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Abstract

This thesis is a collection of three contributions to sensitivity analysis of financial and
insurance risk evaluations. Sensitivity analysis constitutes an important component of
model building, interpretation and validation, particularly for models whose output
is at the core of a risk management decision process. We study models comprising a
(random) vector of input factors, an aggregation function mapping input factors to a
random output, and a risk measure applied to the output. In most typical insurance
and financial applications, the model’s characteristic – a non-analytical and numerically
expensive aggregation function evaluated on numerous input factors – renders most
sensitivity analysis methodologies unfeasible.

We develop sensitivity analysis procedures applicable specifically for the above
model setting. First, we address the estimation of risk measures applied to the model
output. The fundamental purpose of a risk measure is to distinguish between different
risk profiles. However, strong assumptions on the risk measure’s ability to distinguish
risk severities lead to non-robust estimators. We provide conditions when risk measures
exhibit both, robustness and a consistent ranking of risks. Second, we develop a
framework termed reverse sensitivity testing, that associates a critical increase in the
risk measure to specific input factors. We provide analytical solutions of the stressed
distribution of input factors that lead to the required increase in the outputs’ risk
measure. Third, we introduce a novel sensitivity measure, which quantifies the extent to
which the model output is affected by a stress in an individual input factor. Compared
to other sensitivity measures in the literature, the proposed measure incorporates the
direct impact of the stressed input as well as indirect effects via other input factors
that are dependent on the one being stressed. In this way the dependence between
inputs is explicitly taken into account.





Chapter 1

Introduction

1.1 Sensitivity analysis

Since the early adoption of statistical models, there is an inherent necessity to un-

derstand the underlying relationship between the model inputs and output – a task

assigned to sensitivity analysis. The field of sensitivity analysis is best described as

“the study of how uncertainty in the output of a model (numerical or otherwise) can

be apportioned to different sources of uncertainty in the model input” (Saltelli et al.,

2004). Sensitivity analysis is of fundamental importance for risk analysts, in particular,

when the model output is a decision variable with far-reaching consequences, such as

(indicatively) in probability safety assessment (Saltelli, 2002), reliability analysis (Aven

and Nøkland, 2010), nuclear waste disposal (Saltelli and Tarantola, 2002), food safety

(Frey and Patil, 2002) and in financial and insurance risk management (Gourieroux

et al., 2000; Tsanakas and Millossovich, 2016).

Inspiration for this thesis is the development of a sensitivity analysis framework for

specific risk models, such as internal models, used by insurance companies and financial

institutions. Common feature of these risk models is that they are highly involved

and sophisticated statistical models, whose output is of crucial importance to a risk
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management decision process. An internal model, for example, replicates the overall

risk exposure and determines the regulatory economic capital of an insurance company

(Swiss Solvency Test, 2006; EIOPA, 2009). The mathematical and statistical design

of these risk models, however, prevents a straightforward application of commonly

used sensitivity analysis methodologies. Indeed, these models exhibit the following

characteristics:

• They are evaluated on numerous input factors, which results in the importance

ranking of input factors becoming a computationally non-trivial task.

• The input factors are prone to uncertainty, thus modelled using random variables.

To capture statistical uncertainty in the input factors, global sensitivity analysis,

which takes into account the whole range of the input factors, has to be employed

(Saltelli, 2002).

• The input factors are mapped to the model output through an aggregation

function, which is usually not analytically available. Thus, sensitivity analysis

techniques that do not rely on restrictive properties of the aggregation functions

are of central importance.

• Evaluations of the model’s aggregation function, so-called model runs, are typically

numerically time consuming. Most sensitivity analysis tools, however, are based

on algorithms requiring multiple model runs. Therefore, alternative sensitivity

analysis techniques without the need of extensive reevaluations of the aggregation

function are called for.

• The (random) model output is summarised through a risk measure that assesses

the level of risk severity of the output by assigning to it a real number. Risk

measures are extensively used in financial risk management, however, most

2



1.2 Model setup

sensitivity analysis techniques have not been extended to study the sensitivity of

the output risk measure to random inputs.

• Since the input factors are modelled by random variables, particular interest lies

in the sensitivity of the risk measure to the random input factors, subsuming

sensitivity to input parameters.

This thesis is a collection of three contributions to sensitivity analysis, applicable

to the above setting and addressing the challenges outlined above, in the areas of:

robustness of risk measurement procedures (Hampel et al., 2011; Huber and Ronchetti,

2009), regional sensitivity analysis (Spear et al., 1994; Osidele and Beck, 2004) and

factor prioritisation (Saltelli et al., 2008; Borgonovo and Plischke, 2016). Robustness

of risk measurement procedures addresses the numerical calculation of a risk measure

estimated from historical and / or simulated data. Regional sensitivity analysis is

concerned with the sensitivity of the model output, when the output lays in a specific

region. Factor prioritisation, on the other hand, is a methodology that quantifies the

extend to which the model output is affected by individual input factors.

1.2 Model setup

We consider the standard setting of sensitivity analysis, involving a (typically com-

plicated) function, mapping model inputs to an output that is used in a decision

making process. Mathematically, we work on a measurable space (Ω,A) and denote

by X = (X1, . . . , Xn) the vector of random input factors on (Ω,A). The (measurable)

function g : Rn → R, is called the aggregation function, which gives, when applied

to the input factors X, the one-dimensional random output of interest Y = g(X).

Throughout, we adopt the convention that large values of the output correspond to

adverse realisations.

3
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As is typical in financial risk management, the output is summarised though a risk

measure, leading to a classification of different levels of risk severities of the output

distribution (Artzner et al., 1997, 1999; Föllmer and Schied, 2011). Moments, such

as the mean and standard deviation, can be seen as risk measures. In recent years,

percentile-based risk measures (Acerbi, 2002) have become prominent, with the most

commonly used risk measures being Value-at-Risk (VaR) and Expected Shortfall (ES).

Risk measures are used extensively in financial regulation for the calculation of capital

requirements, specifically VaR for European insurance companies (EIOPA, 2009) and

ES for banks (BCBS, 2012, 2013). The literature on risk measures is developing fast

and, subsequently, a discussion of only those risk measures of importance in this thesis

is provided.

1.2.1 Risk measures

Distortion risk measures

A risk measure is a mapping ρ : L1 → R, where L1 is the space of integrable random

variables on (Ω,A). That is, a risk measure associates to each integrable random

variable a real number. The class of distortion risk measures, introduced by Wang

(1996); Acerbi and Tasche (2002) and studied in Chapter 4, is defined, for a random

variable Y with distribution function FY , through

ργ(Y ) =
∫ 1

0
F−1
Y (u)γ(u)du,

where γ : [0, 1] → [0,∞) is a normalised weight function such that
∫ 1

0 γ(u)du = 1. The

inverse of the distribution function of Y is defined by F−1
Y (u) = inf{y ∈ R |FY (y) ≥ u},

for 0 ≤ u ≤ 1, and where, as usual, inf ∅ = +∞. The widely used distortion risk

measure Value-at-Risk (VaRα) at level α ∈ [0, 1] is given by the weight function

4
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γ(u) = δα(u), for the Dirac measure δα, defined by
∫ 1

0 l(x)dδα(x) = l(α) for any

function l and 0 ≤ α ≤ 1. Alternatively, the VaRα can be defined as the left α-quantile,

VaRα(Y ) = F−1
Y (α). In particular, the essential supremum of Y is ess supY = F−1

Y (1).

The Expected Shortfall (ESα), also called Conditional Value-at-Risk, at level

α ∈ [0, 1) is a distortion risk measure with γ(u) = 1
1−α1{u>α} and has representation

ESα(Y ) = 1
1 − α

∫ 1

α
VaRu(Y )du = 1

1 − α
E
(
(Y − VaRα(Y ))+

)
+ VaRα(Y ).

Unlike VaR, the ES takes into account the whole tail of the distribution of Y , that is

all realisations larger than VaRα(Y ). We refer to Chapter 2 and Föllmer and Schied

(2011) for a comprehensive comparison of the two risk measures.

Distortion risk measures with non-decreasing weight function γ are called spectral

risk measures (Acerbi and Tasche, 2002). Clearly, the ES belongs to the class of spectral

risk measures while the VaR does not.

Coherent and convex risk measures

Another approach to classify risk measures is through their properties, which reflect

the ways a risk measure distinguishes different risk profiles. The literature on desirable

properties of a risk measure is extensive and a complete review is outside of the scope

and aim of this thesis. We only recall the definitions needed for the exposition and

refer to Artzner et al. (1999); Föllmer and Schied (2011) and references therein for

an exhaustive overview. Common properties of a risk measure include, for random

variables Y, Z:

i) Law-invariance: ρ(Y ) = ρ(Z) if FY = FZ .

ii) Translation invariance: ρ(Y +m) = ρ(Y ) +m for m ∈ R.

iii) Monotonicity: ρ(Y ) ≤ ρ(Z) if Y ≤ Z, P-a.s.

5
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iv) Convexity: ρ
(
(1 − λ)Y + λZ

)
≤ (1 − λ)ρ(Y ) + λρ(Z) for λ ∈ [0, 1].

v) Positive homogeneity: ρ(cY ) = cρ(Y ) for c ≥ 0.

vi) Subadditivity: ρ(Y + Z) ≤ ρ(Y ) + ρ(Z).

A convex risk measure, the focus of Chapter 2, is a risk measure fulfilling ii), iii) and

iv), see Föllmer and Schied (2011); Frittelli and Rosazza Gianin (2002) and references

therein. The subclass of convex risk measures, called coherent risk measures are risk

measures that additionally satisfy v) and therefore vi) (Artzner et al., 1999). It is

known (Kusuoka, 2001), that spectral risk measures are law-invariant coherent risk

measures, thus ES is coherent and convex, while the VaR violates subadditivity and

hence convexity.

Shortfall risk measures

Shortfall risk measures, associated with utility-type arguments, are defined through

ρ(Y ) = inf{y ∈ R |E(ℓ(Y − y)) ≤ y0}, where ℓ is a non-decreasing, non-constant and

convex loss function and y0 a point in the interior of the range of ℓ (Föllmer and Schied,

2002). Examples of shortfall risk measures include entropic risk measures (Gerber,

1974), and the class of generalised quantiles called expectiles (Newey and Powell, 1987;

Bellini et al., 2014).

1.3 Structure of the thesis

This thesis is based on three (working) papers: Chapter 2 includes Pesenti et al.

(2016), Chapter 3 is based on Pesenti et al. (2018b) and Chapter 4 is a working

paper termed Cascade sensitivity measures (Pesenti et al., 2018a). All effort has

been made to homogenise the notation, however, due to the different approaches of

6
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studying sensitivity analyses, different levels of mathematical notation may be required,

rendering it necessary to refine specific notations.

1.3.1 Chapter 2

This chapter addresses the interplay between properties of a risk measure to rank

different risk profiles and its statistical robustness. The fundamental purpose of a

risk measure, particularly in financial risk management applications, is to distinguish

consistently between different levels of risk severities. From a practical perspective,

a risk measure should be robust, that is, insensitive to small perturbations in input

assumptions. It is known in the literature (Cont et al., 2010; Krätschmer et al., 2014),

that strong assumptions on the risk measure’s ability to distinguish between risks may

lead to a lack of robustness. This trade-off between robustness and consistent risk

ranking is addressed by specifying the regions in the space of distribution functions,

where law-invariant convex risk measures are indeed robust.

We consider the case where a risk measure is evaluated on the output of an

aggregation function. Extending the definition of robustness to this setting, we find

that law-invariant convex risk measures are robust for any aggregation function that

satisfies a linear growth condition in the tail, provided that the set of possible marginals

is uniformly integrable. Thus, we show that all law-invariant convex risk measures

possess the aggregation-robustness property introduced by Embrechts et al. (2015) and

further studied by Krätschmer et al. (2017). This is in contrast to the widely-used,

non-convex, risk measure VaR, whose robustness in a risk aggregation context requires

restricting the possible dependence structures of the input vectors.
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1.3.2 Chapter 3

The focus of this chapter is on associating a critical increase in the risk measure

applied to the model output, to specific input factors. We propose a global and model-

independent framework, termed reverse sensitivity testing, comprising three steps: (a)

an output stress is specified corresponding to an increase in the risk measure(s); (b) a

(stressed) probability measure is derived, minimising the Kullback-Leibler divergence

with respect to the baseline probability, under constraints generated by the output

stress; (c) changes in the distributions of input factors are evaluated. We argue that a

substantial change in the distribution of an input factor corresponds to high sensitivity

to that input and introduce a novel sensitivity measure to formalise this insight.

The proposed framework differs from reverse stress testing, which is widely used

in practical applications, in that it provides the whole distribution of the output and

of the input factors under the stressed model, allowing for an in-dept inspection and

analysis of the change from the baseline to the stressed model.

Implementation of the reverse sensitivity testing framework in a Monte Carlo setting

can be performed on a single set of input / output scenarios, simulated under the

baseline model. Thus the approach circumvents the need for additional computationally

expensive evaluations of the aggregation function. The proposed approach is illustrated

through numerical examples with a simple insurance portfolio and a model of a London

Insurance Market portfolio used in industry.

1.3.3 Chapter 4

Sensitivity measures are the tools used in factor prioritisation, to quantify the extent

to which the distribution of a model output is affected by small changes (stresses) in

an individual random input factor. It is known that sensitivity measures defined as

8
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partial derivatives do not fully account for interactions among (or dependence between)

input factors (Borgonovo and Plischke, 2016). However, for input factors that are

dependent, a stress on one input should also precipitate stresses in other input factors.

We introduce a novel sensitivity measure termed cascade sensitivity, which captures

the direct impact of the stressed input factor on the output, as well as indirect effects

via other risk factors that are dependent on the one being stressed. In this way, the

dependence between inputs is explicitly taken into account.

Representations of the cascade sensitivity measure, which can be calculated from a

single Monte Carlo sample, are provided for two types of stress: (a) a perturbation

of the distribution of an input factor, such that the stressed input follows a mixture

distribution, and (b) an additive random shock applied to the input factor. These

representations do not require simulations under different model specifications or

the explicit study of the properties of the model’s aggregation function, making the

proposed method attractive for practical applications, as we illustrate through numerical

examples.

1.4 Direction for future research

To increase the impact and applicability of the contribution of this thesis an R package

incorporating the reverse sensitivity testing framework in Chapter 3 and the cascade

sensitivity measure of Chapter 4 is in preparation. The R package will facilitate the

practicability and usage of our proposed sensitivity methodologies in academia and

practice.

Further to the R package, the introduced sensitivity concepts open multiple doors for

future research projects. Specifically, the generalisation of the reverse sensitivity testing

framework to different risk measure constraints, such as to the class of distortion

risk measures or to the ES only, as well as utilising other divergences than the

9
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Kullback-Leibler divergence. Furthermore, the reverse sensitivity testing might provide

a mathematical foundation to establish a reverse stress testing methodology. Stress

testing (and reverse stress testing) is intensely used by financial institutions for risk

assessment, and also prescribed by regulation Swiss Solvency Test (2006); BCBS (2013);

EIOPA (2009). However, a rigorous mathematical theory for reverse stress testing is

still lacking and the subject of current research (Glasserman et al., 2015; Ludkovski

and Risk, 2017; McNeil and Smith, 2012).

The proposed cascade sensitivity measure, whose characteristic is to explicitly

take into account the dependence between input factors, has a natural application in

systemic risk. Systemic risk is concerned with contagion effects that spread through the

financial market and distress the whole financial system. Systemic risk measures have

been introduced in the literature, see Feinstein et al. (2017) for an overview, however,

a sensitivity measure that distinguishes between the direct effect of an input factor and

the indirect effects due to dependencies on other input factors, might provide novel

insight.
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Chapter 2

Robustness Regions for Measures of Risk Aggrega-

tion

This chapter is based on the publication Pesenti et al. (2016) and has been presented

at the XVIII workshop on Quantitative Finance (Milan, 2017), at the conference on

Model Uncertainty and Robust Finance (Milan, 2016) and at the 3rd European Actuarial

Journal Conference (Lyon, 2016).

2.1 Introduction

Since the wide-spread adoption of VaR frameworks in the 1990s, risk measures have

constituted an integral part of financial risk management. The use of risk measures is

prescribed by banking (BCBS, 2012, 2013) and insurance regulation (EIOPA, 2009) for

calculating the capital requirements of portfolios of future losses. Furthermore, the use

of risk measures, evaluated using internally developed statistical models, is increasingly

embedded in the operations of insurance companies (SCOR, 2008; Sandström, 2016).

As a consequence, the discussion of desirable properties of risk measures has been

the focus of much academic and industry debate. A first set of considerations relates

to risk measures’ ability to reflect diversification appropriately, by the properties of
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subadditivity (Artzner et al., 1999) and convexity (Föllmer and Schied, 2002; Frittelli

and Rosazza Gianin, 2002), and to order risk consistently (Bäuerle and Müller, 2006;

Denuit et al., 2006). These issues are interrelated: law-invariant convex risk measures,

introduced by Föllmer and Schied (2002); Frittelli and Rosazza Gianin (2002) and

subsuming coherent risk measures (Artzner et al., 1999), rank risks in a way that

preserves first-order and second-order stochastic dominance (Bäuerle and Müller, 2006).

The risk measure ES is the convex risk measure used most widely in the practice of

risk management.

A second set of considerations acknowledges that risk measures need to be estimated

from historical and / or simulated data and thus require reliable estimators. A funda-

mental concept is the question of robustness, that is, whether risk measure estimates

remain relatively insensitive to small perturbations in the underlying distribution from

which data are generated (Hampel, 1971; Huber and Ronchetti, 2009). A growing

academic literature is concerned with robustness in the context of risk measurement

(Cont et al., 2010; Kiesel et al., 2016; Krätschmer et al., 2014; Bellini et al., 2014;

Embrechts et al., 2015; Krätschmer et al., 2017). A key finding of this literature is that

robustness is to an extent contradictory to a consistent ordering of risks. In particular,

there does not exist a law-invariant convex risk measure that is robust (following

the definition of Hampel (1971); Huber and Ronchetti (2009)) on the whole space

of integrable random variables. This fact has been used as an argument against the

use of convex risk measures such as ES and in favour of the non-convex risk measure

VaR (Cont et al., 2010). Such arguments have coloured much of the policy discussion

surrounding the relative merits of ES and VaR for use in capital regulation (BCBS,

2012, 2013; IAIS, 2014).

One way to address the apparent conflict between consistency of risk ranking and

robustness, is to consider alternative, less restrictive, definitions of robustness (Kiesel

12
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et al., 2016; Krätschmer et al., 2014). Another approach also taken in Krätschmer et al.

(2017), which we follow in this chapter, is to relax the requirement that risk measures

be robust on the whole space of integrable random variables, given that “... this case

is not generally interesting in econometric or financial applications since requiring

robustness against all perturbations of the model is quite restrictive...” (Cont et al.,

2010). This approach suggests an analysis of regions on which risk measures are robust.

Consequently, since in different applications different regions of distributions may form

plausible input spaces, selection of a risk measure for a particular application should

reflect the extent to which the risk measure is robust on the region of interest.

In this chapter, we study robustness regions for convex risk measures and show that

they are characterised by the property of uniform integrability – through examples

we demonstrate that this is not an excessively strong requirement on the input space.

Furthermore, we consider the realistic case where risk measures are evaluated on

(possibly non-linear) functions of random vectors of risk factors, such that the input

space consists of multivariate distributions (SCOR, 2008; Tsanakas and Millossovich,

2016). This case, typical in the risk modelling performed by insurance companies,

is generally not considered in the literature on robustness, with the exception of

Embrechts et al. (2015); Krätschmer et al. (2017) who focus on fixed marginals.

However, robustness as defined in Hampel (1971); Huber and Ronchetti (2009), that

is, insensitivity to small deviations from the underlying distribution, includes both

perturbation in the marginals and the dependence structure of the random vector of

input risk factors. Allowing for uncertainty in the marginal distributions, we show that

weak restrictions on the marginals (uniform integrability) and the aggregation function

(linear growth in the tail) ensure robustness of convex risk measures. Consequently, we

argue that in applications where risk aggregation takes place and uncertainty around

13
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the dependence structure is high, convex risk measures such as ES have attractive

robustness properties, compared to, say, VaR.

In Section 2.2 notation and mathematical preliminaries are stated. In Section 2.3,

the robustness of convex risk measures is studied. First, in Section 2.3.1, robustness is

formally defined and its relationship to continuity of risk measures (Hampel’s theorem)

is presented. A key result (that also follows from Krätschmer et al. (2017)) is then

shown: convex risk measures are robust on uniformly integrable sets. Subsequently, in

Section 2.3.2, examples of such uniformly integrable sets are given. Uniform integrability

is a constraint on the tail behaviour of a set of distributions. Thus convex risk measures

are robust on sets including parametric families with bounded second moment; sets of

random variables that are less volatile (in convex order) than those in a given uniformly

integrable set. Section 2.3.3 presents examples of sets on which convex risk measures

are not robust and Section 2.3.4 points at possible extensions to risk measures defined

on the set of random variables with finite p-th moment.

In Section 2.4, robustness is studied in the context of risk aggregation, where a

risk measure is applied on real-valued aggregation function of a random vector of risk

factors; we call the composition of the risk measure with the aggregation function an

aggregation measure. In Section 2.4.1, robustness of aggregation measures is defined

with respect to distributions of random vectors. A direct multivariate extension of

Hampel’s theorem is given, associating robustness with continuity of the aggregation

measure. Consequently, if the risk measure is convex and the aggregation function

continuous, the aggregation measure is robust as long as the aggregate risk position

belongs to a uniformly integrable set. In Section 2.4.2 we show that for robustness of

aggregation measures it is sufficient that the marginals of the vector of risk factors

belong to uniformly integrable sets and that the aggregation function possesses a linear

growth condition in the tail. Significantly, no constraints on the dependence structure

14



2.1 Introduction

of risk factors is placed. This includes, as a special case, aggregation via the ordinary

sum and thus generalises the results on aggregation robustness in Embrechts et al.

(2015) to the class of law-invariant convex risk measures and the results in Krätschmer

et al. (2017) to uncertainty in the marginal distributions. In Section 2.4.3 it is shown

that robustness is also satisfied for aggregation via compound distributions, a typical

setting in actuarial science, as long as the frequency and severity distributions are

dominated (in first-order stochastic dominance) by integrable random variables.

