It should be intuitively clear that, in the long run,
the expected gain per level should be almost independent of the initial state. With this
in mind, we can write the expected gain as

ĝk(a, b) = k · ĝ∗ + ϕ̂(a, b),

for some constant ĝ∗ which is the expected gain per level in the long run. The potential
function ϕ̂(a, b) denotes the advantage of Miner 1 for currently being in state (a, b) (and
having released min{a, b} blocks).

We can define ĝk(a, b) as follows:



— If a ≤ b, Miner 1 has two options: to capitulate or to mine. In the latter case, the next
state will be (a+ 1, b) with probability p, and (a, b+ 1) with the remaining probability.

— If a > b, Miner 1 has one additional option to the previous case: he can release an
additional block and lead the game to state (a − b − 1, 0). When this happens, Miner
2 who plays FRONTIER capitulates. Note that we allow Miner 1 to repeatedly release
blocks, which is equivalent to allowing him to release any number of blocks.

From the above consideration, we get the following optimal gain for Miner 1:

ĝk(a, b) = max

{
max

s=0,...,b−1
ĝk(0, s), p · ĝk(a+ 1, b) + (1− p) · ĝk−1(a, b+ 1),

max
s=0,...,b−1

ĝk−1(a− b− 1, 0) + b+ 1

}
, (4)

where the last term inside the max applies only when a ≥ b + 1; equivalently we can
define ĝ(a, 0) = −∞ when a < 0. The base case of the recurrence is ĝ0(a, b) = 0.

As in the case of immediate-release, we define a potential ϕ̂ from

ĝk(a, b) = kĝ∗ + ϕ̂(a, b),

when k tends to infinity. We also note that the definition above does not take d into
account (considers d = ∞). This is without loss of generality for the proof of Theorem
4.1 as proving the result for d = ∞ is stronger (as Miner 1 has a superset of available
winning paths than for any constant d).

The recurrence for the potential is

ϕ̂(a, b) = max

{
max

s=0,...,b−1
ϕ̂(0, s), p · ϕ̂(a+ 1, b) + (1− p) · ϕ̂(a, b+ 1)− ĝ∗ · (1− p),

max
s=0,...,d−1

ϕ̂(a− b− 1, 0) + b+ 1− ĝ∗
}
, (5)

where again we define ϕ̂(a, 0) = −∞ when a < 0. We also fix the value ϕ̂(0, 0) = 0.

4.1. FRONTIER is a NE iff p ≤ ĥ0, where ĥ0 ≥ 0.308

In this section we will show the following theorem.

THEOREM 4.1. In the strategic-release model, FRONTIER is a Nash equilibrium
when every miner i has relative computational power pi ≤ 0.308 (root of the polynomial
p3 − 6p2 + 5p− 1).

Theorem 3.2 established that for any p ≤ 0.361 there exists a potential ϕ for the
immediate-release model such that ϕ(0, 0) = ϕ(0, 1) and g∗ = p. The main idea of the
proof is to extend this potential to states (a, b) such that a > b+ 1. This is possible, for
the following reasons:

— for states (b+ 1, b), when p is small and Miner 1 is one block ahead of Miner 2, there
is a high risk if he does not release the block; the risk is that Miner 2 can mine one
extra block and then Miner 1 may end up in a stale branch.

— for states (a, b) with a > b + 1, when Miner 1 is at least two blocks ahead, it is safe
not to release any blocks until Miner 2 catches up to within distance one.

With this in mind, we define the following potential

ϕ(a, b) =

{
ϕ(a, b), when a ≤ b,
aλ− bµ− c, otherwise



where λ = (1−p)2
1−2p , µ = p2

1−2p and c = p(1−p)
1−2p . The parameters of the second part are

chosen so that ϕ(a, b) = pϕ(a + 1, b) + (1 − p)ϕ(a, b + 1) − p(1 − p). It is important to
notice that the two pieces fit together nicely in the sense that for a = b+1 we have that
ϕ(a, b) = ϕ(a, b) = aλ− bµ− c, so we could use the following equivalent definition for ϕ:

ϕ(a, b) =

{
ϕ(a, b), when a ≤ b+ 1,
aλ− bµ− c, otherwise.

To ease the presentation, we will use the following notation, for the potential of states
(a, b) with a ≥ b + 1: (a) ϕM when Miner 1 continues to mine, (b) ϕR when Miner 1
releases one more block and the other (honest) miner capitulates, and (c) ϕC when
Miner 1 capitulates.

ϕM (a, b) = pϕ(a+ 1, b) + (1− p)ϕ(a, b+ 1)− p(1− p)
ϕR(a, b) = ϕ(a− b− 1, 0) + b+ 1− p
ϕC(a, b) = 0.