Finally, in Section 2.5, a comparison with the robustness regions of the (non-convex)

VaR measure is made. VaR is robust as long as the distribution function is strictly

increasing. We argue that in applications, this can be a stronger requirement than

the uniform integrability that is required when convex risk measures are used. Non-

linear aggregation functions, such as the ones arising in the context of reinsurance,

can lead to constant parts of the aggregate distribution function and thus to non-

robustness. Furthermore, it is known from the literature on dependence uncertainty

that dependence structures can be designed such that the distribution of the sum is

not strictly monotonic in the tail, when the marginal distributions satisfy particular

(‘mixability’) conditions (Embrechts, Puccetti and Rüschendorf, 2013; Wang et al.,

2013; Bernard et al., 2014; Wang and Wang, 2011, 2016). Thus, robustness of VaR

requires restrictions both in the aggregation function and the dependence structure. In

applications such as the internal capital modelling performed by insures, we believe that

such constraints are unrealistic, compared to those applying to convex risk measures.

Thus our findings indicates that in applications where non-linear aggregations and

high dependence uncertainty are present, convex risk measures such as ES, may be

preferable to VaR.
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2.2 Preliminaries

Throughout this chapter, we equip the measurable space (Ω,A) with a probability

measure P , such that (Ω,A, P ) is an atomless probability space. We denote the space of

real-valued random variables by L0 = L0(Ω,A, P ), the subspace of integrable random

variables by L1 = {X ∈ L0 | ∥X∥1 = E(|X|) < +∞} and the subset of (essentially)

bounded random variables by L∞. For X ⊂ L0 we define the corresponding set of

distribution functions by D(X ) = {P ◦X−1 |X ∈ X }. We denote by FX(·) = P (X ≤ ·)

the distribution function of X and write X ∼ FX , so that D(X ) = {FX |X ∈ X }. Note

that we identify distribution functions on R with the corresponding probabilities on

the Borel σ-field B(R). We write M = D(L0) for the set of all distribution functions

on R, and M1 = {F ∈ M |
∫
R |x|dF (x) < +∞} = D(L1).

On the space M we consider the Prokhorov distance defined for F,G ∈ M through

dP (F,G) = inf{ε > 0 |F (B) ≤ G(Bε) + ε, for all Borel sets B on R},

where Bε = {x ∈ R | infy∈B |x− y| ≤ ε}.

The following definition is of central importance: A set of distribution functions

U ⊂ M1 is uniformly integrable if

lim
K→+∞

sup
F∈U

∫
|x|>K

|x|dF (x) = 0.

We say a set of random variables U ⊂ L1 is uniformly integrable if D(U) is uniformly

integrable, equivalently

lim
K→+∞

sup
X∈U

E
(
|X|1{|X|>K}

)
= 0.
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Uniform integrability of a set posits that the contribution of the distributions’ far

tails can be uniformly controlled across the elements of the set. Thus, it is a stronger

condition than requiring that all elements of a set are integrable.

Recall that a risk measure ρ(·) : L1 → R is called convex if it fulfils the properties

ii), iii) and iv) in Section 1.2.1. Note, that in this chapter, we consider risk measures

that map into the real lines, thus only take finite values. An example of a convex

risk measure that is finite on L1 is the ES, which belongs to the class of spectral risk

measures. Spectral risk measures are generally not finite on L1, however, finiteness is

guaranteed if the weight function γ is constant on (1 − ε, 1] for ε > 0, as is the case for

ES, corresponding to γ(u) = 1
1−α1{u>α}.

A law-invariant risk measure (property i) ) induces a functional on the corresponding

set of distribution functions, ρ[·] : M1 → R, through ρ[FX ] = ρ(X) for FX ∈ M1. For

instance, we write E(X) = E[FX ]. (Throughout we denote law invariant functionals

using round brackets (·) when the argument is a random variable, and square brackets

[·] when the argument is a distribution.) The property of law invariance is standard

in risk management applications, requiring that risk assessments only depend on the

distribution of random losses. Therefore all risk measures in this chapter are tacitly

assumed to be law-invariant without this being explicitly stated in the sequel.

We say a risk measure ρ : L1 → R is continuous on X ⊂ L1 with respect to

the Prokhorov distance if the restriction of the induced functional ρ[·] on D(X ) is

continuous with respect to dP . That is, for all F0 ∈ D(X ) and ε > 0 there exists δ > 0

such that for all F ∈ D(X ) we have dP (F0, F ) < δ implies |ρ[F0] − ρ[F ]| < ε.

Remark 2.2.1. A substantial part of the early literature considers risk measures,

axiomatically introduced in Artzner et al. (1997, 1999), defined on L∞; however,

insurance and financial portfolios are primarily exposed to unbounded risks. Therefore

we choose L1 as our model space. In fact, the natural model space for law-invariant
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convex risk measures is L1, since outside this space the risk measure can only take value

+∞ (Shapiro et al., 2009; Filipović and Svindland, 2012). Selected literature on risk

measures defined on a broader space than L∞ are Delbaen (2002) for general probability

spaces, Shapiro et al. (2009); Kaina and Rüschendorf (2009) on sets of random variables

with finite p-th moment, Haezendonck and Goovaerts (1982); Cheridito and Li (2009);

Krätschmer et al. (2014) on Orlicz spaces and Filipović and Svindland (2012) for

extensions of risk measures from L∞ to L1.

2.3 Robustness

2.3.1 Robustness of convex risk measures

The classical definition of statistical robustness (Hampel, 1971), considers estimators

as functionals of empirical distribution functions. For a distribution function F ∈ M1

and sample size k ≥ 1 the empirical distribution function is defined by the random

measure

F̂k(t, ω) = 1
k

k∑
i=1
1{Xi(ω)≤t}, (t, ω) ∈ R × Ω,

where X1, . . . , Xk ∈ L1 are independent with common distribution function F . In

the sequel we consider the sequence of estimators {ρ̂k}k of a risk measure ρ : L1 → R

by evaluating the risk measure on the empirical distribution functions. That is, for

F ∈ M1 and k ≥ 1, we define

ρ̂k[F ](ω) = ρ[F̂k(·, ω)], ω ∈ Ω. (2.1)

Note that the estimator ρ̂k[F ] is a random variable. Ideally, the estimator {ρ̂k}k should

be consistent and robust. The sequence of estimators is consistent if it converges to the

true value, ρ̂k[F ] → ρ[F ] in probability. Robustness, according to Hampel (Hampel,
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1971; Huber and Ronchetti, 2009), is understood as insensitivity of estimators to small

perturbations in the distribution F .

Definition 2.3.1. ((Hampel, 1971))

A risk measure ρ : L1 → R is robust on X ⊂ L1 (equivalently ρ[·] is robust on D(X )) if

for any F0 ∈ D(X ) the sequence of estimators {ρ̂k[F0]}k, as defined in (2.1), fulfils that

for all ε > 0 there exists δ > 0 and k0 ∈ N such that, for all F ∈ D(X ) and k ≥ k0, we

have

dP (F0, F ) < δ ⇒ dP

(
D
(
ρ̂k[F0]

)
,D
(
ρ̂k[F ]

))
< ε.

By the celebrated theorem of Hampel (Hampel, 1971), given consistency, robustness

of a risk measure is equivalent to continuity with respect to the Prokhorov distance.

Theorem 2.3.2. ((Hampel, 1971), Theorem 2.21 in (Huber and Ronchetti, 2009))

Let ρ : L1 → R be a risk measure and X ⊂ L1. Assume that the sequence {ρ̂k}k, as

defined in (2.1), is consistent in a neighbourhood of F0 for all F0 ∈ D(X ). Then ρ

is continuous on D(X ) with respect to the Prokhorov distance if and only if the risk

measure is robust on D(X ).

For convex risk measures we obtain a one-to-one correspondence between robustness

and continuity, since they are consistent on M1.

Proposition 2.3.3. Let ρ : L1 → R be a convex risk measure and X ⊂ L1. Then, ρ is

continuous with respect to the Prokhorov distance on D(X ) if and only if it is robust

on D(X ).

Proof. We show strong consistency of convex risk measures, that is for F0 ∈ M1

we have ρ̂k[F0](ω) → ρ[F0] for almost every ω ∈ Ω. Let {F̂0k(·, ω)}k, ω ∈ Ω, be

the corresponding sequence of empirical distribution functions. By Glivenko-Cantelli
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{F̂0k(·, ω)}k converges to F0(·) for almost every ω ∈ Ω in the Prokhorov distance. The

strong law of large numbers implies that for X0,i ∼ F0, i = 1, . . . , k and almost every

ω ∈ Ω

∫
R

|x|dF̂0k(x, ω) = 1
k

k∑
i=1

|X0,i(ω)| −→ E(|X0|) =
∫
R

|x|dF0(x), as k → +∞.

Applying Lemma 2.A.1 {F̂0k(·, ω)}k converges to F0(·) in the Wasserstein distance (see

Appendix for the definition and properties of such distance) for almost every ω ∈ Ω.

Since convex risk measures are continuous with respect to the Wasserstein distance,

Theorem 2.8 in Krätschmer et al. (2014), ρ̂k[F0](ω) = ρ[F̂0k(·, ω)] → ρ[F0], as k → +∞,

for almost every ω ∈ Ω.

No convex risk measure is robust on the whole of L1, as shown in Lemma 2.3.4

below.

Lemma 2.3.4. There does not exist a convex risk measure that is robust on L1.

Proof. Bäuerle and Müller (2006); Cont et al. (2010); Krätschmer et al. (2014) show

that there does not exist a convex risk measure that is continuous with respect to

the Prokhorov distance on the whole space of integrable random variables. Applying

Proposition 2.3.3 gives the claim.

Given the importance of both convexity and robustness for risk management, the

need emerges to study subsets of L1 on which convex risk measures become robust.

Uniformly integrable sets are at the core of characterising robustness regions for convex

risk measures.

Theorem 2.3.5. A convex risk measure is robust on X ⊂ L1 if the set X is uniformly

integrable.
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Proof. Convex risk measures are continuous on M1 with respect to the Wasserstein

distance, Theorem 2.8 in Krätschmer et al. (2014). On a uniformly integrable set the

topology induced by the Wasserstein distance is equivalent to the topology induced by

the Prokhorov distance, see Lemma 2.A.1 or Theorem 2 in Dobrushin (1970). Hence,

on X the risk measure is continuous with respect to the Prokhorov distance and we

can apply Proposition 2.3.3.

Alternatively, the proof of Theorem 2.3.5 follows from Theorem 2.6 in Krätschmer

et al. (2017).

Remark 2.3.6. The general concept of robustness is based on continuity with respect

to the weak topology on M (Huber and Ronchetti, 2009). Due to its tractability, the

Lévy distance is frequently used for defining robustness (Cont et al., 2010). Since both

the Prokhorov and the Lévy distance generate the weak topology on M, they give

rise to the same notion of robustness (Huber and Ronchetti, 2009). We adopt the

Prokhorov distance since it allows for a natural extension to multivariate distribution

functions, see Section 2.4.

2.3.2 Robustness regions of convex risk measures

In this section, we provide some examples of classes of sets that are uniformly integrable

and on which, by Theorem 2.3.5, convex risk measures are robust. It is seen throughout

that uniform integrability puts a constraint on the tail behaviour of the risks considered.

First, we note that a convex risk measure is robust when evaluated on a set of

empirical distribution functions.

Lemma 2.3.7. Let F ∈ M1. A convex risk measure is robust on the sequence of

empirical distribution functions
{
F̂k(·, ω) | k ≥ 1

}
⊂ M1 for almost every ω ∈ Ω.
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Proof. In the proof of Proposition 2.3.3 it was shown that the sequence F̂k(·, ω)

converges in the (Prokhorov and) Wasserstein distance to F for almost every ω ∈ Ω.

By Lemma 2.A.1 this implies that the sequence is, for almost every ω, uniformly

integrable and we can apply Theorem 2.3.5.

More generally, a convex risk measure is robust on sets of uniformly bounded

random variables, that is {X ∈ L1 | |X| ≤ M, P -a.s.} for M > 0, see Durrett (2013, p.

220). Instead of restricting the support of the random variables we could restrict their

moments. A convex risk measure is robust on the set of distribution functions U ⊂ M1

having uniformly bounded second moments or, more generally, satisfying Billingsley

(2008, p. 218)

sup
F∈U

∫
R

|x|1+εdF (x) < +∞, for some ε > 0.

Subsequently, a convex risk measure is robust on a family of parametric models,

{Fθ | θ ∈ Θ}, if the family fulfils
∫
R |x|2dFθ(x) < M , for all θ ∈ Θ. For example,

consider the exponential dispersion family, a parametric family of distribution functions

with density

f(x; θ, ϕ) = exp
{
xθ − b(θ)
ϕ/w

+ c(x, ϕ, w)
}
, x ∈ R

with weight w > 0, dispersion parameter ϕ > 0 and normalising function c(·, ·, ·). The

canonical parameter of the exponential dispersion family is θ ∈ Θ, where Θ ⊂ R

and b : Θ → R is the cumulant function such that the density is well-defined and

has identical support for all θ ∈ Θ (Nelder and Wedderburn, 1973). The exponential

dispersion family includes the Poisson, Negative-Binomial, Gamma, Gaussian and

Inverse Gaussian.
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Lemma 2.3.8. A convex risk measure is robust on the exponential dispersion family if

the parameter space Θ is compact and the function b twice continuously differentiable

on Θ.

Proof. Let X follow a distribution that belongs to the exponential dispersion family.

Then E(X) = b′(θ) and Var(X) = ϕ
w
b′′(θ) (Wüthrich, 2016). Both the first and second

derivative b′, b′′ are continuous and hence bounded on the compact set Θ.

We refer to Krätschmer et al. (2017) for a broader discussion and examples involving

parametric models such as the Normal, Pareto, Gamma and Gumbel distributions.

Now we consider the relationship between uniform integrability and stochastic

orderings. A convex risk measure is robust on a set of non-negative random variables

that are smaller (in first-order stochastic dominance) than those in a given uniformly

integrable set.

Lemma 2.3.9. Let U be a uniformly integrable set of non-negative random variables.

A convex risk measure is robust on the set

N = {Y ∈ L1 | Y ≥ 0 and there exists X ∈ U such that

E(f(Y )) ≤ E(f(X)) for all increasing f}.

Proof. For K > 0, the function f(x) = x1{x>K} is increasing. Hence we have, by

uniform integrability of U ,

lim
K→+∞

sup
Y ∈N

E
(
Y 1{Y >K}

)
≤ lim

K→+∞
sup
X∈U

E
(
X1{X>K}

)
= 0.

The conclusion follows by Theorem 2.3.5.

An example of the application of Lemma 2.3.9 is the Generalised Pareto Distribution

(GPD) denoted by Gξ;σ, with shape and scale parameters, ξ ∈ R and σ > 0 respectively,
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defined through

Gξ;σ(x) =


1 −

(
1 + ξ x

σ

)−1/ξ
ξ ̸= 0

1 − exp
{

− x
σ

}
ξ = 0,

where x ≥ 0, if ξ ≥ 0, and 0 ≤ x ≤ −σ/ξ, if ξ < 0. The GPD is often used in insurance

and operational risk management to model portfolios that can produce very large claims,

since it is the limit distribution of conditional excesses over high thresholds (Embrechts,

Klüppelberg and Mikosch, 2013). The expectation of a GPD is finite if the shape

parameter satisfies ξ < 1. For a set of GPDs to be uniformly integrable it is necessary

that their shape parameters be bounded away from 1; see Proposition 2.3.14 for the

necessity of this condition in the more general case of regularly varying distributions.

A convex risk measure is robust on the set of distributions {Gξ;σ |σ ≤ σ, ξ ≤ ξ},

where ξ < 1. This follows from Lemma 2.3.9 and the observation that, for fixed σ and

0 < ξ < 1 the family Gξ;σ is first-order stochastically ordered in ξ (for fixed σ) and in

σ (for fixed ξ).

Similarly, a convex risk measure is robust on a set of random variables that are less

volatile (in convex order) than those in a given uniformly integrable set. An example

is the set of conditional expectations {E[X|G] | G sub-σ-algebra of A} for X ∈ L1, see

Billingsley (2008, p. 469).

Lemma 2.3.10. Let U be a uniformly integrable set. A convex risk measure is robust

on the set

N = {Y ∈ L1 | there exists X ∈ U such that E(f(Y )) ≤ E(f(X)) for all convex f}.
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Proof. For K > 0, the function f(x) = (|x| −K)1{|x|>K} is convex. Hence we have, for

Y ∈ N and X ∈ U dominating Y in convex order,

E
(
|Y |1{|Y |>K}

)
= E

((
|Y | −K

)
1{|Y |>K}

)
+KP (|Y | > K)

≤ E
((

|X| −K
)
1{|X|>K}

)
+KP (|Y | > K)

≤ E
(
|X|1{|X|>K}

)
+KP (|Y | > K).

By De la Vallée Poussin’s Theorem (Diestel, 1991), there exist a non-decreasing convex

function ψ : [0,+∞) → [0,+∞) with ψ(0) = 0, such that limx→+∞
ψ(x)
x

= +∞ and

supX∈U E
(
ψ(|X|)

)
< +∞. Applying Markov’s inequality, we have

KP (|Y | > K) ≤ K

ψ(K)E
(
ψ(|Y |)

)
≤ K

ψ(K)E
(
ψ(|X|)

)
.

By uniform integrability of U ,

lim
K→+∞

sup
Y ∈N

E
(
|Y |1{|Y |>K}

)
≤ lim

K→+∞
sup
X∈U

(
E
(
|X|1{|X|>K}

)
+ K

ψ(K)E
(
ψ(|X|)

))
= 0.

The conclusion follows by Theorem 2.3.5.

Note that Lemma 2.3.10, in the special case when U is a singleton, follows from

Proposition 3.3 in Mao and Wang (2015).

We now consider how larger uniformly integrable sets are constructed from other

uniformly integrable sets. Finite unions of uniformly integrable sets are uniformly

integrable, so that a convex risk measure that is robust on finitely many uniformly

integrable sets is also robust on their union. Moreover, to any uniformly integrable

set on which a convex risk measure is robust we can add finitely many distribution

functions without losing robustness. The next proposition shows that a convex risk

measure that is robust on a uniformly integrable set U ⊂ M1 is also robust on the larger
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set of all possible mixtures of elements of U. Mixtures are used to model experimental

error or contaminations, by assuming that the underlying distribution function F is

contaminated with an error, with distribution G, that occurs with (small) probability

λ ∈ (0, 1), so that the contaminated distribution is (1 − λ)F + λG.

Proposition 2.3.11. For a uniformly integrable set U ⊂ M1, a convex risk measure

is robust on the set of mixtures
{
(1 − λ)F + λG |F,G ∈ U, λ ∈ [0, 1]

}
.

Proof. By Theorem 2.3.5 it is enough to show that
{

(1−λ)F+λG |F,G ∈ U, λ ∈ [0, 1]
}

is uniformly integrable. For λ ∈ [0, 1] and F,G ∈ U we calculate

sup
F,G∈U,λ∈[0,1]

∫
|x|>K

|x|d[(1 − λ)F (x) + λG(x)]

≤ sup
F,G∈U,λ∈[0,1]

(1 − λ)
∫

|x|>K
|x|dF (x) + sup

F,G∈U,λ∈[0,1]
λ
∫

|x|>K
|x|dG(x)

= sup
F∈U

∫
|x|>K

|x|dF (x),

which goes to zero, as K → +∞, by uniform integrability of U.

Let {Fθ | θ ∈ Θ} describe possible model inputs and assume that the set is uniformly

integrable, for example a parametric family with bounded second moment. By Theorem

2.3.5, any convex risk measure is robust on {Fθ | θ ∈ Θ}. Assume however, that the

data is contaminated, through measurement errors or the parametric family does not

fit sufficiently, and the risk measure is evaluated on the mixture

(1 − λ)Fθ + λG, for small λ ∈ (0, 1), θ ∈ Θ, G ∈ N,

where N ⊂ M1 denotes the collection of possible error distributions. If we have

additional knowledge on the elements of N, such as bounded support or (uniformly)

bounded mean and variance, then the convex risk measure is robust on the set of all

possible mixtures, see Proposition 2.3.11.
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2.3.3 Non-robustness of convex risk measures

In this section we present examples of sets on which convex risk measures fail to be

robust. Such situations can emerge when the set is closed under mixtures and positive

shifts. These conditions allow the construction of convergent sequences of distributions

with divergent means. Thus situations arise where small changes in distribution can

result in huge variations in the value of the risk measure.

Proposition 2.3.12. No spectral risk measure ρ : L1 → R is robust on X ⊂ L1,

whenever D(X ) is closed under mixtures and contains a sequence of distribution

functions whose means diverge to +∞. Then, spectral risk measures are not robust at

any distribution function F ∈ D(X ).

Proof. Let F ∈ D(X ) and denote by Gk ∈ D(X ) the sequence of distribution functions

with limk→+∞ E[Gk] = +∞. Choose C > 0 and define the mixture

F (k) = (1 − λk)F + λkGk, where λk = min
{

C

|E[Gk] |
, 1
}
.

Note that λk ∈ [0, 1] converges to 0, as k → +∞, hence F (k) converges in the Prokhorov

distance to F . Spectral risk measures are concave with respect to mixtures (Wakker,

1994) and exceed the expectation (Denneberg, 1990), so that

lim inf
n→+∞

ρ[F (k)] ≥ lim inf
k→+∞

(
(1 − λk)ρ[F ] + λkρ[Gk]

)
≥ lim inf

k→+∞

(
(1 − λk)ρ[F ] + λkE[Gk]

)
= lim

k→+∞

(
(1 − λk)ρ[F ] + λkE[Gk]

)
= ρ[F ] + C.
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A similar result is now proved for general convex risk measures. For this, we need

the additional assumption that the set D(X ) is closed under positive shifts, that is

F (· − c) ∈ D(X ) for all c > 0, and F ∈ D(X ). Note this is stronger than assuming the

existence of a sequence of distribution functions with divergent mean. This additional

assumption was not needed in the proof of Proposition 2.3.12, where instead the

property of concavity with respect to mixtures of spectral risk measures (Wakker, 1994)

was used.

Proposition 2.3.13. No convex risk measure ρ : L1 → R is robust on X ⊂ L1,

whenever the set of distribution functions D(X ) is closed under mixtures and positive

shifts. In this case, the risk measure is not robust at any distribution function

F ∈ D(X ).

Proof. By Proposition 6.8 in Shapiro et al. (2009) the risk measure is continuous

with respect to ∥ · ∥1. Therefore the risk measure admits the Kusuoka representation

(Shapiro et al., 2009, Thm. 6.44), that is there exists a set of probability measures P

on [0, 1) such that the risk measure can be written as

ρ[G] = sup
µ∈P

( ∫ 1

0
ESα[G]dµ(α) − β(µ)

)
, for G ∈ M1,

where β(·) is a penalty function on P, see Shapiro et al. (2009) for the definition.

For C > 0, define the mixture F (k) = (1 − λk)F + λkGk, where λk = min{C/k, 1}

and Gk(·) = F (· − k), k ≥ 1. Note that the mixture F (k) converges in the Prokhorov

distance to F . Since ESα is concave with respect to mixtures (Wakker, 1994), we
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obtain for k ≥ 1,

lim inf
k→+∞

ρ[F (k)] = lim inf
k→+∞

sup
µ∈P

{ ∫ 1

0
ESα

[
(1 − λk)F + λkGk

]
dµ(α) − β(µ)

}

≥ lim inf
k→+∞

sup
µ∈P

{ ∫ 1

0

(
(1 − λk)ESα[F ] + λkESα[Gk]

)
dµ(α) − β(µ)

}

= lim inf
k→+∞

sup
µ∈P

{ ∫ 1

0
ESα[F ]dµ(α) − β(µ) + λk

∫ 1

0

(
ESα[Gk] − ESα[F ]

)
dµ(α)

}

= lim inf
k→+∞

sup
µ∈P

{ ∫ 1

0
ESα[F ]dµ(α) − β(µ)

}
+ C

= ρ[F ] + C.

In Section 2.3.2 we have seen that for robustness of convex risk measures on the

space of heavy tailed distribution functions, in particular GPDs, it is necessary that

the shape parameter be bounded away from 1. The following proposition considers

the case of regularly varying distribution functions. A distribution function F ∈ M on

(0,+∞) is regularly varying with tail index α > 0, if for all t > 0 it holds that

lim
x→+∞

1 − F (xt)
1 − F (x) = t−α. (2.2)

Note that, for ξ > 0, the GPD Gξ;σ is regularly varying with tail index 1/ξ. The

next proposition sheds some light on the trade-off between robustness of risk measures

and their sensitivity to the tail of distribution functions, see also the discussion in

Krätschmer et al. (2014).

Proposition 2.3.14. No convex risk measure is robust on the set of regularly varying

distribution functions with tail index α > 1.

Proof. Let Fα1 , Fα2 ∈ M1 be regularly varying with indexes α1 > 1, respectively

α2 > 1. We first show that the set of regularly varying distribution functions is closed
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under mixtures, that is

F = (1 − λ)Fα1 + λFα2

for λ ∈ [0, 1], is regularly varying. Note that 1 − F = (1 − λ)(1 − Fα1) + λ(1 − Fα2). It

is clear that both (1 −λ)(1 −Fα1) and λ(1 −Fα2) satisfy the limit in (2.2). Proposition

1.5.7 in Bingham et al. (1989) implies then that the sum 1 − F of these two functions

satisfies again the limit in (2.2) with tail index equal to min{α1, α2}. Hence, F is

a regularly varying distribution function with tail index min{α1, α2} > 1. Clearly,

any shifted regularly varying distribution function is regularly varying with the same

tail index. The sequence of Pareto distributions with shape parameter 1 + 1
k

and

scale 1, that is Fk(x) = 1 − x−(1+1/k), x ≥ 1, belongs to the class of regularly varying

distribution functions and its mean, E[Fk] = 1+1/k
1+1/k−1 = k+1, diverges to +∞. Applying

Proposition 2.3.13 yield the assertion.

Remark 2.3.15. We consider the classical notion of robustness, defined via continuity

with respect to the Prokhorov distance. A spectrum of different types of robustness,

defined using alternative distances on M, are introduced by Krätschmer et al. (2014).

If a weaker notion of robustness were defined through the Wasserstein distance, see

Appendix, the constructed sequence of mixtures appearing in the proof of Proposition

2.3.13, (1 − λk)F + λkGk, with F ∈ M1 and Gk(·) = F (· − k) would not generate a

discontinuity. The mixture converges in the Prokhorov distance to F , however, its

mean diverges, hence it does not converge in the Wasserstein distance, see Lemma

2.A.1.
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2.3.4 Generalisation to risk measures defined on Lp

Let p ∈ [1,+∞) and define the space of random variables with finite p-th moment

by Lp = {X ∈ L0 |E(|X|p) < +∞}. Requiring a risk measure to be real-valued on the

entire space of integrable random variables excludes interesting examples such as the

mean-deviation risk measures defined by

ρ(X) = E(X) + cE
(
|X − E(X)|p

)1/p
, X ∈ Lp, c ≥ 0.

Note that, for every p ∈ [1,+∞), the mean-deviation risk measure is convex and finite

on Lp but not on the larger space Lr, 1 ≤ r < p (Shapiro et al., 2009).

The Definition 2.3.1 of robustness can be generalised straightforwardly by replacing

the space L1 with Lp. Then, Theorem 2.3.5 generalises as follows.

Theorem 2.3.16. Let ρ : Lp → R be a convex risk measure. Then ρ is robust on

X ⊂ Lp if X is uniformly p-integrable, that is

lim
K→+∞

sup
X∈X

E
(
|X|p1{|X|p>K}

)
= 0.

The proof follows by reasoning similar to that in the proof of Theorem 2.3.5.

Alternatively, it follows directly from Krätschmer et al. (2017). We refer to Krätschmer

et al. (2017) for a thorough study of robustness of risk measures defined on Orlicz

hearts.
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2.4 Aggregation

2.4.1 Robustness of aggregation measures

In risk management applications, risk measures are often evaluated on the output

of a complex model, which generates portfolio losses through a non-linear function

of a vector of risk factors. A typical example is the aggregated loss of an insurance

portfolio, represented through the insurance company’s internal model. Recall, that

we describe this setting through a (measurable) aggregation function g : Rn → R

that maps an n-dimensional vector into a real number. Applying the aggregation

function to a random vector of input risk factors, X = (X1, . . . , Xn) with (multivariate)

cumulative distribution function FX , we evaluate a risk measure at the (one-dimensional

random) output g(X). We denote the space of n-dimensional random vectors by

L0 = L0(Ω,A, P ) and the set of the corresponding (multivariate) distribution functions

on Rn by M = D(L0). By equipping L0 with the norm ∥X∥1 = ∑n
i=1 E(|Xi|) we

write L1 = {X ∈ L0 | ∥X∥1 < +∞} and M1 = D(L1).

Throughout this section, we restrict to aggregation functions g that satisfy g(X) ∈

L1 whenever X ∈ L1. This is guaranteed by, for example, the linear growth condition

of Definition 2.4.7; see also the discussion following Theorem 2.4.8. Weaker conditions

on g could be required if more restrictions were placed on X, consistently with the

discussion of Section 2.3.4.

Definition 2.4.1. For an aggregation function g : Rn → R and a risk measure ρ : L1 →

R we define the aggregation measure ρg(·) : L1 → R by ρg(X) = ρ(g(X)).

Thus, an aggregation measure is a functional of the input vector of risk factors.

An aggregation function g : Rn → R induces a functional Tg[·] : M → M through

Tg[FX ] = D
(
g(X)

)
. The functional Tg takes the (multivariate) distribution function
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FX ∈ M of the vectorX and returns the (univariate) distribution function Tg[FX ] ∈ M

of g(X). Since risk measures are assumed to be law-invariant, all considered aggregation

measures are law-invariant and can be described by a functional on the space of

distribution functions ρg[·] : M1 → R through

ρg[FX ] = ρg(X) = ρ
[
Tg[FX ]

]
, for FX ∈ M1.

Note that a continuous aggregation function g induces, by the continuous mapping

theorem, an aggregation functional Tg : M → M that is continuous with respect to the

Prokhorov distance, M, M both endowed with the Prokhorov distance. The Prokhorov

distance on M is defined for F ,G ∈ M through

dP (F ,G) = inf{ε > 0 |F (B) ≤ G(Bε) + ε, for all Borel sets B on Rn},

where Bε = {x ∈ Rn | infy∈B |x − y| ≤ ε} and, for a vector x = (x1, . . . , xn) ∈ Rn,

we denote |x| = ∑n
i=1 |xi|. We say an aggregation measure ρg : L1 → R is continuous

on X ⊂ L1 with respect to the Prokhorov distance if the restriction of the induced

functional ρg[·] on D(X ) is continuous with respect to dP . That is, for all F0 ∈ D(X )

and ε > 0 there exists δ > 0 such that for all F ∈ D(X ) we have dP (F0,F ) < δ

implies |ρg[F0] − ρg[F ]| < ε.

We extend Hampel’s definition of robustness to aggregation measures, in order to

reflect the sensitivity of the risk assessment to small perturbations in the distribution

of the vector of risk factors. Clearly, for an aggregation measure ρg : L1 → R a

small deviation in the n-dimensional input vector includes both perturbations in the

marginals and the dependence structure (copula). Analogously to the one-dimensional

case, we consider estimators of risk measures evaluated at the multivariate empirical

distribution function. For a distribution function F ∈ M1, sample size k ≥ 1 and
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independent random variables X1, . . . ,Xk with common distribution function F , the

multivariate empirical distribution function is given by the random measure

F̂k(t, ω) = 1
k

k∑
i=1
1{Xi(ω)≤t}, (t, ω) ∈ Rn × Ω.

For an aggregation measure ρg : L1 → R and a distribution function F ∈ M1 we

define the sequence of estimators {ρ̂g,k}k≥1 through its evaluation at the multivariate

empirical distribution function. That is, for k ≥ 1 we define

ρ̂g,k [F ](ω) = ρg[F̂k(·, ω)], ω ∈ Ω. (2.3)

Note that for fixed t ∈ Rn the multivariate empirical distribution function, F̂k(t, ·), is

a random variable and for fixed ω ∈ Ω a distribution function. Hence, the estimator

ρ̂g,k [F ] is a random variable.

Definition 2.4.2. Let ρg : L1 → R be an aggregation measure and {ρ̂g,k}k the sequence

of estimators defined in (2.3). We say that the aggregation measure ρg is robust on

X ⊂ L1 (equivalently ρg[·] is robust on D(X )) if for any F0 ∈ D(X ) it holds that for

all ε > 0, there exists δ > 0 and k0 ∈ N such that for all F ∈ D(X ) and k ≥ k0 we

have

dP (F0,F ) < δ ⇒ dP

(
D
(
ρ̂g,k [F0]

)
,D
(
ρ̂g,k [F ]

))
< ε.

We obtain a generalisation of Hampel’s theorem, Theorem 2.3.2, to the multivariate

case. The proof follows mostly the steps of the proof of Hampel’s theorem, Theorem

2.3.2, for distribution function on the real line (Huber and Ronchetti, 2009).

Theorem 2.4.3. Let ρg : L1 → R be an aggregation measure and X ⊂ L1. Assume

that the sequence of estimators {ρ̂g,k}k, defined in (2.3), is consistent for all F0 ∈ D(X ).
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2.4 Aggregation

Then, the aggregation measure ρg is continuous on D(X ) with respect to the Prokhorov

distance if and only if it is robust on D(X ).

Proof. Assume the aggregation measure ρg is continuous with respect to dP on D(X )

and let F0 ∈ D(X ). Let ε > 0 and k ∈ N then for all F ∈ D(X ) it holds that

dP

(
D
(
ρ̂g,k [F0]

)
,D
(
ρ̂g,k [F ]

))
= dP

(
D
(
ρg[F̂0k]

)
,D
(
ρg[F̂k]

))
≤ dP

(
D
(
ρg[F̂0k]

)
,D
(
ρg[F0]

))
+ dP

(
D
(
ρg[F0]

)
,D
(
ρg[F̂k]

))
. (2.4)

Note that ρg[F0] is a degenerate random variable. For all F ∈ D(X ), the multivariate

version of Glivenko-Cantelli states that the empirical distribution function F̂k(·, ω)

converges for almost every ω to F , as k → +∞, see Dudley (2002); Shorack and

Wellner (2009). The first term on the right hand side in (2.4) can be made arbitrarily

small (say ε/2) by choosing k large enough since the aggregation measure is consistent

at F0, that is ρ̂g,k [F0] = ρg[F̂0k] → ρg[F0] in probability. Next we show that the second

term in (2.4) is smaller than ε/2. By continuity of the aggregation function at F0 there

exists δ > 0 such that, for any F ∈ D(X ), dP (F0,F ) < δ implies |ρg[F0] − ρg[F ]| < ε
2 .

Thus, we obtain

P
(∣∣∣ρg[F0] − ρg[F̂k]

∣∣∣ ≤ ε

2

)
≥ P

(∣∣∣ρg[F0] − ρg[F ]
∣∣∣+ ∣∣∣ρg[F ] − ρg[F̂k]

∣∣∣ ≤ ε

2

)
= P

(∣∣∣ρg[F ] − ρg[F̂k]
∣∣∣ ≤ ε

2 −
∣∣∣ρg[F0] − ρg[F ]

∣∣∣),
where ε

2 −
∣∣∣ρg[F0] − ρg[F ]

∣∣∣ > 0. As the aggregation measure is consistent, for all γ > 0

we have P
(∣∣∣ρg[F ] − ρg[F̂k]

∣∣∣ ≤ γ
)

→ 1 as k → +∞. Hence, choosing k large enough,

we obtain

P
(∣∣∣∣ρg[F0] − ρg[F̂k]

∣∣∣∣ ≤ ε

2

)
≥ 1 − ε

2 ,
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which, by Strassen’s theorem (Strassen, 1965), is equivalent to dP
(
D
(
ρg[F0]

)
,D
(
ρg[F̂k]

))
< ε

2 .

For the converse assume that the aggregation measure is robust on D(X ). Note

that for degenerate distribution functions on R the Prokhorov distance reduces to

the absolute value. Let F0,F ∈ D(X ) and interpreting ρg[F ], ρg[F0] as degenerate

random variables we obtain for k ∈ N

∣∣∣ ρg[F0] − ρg[F ]
∣∣∣ = dP

(
D
(
ρg[F0]

)
,D
(
ρg[F ]

))
≤ dP

(
D
(
ρg[F0]

)
,D
(
ρ̂g,k [F0]

))
+ dP

(
D
(
ρ̂g,k [F0]

)
,D
(
ρ̂g,k [F ]

))
+ dP

(
D
(
ρ̂g,k [F ]

)
,D
(
ρg[F ]

))
.

The second term can be made small by robustness of the aggregation measures. The

other two distances can be made arbitrarily small since the sequence of estimators is

consistent for any F ∈ D(X ).

An aggregation measure composed by a continuous aggregation function and a

convex risk measure is consistent at each F ∈ M1, that is ρ̂g,k [F ] → ρ̂g[F ] in

probability (even P -a.s.). Hence, as a generalisation of Proposition 2.3.3 we obtain

a one-to-one correspondence between robustness and continuity with respect to the

Prokhorov distance.

Proposition 2.4.4. Let g : Rn → R be a continuous aggregation function, ρ : L1 → R

be a convex risk measure and X ⊂ L1. Then, the aggregation measure ρg : L1 → R is

continuous with respect to dP on D(X ) if and only if it is robust on D(X ).

Proof. Let F0 ∈ M1. It is enough to show that for a continuous g and a convex risk

measure ρ the aggregation measure ρg = ρ ◦ Tg is consistent. We even show strong

consistency, that is ρg[F̂0k](ω) → ρg[F0] for almost every ω ∈ Ω. Since convex risk
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measures are continuous with respect to the Wasserstein distance (Shapiro et al., 2009,

Prop. 6.8), we have to show that dW
(
Tg[F̂0k(·, ω)], Tg[F0]

)
→ 0 for almost every ω.

The multivariate empirical distribution function F̂0k(·, ω) converges for almost every

ω to F0, as k → +∞, see Dudley (2002); Shorack and Wellner (2009). In particular, for

almost every ω, dP
(
F̂0k(·, ω),F0

)
→ 0, as k → +∞, and by continuity of the aggrega-

tion function, that is Tg : M → M is continuous w.r.t dP , dP
(
Tg[F̂0k(·, ω)], Tg[F0]

)
→ 0,

as k → +∞. For k ∈ N and ω ∈ Ω denote by X0
ω
k a random variable that has distri-

bution function F̂0k(·, ω). Note that, by definition, Tg[F̂0k(·, ω)] = D(g(X0
ω
k )) ∈ M1

and we have

∫
R

|y| dTg
[
F̂0k(·, ω)

]
(y) =

∫
Rn

|g(y)|dF̂0k(y, ω) = 1
k

k∑
i=1

∣∣∣g(X0i(ω)
)∣∣∣.

By the strong law of large numbers 1
k

∑k
i=1

∣∣∣g(X0i

)∣∣∣ → E( | g(X0) | ) < +∞, P -a.s.

Hence for almost every ω ∈ Ω

∫
R

|y| dTg
[
F̂0k(·, ω)

]
(y) →

∫
R

|y| dTg[F0](y), as k → +∞.

The conclusion follows from Lemma 2.A.1.

Analogously to Theorem 2.3.5, robustness of the aggregation measure ρg depends

on uniform integrability of the set of losses produced by the aggregation function g.

Theorem 2.4.5. Let g : Rn → R be a continuous aggregation function and ρ : L1 → R

a convex risk measure. Then the aggregation measure ρg : L1 → R is robust on X ⊂ L1

if the set g
(
X
)

is uniformly integrable.

Proof. If g(X ) is uniformly integrable the risk measure is continuous with respect

to dP , see Theorem 2.3.5. Therefore the composition ρg = ρ ◦ Tg is continuous with
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respect to Prokhorov distance and by Proposition 2.4.4 the aggregation measure ρg is

robust on X .

A similar problem is considered in Krätschmer et al. (2017), when the marginal

distributions are fixed. Note that our extension of Hampel’s classical definition of

robustness to aggregation measures, Definition 2.4.2, requires the aggregation measure

to be (relatively) insensitive to perturbations in the underlying distribution. Since the

input of the aggregation measure is a random vector of risk factors, perturbation in

the distribution can arise from changes in the marginals and / or the copula. Given

Theorem 2.4.5, in order to characterise robustness of the aggregation measure ρg, it is

necessary to study which properties of g and the set X produce a set of losses g(X )

that is uniformly integrable. The next section investigates this issue.

Remark 2.4.6. It is not necessarily the case in practice that the multivariate dis-

tribution function of F is estimated by the empirical distribution of historical data;

parametric statistical methods are typically used instead. Nonetheless, the definition

of robustness used here remains relevant when calculating ρg[F ] by Monte-Carlo sim-

ulation. In that context, X is simulated from model F and F̂k is interpreted as the

empirical distribution function of the simulated observations. Then ρg[F ] is calculated

via evaluation of ρg[F̂k], as is typically done in insurance internal models (SCOR, 2008).

It is desirable that small changes in the assumed distribution F of risk factors does

not produce excessive variation in the estimated aggregate risk.

2.4.2 Aggregation robustness and linear growth

A typical setup in risk management is linear risk aggregation, for example when

aggregating different lines of business or positions in a portfolio, such that

ρ
(
g(X)

)
= ρ(X1 + · · · +Xn), for X ∈ L1. (2.5)
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By Sklar’s theorem the distribution of vector X = (X1, . . . , Xn) is specified through its

marginals and its dependence structure (copula). Statistically, estimating copulas can

be very challenging and often relies on expert judgement. Since diverse dependence

structures can lead to substantial differences in aggregate risk, risk management is

especially concerned about misspecification in the copula. A substantial literature

exists on dependence uncertainty, including calculations of upper and lower bounds

for (2.5), for fixed marginals Xi ∼ Fi, i = 1, . . . , n and an unspecified copula, see

Embrechts, Puccetti and Rüschendorf (2013); Wang et al. (2013); Bernard et al. (2014)

and references therein.

Furthermore, Embrechts et al. (2015) show that, when ρ is a spectral risk measure,

the aggregation measure defined through (2.5) is robust on the set {(X1, . . . , Xn) |Xi ∼

Fi, i = 1 . . . , n}, where F1, . . . Fn ∈ M1 are fixed marginal distributions. Taking a

step further, Krätschmer et al. (2017) consider robustness of convex risk measures

composed with non-linear aggregation functions for fixed marginals, see discussion after

Theorem 2.4.8. Here, we build on Embrechts et al. (2015); Krätschmer et al. (2017) by

considering robustness in the more general case of uncertainty in both the dependence

structure and the marginals of the model input X. Theorem 2.4.8 below shows that

robustness is guaranteed if the aggregation function satisfies a linear growth condition

in the tail, similar to that of Krätschmer et al. (2017), and the marginals belong to

uniformly integrable sets.

For sets of univariate distribution functions Ni ⊂ M1, i = 1, . . . n, we define the set

of all possible random vectors X = (X1, . . . , Xn) with marginals FXi belonging to the

corresponding sets Ni, i = 1, . . . , n, through

C(N1, . . .Nn) =
{
(X1, . . . , Xn) |FXi ∈ Ni ⊂ M1, i = 1, . . . n

}
⊂ L1.
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Definition 2.4.7. We say an aggregation function g : Rn → R possesses the linear

growth condition in the tail, if there exist A,L,M > 0 such that

|g(x)| ≤ A+ L|x|, for all |x| > M.

Continuity of g combined with linear growth in the tail as in Definition 2.4.7

guarantee that g(X) ∈ L1 for X ∈ L1.

Theorem 2.4.8. Let the sets U1, . . .Un ∈ M1 be uniformly integrable, the function g

be continuous and satisfy the linear growth condition in the tail, and ρ be a convex risk

measure. Then the aggregation measure ρg : L1 → R is robust on C(U1, . . .Un).

Proof. By Theorem 2.4.5 it is enough to show that g
(
C(U1, . . .Un)

)
is uniformly

integrable. The aggregation function g is continuous on the compact set {x ∈ Rn | |x| ≤

M}, hence there exists C > 0 such that sup|x|≤M |g(x)| ≤ C.

Let X ∈ C(U1, . . .Un). For K > max{A,C} we have that {|X| ≤ M ∩ |g(X)| >

K} = ∅, thus

sup
g(X)∈g(C(U1,...Un))

E
(
|g(X)|1{|g(X)|>K}

)
= sup

X∈C(U1,...Un)
E
(
|g(X)|1{|g(X)|>K}1{|X|>M}

)
≤ L sup

X∈C(U1,...Un)
E
( n∑
i=1

|Xi|1{
L
∑n

i=1 |Xi|>K−A
})

+ A sup
X∈C(U1,...Un)

P
(
L

n∑
i=1

|Xi| > K − A
)
.