Note that when Miner 1 capitulates, he starts mining at one of the states (0, s) where
s ≤ b − 1, where by assumption the potential is 0. To prove the theorem, we first
show that ϕ satisfies the recurrence of the strategic-release potential (5) when ĝ∗ = p.
Equivalently, using the above notation

ϕ̂(a, b) = max(ϕM (a, b), ϕR(a, b), ϕC(a, b)). (6)

LEMMA 4.2. The potential ϕ satisfies the recurrence (5) when ĝ∗ = p and p ≤ 0.308
(root of the polynomial p3 − 6p2 + 5p− 1).

PROOF. We break down the proof into three distinct claims:

CLAIM 1. For states (a, b) with a < b+ 1,

ϕ(a, b) = max(ϕM (a, b), ϕR(a, b), ϕC(a, b)).

Using the alternative definition of ϕ, the claim holds trivially, since ϕ satisfies it, and
ϕR(a, b) = −∞.

CLAIM 2. For states (a, b) with a > b+ 1,

ϕ(a, b) = ϕM (a, b) = max(ϕM (a, b), ϕR(a, b), ϕC(a, b)).

This claim also follows directly: ϕ(a, b) = ϕM (a, b) holds by design, and it is easy to
verify that ϕM gives the maximum of the three values:

ϕM (a, b) > aλ− bµ− c− p(1− p)
1− 2p

= ϕR(a, b),

ϕR(a, b) ≥ 0 = ϕC(a, b).

CLAIM 3. For states (b+ 1, b):

ϕ(b+ 1, b) = ϕR(b+ 1, b) = max(ϕM (b+ 1, b), ϕR(b+ 1, b), ϕC(b+ 1, b)).

Note first that ϕR(b+ 1, b) = b+ 1− p ≥ 0 ≥ ϕC(b+ 1, b). The most complicated part is
to show that ϕR(b+ 1, b) ≥ ϕM (b+ 1, b). To do this, we write

ϕM (b+ 1, b) = pϕ(b+ 2, b) + (1− p)ϕ(b+ 1, b+ 1)− p(1− p)
= p((b+ 2)λ− bµ− c) + (1− p)ϕ(b+ 1, b+ 1)− p(1− p).

From Corollary 3.7 for the immediate-release case, we get the bound ϕ(b + 1, b + 1) ≤
(b + 1)p/(1 − p). By substituting this we bound ϕM (b + 1, b) from above by 2bp + p(2 −



4p+p2)/(1−2p). We want this to be at most equal to ϕR(b+ 1, b) = b+ 1−p which gives
the following inequality,

b(1− 2p)2 + 1− 5p+ 6p2 − p3 ≥ 0.

Since b ≥ 0, it suffices to have 1 − 5p + 6p2 − p3 ≥ 0 which holds for p ≤ 0.308 (root of
the polynomial p3 − 6p2 + 5p− 1).

We now present the main result of this section based on the previous lemma.

PROOF OF THEOREM 4.1. The above lemma implies that for every state (a, b),

ĝk(a, b) ≤ k · p+ ϕ(a, b). (7)

Intuitively, ϕ(a, b) can only overestimate the optimal potential when a ≥ b + 1, even
when ĝ∗ > p. We prove this using induction on k, b, and a. This is possible because
Recurrence (4) of ĝk depends on ĝk(0, s) for s < b (for b > 0), on gk(a+ 1, b), and/or ĝk−1.

For the outer induction on k, the base case k = 0 is trivial since ĝ0(a, b) = 0 and
ϕ(a, b) ≥ 0.

For a fixed k, we use double (strong) induction on b and (backwards induction on) a.
So, for fixed k and b we assume that the statement holds for all k′ < k and for all states
(a, b′) such that b′ < b. Note that for the base case b = 0, the induction step does not
use the inductive hypothesis on b since a rational miner never capitulates from a state
(a, 0).

Since ĝk(a, b) cannot be bigger than k+b, there is a value of a large enough such that
aλ − bµ − c ≥ k + b; call this value am(k, b). Statement (7) holds for every a ≥ am(k, b)
because

ĝk(a, b) ≤ k + b ≤ aλ− bµ− c = ϕ(a, b) ≤ k · p+ ϕ(a, b).

We can then use any value â ≥ am(k, b) as base case of the backwards induction on a.
More formally,

ĝk(a, b) = max

{
max

s=0,...,b−1
ĝk(0, s), p ĝk(a+ 1, b) + (1− p) ĝk−1(a, b+ 1),

max
s=0,...,b−1

ĝk−1(a− b− 1, 0) + b+ 1

}
≤kp+ max

{
max

s=0,...,b−1
ϕ(0, s), p ϕ(a+ 1, b) + (1− p)ϕ(a, b+ 1)− p(1− p),

max
s=0,...,b−1

ϕ(a− b− 1, 0) + b+ 1− p
}

=kp+ ϕ(a, b),

where the inequality holds by our induction hypothesis, and the last equality by
Lemma 4.2.

Statement (7) shows that the optimal gain per step cannot exceed p, which shows
that FRONTIER is best response for Miner 1. The proof of the theorem is complete.
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