(2.6)

The first term in (2.6) can be bounded as follows. Note that for d ≥ 0 and x1, . . . , xn ∈

R, there exists j such that maxi=1,...,n |xi|1{maxi=1,...,n |xi|>d} = |xj|1{|xj |>d} ≤ ∑n
i=1 |xi|1{|xi|>d}.
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Therefore,

L sup
X∈C(U1,...Un)

E
( n∑
i=1

|Xi|1{
L
∑n

i=1 |Xi|>K−A
})

≤ L sup
X∈C(U1,...Un)

E
(
n max
i=1,...,n

|Xi|1{
nL max

i=1,...,n
|Xi|>K−A

})

≤ nL sup
X∈C(U1,...Un)

n∑
i=1

E(|Xi|1{|Xi|>(K−A)/(nL)})

≤ nL
n∑
i=1

sup
FXi∈Ui

E(|Xi|1{|Xi|>(K−A)/(nL)}) → 0,

as K → +∞, by uniform integrability of each Ui. For the second term in (2.6) we use

Markov’s inequality

A sup
X∈C(U1,...Un)

P
( n∑
i=1

|Xi| >
K − A

L

)
≤ AL

K − A

n∑
i=1

sup
FXi∈Ui

E(|Xi|),

which goes to zero as K → +∞.

Note that Theorem 2.4.8 requires assumptions on the marginal distributions of

X, but not on its dependence structure. Hence robustness of convex risk measures

holds even in the presence of complete dependence uncertainty, where no information

on the copula exists. Theorem 2.4.8 offers a slight generalisation of Theorem 4.23 in

Krätschmer et al. (2017) to the case of uncertainty in the marginal distributions. Also,

Krätschmer et al. (2017) require a global linear growth condition, while we use linear

growth in the tail combined with continuity of g.

An immediate consequence of Theorem 2.4.8 involves linear aggregation.

Corollary 2.4.9. Let the function g be given by g(x) = ∑n
i=1 xi, x ∈ Rn. For a

convex risk measure ρ, the aggregation measure ρg is robust on C(U1, . . .Un), with

Ui, i = 1, . . . , n, uniformly integrable.
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There also exist many relevant continuous non-linear aggregation functions that

satisfy the linear growth condition of Definition 2.4.7. It is easiest to envisage such

situations arising in the context of reinsurance, with the elements of the random vector

X representing insurance liabilities (losses from lines of business or individual policies).

Then, by standard considerations of insurable interest and moral hazard, it is not

plausible to have (re)insurance portfolio losses that increase in X faster than linearly.

Note that optimal Pareto reinsurance contracts are typically Lipschitz continuous

(Dana and Scarsini, 2007) and hence possess the linear growth condition. For example,

a reinsurance company faces the aggregate risk of excess-of-loss reinsurance contracts

on individual risks X1, . . . , Xn with deductibles di and limits ci > di, i = 1, . . . , n, such

that

g(X) =
n∑
i=1

(Xi − di)+ − (Xi − ci − di)+,

where (x)+ = max{x, 0}. Alternatively, a reinsurance company taking the risk that an

aggregated portfolio exceeds c > 0, faces claim

g(X) =
( n∑
i=1

Xi − c
)

+
.

Note that in the first example g is constant for large x and in the second case it is

linear in its marginals, hence fulfilling in both cases the linear growth condition in the

tail.

Alternatively, one could view g(X) as a portfolio of financial derivatives with

underlyings X, such that g(X) = ∑n
i=1 hi(Xi). Standard options, even leveraged

ones with pay-offs of the form hi(x) = (λx − c)+, λ > 1, satisfy the linear growth

condition. However, note that other exotic options, such as powered options of the

form hi(x) =
(
(x− c)+

)p
, with p > 1, do not satisfy the linear growth condition. To
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2.4 Aggregation

achieve robustness for such pay-offs, one would need to restrict X to Lp, see Section

2.3.4. For details on such derivatives see Jarrow and Turnbull (2000, pp. 168-169).

2.4.3 Aggregation through compound distributions

A common form of aggregation in insurance (as well as operational and credit risk

modelling), takes place via compound distributions that model the future total claim

amount as a random sum of individual claims. Within a specific (homogeneous) line of

business, individual claims are modelled as independent and identically distributed

positive random variables Xi and the (unknown) number of claims through a (discrete

and random) count variable N independent of the Xi. The total claim amount

X1 + · · · + XN cannot be readily expressed via an aggregation function g : Rn → R.

However, the distribution function of the random sum can be straightforwardly defined

through an aggregation operator T acting on distributions, namely

T [·, ·] : M1 × M1 → M1; T [F,G] = D
( N∑
i=1

Xi

)
, Xi ∼i.i.d. F independent of N ∼ G.

(2.7)

Therefore, T [F,G] =
∫+∞

0 F ∗(n)(·)dG(n), where F ∗(n) is the n-th convolution of F .

Theorem 2.4.10. Let U be a uniformly integrable set of distribution functions on

[0,+∞) and N a uniformly integrable set of distributions on the non-negative integers,

such that

∫ +∞

0
x dF ∗(x) < +∞ and

∫ +∞

0
x dG∗(x) < +∞,

where F ∗ and G∗ are distribution functions given by F ∗ = infF∈U F and G∗ = infG∈NG

respectively. Let the operator T be defined by (2.7) and ρ be a convex risk measure.

Then, the aggregation measure defined by ρ ◦ T : M1 × M1 → R is robust on U × N.
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Proof. By Theorem 2.4.5 it is enough to show that the set {T [F,G] |F ∈ U, G ∈ N}

is uniformly integrable. Note that F ∗ is a distribution function. Indeed, F ∗ is non-

decreasing, right continuous (the infimum of a family of right continuous non-decreasing,

hence upper semi-continuous, functions is right continuous, see Lemma 2.39 in Aliprantis

and Border (2006)) and

lim
x→+∞

(1 − F ∗(x)) ≤ lim
x→+∞

sup
F∈U

x(1 − F (x)) ≤ lim
x→+∞

sup
F∈U

∫
y>x

ydF (y) = 0,

by uniform integrability. Analogously, infG∈NG is a distribution function on the non-

negative integers. Choose F ∈ U and G ∈ N and denote Xi ∼i.i.d. F and N ∼ G

independent of the Xi. Similarly, denote X∗
i ∼i.i.d. F

∗ and N∗ ∼ G∗ independent of the

X∗
i and note that X∗

i and N∗ first-order stochastically dominate Xi and N , respectively.

As first-order stochastic dominance is preserved under compounding (Denuit et al.,

2006, Prop. 3.3.31), ∑N
i=1 Xi is lower than ∑N∗

i=1 X
∗
i in first-order stochastic dominance.

The result follows from Lemma 2.3.9 and the fact that the compound sum ∑N∗

i=1 X
∗
i is

integrable, given the integrability of X∗
i and N∗.

Examples of sets of distribution functions on the non-negative integers fulfilling

the assumptions of Theorem 2.4.10 include the Poisson distribution with parameter

0 < λ ≤ λ and the Geometric with p ≥ p > 0, see Table 3.1 in Denuit et al. (2006).

For the claim size distribution, an example is the family of Pareto distributions

F (x) = 1 − xαmx
−α with parameters 0 < xm ≤ xm and α ≥ α > 1 or, more generally,

the set of GPDs, {Gξ;σ |σ ≤ σ, 0 < ξ ≤ ξ}, ξ < 1.
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2.5 Comparison to robustness regions of Value-at-Risk

2.5 Comparison to robustness regions of Value-at-

Risk

In this section we compare the robustness properties of the popular non-convex risk

measure VaR to those of the convex risk measures studied in this chapter. Since

different risk measures are robust on different sets, the choice of risk measure should

also reflect information on the plausible sets of distribution functions expected to be

encountered in particular applications.

VaR at level α ∈ (0, 1) is defined as the left-sided α-quantile, VaRα[F ] = F−1(α) =

inf{y ∈ R |F (y) ≥ α}. It is known that VaRα is not robust on the whole of M1;

however, it is robust on the set of distribution functions that are strictly increasing in

a neighbourhood of their α-quantile (Hampel, 1971; Cont et al., 2010). In particular,

VaR is not robust on discrete random variables and hence the set where VaR is not

robust is dense in M1.

The following insurance example, where strict increasingness is not satisfied, leads

to non-robustness of VaR. Consider the risk exposure Y = min{X, d}, X ∈ L1, that

occurs when an insurer with exposure X buys reinsurance protection with deductible

d ≥ 0. The distribution of Y , FY (x) = FX(x)1{x<d} + 1{x≥d}, is flat for all x > d,

hence VaRα is not robust at FY whenever α ≥ FX(d).

Thus, neither convex risk measures such as ES nor VaR, are robust on L1. VaR

requires strictly increasing distribution functions. Convex risk measures like ES place

requirements on the tail of the underlying distribution functions via the uniform

integrability condition, see Theorem 2.3.5. A comparative assessment of those two

risk measures thus relies on whether strict increasingness or uniform integrability is a

more realistic constraint on the set of distributions on which the risk measure is to be

evaluated. This depends on the context of the application. For example, in reinsurance
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problems where distributions with constant parts can occur, uniform integrability

may be a more suitable assumption. On the other hand, when dealing with an asset

return with an approximately bell-shaped density but arbitrarily heavy tails, strict

increasingness of the distribution appears to be a more appropriate condition.

Turning now to the case of risk aggregation, consider the aggregation measure

defined by VaRα,g : L1 → R, where g : Rn → R is an aggregation function. The

aggregation measure VaRα,g will not be robust if the distribution of g(X) is constant

in a neighbourhood of F−1
g(X)(α). Such flat regions can emerge due to the nature of

the function g. For instance, in a slight generalisation of the previous example, for

an insurance company that buys an unlimited layer of reinsurance protection for its

portfolio, we have g(X) = min{∑n
i=1 Xi, d}.

Flat regions in the distribution of g(X) can also appear through the effect of the

dependence structure of X. This is exemplified by the special case of linear portfolio

aggregation, g(x) = ∑n
i=1 xi. Then the aggregation measure VaRα,g is not robust on a

set X ⊂ L1 if there exists an input vector X ∈ X such that X1 + · · · +Xn is discrete

for large values. Example 2.2 in Embrechts et al. (2015) provides explicit choices of

marginals and copulas that lead to non-robustness of the aggregation measure VaRα,g

through the construction of a degenerate aggregate risk. The problem of the existence

of a dependence structure of random variables X1, . . . , Xn, such that the aggregated

risk X1 + · · · +Xn is almost surely constant, is extensively studied in probability theory

and risk management (Rüschendorf, 1982; Makarov, 1982). Examples of distribution

functions include F1 = · · · = Fn being Gaussian or Cauchy; we refer the reader to

Wang et al. (2013) and references therein in the context of risk management.

In quantitative risk management applications, one is often concerned about ag-

gregate risks. Seldom is a risk measure evaluated on a random loss that does not

in turn depend on further risk factors. A particular example is the use of internal
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models in insurance for calculating capital requirements across the portfolio. Compared

to evaluating a risk measure on a real-valued random variable, in risk aggregation,

there is the additional complication of the dependence structure of the input vector.

Thus, there are two sources of uncertainty, in the marginal distributions and in the

dependence structure. Modelling accurately the dependence structure is usually more

challenging than modelling marginals, due to a lack of extensive multivariate data sets.

Therefore, it is critical that the risk measure is robust to changes in the dependence

structure.

We have seen that robustness of aggregation measures derived from convex risk

measures, such as ES, depends on weak assumptions on the aggregation function g

and the marginals, while no requirements are placed on the dependence structure.

On the other hand, robustness of VaR requires restricting both the form of the

aggregation function g and the possible dependence structures of the input vector. In

applications such as the internal modelling performed by insurers, such constraints

are not necessarily realistic. Thus our findings indicates that in applications where

(non-linear) aggregations are present and high dependence uncertainty persists, the

use of convex risk measures may be preferable to that of VaR.

Appendix 2.A Wasserstein space

For F,G ∈ M1, the Wasserstein distance (Dobrushin, 1970; Givens and Rae, 1984) is

given by

dW (F,G) =
∫
R

|F (x) −G(x)|dx =
∫ 1

0
|F−1(u) −G−1(u)|du,

where F−1(u) = inf{y ∈ R |F (y) ≥ u}, u ∈ [0, 1), is the generalised inverse and we

identify inf ∅ = −∞.
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Lemma 2.A.1. (Lemma 8.3 in Bickel and Freedman (1981))

For F, Fk ∈ M1, k ≥ 1 the following are equivalent

i) dW (Fk, F ) → 0, as k → +∞.

ii) dP (Fk, F ) → 0 and
∫
R |x|dFk(x) →

∫
R |x|dF (x), as k → +∞.

iii) dP (Fk, F ) → 0 and the set {Fk | k ≥ 1} is uniformly integrable.

Lemma 2.A.2. A risk measure ρ : L1 → R is continuous with respect to the norm

∥ · ∥1 on L1 if and only if it is continuous with respect to the Wasserstein distance on

L1.

Proof. Assume that the risk measure is continuous with respect to ∥ · ∥1. On L1 a

sequence of random variables Xn converges in the Wasserstein distance to X if and

only if there exist random variables X̃n on L1 with the same distribution as Xn and

X̃ with the same distribution as X such that ∥X̃n − X̃∥1 → 0, see Theorem 3.5 in

Krätschmer et al. (2014). Hence by law-invariance of the risk measure

ρ(Xn) = ρ(X̃n) → ρ(X̃) = ρ(X), as n → +∞.

For X, Y ∈ L1 the inequality dW (X, Y ) ≤ ∥X−Y ∥1 implies that a sequence converging

in ∥ · ∥1 also converges in the Wasserstein distance. Hence continuity with respect to

dW implies continuity with respect to ∥ · ∥1.

On the set of integrable distribution functions over Rn, that is M1 = D(L1), the

Wasserstein distance is defined for F ,G ∈ M1 by

dW (F ,G) = inf
{
E
(

∥X − Y ∥1

) ∣∣∣∣X ∼ F , Y ∼ G
}
,

where the infimum is taken over all joint distribution functions of dimension 2n with

marginals F and G of size n. Note that on the real line we have the dual representation
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2.A Wasserstein space

dW (F,G) = inf{E(|X − Y |) |X ∼ F, Y ∼ G} =
∫
R |F (x) − G(x)|dx, F,G ∈ M1

(Vallender, 1974).
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Chapter 3

Reverse sensitivity testing: What does it take to

break the model?

This chapter comprises the publication Pesenti et al. (2018b) and earlier versions

have been presented at the University of Trieste (2018), at the University of Bologna

(2018), at the Insurance Data Science Conference (London, 2018), at the Actuarial and

Financial Mathematics Conference (Brussels, 2018), at the RSS Applied Probability

Section on Probability in Actuarial Science (London, 2017), at the 41st AMASES

Conference (Cagliari, 2017), at the workshop on Risk Measurement and Regulatory

Issues in Business (Montréal, 2017) and at the 21st International Congress on Insurance:

Mathematics and Economics (Vienna, 2017).

3.1 Introduction

3.1.1 Problem framing and contribution

In this chapter we develop a sensitivity analysis framework appropriate for contexts

where the following considerations, typical in several fields, including probabilistic safety

assessment, reliability analysis and financial / insurance risk management (Saltelli
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and Tarantola, 2002; Aven and Nøkland, 2010; Gourieroux et al., 2000; Tsanakas and

Millossovich, 2016), hold:

• Model inputs are uncertain, hence sensitivity and uncertainty analyses are inter-

linked and global sensitivity analysis methods are called for.

• A decision criterion is derived by applying a risk measure on the distribution of

the output. Risk measures are used in a variety of operations research and risk

analysis applications, with VaR and ES particularly popular choices; indicatively

see Rockafellar and Uryasev (2002); Tapiero (2005); Gotoh and Takano (2007);

Ahmed et al. (2007); Asimit et al. (2017).

• The value of the risk measure gives an indication of criticality for the system

whose uncertainty is analysed. For example, in the context of financial risk

management, high values of the output’s risk measure may indicate that a

portfolio is not admissible, e.g. due to regulatory constraints (Artzner et al.,

1999). In the context of probabilistic safety assessment, legislation postulates

acceptable probabilities of failure, e.g. of fatality numbers exceeding a threshold

(Borgonovo and Cillo, 2017).

• The relationship between model inputs and outputs is complex and not nec-

essarily given in analytical form. Furthermore, evaluations of the model are

computationally expensive inducing the need to estimate sensitivity measures

from a single sample of input and output scenarios (Beckman and McKay, 1987;

Plischke et al., 2013).

We propose a sensitivity analysis framework, adapted to the above context, termed

reverse sensitivity testing. We work in the standard setting of sensitivity analysis,

where a number of random input factors are mapped to a random output via an

aggregation function, see also Section 1.2. The baseline probability measure summarises
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the distribution of inputs and output in the current specification of the model. Our

reverse sensitivity testing framework comprises the following steps. First, an output

stress is defined, corresponding to an increase in the value of the output risk measure.

We focus on the widely used risk measures VaR and ES. The increase in the value of

the risk measure is specified so as to produce a stress that is problematic to a decision

maker. For example, in a capital management context, a stress on VaR may lead to a

situation where insufficient assets are available to satisfy regulatory requirements.

Secondly, a stressed probability measure is derived. This is a probability (a) under

which the risk measure applied to the model output is at its stressed level and (b) that

minimises the Kullback-Leibler (KL) divergence subject to appropriate constraints on

the output probability distribution. Thus the stressed probability leads to the most

plausible alternative model, under which the output distribution is subjected to the

required stress. We derive analytical solutions of the stressed probability measure

under an increase of VaR and ES. The form of the solutions allows for numerically

efficient implementation via a single set of Monte Carlo simulations.

Finally, the distribution of individual input factors is examined under the baseline

and stressed models. Substantial changes in the distribution of a particular input

indicate a large sensitivity to that input. A new class of reverse sensitivity measures is

introduced, quantifying these input changes, and extended to control for statistical

dependence between inputs. The sensitivity measures are then used to identify the

most influential input factors; in a sense, those factors that may be responsible for

‘breaking the model’.

3.1.2 Relation to the literature

Prominent sensitivity analysis methods use a (Hoeffding) decomposition of the output

variance (Sobol, 1993; Wagner, 1995; Saltelli et al., 2000; Saltelli and Tarantola, 2002;
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Saltelli et al., 2008), as well as moment independent approaches (Borgonovo, 2007;

Borgonovo et al., 2011). Alternative methods consider partial derivatives of statistical

functionals of the output distribution in the direction of parameters of interest, see

Glasserman and Liu (2010) for expectation-type and Hong (2009); Tsanakas and

Millossovich (2016) for percentile-based functionals.

The sensitivity measures we propose in the present chapter reflect the joint distri-

bution of individual input factors and output; hence our proposed method remains

formally within the unifying framework discussed by Borgonovo et al. (2016) and thus

are (distantly) related to variance-based and moment-independent sensitivity measures.

Nonetheless, our proposed sensitivity measures are conceptually different compared

to variance-based metrics and other current approaches in the literature. First, our

approach involves an assessment of output uncertainty via tail-risk measures rather

than the variance. Second, we adopt a reverse approach of stressing the output and

then evaluating the impact on the inputs. Our method allows for flexibility in the

stress level on the output, giving a nuanced picture of the sensitivity of input factors.

Furthermore, the sensitivity measures we propose can take both negative and positive

values, indicating the direction in which input factors affect the output. Thus, we view

our proposed sensitivity analysis framework as complementary rather than competing

with established methods, as it aims to address different questions.

Conceptually, the reverse direction (from output to input) of the proposed method,

is related to regionalised sensitivity analysis methods (Spear et al., 1994; Osidele and

Beck, 2004). However, there is a key difference between regionalised sensitivity analysis

and our approach: in the former, states of the output are identified that are ‘out

of control’, while in the latter what is ‘out-of-control’ are not individual states but

specifications of the output distribution. The numerical tractability of our framework

in a Monte Carlo setting is akin to Beckman and McKay (1987).
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In the practice of financial risk management and regulation, reverse stress testing,

starting with a stressed output state and studying the corresponding surface of scenarios

that provide the adverse outcome, is frequently used (BCBS, 2013; EIOPA, 2009). For

example, “reverse stresses that result in a depletion of capital...” (Lloyd’s, 2016) are

used in the validation of insurance risk models. The academic literature on reverse

stress testing is relatively sparse, with a recent focus towards identifying most likely

stress scenarios (McNeil and Smith, 2012; Breuer et al., 2012; Glasserman and Xu,

2014). Our approach differs from reverse stress testing, in that we consider most

influential factors in relation to changes in the output distribution and not a particular

output state.

The KL-divergence has been widely used in financial risk management, in particular

in the context of model uncertainty, where several plausible specifications of the

probability measure may co-exist. For example, Breuer and Csiszár (2013); Glasserman

and Xu (2014); Blanchet et al. (2017) consider the worst-case probability measure

with respect to all probabilities lying within a KL-divergence radius of the baseline

probability. In contrast, reflecting our focus on sensitivity rather than model uncertainty,

we consider the probability measure with minimal KL-divergence that satisfies given

constraints. Our approach is closely related to the work of Cambou and Filipović

(2017) with probability set constraints and Weber (2007) with risk measure constraints,

see Section 3.3 for a detailed comparison.

3.1.3 Structure of the chapter

In Section 3.2, some preliminaries on risk measures and the KL-divergence are given.

In Section 3.3, the optimisation problem yielding stressed probability measures is

stated and solved under constraints arising from different risk measures, with emphasis

on VaR and ES. Explicit solutions allow easy implementation and inspection of
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the distributional changes arising. Furthermore, we discuss an extension where the

distributions of multiple outputs are stressed. The solutions and their properties are

illustrated through an example of a non-linear insurance portfolio evaluated using

Monte Carlo simulation.

In Section 3.4 we propose metrics tailored to the proposed reverse sensitivity testing

approach. A comparison study of the proposed reverse sensitivity measures with

moment independent and variance-based sensitivity measures is conducted, illustrating

differences between the concepts but also demonstrating coherent sensitivity rankings

of inputs. In addition, a generalisation of reverse sensitivity measures is proposed, with

the aim of controlling for dependence between input factors.

Section 3.5 demonstrates the applicability of the reverse sensitivity testing framework

to a commercially used insurance portfolio model.

Appendix 3.A is devoted to a comparison of the stressed and the baseline probability

measures through stochastic order relations, in order to establish formal properties of

the proposed framework. We find that the distribution of the output under the baseline

probability is first-order stochastically dominated by that under the stressed probability.

A similar dominance relation is provided for input factors, under the assumption of a

non-decreasing aggregation function and positive dependence between input factors.

Moreover, stressed probability measures stemming from different stress severities lead

to stochastically ordered input factors and output. All proofs are provided in Appendix

3.B.

3.2 Preliminaries

As introduced in Section 1.2, we consider the measurable space (Ω,A) and denote by

P the set of all probability measures on (Ω,A). For a random variable Z on (Ω,A)

we write FQ
Z (·) = Q(Z ≤ ·) for its distribution under Q ∈ P , and similarly, EQ(·) for
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its expectation. For a random variable Z, we denote by VaRQ
α (Z) = FQ,−1

Z (α) the

VaR at level α ∈ [0, 1] and by ESQα (Z) = 1
1−α

∫ 1
α VaRQ

u (Z)du the ES at level α ∈ [0, 1).

Throughout, we use the Kullback-Leibler divergence (KL-divergence, Kullback and

Leibler (1951)) as a measure of discrepancy between two probability measures. For

Q1, Q2 ∈ P , the KL-divergence, also known as relative entropy, of Q1 with respect to

Q2 is defined by

DKL(Q1∥Q2) =


∫ dQ1

dQ2 log
(
dQ1

dQ2

)
dQ2 if Q1 ≪ Q2

+∞ otherwise,

where we use the convention that 0 log(0) = 0. The KL-divergence is non-negative,

vanishes if and only if Q1 ≡ Q2, and is in general not symmetric (Kullback, 1959; Cover

and Thomas, 2012). The KL-divergence is a special case of the class of f -divergences,

first introduced by Ali and Silvey (1966), for the choice f(x) = x log(x), x > 0. For a

given convex function f , the f -divergence of Q1 with respect to Q2, for any Q1, Q2 ∈ P ,

is defined through Df (Q1∥Q2) =
∫
f
(
dQ1

dQ2

)
dQ2 .

3.3 Deriving the stressed model

3.3.1 Problem statement

We call the triple (X, g, P ), the baseline model with baseline probability measure

P ∈ P. The probability P is seen as encoding current beliefs regarding (or software

implementation of) the distribution of X. Under the baseline probability P we

suppress the superscript and write, for example, FZ(·) = F P
Z (·) and E(·) = EP (·),

and analogously for risk measures, VaRα(·) = VaRP
α (·) and ESα(·) = ESPα (·). We call

any Q ∈ P an alternative probability measure and (X, g, Q) an alternative model. A
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Radon-Nikodym (RN) density is a non-negative random variable ζ on (Ω,A) such that

E(ζ) = 1. We denote by Qζ the probability measure which is absolutely continuous

with respect to P with RN-density ζ, that is, ζ = dQζ
dP .

The starting point of reverse sensitivity analysis is to define a stress on the dis-

tribution of the output that would be problematic to a decision maker, such as a

risk manager or regulator. For example, one may require that the probability of a

particular event, representing system failure, increases to an extent that the risk of

failure is no longer acceptable. Specific stress definitions using different risk measures

are discussed in Sections 3.3.2-3.3.6. Subsequently, we call (X, g, Q) a stressed model

with stressed probability measure Q ∈ P if, under Q, the output Y fulfils a set of

probabilistic constraints (the stress) and Q has minimal KL-divergence with respect to

P . Thus, a stressed probability measure is defined as a solution to

min
Q∈P

DKL(Q∥P ), s.t. constraints on the distribution of Y under Q hold. (3.1)

The optimisation problem (3.1) is robust in the sense that convergence in the

KL-divergence implies weak convergence of the probability measures (Gibbs and Su,

2002). This means that an alternative probability which satisfies the constraints of

(3.1) and is close in KL-divergence to the stressed probability, is also close to the

stressed probability in the Lévy metric.

Optimisation problem (3.1) under linear (i.e. moment) constraints was first studied

in the seminal paper by Csiszár (1975). In the context of financial risk management, in

particular when risk measures are used, optimisation problem (3.1) involves non-linear

constraints and Csiszár’s theory cannot be applied. Relevant research includes Cambou

and Filipović (2017) who consider the optimisation problem for general f -divergences

and probability set constraints. Weber (2007) works with bounded random variables
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and considers risk measure constraints such as ES and shortfall risk measures, see

Sections 3.3.3 and 3.3.4 for a more detailed comparison.

3.3.2 Probability constraints

Before studying problem (3.1) with constraints involving the risk measures of Section 3.2,

we consider stresses under which the probabilities of (adverse) outcomes of Y = g(X)

are altered. These outcomes are captured by disjoint sets B1, . . . , BI ⊆ R, each set Bi

associated with an event {Y ∈ Bi} where the system being studied is failing or ‘out of

control’. In a financial context, where Y is interpreted as a loss, one can identify Bi

with a region of extreme losses.

The following result is an immediate consequence of Theorem 3.1 in Csiszár (1975);

we also refer to Cambou and Filipović (2017).

Proposition 3.3.1. Let B1, . . . , BI ⊆ R be disjoint Borel sets with P (Y ∈ Bi) >

0, i = 1, . . . , I, and α1, . . . , αI > 0 such that α1 + · · · + αI ≤ 1. Then there exists a

unique solution to

min
Q∈P

DKL(Q∥P ), s.t. Q(Y ∈ Bi) = αi, i = 1, . . . , I, (3.2)

with RN-density given by ζ = ∑I
i=0

αi
P (Y ∈Bi)1{Y ∈Bi}, where we write α0 = 1 −∑I

i=1 αi

and B0 = (⋃Ii=1 Bi)c.

The RN-density ζ in Proposition 3.3.1 is a piecewise constant function of Y . This

implies that all outcomes of Y within a set Bi receive the same probability re-weighting

by the change to the stressed probability. In particular, if αi > P (Y ∈ Bi), under

the alternative probability Q the probability of all outcomes in Bi increases. Note

that moving from the baseline to the stressed model might induce a new dependence

structure in the input factors.
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3.3.3 VaR constraints

We now consider optimisation problem (3.1) under a constraint on the risk measure

VaR, applied to the output Y . A VaR constraint is not equivalent to a probability

constraint of optimisation problem (3.2), when FY is not strictly increasing.

Proposition 3.3.2. Let 0 < α < 1 and q ∈ R such that VaRα(Y ) < q < ess supY

and consider the optimisation problem

min
Q≪P

DKL(Q∥P ), s.t. VaRQ
α (Y ) = q. (3.3)

There exists a unique solution to (3.3) if and only if P (q− ε < Y < q) > 0 for all ε > 0.

The RN-density of the solution is given by

ζ = α

P (Y < q)1{Y <q} + 1 − α

P (Y ≥ q)1{Y≥q}.

The assumption P (q−ε < Y < q) > 0 for all ε > 0, implies that q cannot be chosen

arbitrarily. In particular, problem (3.3) does not have a solution if the distribution of

Y is constant to the left of q (q excluded); this includes the (uncommon in practice)

case where Y is a discrete random variable. This complication arises from using the

constraint VaRQ
α (Y ) = q rather than Q(Y ≤ q) = α. If q cannot be chosen to fulfil the

assumptions in Proposition 3.3.2, the form of ζ in Proposition 3.3.2 remains meaningful:

by Proposition 3.3.1, it is the solution to an optimisation problem where the constraint

VaRQ
α (Y ) = q is replaced by Q(Y < q) = α.

The RN-density ζ of the solution to (3.3) is a non-decreasing function of Y since

α ≤ P (Y ≤ VaRα(Y )) ≤ P (Y < q). Hence, under the stressed probability, adverse

realisations of the output are given higher probabilities of occurrence.

60



3.3 Deriving the stressed model

Remark 3.3.3. Propositions 3.3.1 and 3.3.2 hold true for any f -divergence with a

strictly convex function f . In particular, the RN-densities ζ of the solutions of (3.2)

and (3.3) are independent of the choice of f -divergence. We do not provide a proof for

this statement, however the steps of the proofs of Propositions 3.3.1 and 3.3.2 can be

closely retraced if one substitutes the KL-divergence with a general f -divergence. We

refer to Ben-Tal et al. (2013) for robust linear optimisation with general f -divergence

constraints.

Remark 3.3.4. Let VaRα(Y ) < q∗ < ess supY be a stress for which the distribution

function of Y under P is increasing and continuous in a neighbourhood of q∗, so that

a solution of problem (3.3) exists for all q in that neighbourhood. Then, viewed as a

function of q, the RN-density ζ(q) is a.s. continuous under P . Thus, the corresponding

probability measure Qζ(q), solution of problem (3.3), converges in total variation

distance to Qζ(q∗), implying that stressed models are robust with respect to stresses in

VaR.

The explicit form of the RN-density in Proposition 3.3.2 (as well as the subsequent

Propositions 3.3.5-3.3.7), allows easy implementation of the change of measure in a

Monte Carlo simulation context similar to Beckman and McKay (1987). Note that the

RN-density is a function of Y , in the sense that ζ(ω) = η(Y (ω)), ω ∈ Ω, for a function

η. Then, one can follow the process:

1. Sample M multivariate scenarios x(1), . . . ,x(M) from X under P . Calculate

y(k) = g(x(k)), k = 1, . . . ,M .

2. Set ζ(k) = η(y(k)), k = 1, . . . ,M .
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Reverse sensitivity testing: What does it take to break the model?

3. The distributions of the output and inputs under the stressed measure Q are

estimated by:

FQ
Y (y) = 1

M

M∑
k=1

ζ(k)
1{y(k)≤y}, y ∈ R,

FQ
Xi

(x) = 1
M

M∑
k=1

ζ(k)
1{x(k)

i ≤x}, x ∈ R, i = 1, . . . , n.

Thus, the process of working out the distribution of input factors under the stressed

measure is akin to importance sampling, with ζ(k) playing the role of importance

weights. Note that this calculation allows stressing the model without the need to

re-simulate scenarios under Q, which can be of practical importance if evaluation of g

is computationally expensive. Straightforward implementation yields a computational

cost of M(n+ 1) for calculating the empirical distribution functions under the stressed

model for the output and all input factors. In a simulation environment, convergence

can be improved if Quasi Monte Carlo sampling is deployed, which is not a route

we pursue here. Note that when simulations are computationally very expensive,

meta-modelling techniques are often used in practice.

Example. The following insurance portfolio, similar to Example 1 in Tsanakas and

Millossovich (2016), will be used as an illustrative example throughout the chapter. An

insurance company faces a loss L resulting from two lines of business. The two lines

produce losses X1, X2 respectively, which are subject to the same multiplicative inflation

factor X3, such that L = X3(X1 + X2). The insurance company has a reinsurance

contract on the loss L with limit l and deductible d. The total portfolio loss for the

insurance company is

Y = L− (1 −X4) min{(L− d)+, l},
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3.3 Deriving the stressed model

where X4 captures the percentage lost due to a default of the reinsurance company.

In this example, the two lines of businessX1, X2 are truncated Log-Normal(4.98, 0.232)

and Gamma(100, 2) distributed, with respective means 150, 200 and standard de-

viations 35, 20. The truncation point for X1 is chosen to be the 99.9% quantile.

The multiplicative factor X3 follows a truncated Log-Normal(0.05, 0.022) distribution

with mean 1.05, standard deviation 0.02 and truncation point equal to the 99.9%

quantile. The default loss X4 is modelled through a Beta(0.125, 1.125) distribution,

corresponding to mean 0.1 and standard deviation 0.2. To complete the specification of

the joint distribution of X, we further assume that X1, X2, X3 are independent and X4

is independent of (X1, X2, X3) given L. Additionally, X4 is taken to be dependent on

the aggregated loss L through a Gaussian copula with correlation 0.6. The deductible

of the insurance contract is d = 380 and the limit l = 30.

Consider optimisation problem (3.3) with a 10% increase in VaR0.9, that is

min
Q≪P

DKL(Q∥P ), s.t. VaRQ
0.9(Y ) = 1.1 VaR0.9(Y ). (3.4)

The solution to the problem (3.4) is estimated from a Monte Carlo sample containing

M = 100,000 simulated scenarios from (X, Y ). Simulated values of the RN-density

ζ are plotted in the left of Figure 3.1, against samples from Y . It is seen that the

RN-density is a non-decreasing function of Y and thus gives more weight to adverse

outcomes of Y .

The empirical distribution functions of the total loss Y of the insurance company

under the baseline probability (dashed black) and the stressed probability (solid

grey) are displayed in the right of Figure 3.1. The output distribution under the

stressed probability lies beneath, and therefore first-order stochastically dominates, the

distribution of Y under the baseline probability. We refer to Section 3.A for a more

detailed discussion of stochastic comparisons of stressed and baseline probabilities.
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Figure 3.1: Left: simulated RN-density of the solution to (3.4). Right: simulated
empirical distribution functions of the output under the baseline (dashed black) and
the stressed (solid grey) model under problem (3.4).

Figure 3.2 displays the change in distribution of the input factors when moving

from the baseline model to the stressed model. It can be seen that all factors under the

stressed probability first-order stochastically dominate the corresponding inputs under

the baseline probability. However, not all input factors are impacted the same: the

distributions of inputs X1 and X4 are stressed more compared to the baseline model.

This indicates a higher sensitivity to X1 and X4, compared to X2 and X3. A specific

sensitivity measure reflecting the above observations is introduced in Section 3.4.

Table 3.1 summarises basic characteristics of the change in the output and the

input factors under the two models. Consistently with Figure 3.2, it is seen that X1

and X4 are the most affected input factors by the change of probability measure. For

example, under the stressed probability, X1, X4 are subject to a relative increase of

the standard deviation of 17%, 20%, respectively.
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3.3 Deriving the stressed model
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Figure 3.2: Empirical distribution functions of the input factors under the baseline
(dashed black) and the stressed model (solid grey) under problem (3.4). The dark red
line displays the difference of the distribution functions according to the axis on the
right.

3.3.4 VaR and ES constraints

This section addresses optimisation problem (3.1) with a constraint on both, VaR and

ES. Adding to problem (3.3) a constraint on ES allows to stress the whole tail of the

output distribution. Weber (2007) considers optimisation problem (3.1) with an ES

constraint only. In that case there does not exist an analytic solution of the stressed

probability and Weber (2007) offers a procedure for a numerical solution.

Proposition 3.3.5. Let 0 < α < 1 and q, s ∈ R such that VaRα(Y ) < q < s <

ess supY . Assume the cumulant generating function of Y |Y > q under P exists in a
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Table 3.1: Distributional characteristics of inputs and output under the baseline and
stressed model under problem (3.4).

Sensitivity Input factors Output

X1 X2 X3 X4 Y

Mean under P 150 200 1.05 0.10 362
Mean under Q 156 201 1.05 0.14 369
Standard deviation under P 35 20 0.02 0.20 36
Standard deviation under Q 41 21 0.02 0.24 45
Skewness under P 0.6 0.2 0.0 2.5 0.4
Skewness under Q 1.2 0.5 0.1 2.4 1.2
Excess kurtosis under P 0.5 0.1 -0.1 5.6 1.3
Excess kurtosis under Q 0.8 0.2 -0.1 3.9 1.4

neighbourhood of 0 and that E(Y |Y > q) < s. Consider the optimisation problem

min
Q∈P

DKL(Q∥P ), s.t. VaRQ
α (Y ) = q, ESQα (Y ) = s. (3.5)

Define the sets A1 = {Y ≥ q} and A2 = {Y > q} and, for i = 1, 2, denote by θ∗
i the

unique positive solution of the equation

E
(
(Y − s)eθ(Y−q)

∣∣∣Ai) = 0. (3.6)

There exists a unique solution to problem (3.5) under either

1. P (q − ε < Y < q) > 0 for all ε > 0 and E
(
eθ

∗
1(Y−q)

∣∣∣A1
)

≤ P (Ac1)/P (A1)
α/(1−α) .

2. P (Y = q) > 0 and P (q − ε < Y < q) = 0 for some ε > 0, and E
(
eθ

∗
2(Y−q)

∣∣∣A2
)

≥
P (Ac2)/P (A2)
α/(1−α) .
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3.3 Deriving the stressed model

The corresponding RN-density of the solution is

ζi = α

P (Aci)
1Aci

+ 1 − α

E
(
eθ

∗
i (Y−q)

1Ai

)eθ∗
i (Y−q)

1Ai , i = 1, 2.

Note that, compared to stressing solely the VaR, adding an ES constraint may

provide a solution even for an output following a discrete distribution. The condition

on the moment generating function in cases 1 and 2 restricts the choice of s and q,

such that the stressed risk measure values cannot be chosen independently.

The RN-density of Proposition 3.3.5 under case 1, ζ1, is a non-decreasing function

of Y . Under Proposition 3.3.5 case 2, the RN-density ζ2 is not monotone. However,

both RN-densities are exponentially increasing for realisations of Y exceeding q. Thus,

under the stressed model, adverse outcomes of Y , such as tail events, admit a higher

likelihood compared to the baseline model.

Remark 3.3.6. Let VaRα(Y ) < q∗ < s∗ < ess supY be a stress of VaR and ES for

which the cumulant generating function of Y |Y > q∗ under P exists in a neighbourhood

of 0, E(Y |Y > q∗) < s∗, the distribution function of Y under P is increasing and

continuous in a neighbourhood of q∗ and the second inequality in case 1 of Proposition

3.3.5 holds strictly. Then, a solution of problem (3.6) exists in a neighbourhood of

(q∗, s∗). Viewed as a function of (q, s), the RN-density ζ(q, s) is a.s. continuous under

P . Thus, the corresponding probability measure Qζ(q,s), solution of problem (3.5),

converges in total variation distance to Qζ(q∗,s∗), implying that stressed models are

robust with respect to stresses in VaR and ES.

Example (continued). We consider optimisation problem (3.5) with a 10% increase

in VaR0.9 and a 13% increase in ES0.9. Figure 3.3 displays samples of the RN-density

of the stressed probability measure, see Proposition 3.3.5 case 1 For high outcomes of

the output Y , the RN-density ζ is exponentially increasing as a function of Y , hence
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Figure 3.3: Left: simulated RN-density of the solution. Right: simulated empirical
distribution functions of the output under the baseline (dashed black) and the stressed
(solid grey) model under problem (3.5) with a 10% increase in VaR0.9 and a 13%
increase in ES0.9.

inflates stressed tail probabilities. On the right hand side, the empirical distribution

functions of the output under the baseline (dashed black) and the stressed model (solid

grey) are shown.

Observe that the stressed distribution of the output appears similar to the stressed

distribution of optimisation problem (3.4), see Figure 3.1. This is due to the fact that

increasing VaR0.9 by 10% in optimisation problem (3.4), already leads to an increase

of 8.5% in ES0.9 under the stressed model. However, comparing Tables 3.1 and 3.2 it

is seen that the standard deviation, skewness and kurtosis of Y increase more when

stressing VaR and ES, compared to stressing VaR alone.

Similar to optimisation problem (3.4), the output and the input factors under the

baseline probability are first-order stochastically dominated by the stressed probability,

as can be seen in Figure 3.3 and 3.4. We refer to Section 3.A for a formal treatment of

stochastic comparison of the stressed and baseline probabilities.
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3.3 Deriving the stressed model
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Figure 3.4: Empirical distribution functions of the input factors under the baseline
(dashed black) and the stressed model (solid grey) under problem (3.5) with a 10%
increase in VaR0.9 and a 13% increase in ES0.9. The dark red line displays the difference
of the distribution functions according to the axis on the right.

3.3.5 Shortfall risk measure constraints

Optimisation problem (3.1) with shortfall risk measure constraints is studied in Weber

(2007) and is a direct application of Theorem 3.1 in Csiszár (1975). Nonetheless, we

present the solution for completeness.

Proposition 3.3.7. Let ρ be a shortfall risk measure with loss function ℓ and y0, and

q ∈ R in the support of Y such that E(ℓ(Y − q)) < y0. If the moment generating
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Reverse sensitivity testing: What does it take to break the model?

Table 3.2: Distributional characteristics under the baseline and the stressed model
under problem (3.5) with a 10% increase in VaR0.9 and a 13% increase in ES0.9.

Sensitivity Input factors Output

X1 X2 X3 X4 Y

Mean under P 150 200 1.05 0.10 362
Mean under Q 157 202 1.05 0.14 371
Standard deviation under P 35 20 0.02 0.20 36
Standard deviation under Q 43 21 0.02 0.26 50
Skewness under P 0.6 0.2 0.0 2.5 0.4
Skewness under Q 1.4 0.5 0.1 2.4 1.7
Excess kurtosis under P 0.5 0.1 -0.1 5.6 1.3
Excess kurtosis under Q 1.3 0.2 -0.1 3.7 2.8

function of ℓ(Y − q) exists in a neighbourhood of 0, then the optimisation problem

min
Q∈P

DKL(Q∥P ), s.t. ρQ(Y ) = q, (3.7)

has a unique solution whose density is given by ζ = 1
E(eθ∗ℓ(Y−q))e

θ∗ℓ(Y−q), where θ∗ is

the unique positive solution of E
((
ℓ(Y − q) − y0

)
eθℓ(Y−q)

)
= 0.

3.3.6 Multivariate output

Problem (3.1) can be extended to constraints on a multivariate output, that is, to

Y = (Y1, . . . , Yk) = g(X), for k ∈ N and aggregation function g : Rn → Rk. The

general case under set constraints can be treated along the lines of Cambou and

Filipović (2017), Section 7. We provide below an example based on two outputs.

Example (continued). We revisit the insurance portfolio example of Section 3.3.3

and view as output both the loss before reinsurance, L, and after reinsurance, Y . To

shorten notation let vL = VaR0.9(L) and vY = VaR0.9(Y ) and consider the problem of
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3.3 Deriving the stressed model
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Figure 3.5: The simulated empirical distribution of the output under the baseline
model (dashed black) and under the stressed model (solid grey) under problem (3.8).
The left graph depicts the output before reinsurance, L, whereas the right plot shows
the output after reinsurance, Y .

stressing the VaR of L and Y by 10%

min
Q∈P

DKL(Q∥P ), s.t. VaRQ
0.9(L) = 1.1 vL, VaRQ

0.9(Y ) = 1.1 vY . (3.8)

The constraints can be written as Q(L ≤ vL) = 0.9 and Q(Y ≤ vY ) = 0.9, since

the distribution functions of L and Y are increasing and continuous around those

stressed VaR. Thus, problem (3.8) can be solved straightforwardly using the Lagrange

multiplier technique. The RN-density of the solution of (3.8) is constant on the four

sets {L ≤ vL, Y ≤ vY }, {L > vL, Y ≤ vY }, {L ≤ vL, Y > vY } and {L > vL, Y > vY }.

Figure 3.5 displays the simulated empirical distribution of L and Y under the

baseline model and the stressed model. Note that stressing both L and Y , in contrast

to stressing only Y , do not lead to radical different results, as can be seen comparing

Tables 3.1 and 3.3. This is because the stressed model, solution of problem (3.4),

already induces an increase of 7% in VaR0.9(L). Moreover, stressing L, the portfolio
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Table 3.3: Distributional characteristics under the baseline and the stressed model
under problem (3.8).

Sensitivity Input factors Output

X1 X2 X3 X4 L Y

Mean under P 150 200 1.05 0.10 367 362
Mean under Q 157 202 1.05 0.13 376 370
Standard deviation under P 35 20 0.02 0.2 42 36
Standard deviation under Q 42 21 0.02 0.23 52 46
Skewness under P 0.6 0.2 0.0 2.5 0.4 0.4
Skewness under Q 1.3 0.5 0.1 2.4 1.2 1.3
Excess kurtosis under P 0.5 0.1 -0.1 5.6 0.3 1.3
Excess kurtosis under Q 0.9 0.2 -0.1 4.3 0.7 1.6

loss before reinsurance, in addition to Y , reduces the importance of the default of the

reinsurance displayed in the change of X4 under Q.

3.4 Sensitivity measures for importance ranking

3.4.1 Definition of sensitivity measures

Plots such as the ones shown in Figures 3.2 and 3.4 provide some insight into the

sensitivity of the output risk measure to different input factors. In order to produce

a ranking of inputs, it is necessary to introduce a formal sensitivity or importance

measure; this is especially the case for models with large numbers of inputs for which

succinct sensitivity summaries are needed. Here we develop a sensitivity measure that

quantifies changes in input factors under the stressed model, compared to the baseline

model.

Before proceeding to the definitions, some preliminaries are due. The random couple

(V,W ) is comonotonic if it can be written as (V,W ) d= (F−1
V (U), F−1

W (U)), for a uni-
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formly distributed random variable U on (0, 1). In contrast, (V,W ) is counter-monotonic

if (V,W ) d= (F−1
V (U), F−1

W (1 − U)). Comonotonicity and counter-monotonicity cor-

respond to extremal positive and negative dependence structures respectively, for a

random couple with fixed marginals (Müller and Stoyan, 2002). For a random variable

V , we denote by V|W , V|W † the random variables satisfying V|W
d= V|W †

d= V , such that

(V|W ,W ) is comonotonic and (V|W † ,W ) is counter-monotonic. Then for any V ′ d= V it

holds that (Rüschendorf, 1983),

E(WV|W †) ≤ E(WV ′) ≤ E(WV|W ).

The subsequent definition introduces a sensitivity measure that captures the extent

to which a random variable is affected by a stress on the baseline model, that is, a

change in probability measure.

Definition 3.4.1. Let Qξ be an alternative probability with RN-density ξ = dQξ
dP . The

sensitivity of a random variable Z to the change of measure is given by

S(Z, ξ) =



E(Zξ) − E(Z)
max

ψ
d=ξ
E(Zψ) − E(Z) E(Zξ) ≥ E(Z),

− E(Zξ) − E(Z)
min

ψ
d=ξ
E(Zψ) − E(Z) otherwise,

where we use the convention ±∞
∞ = ±1 and 0

0 = 0.

In the definition of S(Z, ξ), the numerator E(Zξ) − E(Z) reflects the increase in

the expectation of Z under the alternative model. The denominator normalises this

difference, as it represents the maximal (or minimal) increase of the expectation of

Z, under all alternative models with density ψ that are equal in distribution to ξ.

This ensures normalisation of the sensitivity measure to [−1, 1]. If S(Z, ξ) = 1 or

S(Z, ξ) = −1, the alternative model produces a maximal stress on the variable Z,
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representing a positive or negative impact of the changes in probability measure on Z

respectively.

Note that arg max
ψ
d=ξ
E(Zψ) = ξ|Z and arg min

ψ
d=ξ
E(Zψ) = ξ|Z† . This allows for

a straightforward calculation of the sensitivity measure. If working within a Monte

Carlo simulation context, as is common in risk analysis, ξ|Z , resp. ξ|Z† , can be simply

obtained by re-arranging samples of ξ to be sorted in the same, resp. opposite, way as

samples from Z. This context gives a different perspective on the constraint ψ d= ξ:

if simulated elements of ξ represent a particular scheme for re-weighting simulated

scenarios, then ψ are vectors containing the same weights as ξ, but re-arranged to

potentially prioritise different scenarios.

Next we define two sensitivity measures that are specific to the reverse sensitivity

analysis framework of this chapter.

Definition 3.4.2. Let Qζ be an alternative model with density ζ = dQζ
dP = η(Y ), for

a non-decreasing function η. For input Xi and output Y , we define the reverse and

forward sensitivity measures Γi and ∆i by:

Γi = S(Xi, ζ),

∆i = S(Y, ζ|Xi).

Here, ζ = η(Y ) can be arrived at as the solution of optimisation problems (3.3),

(3.5) or (3.7). Γi thus reflects the extent to which the reverse sensitivity test affects

the expectation of the input factor Xi. Note that for E(Xiζ) ≥ E(Xi), we can

write Γi = Cov(Xi,ζ)
max

ψ
d
=ζ

Cov(Xi,ψ) , showing that the reverse sensitivity measure can also be

understood as a dependence measure between Xi and Y . In this sense it is closely

related to the dependence measure introduced by Kachapova and Kachapov (2012).

Indeed, sensitivity measures considering the dependence between Xi and Y have a
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rich history in sensitivity analysis, for an overview see for example Borgonovo et al.

(2016). Thus, in contrast to variance-based sensitivity measures, Γi and ∆i can take

both negative and positive values, indicating the direction in which input factors affect

the output.

A possible criticism of the measure Γi and, by extension, the reverse sensitivity

testing framework we propose, is as follows. Let Γi be high. This implies that stressing

the model output Y leads to a substantial change in the distribution of the input factor

Xi. However, this is not equivalent to a perturbation in the distribution of Xi leading

to a sizeable stress in the distribution of the output Y . Such a discrepancy, though

uncommon, is theoretically possible and has been termed probabilistic dissonance

(Cooke and van Noortwijk, 1999).

This motivates the introduction of the forward sensitivity measure ∆i, as a compan-

ion measure to Γi. The definition of the forward sensitivity measure ∆i is analogous to

that of Γi, but with a focus on the change in the expectation of Y when perturbing the

distribution of the model input Xi. Recall that ζ|Xi = arg max
ψ
d=ζ
E(ψXi). Therefore,

ζ|Xi is a RN-density with the same distribution as ζ that has the most adverse effect on

the input factor Xi. Thus ∆i captures the impact of a change in the input Xi on the

output Y . Reporting ∆i along with Γi can thus produce warning signs of probabilistic

dissonance.

Properties of the sensitivity measures Γi and ∆i, reflecting their nature as depen-

dence measures, are summarised below.

Proposition 3.4.3. Using the above introduced notation, the sensitivity measures Γi

and ∆i are well-defined and have the following properties:

1. −1 ≤ Γi,∆i ≤ 1.

2. Γi = ∆i = 0, if Xi, Y are independent.
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3. Γi = ∆i = 1, if (Xi, Y ) is comonotonic.

4. Γi = ∆i = −1, if (Xi, Y ) is counter-monotonic.

5. Γi = ∆i ≥ 0, if (Xi, Y ) are positively quadrant dependent1.

6. Γi = ∆i ≤ 0, if (Xi, Y ) are negatively quadrant dependent1.

Remark 3.4.4. Let ζ be the RN-density of the solution of problem (3.3) or (3.5).

Then, for an input Xi with continuous distribution function, the corresponding reverse

and forward sensitivity measures, Γi,∆i, are robust in the size of the stress as long as

the RN-density is a.s. continuous in a neighbourhood of that stress. We refer to the

remarks on robustness in Section 3.3.3 and 3.3.4 for details on the conditions required

on the RN-density.

The above defined sensitivity measures focus on the difference of expectations

under an alternative and the baseline model. If the interest lies in other distributional

properties, such as tails, Definition 3.4.2 can be extended to consider monotone

transformations of input factors. Specifically, one can calculate S(u(Xi), ζ), respectively

S(u(Y ), ζ|Xi), for an appropriately chosen non-decreasing function u. As the couple

(u(Xi), Xi) is comonotonic, the interpretation of the sensitivity measures remains

unchanged. One particular example is the choice

uv(Xi) = (Xi − F−1
Xi

(v))+ − (F−1
Xi

(1 − v) −Xi)+, 0.5 ≤ v < 1. (3.9)

For v = 0.5, the function u0.5 is the identity and thus S(u0.5(Xi), ζ) = Γi, respectively

S(u0.5(Xi), ζ|Xi) = ∆i. When v > 0.5, the function uv is zero whenever Xi ∈
[
F−1
Xi

(1 −

v), F−1
Xi

(v)
]

and linearly increasing otherwise. Thus, increasing v places higher emphasis

on the tail behaviour of Xi. The random variable uv(Y ) is defined and interpreted in a

similar way.
1These concepts are reviewed in Section 3.A.
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We denote Γi,v = S(uv(Xi), ζ) and ∆i,v = S(uv(Y ), ζ|Xi). It is easily seen that the

properties of Proposition 3.4.3 still apply to Γi,v,∆i,v. In addition, it holds that

S(uv(aXi + b), ζ) = sign(a)S(uv(Xi), ζ),

such that the reverse sensitivity measure is invariant under linear transformations of

input factors.

Example (continued). Figure 3.6 displays the forward and reverse sensitivity mea-

sures Γi,v,∆i,v for v ∈ [0.5, 0.999), for the stressed model arising from optimisation

problem (3.5) with a 10% increase in VaR and a 13% increase in ES. Consistently

with the example in Section 3.3.4, the highest sensitivity, for both reverse and forward

measures, is displayed by X1, followed by X4, X2 and X3. Furthermore, the ranking

is not affected by the level v and is thus not sensitive to emphasising the tails of the

distributions. In the next section we present a situation where this no longer holds

true.
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Figure 3.6: Reverse (left plot) and forward (right plot) sensitivity measures Γi,v,∆i,v

with a 10% increase in VaR and 13% increase in ES.

To illustrate the impact on the sensitivity measure Γi of the size of the stress applied

to the output risk measure, we fix α = 0.9 and let q = λVaRα(Y ), with λ ranging from
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0.8 to 1.2.2 Results are given in Table 3.4. For λ < 1 it is seen that the sensitivity

measure Γi takes negative values. This is a result of applying a negative stress on Y ,

such that the RN-density ζ becomes a decreasing function of Y . The absolute value

of the sensitivity measure responds asymmetrically to positive (λ > 1) or negative

(λ < 1) stresses on VaRα(Y ), in extremis even leading to a change in the ranking of

inputs. This reflects a different sensitivity to input factors with view to increasing or

decreasing the VaR of the output.

Table 3.4: Reverse sensitivity measure Γi for a 10% and 20% increase / decrease of
VaR0.9.

Input λ = 0.8 λ = 0.9 λ = 1.1 λ = 1.2
X1 -0.83 -0.85 0.88 0.90
X2 -0.58 -0.51 0.36 0.34
X3 -0.17 -0.17 0.15 0.14
X4 -0.93 -0.72 0.60 0.68

3.4.2 Comparison to other sensitivity measures

By the proposed reverse sensitivity measure Γi, we aim to quantify the extent to

which a stress in the output distribution impacts different inputs. In the present

section we compare Γi to the moment independent sensitivity measure introduced in

Borgonovo (2007), and to the variance-based sensitivity measures, see Borgonovo and

Plischke (2016) for an overview, which are designed to apportion the output variance

to individual input factors. Specifically, the first order sensitivity index Si, the total

effects sensitivity index Ti and the moment independent sensitivity measure δi are
2Note that in general Proposition 3.3.2 only applies for λ > 1. However, continuity of Y in this

example implies that the RN-density ζ of Proposition 3.3.2 is a solution to problem (3.3) even for
λ < 1.
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respectively defined as

Si = Var(E(Y |Xi))
Var(Y )

Ti = E(Var(Y |X−i))
Var(Y )

δi = 1
2E

(∫ ∣∣∣fY (y) − fY |Xi(y|Xi)
∣∣∣dy) ,

where X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn), fY and fY |Xi denote the density of the

output Y and the density of Y conditional on the input factor Xi, respectively. The

measure Si can be understood as the expected reduction in the variance of Y that

would be achieved if input Xi could be fixed, whereas Ti is interpreted as the expected

variance that would be left if all inputs but Xi could be fixed (Sobol, 1993; Wagner,

1995; Saltelli et al., 2008). The moment independent sensitivity δi can be seen as the

expected shift of the output induced by fixing the input factor Xi (Borgonovo, 2007).

Thus, the interpretation of the reverse sensitivity measure Γi is quite different to

that of Si, Ti and δi, which are designed to answer different questions. Furthermore,

Γi is designed with reference to a (tail) risk measure like VaR / ES and hence captures

distributional impacts differently than the variance-based or the moment independent

sensitivities, as is illustrated by the following numerical example.

Example (continued). We return to the simple insurance portfolio example of

Section 3.3.3 (optimisation problem (3.4)), stressing VaRα(Y ) by 10%, for α = 0.5

and α = 0.9. The sensitivity indices Si, Ti and δi are calculated, in addition to Γi,

where the calculation of the variance-based sensitivities is carried out via estimation

of the necessary conditional expectations from the existing Monte Carlo sample by

local polynomial regression and the estimation of δi utilises kernel smoothing as in

Borgonovo et al. (2011).
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In Table 3.5, the sensitivity measures are reported for a variation of the model,

where the aggregation function g and the marginal distributions of the inputs Xi are

unchanged, but the vector X is independent. Assuming that the input factors are

independent facilitates comparison of Γi and δi with the variance based sensitivity

measures, Si and Ti. It can be seen that all sensitivity measures produce a consistent

ranking, with X4 assigned a very low sensitivity. Note that the first order sensitivities,

Si, sum up to 0.98, implying that the interaction terms are nearly as important as S3.

The sensitivity measure Γ1 is slightly increasing in α, while Γ2 is decreasing. This

reflects the different tail characteristics of X1 (LogNormal) and X2 (Gamma); for a

high α, the focus is on the right tail of Y , for which the heavier tail of X1 is more

important.

Table 3.5: Comparison of the variance based sensitivity measures Si, Ti, the moment
independent sensitivity measure δi and the reverse sensitivity measure Γi with a 10%
increase in VaRα, for α = 0.5 and α = 0.9, for independent input vector X.

Input Si Ti δi Γi

α = 0.5 α = 0.9
X1 0.71 0.73 0.46 0.87 0.89
X2 0.24 0.26 0.21 0.41 0.36
X3 0.03 0.03 0.06 0.15 0.15
X4 0.00 0.01 0.04 0.09 0.07

3.4.3 Controlling for dependence in the sensitivity measure

The literature on sensitivity indices has long been concerned with the implications

for sensitivity analyses of statistical dependence between inputs. In particular for

variance-based sensitivities, Saltelli and Tarantola (2002); Oakley and O’Hagan (2004),

show that correlation between inputs can impact sensitivity measures in ways that do

not reflect the functional dependencies in the model’s aggregation function and are thus

viewed as spurious; see Section 4.3 in Borgonovo and Plischke (2016) for more discussion
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of this topic and extensive references. Refinements of variance-based sensitivity indices

have been proposed to address dependence between inputs, indicatively see Xu and

Gertner (2008a,b); Mara and Tarantola (2012).

Our sensitivity measure Γi, similarly to many other sensitivity measures (Borgonovo

et al., 2016), is evaluated on the joint distribution of (Xi, Y ). As a result, it does

not control for dependence between inputs and is therefore subject to problems of

confounding typical in multivariate analyses. In this section, we put forward a proposal

for generalising the sensitivity measure Γi, in order to take into account such effects.

To proceed with the definition, denote by N = {1, . . . , n} and XT = (Xj)j∈T for

T ⊆ N . Consider now, for T ⊆ N\{i}, the quantity S(Xi − E(Xi|XT ), ζ), measuring

the reverse sensitivity to that part of Xi that is not already explained by the inputs

XT . With the above in mind, we define the kth-order reverse sensitivity measure as

Γ(k)
i = 1

ck

∑
T⊆N\{i}, |T |=k

S (Xi − E(Xi|XT ), ζ) , k = 0, . . . , n− 1,

where ck =
(
n−1
k

)
. Thus Γ(k)

i represents the average reverse sensitivity to Xi, after

controlling for all subsets of inputs of size k. Note the special cases Γ(0)
i = Γi and

Γ(n−1)
i = S(Xi − E(Xi|X−i), ζ). If Xi is independent of X−i, then Γ(k)

i = Γi for all

k = 0, . . . , n− 1.

Example (continued). Continuing with the insurance portfolio example, we work out

kth-order reverse sensitivity measures for k = 0, . . . , 3, with the RN-density ζ derived

from problem (3.4) for an 10% increase of VaR0.9(Y ). The results are summarised

in Table 3.6 and show that, as the order of the sensitivity measure increases, the

sensitivity of some input factors is impacted more than that of others. This is

particularly noticeable for X4: for k = 3, where all other input factors are controlled

for, the sensitivity drops substantially.
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Comparing the first column in Table 3.6, that is Γi, with Table 3.5, the sensitivity

for the independent input vector, we see that the rank of X2 and X4 are reversed.

The observed impact of dependence between inputs on the importance ranking of X4

can be understood as follows. X4 represents the percentage of reinsurance recovery

lost due to default. In our baseline model, X4 is dependent on L = X3(X1 + X2),

with Gaussian copula correlation of 0.6. The correlation reflects the notion that such

recovery losses are more likely under those scenarios when they are most needed (i.e.

L is large), leading to a high sensitivity to X4.

Table 3.6: The kth-order reverse sensitivity measure Γ(k)
i , for k = 0, . . . , 3, of problem

(3.4) for a 10% increase of VaR0.9(Y ).

Input k = 0 k = 1 k = 2 k = 3
X1 0.88 0.81 0.76 0.71
X2 0.36 0.30 0.29 0.31
X3 0.15 0.13 0.12 0.13
X4 0.60 0.48 0.34 0.18

3.5 Financial application: a London Insurance Mar-

ket portfolio

In this section we demonstrate the use of the sensitivity measures Γi,v and ∆i,v, in a

more realistic insurance risk model with a higher number of inputs. This is a proprietary

model of a London Insurance Market portfolio, currently in use by a participant in that

market. We have been supplied by the model owner with a Monte Carlo sample of size

M = 500,000, containing simulated observations from input factors X = (X1, . . . , X72)

and output Y . Each of the Xi’s represents a normalised loss for a particular part of

the portfolio and is measured on the same scale. The output Y stands for the portfolio

loss.
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The aggregation function g is linear, specifically

Y = g(X) =
72∑
j=1

wjXj,

for a vector of weights w = (w1, . . . , w72). The linearity of g is not used for sensitivity

calculations, since the reverse sensitivity testing framework makes no assumptions on

the form of g. We do not have access to the joint probability distribution that was used

to generate samples from the random vector X; in fact the distribution of X is not

given in closed form, as samples from X are themselves outputs of a different model,

which remains a completely black box to us.
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Figure 3.7: Reverse and forward sensitivity measures Γi,v,∆i,v for the London Insurance
Market portfolio, for v = 0.5 and v = 0.95.

We consider optimisation problem (3.5) with risk measure constraints on VaR and

ES given by q = VaRQ
0.95(Y ) = 1.08VaR0.95(Y ) and s = ESQ0.95(Y ) = 1.1ES0.95(Y ). In

Figure 3.7, the reverse and forward sensitivity measures Γi,v,∆i,v, for v = 0.5 and

v = 0.95, are presented for all 72 inputs. The input factors are ordered according to
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Γi,0.5 and the sizes of the markers reflect the weights wi attached to the individual

input factors Xi.

Observations on the plot of Figure 3.7:

• The ranking of input factors according to Γi,0.5 and Γi,0.95 is not fully consistent;

moving focus to the tails of input factors changes the order of the sensitivity

measures. Hence, under the stressed model, for some input factors the expectation

is affected more, while for others the impact is higher in the tail.

• For v = 0.5, the ranking produced by the reverse and forward sensitivity metrics

is not equivalent. However, once the focus is moved towards the tails of risk factor

distributions (e.g. v = 0.95), the discrepancy of the two sensitivity measures

diminishes.

• There is no clear relation between the sizes of the markers and the ranking

of input factors. This means that the sensitivity measure Γi,v does not solely

reproduce the size of the weight wi.

To elaborate on the last of those points, in Figure 3.8 (left), the reverse sensitivities

Γi,0.95 are plotted against the weights wi. There is a broadly increasing relation, which

is not unreasonable. Given the linearity of the aggregation function, a higher weight wi

implies a higher local sensitivity ∂g
∂xi

(Borgonovo and Plischke, 2016). But the relation

is by no means deterministic: weight is a weak predictor of the reverse sensitivity

measure Γi,v.

Furthermore, the reverse sensitivity measure does not only reflect the shape of

the input risk factor distributions. In Figure 3.8 (right), Γi,0.95 is displayed against

the scaled percentiles VaR0.95(Xi)
E(Xi) − 1, not showing a clear pattern. Hence the two

plots in Figure 3.8 demonstrate that the proposed reverse sensitivity measure does
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Figure 3.8: Reverse sensitivity measure Γi,0.95 for the London Insurance Market portfolio,
against weights wi (left) and scaled input percentiles VaR0.95(Xi)

E(Xi) − 1 (right).

not reproduce easily observed characteristics of the aggregation function g or of the

distributions of the inputs Xi.

3.6 Conclusions

We proposed a reverse sensitivity testing framework that is appropriate for contexts

where model inputs are uncertain and the relationship between model inputs and

outputs is complex and not necessarily given in analytical form. At the core of the

reverse sensitivity framework is a stress on the output distribution, corresponding to

an increase in the value of a risk measure applied on the output and representing a

plausible but adverse model change. This leads to stressed probabilities under which

the distribution of the input factors (marginals and dependence structure) is altered

such that the output distribution is subjected to the required stress.
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We provided analytical solutions of the stressed probability measure under an

increase of the VaR and ES risk measures. These explicit solutions facilitate straight-

forward implementation in a Monte Carlo simulation context and inspection of changes

in the distributions of inputs. A new class of reverse sensitivity measures is introduced,

quantifying the extent that the distribution of an input factor is distorted by the

transition to a stressed probability. Analysis of stochastic order relations induced by

the change of measure provides assurance that the proposed method has desirable

properties.

The reverse sensitivity framework can be easily deployed by a risk analyst with

access only to a set of input / output scenarios, simulated under the baseline model.

Thus there is no need for a detailed consideration of the model structure or of simulating

additional scenarios, involving computationally expensive model evaluations. Thus the

proposed framework is immediately applicable to industry applications.

Appendix 3.A Stochastic comparisons

The proposed reverse sensitivity testing framework is based on the change from a

baseline probability measure P to a stressed probability Q. The optimisation problems

of Section 3.3 ensure that under Q the value of particular risk measures applied on Y

increases. But the broader changes in the distributions of input factors X and output

Y arising from the change of measure are also of interest in a risk management context.

For Q to be meaningfully called a ‘stressed measure’, we argue that three properties

should be fulfilled. First, under Q the distribution of the output should dominate (in a

suitable stochastic order relation) the output distribution under the baseline model.

Second, under the assumptions of a non-decreasing aggregation function and positive

dependence between input factors, the distribution of the input vector X under Q

should stochastically dominate the distribution of X under P . Third, an increase in
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the extent to which risk measures are stressed should be reflected in the distributions

of output and inputs under the corresponding stressed probabilities. In this section we

aim to give precise conditions under which the above properties are fulfilled. Note that

most of the discussion is not contingent on Q being a solution of one of the optimisation

problems of Section 3.3.

We adopt the standard definitions of stochastic order relations. For distribution

functions F,G we write F ⪯st G if G is larger than F in first-order stochastic dominance,

that is F (x) ≥ G(x) for all x ∈ Rn. For univariate F,G, we denote F ⪯icx G if G

is larger than F in increasing convex (or stop-loss) order, that is
∫ 1
u F

−1(s)ds ≤∫ 1
u G

−1(s)ds for all u ∈ (0, 1). The following dependence concepts are of importance,

see Denuit et al. (2006):

• An m-dimensional random vector Z is stochastically increasing (or positively

regression dependent) in a random variable W , denoted by Z ↑si W , if P (Z >

z |W = w) is non-decreasing in w, for all z ∈ Rm.

• An m-dimensional random vector Z is associated if Cov(h1(Z), h2(Z)) ≥ 0,

for all component-wise non-decreasing functions h1, h2 : Rm → R for which the

covariance exists.

• The random couple (W,Z) is positively quadrant dependent (PQD) if P (W ≤

w,Z ≤ z) ≥ P (W ≤ w)P (Z ≤ z) for all w, z ∈ R.

• The random couple (W,Z) is negatively quadrant dependent (NQD) if P (W ≤

w,Z ≤ z) ≤ P (W ≤ w)P (Z ≤ z) for all w, z ∈ R.

For a pair of random variables (W,Z) the above definitions are successively weaker:

Z ↑si W implies that (Z,W ) is associated, which implies PQD, see Esary et al. (1967).

We write Z−k = (Z1, . . . , Zk−1, Zk+1, . . . , Zm), 1 ≤ k ≤ m for the (m− 1)-dimensional

sub-vector of Z deprived of its k-th component.
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The next two propositions characterise the stochastic ordering of inputs and output

under two different probabilities Q1, Q2, making alternative assumptions on distribu-

tions under P , on g and on the form of the corresponding two RN-densities.

Proposition 3.A.1. Let Q1, Q2 ∈ P be two probability measures with dQ1

dP = η1(Y ),
dQ2

dP = η2(Y ), for some non-negative functions ηj, j = 1, 2. If the RN-densities cross

once, such that for some d ∈ R

η2(y)


≤ η1(y) y < d

≥ η1(y) y ≥ d,

(3.10)

then the following hold:

1. FQ1

Y ⪯st F
Q2

Y

2. For given i ∈ {1, . . . , n}, if E ((Xi − t)+|Y = y) is non-decreasing in y for all

t ∈ R, then FQ1

Xi
⪯icx F

Q2

Xi
.

3. For given i ∈ {1, . . . , n}, if Xi ↑si Y , then FQ1

Xi
⪯st F

Q2

Xi
.

Proposition 3.A.2. Let Q1, Q2 ∈ P be two probability measures with dQ1

dP = η1(Y ),
dQ2

dP = η2(Y ) for some non-negative functions ηj, j = 1, 2. Assume that η2 − η1 is

non-decreasing. Then the following hold:

1. FQ1

Y ⪯st F
Q2

Y .

2. If the aggregation function g is non-decreasing in coordinate i and Xi is indepen-

dent of X−i, then FQ1

Xi
⪯st F

Q2

Xi
.

3. Assume that the aggregation function g is non-decreasing.

(a) For given i ∈ {1, . . . , n}, if (Xi, Y ) is PQD, then FQ1

Xi
⪯st F

Q2

Xi
.
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(b) If X is associated, then FQ1

X ⪯st F
Q2

X .

Part 1. of both Propositions 3.A.1 and 3.A.2 reflects the comparative impact

of the stress on the output Y , while parts 2. and 3. characterise the impact of

the stress on the inputs. An example where the assumption of Proposition 3.A.1,

part 3., is satisfied is the following. Suppose the input vector X is multivariate

normal and Y = h(∑n
i=1 wiXi) for an increasing function h and wi ∈ R for all i. If

Cov(Xi, h
−1(Y )) = ∑n

j=1 wjCov(Xi, Xj) ≥ 0, then Xi ↑si Y holds. The assumption in

Proposition 3.A.2 part 3.(a) holds for example if X−i ↑st Xi and g is non-decreasing.

Propositions 3.A.1 and 3.A.2 allow for a stochastic comparison of the output and

the input factors under the stressed and the baseline model. In particular, Proposition

3.A.1 applies to the solutions of problems (3.3), (3.5) and (3.7) with Q2 = Q and

Q1 = P . Proposition 3.A.2 applies to optimisation problem (3.1), with Q2 = Q and

Q1 = P , if the RN-density of the solution is a non-decreasing function of Y . Recall

that the RN-density of the solutions to (3.3), (3.5) case 1, and (3.7) are non-decreasing.

Moreover, for a stressed model under which the input Xi stochastically dominates, in

first-order or increasing convex order, the distribution of the input under the baseline

model, the introduced sensitivity measure Γi is positive.

Proposition 3.A.1 also enables to contrast stressed probabilities corresponding to

different stress levels. For example, when solving optimisation problem (3.3) with

two different VaR constraints, the output under the stressed model corresponding

to a higher VaR should stochastically dominate the output under the other stressed

model. The next lemma associates Proposition 3.A.1 with solutions of the optimisation

problems (3.3) and (3.5).

Lemma 3.A.3. The crossing condition of Proposition 3.A.1 is satisfied for:

1. Two solutions Q1, Q2 of optimisation problem (3.3) with constraints VaRQ1

α (Y ) =

q1 respectively VaRQ2

α (Y ) = q2, and q1 < q2.
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2. Two solutions Q1, Q2 of optimisation problem (3.5) with constraints VaRQ1

α (Y ) =

VaRQ2

α (Y ) = q and ESQ1

α (Y ) = s1, respectively ESQ2

α (Y ) = s2, and s1 < s2.

The second part of Lemma 3.A.3 holds true for both types of solutions of (3.5).

Example (continued). Applying Proposition 3.A.1 to the two optimisation problems

in this example, we immediately verify that the output under the stressed probabilities

first-order stochastically dominates the output under the baseline probability, see

Figures 3.1 and 3.3. Moreover, the aggregation function g is non-decreasing and it can

be verified that, for instance, (X4, Y ) is PQD. Hence, following Proposition 3.A.2 part

3.(a), the distribution of X4 under the stressed probability first-order stochastically

dominates that under the baseline probability. This can be seen in Figures 3.2 and 3.4.

An illustration of Lemma 3.A.3 is given in Figure 3.9. The left plot shows the

RN-densities of solutions to (3.3) with two different stress levels. The black line

corresponds to an increase of VaR of 10%, the same as in Figure 3.1, and the grey

line to an increase of VaR of 15%. The plot to the right displays the RN-densities of

solutions to (3.5) for an increase of 10% in VaR and 9% in ES (black) and an increase

of 10% in VaR and 13% in ES (grey), see Figure 3.3. It is seen how in both cases, the

two RN-densities satisfy the crossing condition of Proposition 3.A.1.

Appendix 3.B Proofs

Proposition 3.3.1. A similar result can be found in Cambou and Filipović (2017), we

also refer to Csiszár (1975) for the general form of the solution. It is immediately

verified that ζ is a RN-density for which Qζ(Y ∈ Bi) = αi, i = 1, . . . , I. Let ξ be any

RN-density that satisfies Qξ(Y ∈ Bi) = αi, i = 1, . . . , I. Using Jensen inequality, the
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Figure 3.9: Left: simulated RN-densities of the solution to (3.4) with a 10% (black)
and 15% (grey) increase in VaR. Right: simulated RN-densities of the solution to (3.5)
case 1, with a 10% increase in VaR and 9% (black) and 13% (grey) increase in ES.

KL-divergence of Qξ with respect to P fulfils

DKL(Qξ∥P ) =
I∑
i=0

E (ξ log(ξ) |Y ∈ Bi)P (Y ∈ Bi)

≥
I∑
i=0

E (ξ |Y ∈ Bi) log (E (ξ |Y ∈ Bi))P (Y ∈ Bi)

=
I∑
i=0

αi log
(

αi
P (Y ∈ Bi)

)

= DKL(Qζ∥P ).

Therefore Qζ is a solution of (3.2). Uniqueness follows by strict convexity of the

KL-divergence, see Csiszár (1975).

Proposition 3.3.2. Assume that P (q − ε < Y < q) > 0 for all ε > 0. Then, it is

immediate to verify that ζ is a RN-density such that VaRQζ

α (Y ) = q. Let ξ = dQξ
dP be a

RN-density for which VaRQξ

α (Y ) = q. By Jensen inequality, the KL-divergence of Qξ
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with respect to P is

DKL(Qξ∥P ) = E (ξ log(ξ) |Y < q)P (Y < q) + E (ξ log(ξ) |Y ≥ q)P (Y ≥ q)

≥ Qξ(Y < q) log
(
Qξ(Y < q)
P (Y < q)

)
+Qξ(Y ≥ q) log

(
Qξ(Y ≥ q)
P (Y ≥ q)

)

= k
(
Qξ(Y < q), P (Y < q)

)
,

where we define k(x, y) = x log(x
y
) + (1 − x) log(1−x

1−y ), for 0 < x < 1, 0 < y < 1.

Inspection shows that, for fixed 0 < y < 1, x → k(x, y) is non-increasing on (0, y].

Moreover it holds

Qξ(Y < q) ≤ α ≤ P (Y ≤ VaRα(Y )) ≤ P (Y < q).

The KL-divergence of Qξ is thus larger than the KL-divergence of Qζ ,

DKL(Qξ∥P ) ≥ k
(
Qξ(Y < q), P (Y < q)

)
≥ k

(
α, P (Y < q)

)
= α log

(
α

P (Y < q)

)
+ (1 − α) log

(
1 − α

P (Y ≥ q)

)

= DKL(Qζ∥P ),

and Qζ is a solution of (3.3). Uniqueness follows by strict convexity of the KL-

divergence.

Assume now that there exists ε > 0 such that P (q − ε < Y < q) = 0. If

P (Y = q) = 0, by the absolute continuity of the probability measures, the optimisation

problem (3.3) does not admit a solution. Hence, we assume that P (Y = q) > 0. Let Qξ

be a RN-density for which VaRQξ

α (Y ) = q. Denote r = Qξ(Y ≤ q) and p = P (Y ≤ q).
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The KL-divergence of Qξ with respect to P is

DKL(Qξ∥P ) = E(ξ log(ξ) |Y ≤ q)p+ E(ξ log(ξ) |Y > q)(1 − p)

≥ r log
(
r

p

)
+ (1 − r) log

(
1 − r

1 − p

)

= DKL(Qξr∥P ),

where we define ξu = dQξu

dP = u
p
1{Y≤q} + 1−u

1−p1{Y >q}, 0 ≤ u ≤ 1. The family of RN-

densities ξu fulfil VaRQξ
u

α (Y ) = q if and only if α ≤ u < α p
P (Y <q) . In particular

this holds for the RN-density ξr. Hence the optimisation problem (3.3) is reduced

to minimise DKL(Qξu∥P ) subject to α ≤ u < α p
P (Y <q) . As a function of u the KL-

divergence DKL(Qξu∥P ) is non-increasing on (0, p], hence the optimisation problem

does not admit a solution as α p
P (Y <q) < p.

Proposition 3.3.5. For i = 1, 2, equation (3.6) can be rewritten as

∂

∂θ
E(eθ(Y−q)|Ai) =

E
(
(Y − q)eθ(Y−q)|Ai

)
E(eθ(Y−q)|Ai)

= s− q.

The left hand side is increasing for positive θ, negative for θ = 0 and diverges for

θ ↑ θmax, where θmax = sup{θ > 0 |E(eθY |Ai) < ∞}, by properties of the moment

generating function. Thus, for i = 1, 2, there exists a unique positive solution θ∗
i of

(3.6).

Case 1. The RN-density ζ1 fulfils the constraints in (3.5) since Qζ1(Y < q) = α,

Qζ1(Y ≤ q) ≥ α and the ES constraint is equivalent to (1−α)(s− q) = EQζ1 ((Y − q)+).

Let ξ = dQξ
dP be a RN-density satisfying the constraints of problem (3.5) and denote

r = Qξ(Ac1) and p = P (Ac1). Using Jensen’s inequality, the KL-divergence of Qξ with
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respect to P fulfils

DKL(Qξ∥P ) = E
(
ξ log(ξ)1Ac1

)
+ E (ξ log(ξ)1A1) + θ∗

1(1 − α)(s− q)

− E
(
ξ log

(
eθ

∗
1(Y−q)

)
1A1

)
≥ r log

(
r

p

)
+ θ∗

1(1 − α)(s− q) + E

(
ξ log

(
ξ

eθ
∗
1(Y−q)

) ∣∣∣∣A1

)
(1 − p).

Recall that the perspective of a convex function f , defined by h(x, y) = yf(x/y) is

itself convex, see Boyd and Vandenberghe (2004). Applying then Jensen’s inequality

to h(x, y) = y log( y
x
), the third term becomes

E

(
ξ log

(
ξ

eθ
∗
1(Y−q)

) ∣∣∣∣A1

)
(1 − p) ≥ E(ξ |A1) log

(
E(ξ |A1)

E(eθ∗
1(Y−q) |A1)

)
(1 − p)

= (1 − r) log
 (1 − r)
E
(
eθ

∗
1(Y−q)1A1

)
 .

Collecting all terms,

DKL(Qξ∥P ) ≥ r log
(
r

p

)
+ θ∗

1(1 − α)(s− q) + (1 − r) log
 (1 − r)
E
(
eθ

∗
1(Y−q)1A1

)


= k
(
r, p, E

(
eθ

∗
1(Y−q)

1A1

))
,

where we define k(x, y, z) = x log(x
y
) + θ∗

1(1 −α)(s− q) + (1 −x) log(1−x
z

), for 0 < x < 1

and y, z > 0. For fixed y, z > 0, the function x → k(x, y, z) is decreasing on
(
0, y

y+z

]
.

The condition on θ∗
1 in 1. is equivalent to

α ≤ p

p+ E
(
eθ

∗
1(Y−q)1A1

) .
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Therefore, noting that r ≤ α, we obtain

DKL(Qξ∥P ) ≥ k
(
r, p, E

(
eθ

∗
1(Y−q)

1A1

))
≥ k

(
α, p, E

(
eθ

∗
1(Y−q)

1A1

))
= DKL(Qζ1∥P ).

The last equality follows since

DKL(Qζ1∥P ) = α log
(
α

p

)

+ 1 − α

E
(
eθ

∗
1(Y−q)1A1

)E
eθ∗

1(Y−q)
1A1 log

 1 − α

E
(
eθ

∗
1(Y−q)1A1

)eθ∗
1(Y−q)


= α log

(
α

p

)
+ (1 − α) log

 1 − α

E
(
eθ

∗
1(Y−q)1A1

)


+ θ∗
1

1 − α

E
(
eθ

∗
1(Y−q)1A1

)E(eθ∗
1(Y−q)(Y − q)+

)

= α log
(
α

p

)
+ (1 − α) log

 1 − α

E
(
eθ

∗
1(Y−q)1A1

)
+ θ∗

1(1 − α)(s− q)

= k
(
α, p, E

(
eθ

∗
1(Y−q)

1A1

))
.

Therefore Qζ1 is a solution of (3.5). Uniqueness follows by strict convexity of the

KL-divergence.

Case 2. The proof of case 2 is similar to that of case 1, replacing the set A1 with

A2 and ζ1 with ζ2. The RN-density ζ2 fulfils the constraints (3.5). Letting ξ = dQξ
dP be

a RN-density satisfying the constraints of problem (3.5), then the KL-divergence of Qξ

with respect to P can be bounded by

DKL(Qξ∥P ) ≥ k
(
Qξ(Ac2), P (Ac2), E

(
eθ

∗
2(Y−q)

1A2

))
,

where the function k(x, y, z) has been defined above. For fixed y, z > 0, the function

x → k(x, y, z) is increasing on
[

y
y+z , 1

)
. Moreover, the condition on θ∗

2 in 2. is equivalent
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to
P (Ac2)

P (Ac2) + E
(
eθ

∗
2(Y−q)1A2

) ≤ α.

Since α ≤ Qξ(Ac2) we obtain

DKL(Qξ∥P ) ≥ k
(
α, P (Ac2), E

(
eθ

∗
2(Y−q)

1A2

))
= DKL(Qζ2∥P ),

which is the KL-divergence of Qζ2 .

Proposition 3.4.3. We also refer to Theorem 6 in Kachapova and Kachapov (2012).

The first two properties are immediate. For 3. if Xi and Y are comonotonic, ζ

and ζ|Xi are also comonotonic since ζ is a non-decreasing function of Y and ζ|Xi a

non-decreasing function of Xi. Part 4. follows by a similar argument. Properties

5. and 6. are consequences of the invariance of PQD (NQD) under non-decreasing

(non-increasing) transformations, see Lemma 1 in Lehmann (1966).

Proposition 3.A.1. Let y ≤ d, then it holds Q2(Y ≤ y) = E(η2(Y )1{Y≤y})

≤ E(η1(Y )1{Y≤y}) = Q1(Y ≤ y). For y > d, it holds Q2(Y ≤ y) = 1 − Q2(Y > y) =

1 −E(η2(Y )1{Y >y}) ≤ 1 −E(η1(Y )1{Y >y}) = Q1(Y ≤ y). For the second part we have,

for all t ∈ R, using the tower property under P ,

EQ2 ((Xi − t)+) = EQ2(
E ((Xi − t)+|Y )

)
≥ EQ1(

E ((Xi − t)+|Y )
)

= EQ1 ((Xi − t)+) ,

by first-order stochastic dominance of Y with respect to the measures Q1, Q2. The last

claim follows using a similar argument.

Proposition 3.A.2. The RN-densities have to cross once due to normalisation, therefore

part 1. applies. In the rest of the proof, let h = η2 − η1.

To prove part 2., let g be non-decreasing in coordinate i and Xi independent of

X−i. For any t ∈ R, using the Fortuin-Kasteleyn-Ginibre inequality (Wüthrich and
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3.B Proofs

Merz, 2013), we have

Q2(Xi > t) −Q1(Xi > t) = E
(
h(Y )1{Xi>t}

)
= E

(
E
(
h(Y )1{Xi>t} |X−i

))
≥ E

(
E
(
h(Y )

∣∣∣X−i
))
P (Xi > t) = 0,

proving first-order stochastic dominance.

To show part 3.(a), assume that g is non-decreasing and (Xi, Y ) are PQD. Hence,

for all t ∈ R,

Q2(Xi > t) −Q1(Xi > t) = E
(
1{Xi>t}h(Y )

)
≥ 0,

where the last inequality follows from Lemma 3 in Lehmann (1966). Part 3.(b) follows

by association of the vector (h(Y ),X), using a similar argument.

Lemma 3.A.3. The first claim follows since α ≤ P (Y < q1) ≤ P (Y < q2). For part 2.,

consider first the case where P (q − ε < Y < q) > 0 for all ε > 0. Denote by θ∗
1, θ

∗
2 the

solutions to (3.6) with q and s1, respectively s2. Hence, θ∗
1 ≤ θ∗

2, and there exists a

d > q such that for all ω ∈ Ω with Y (ω) > d we have

e(θ∗
2−θ∗

1)(Y (ω)−q) ≥
E
(
eθ

∗
2(Y−q)

1A1

)
E
(
eθ

∗
1(Y−q)1A1

) ,
which implies η2 ≥ η1 for all ω with Y (ω) > d. Since on Ac1, η1 = η2 P -a.s. the

RN-densities admit a (unique) crossing point. The argument also holds if A1 is replace

with A2.
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Chapter 4

Cascade Sensitivity Measures

This chapter is based on the working paper Pesenti et al. (2018a) and has been presented

at the University of Trieste (2018), at the University of Milano-Bicocca (2018), at

the Workshop on Recent Developments in Dependence Modelling with Applications in

Finance and Insurance (Aegina, 2018), at the 10th Conference in Actuarial Science &

Finance (Samos, 2018) and at the 4th European Actuarial Journal Conference (Leuven,

2018).

4.1 Introduction

Principal tools in sensitivity analysis are sensitivity measures (also importance mea-

sures), which assign to each input factor a score, ranking the input factors according

to their ability to influence (a probabilistic summary of) the output (Borgonovo and

Plischke, 2016). For variance-based sensitivity measures, for example, the input factors

are distinguished by their ability to affect the output’s variance (Saltelli, 2002). In this

chapter, and typical in financial risk management applications, the output distribution

is summarised through a risk measure, such as the VaR or the ES.

One way to assess the extent to which an input factor affects the output distribution,

is to considers partial (Gâteaux) derivatives of the risk measure applied to the output
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in the direction of a stressed version of the input factor (Samuelson, 1941; Helton,

1993; Hong, 2009; Tsanakas and Millossovich, 2016). The choice of stress on the input

factor depends on the objective of the sensitivity analysis, and commonly consists of

either an additive shock applied to the input factor or a perturbation of its distribution

(Borgonovo and Plischke, 2016; Glasserman, 1991; Saltelli et al., 2008).

It is known that sensitivity measures defined as partial derivatives do not fully

account for interactions among (or dependence between) input factors, and extensions

have so far focused on higher order derivatives, see Borgonovo and Plischke (2016) and

references therein. However, dependence structures between the input factors might

substantially impact the sensitivity to an input factor. In particular, a stress on an

input factor should also precipitate stresses in other input factors that are dependent on

it. In financial risk management, for example, a sensitivity measure that accounts for

the indirect effects of the dependence between input factors is particularly valuable for

assessing systemic risk, which is concerned with contagion effects that spread through

the financial market and distress the whole financial system.

We propose a novel sensitivity measure, termed cascade sensitivity, defined as the

partial derivative of the risk measure applied to the output, in the direction of a stressed

input factor, which explicitly accounts for the dependence of other input factors on the

one being stressed. Underpinning the cascade sensitivity framework is a variation of

the inverse Rosenblatt transform (Rosenblatt, 1952), enabling a stress on one input

factor to spread through the entire input vector, changing all its components according

to the input vectors’ structure.

We provide explicit analytical representations of the cascade sensitivity to two types

of stresses on input factors; (a) a perturbation of the distribution of an input factor,

such that the stressed input factor follows a mixture distribution, and (b) an additive

random shock applied to the (tail of the) input factor itself. These representations
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allow for a straightforward implementation of the cascade sensitivity on one Monte

Carlo sample, requiring only the explicit knowledge of the distribution function and

the density of the output and of the input factor of interest. Hence, our proposed

cascade sensitivity framework is suitable for various practical applications.

Related literature that focus on sensitivity as a directional derivative of a risk

measure applied to the output in direction to an input factors include: Hong (2009);

Hong and Liu (2009) for the popular VaR and ES risk measures, Antoniano-Villalobos

et al. (2018) consider sensitivity to input parameters, while Wang et al. (2018); Tsanakas

(2009) study Haezendonck-Goovaerts and entropic risk measures for linear portfolios,

respectively. Cao and Wan (2017) analyse derivatives of expected utility in connection

to optimal portfolio selection, while Gourieroux et al. (2000, 2006) consider directional

derivatives of distortion risk measures with respect to parameter uncertainty for linear

aggregation functions.

A paper close to ours is Tsanakas and Millossovich (2016), focusing on sensitivity

analysis when the underlying stress on the input factor is an additive shock. We refer

to Cont et al. (2010) for a financial application when the stressed input factor follows

a mixture distribution. As far as the authors are aware, while the inverse Rosenblatt

transform is used in various contexts, the idea of applying it to measure indirect

effects of dependence between input factors for sensitivity purposes, is novel. An

notable exception is Mai et al. (2015), who study model robustness through introducing

uncertainty via a transformation of the input vector.

This chapter is organised as follows. Section 4.2 introduces the notation and

mathematical framework. Section 4.3 defines the cascade sensitivity measure as a

partial derivative of the output with respect to a stressed input factor, via a variation

of the inverse Rosenblatt transform.
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Section 4.4 is devoted to the calculation of the cascade sensitivity for different

stresses on the input factor. In particular, we provide representations of the cascade

sensitivity for two specific stresses that allow for calculations on a single Monte Carlo

sample. The applicability of the cascade sensitivity framework is showcased in Section

4.5 via a non-linear insurance portfolio. We conclude, in Section 4.6, with an illustration

of the cascade sensitivity to a commercially used London Insurance Market portfolio.

All technical assumptions are provided in the Appendix 4.A.

4.2 Preliminaries

As introduced in 1.2, we work with the probability space (Ω,A, P ) and denote by

X = (X1, . . . , Xn) the vector of input factors. We call Fj the marginal distribution

function of input Xj, j = 1, . . . , n, and F the joint distribution function of X. It

is assumed that the joint density f of X exists and we denote by fj the density

of input factor Xj, j = 1, . . . , n. The vector of input factors, X, is mapped by an

aggregation function, g : Rn → R, assumed to be almost everywhere differentiable, to

the (univariate) output Y = g(X). We write H, h for the distribution function and

the density of the output Y , respectively. For any random variable W , we denote

by UW a standard uniform random variable comonotonic to W . In the case when

W has a continuous distribution function, it holds UW = FW (W ) a.s., where FW

is the distribution function of W . For any n-dimensional vector W , we denote by

W−j = (W1, . . . ,Wj−1,Wj+1, . . .Wn) its sub-vector deprived of the jth component.

We consider the framework where the output Y = g(X) is summarised through a

risk measure, and aim to quantify the sensitivity of the risk measure applied to the

output with respect to an input factor. In this chapter we work with the class of

distortion risk measures, see Chapter 1.2.1, which are defined, for a random variable
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Y , through

ργ(Y ) =
∫ 1

0
F−1
Y (u)γ(u)du = E(F−1

Y (UY )γ(UY )),

where γ : [0, 1] → [0,∞) is a normalised weight function such that
∫ 1

0 γ(u)du = 1.

Examples include the two most common risk measures in practice, VaR and ES.

The objective of this chapter lies in the study of the sensitivity of ργ(Y ) to input

factor Xi, 1 ≤ i ≤ n. For simplicity, we fix i ∈ {1, . . . , n} for the rest of the chapter,

such that sensitivity to the same input is considered throughout. We call a stress

to input factor Xi a family of random variables Xi,ε(ω) = K(Xi(ω), ω, ε), for ε ≥ 0,

ω ∈ Ω and some mapping K, that is almost everywhere differentiable in ε in a

neighbourhood of 0, uniformly in x and ω. Moreover, K satisfies K(x, ω, 0) = x,

for all x ∈ R and almost all ω ∈ Ω. In particular, for any stress Xi,ε, it holds that

(X1, . . . , Xi,ε, . . . , Xn)|ε=0 = X a.s. We denote by Fi,ε, ε ≥ 0, the distribution function

of Xi,ε.

A typical choice of a stress is to apply a random shock Z to the input factor

Xi, such that Xi,ε = Xi + εZ (Tsanakas and Millossovich, 2016). Alternatively, the

distribution function of the input factor, Fi, can be perturbed. Adding uncertainty

via the distribution function of the input factor is conceptually different from adding

a shock to the input factor, and a common technique used in Bayesian (Gustafson

et al., 1996) and robust (Hampel et al., 2011) statistics. Such a perturbation can

be constructed starting from a family of distribution functions Fi,ε, ε ≥ 0, that is

continuously differentiable in ε, admits a density for all ε in a neighbourhood of 0, and

fulfils Fi,0 = Fi. We then define the stress to input factor Xi through a perturbation by

Xi,ε = F−1
i,ε (Z), for a standard uniform random variable Z. Depending on the choice

of Z, the stress may not only distort the input factor Xi but might also change the

dependence structure of the input vector X. A natural choice, which we consider
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in the sequel, is Z to be comonotonic to Xi, generating perturbations of the form

Xi,ε = F−1
i,ε (UXi), thus not altering the dependence between input factors.

4.3 Sensitivity measures

4.3.1 Marginal sensitivity

To assess the sensitivity to input Xi, we consider sensitivity measures formed by a

directional derivative of the risk measure applied to the output distribution, in the

direction of a stress to an input factor.

Definition 4.3.1. For a stress Xi,ε and a distortion risk measure ργ, we define the

marginal sensitivity to input factor Xi by

Si(X, g, ργ) = ∂

∂ε
ργ
(
g(X1, . . . , Xi,ε, . . . , Xn)

)∣∣∣
ε=0

,

whenever the derivative exists.

The general form of the marginal sensitivity is known in the literature (Hong

and Liu, 2009) and stated in the next proposition for completeness. It consists of

an expectation involving the derivative of the stress, the gradient of the aggregation

function in the direction of the stressed input factor and a weighting according to the

chosen risk measure. Further work, closely related to ours, is Hong (2009); Tsanakas

and Millossovich (2016); Antoniano-Villalobos et al. (2018).

Proposition 4.3.2. Given a stress Xi,ε and under Assumptions 4.A.1 in the appendix,

the marginal sensitivity to input factor Xi is

Si(X, g, ργ) = E
(
∂

∂ε
Xi,ε

∣∣∣
ε=0

gi(X)γ(UY )
)
,
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where gi(x) = ∂
∂xi
g(x) denotes the partial derivative of the aggregation function in the

ith component and ∂
∂ε
Xi,ε(ω) = ∂

∂ε
K(Xi(ω), ω, ε), for almost all ω ∈ Ω.

Proof. See Hong (2009); Hong and Liu (2009).

Remark 4.3.3. Our framework also includes sensitivity to expected utility, considered

in Cao and Wan (2017). Note that for the trivial weight function γ ≡ 1, the distortion

risk measure reduces to the expectation, i.e. ρ1(·) ≡ E(·). Thus, for an utility function

u : R → R, we can then write

E(u(g(X)) = ρ1
(
(u ◦ g)(X)

)
,

implying, that expected utilities are a special case of our framework, with aggregation

function u ◦ g : Rn → R and an expectation risk measure.

4.3.2 Cascade sensitivity

The marginal sensitivity, defined as a directional derivative, does not account for

interactions among input factors (Borgonovo and Plischke, 2016), since it assumes

that, apart from the stressed input factor, all other marginal input distributions are

unaltered. We provide a novel sensitivity measure, termed cascade sensitivity, that

incorporates indirect effects induced by the dependence between the input factors,

and is constructed in the following way. Given i ∈ {1, . . . , n}, we call the subsequent

representation an inverse Rosenblatt transform of the input vector X (Rosenblatt,

1952; Rüschendorf and de Valk, 1993)

X = ψ(Xi,V ) =
(
ψ(1)(Xi,V ), . . . , ψ(n)(Xi,V )

)
a.s., (4.1)

for a differentiable function ψ = (ψ(1), . . . , ψ(n))⊤ : Rn → Rn and a (n− 1)-dimensional

random vector V = (V1, . . . , Vn−1), consisting of independent standard uniform random
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variables, independent of Xi. Note that for ψ(j), 1 ≤ j ≤ n, to be differentiable in

the first component, it is sufficient that the joint density f is almost everywhere

differentiable.

We denote by Ri the family of inverse Rosenblatt transforms of X with Xi as

starting variable as in (4.1), that is Ri = {(ψ,V ) | X = ψ(Xi,V ) as in (4.1)}. An

inverse Rosenblatt transform can be explicitly constructed, for example, through the

composition of the Rosenblatt transform with the standard construction (Rüschendorf

and de Valk, 1993; Rubinstein and Melamed, 1998). For r = 1, . . . , n and J ⊆

{1, . . . , n}\{r}, denote by Fr|J(· | Xj = xj, j ∈ J) the conditional distribution function

of Xr given Xj = xj, j ∈ J . Then, for fixed i, it holds a.s. that

X1 = F−1
1|i (V1 |Xi) = ψ(1)(Xi,V ),

X2 = F−1
2|i,1(V2 |Xi, X1) = ψ(2)(Xi,V ),

X3 = F−1
3|i,1,2(V3 |Xi, X1, X2) = ψ(3)(Xi,V ),

...

Xi = ψ(i)(Xi,V ),
...

Xn = F−1
n|1,...,n−1(Vn−1 |X1, . . . Xn−1) = ψ(n)(Xi,V ),

where ψ(i) is the identity function in the first argument. Note that in the above

construction, each random variable Xj depends on Xi both directly and indirectly

through X1, . . . , Xj−1.

Deploying an inverse Rosenblatt transform of the vector X = ψ(Xi,V ), (ψ,V ) ∈

Ri, we stress input factor Xi and obtain

Xi,ε = ψ(Xi,ε,V ) =
(
ψ(1)(X1,ε,V ), . . . , ψ(n)(X1,ε,V )

)
, (4.2)
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and observe that the stress Xi,ε is carried through the entire input vector, changing all

factors according to their dependence on Xi,ε, resulting therefore in a cascading effect.

Cascade sensitivity measures extend the marginal sensitivity framework and stress the

entire input vector via (4.2), taking the dependence of the other input factors on the

one being stressed into account.

Definition 4.3.4. For a stress Xi,ε, (ψ,V ) ∈ Ri and a distortion risk measure ργ , we

define the cascade sensitivity to input factor Xi by

Ci(X, g, ργ) = ∂

∂ε
ργ
(
g
(
ψ(Xi,ε,V )

))∣∣∣
ε=0

,

whenever the derivative exists.

The set Ri is not a singleton, in particular the inverse Rosenblatt transform is not

invariant under permutation of the order of conditioning. However, as the next result

shows, the cascade sensitivity does not depend on the choice of (ψ,V ) ∈ Ri.

Proposition 4.3.5. If the cascade sensitivity exists for one (ψ,V ) ∈ Ri, then it exists

and admits the same value for all other transforms (ϕ,U) ∈ Ri.

Proof. Consider a stress Xi,ε and (ψ,V ), (ϕ,U) ∈ Ri. Note that V and U can be

chosen to be independent of the stress Xi,ε. For a function l : Rn → R such that the

following expectation exists, it holds that, for all ε > 0,

E
(

(l ◦ψ)(Xi,ε,V )
)

= E
(

(l ◦ψ)(Xi,V )
fXi,ε(Xi)
fi(Xi)

)

= E
(

(l ◦ ϕ)(Xi,U )
fXi,ε(Xi)
fi(Xi)

)
= E

(
(l ◦ ϕ)(Xi,ε,U)

)
.

Thus, for all ε > 0, ψ(Xi,ε,V ) and ϕ(Xi,ε,U ) follow the same distribution and therefore
∂
∂ε
ργ
(
g
(
ψ(Xi,ε,V )

))∣∣∣
ε=0

= ∂
∂ε
ργ
(
g
(
ϕ(Xi,ε,U)

))∣∣∣
ε=0

.
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The cascade sensitivity decomposes into the marginal sensitivity and additional

components reflecting, statistical as well as functional, dependence between inputs.

Proposition 4.3.6. Given a stress Xi,ε, (ψ,V ) ∈ Ri, and under Assumptions 4.A.1

in the appendix, the cascade sensitivity to input factor Xi is

Ci(X, g, ργ) = E
(
∂

∂ε
Xi,ε

∣∣∣∣
ε=0

(g ◦ψ)1(Xi,V )γ(UY )
)

= Si(X, g, ργ) +
∑
j ̸=i

E
(
∂

∂ε
Xi,ε

∣∣∣∣
ε=0

gj(X)ψ(j)
1 (Xi,V )γ(UY )

)
,

where (g ◦ψ)1(xi,v) = ∂
∂xi
g(ψ(xi,v)) = ∑n

j=1 gj(x)ψ(j)
1 (xi,v).

Proof. This is a corollary of Proposition 4.3.2.

Remark 4.3.7. The cascade sensitivity framework also includes sensitivity to uncertain

statistical parameters of input factors (Antoniano-Villalobos et al., 2018). Let Fi|Θi(·|θi)

denote the conditional distribution of Xi given parameter Θi = θi. Then it holds

almost surely that

Xi = F−1
i (Ui | Θi) = η(Θi, Ui), (4.3)

for a function η : R2 → R and a standard uniform random variable Ui independent of

Θi. Hence, instead of stressing the input factor Xi, we can perturb the parameter Θi

and Ui via representation (4.3), in this way reflecting the sensitivity of ργ(Y ) to the

parameter and process uncertainty of Xi, respectively.

4.3.3 Comparison of the marginal and cascade sensitivity

For input factors that are independent, the cascade sensitivity reduces to the marginal

sensitivity, irrespectively of the aggregation function or the choice of risk measure. The

cascade sensitivity dominates the marginal sensitivity, given positive dependence of
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the input vector, a non-decreasing aggregation function and a suitable stress.

We recall that a random vector W is said to be conditionally increasing in sequence

(CIS), if for all j = 2, . . . , n, E(l(Wj) | W1 = w1, . . . ,Wj−1 = wj−1) is a non-decreasing

function of w1, . . . , wj−1, for all non-decreasing function l for which the expectation

exists (Müller and Stoyan, 2002).

Proposition 4.3.8. Let (ψ,V ) ∈ Ri and under Assumptions 4.A.1 in the appendix,

the following hold:

1. If Xi is independent of X−i, then Ci(X, g, ργ) = Si(X, g, ργ).

2. If the vector (Xi, Xπ(1), . . . , Xπ(n)) is CIS for a permutation π on {1, . . . , n}/{i},

the aggregation function is component-wise non-decreasing and ∂
∂ε
Xi,ε

∣∣∣
ε=0

≥ 0

a.s., then Ci(X, g, ργ) ≥ Si(X, g, ργ).

Proof. Case 1: an inverse Rosenblatt transform is given by ψ(1)(Xi,V ) = F−1
1 (V1),

ψ(2)(Xi,V ) = F−1
2|1 (V2 | X1), . . . , ψ(i)(Xi,V ) = Xi, . . . , ψ

(n)(Xi,V ) =

F−1
n|1,...,i−1,i+1,...,n−1,(Vn−1 | X1, . . . , Xi−1, Xi+1, . . . , Xn−1). Thus, ψ(j), j ̸= i, do not

depend on Xi and we obtain Ci(X, g, ργ) = Si(X, g, ργ) by uniqueness of the cascade

sensitivity, see Proposition 4.3.5.

Case 2: let π be a permutation on {1, . . . , n}/{i}. Then (Xi, Xπ(1), . . . , Xπ(n)) being

CIS implies that the conditional distributions Fπ(j)|i,π(1),...,π(j−1)(· | Xi = xi, Xπ(1) =

xπ(1), . . . , Xπ(j−1) = xπ(j−1)) are non-increasing in xi. Therefore the quantile functions

F−1
π(j)|i,π(1),...,π(j−1)(· | Xi = xi, Xπ(1) = xπ(1), . . . , Xπ(j−1) = xπ(j−1)) are non-decreasing

in xi and ψ(j)(Xi,V ), 1 ≤ j ≤ n, are non-decreasing functions of Xi and thus

ψ
(j)
1 (Xi,V ) ≥ 0 for 1 ≤ j ≤ n. The additional assumptions guarantee that all

summands of the formula of the cascade sensitivity in Proposition 4.3.6 are non-

negative.
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Examples of stresses with non-negative gradient include additive shocks Xi,ε =

Xi + εZ, for Z ≥ 0 a.s.. Other examples are perturbations Xi,ε = F−1
i,ε (UXi) with

Fi,ε = (1 − ε)Fi + εF̂i, ε ≥ 0, studied in Section 4.4.1, whenever the distribution F̂i

first order stochastically dominates Fi.

Note that by independence of the cascade sensitivity on the choice of (ψ,V ) ∈ Ri,

it is enough in Proposition 4.3.8 case 2 that the vector (Xi, Xπ(1), . . . , Xπ(n)) is CIS for

one permutation π. Examples of vectors that are CIS, which is a dependence concept

of the copula alone (Müller and Scarsini, 2001, Prop. 3.5), include the multivariate

normal distribution, whose inverse covariance matrix contains non-positive off-diagonal

elements, the multivariate logistic, gamma and negative binomial distributions. We

also refer to Karlin and Rinott (1980) for further examples of multivariate totally

positive of order 2 distributions, a slightly stronger dependence concept than CIS.

4.4 Calculation of the cascade sensitivity

4.4.1 Stressing through a perturbation

We consider a stress on the input factor Xi through perturbing its distribution, such

that the stressed input follows a mixture distribution. Then, the cascade sensitivity

can be calculated in a way that circumvents the gradient of the aggregation function

composed with the inverse Rosenblatt transform of the input vector, which appears in

Proposition 4.3.6.

Proposition 4.4.1. Let (ψ,V ) ∈ Ri and define the perturbation Xi,ε = F−1
i,ε (UXi),

where Fi,ε = (1 − ε)Fi + εF̂i, ε ≥ 0, for a continuous distribution function F̂i. Under
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4.4 Calculation of the cascade sensitivity

Assumptions 4.A.1 in the appendix, the cascade sensitivity to input factor Xi is

Ci(X, g, ργ) = E
[
Fi(Xi) − F̂i(Xi)

fi(Xi)
(g ◦ψ)1(Xi,V )γ(UY )

]

= E
[
H(Y ) − Ĥ(Y )

h(Y ) γ(H(Y ))
]
,

where Ĥ denotes the distribution function of Ŷ = g(ψ(X̂i,V )), with X̂i = F̂−1
i (UXi).

Proof. For all 0 < u < 1 it holds that (Glasserman, 1991, Thm. 1.3)

∂

∂ε
F−1
i,ε (u)

∣∣∣
ε=0

= u− F̂i(F−1
i (u))

fi(F−1
i (u))

and we have almost surely

∂

∂ε
Xi,ε

∣∣∣
ε=0

= ∂

∂ε
F−1
i,ε (UXi)

∣∣∣
ε=0

= Fi(Xi) − F̂i(Xi)
fi(Xi)

. (4.4)

Thus, applying Proposition 4.3.6 gives the first representation.

To see the second representation, define, for all ε ≥ 0, the random variable

X̄i,ε = Xi1A + X̂i1Ac , where X̂i = F̂−1
i (UXi), A ∈ A is independent of X and V , with

P (A) = ε and Ac = Ω\A. Then, X̄i,ε and the stress Xi,ε follow the same distribution

function Fi,ε. By independence of X̂i and V , the random vectors ψ(X̄i,ε,V ) and

ψ(Xi,ε,V ) are equal in distribution for all ε > 0. Thus, the cascade sensitivity to

the stress Xi,ε is equal to the cascade sensitivity to the stress X̄i,ε. To calculate the

latter, note that the stressed output, g(ψ(X̄i,ε,V )) = Y 1A + g(ψ(X̂i,V ))1Ac , follows

the mixture distribution (1 − ε)H + εĤ, where Ĥ denotes the distribution function of

g(ψ(X̂i,V )). The representation of the cascade sensitivity to stress X̄i,ε follows from

a similar argument as in (4.4).

We provide the representation of the cascade sensitivity for the two most common

distortion risk measures in practice, VaR and ES.
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Corollary 4.4.2. Let (ψ,V ) ∈ Ri and define the perturbation Xi,ε = F−1
i,ε (UXi),

where Fi,ε = (1 − ε)Fi + εF̂i, ε ≥ 0, for a continuous distribution function F̂i. Denote

by Ĥ the distribution function of Ŷ = g(ψ(X̂i,V )), with X̂i = F̂−1
i (UXi). Then the

following hold:

1. Under Assumptions 4.A.1 i)−iv) for q = α in the appendix, the cascade sensitivity

to input factor Xi for VaRα, 0 < α < 1, is

Ci(X, g,VaRα) = α− Ĥ(H−1(α))
h(H−1(α)) .

2. Under Assumptions 4.A.1 i)−vi) for q = α in the appendix, the cascade sensitivity

to input factor Xi for ESα, 0 ≤ α < 1, is

Ci(X, g,ESα) = 1
1 − α

[
E
((
Ŷ −H−1(α)

)
+

)
− E

((
Y −H−1(α)

)
+

)]
.

Note that the second representation of the cascade sensitivity in Proposition 4.4.1

and the formulae in Corollary 4.4.2, do not require the knowledge of the gradient of the

aggregation function, but, instead, of the distribution function Ĥ. This distribution

function can be interpreted as that of a distorted output, in particular if F̂i is more

disperse than Fi.

Rewriting the representation of the cascade sensitivity in Proposition 4.4.1, we

obtain

Ci(X, g, ργ) =
∫ (

H(y) − Ĥ(y)
)
γ
(
H(y)

)
dy, (4.5)

where the integral is over the support of Y . Thus, the cascade sensitivity can be seen

as a measure of the difference of the distributions of the output Y and the distorted

output Ŷ = g(ψ(X̂i,V )), weighted according to the choice of the risk measure ργ . For

the ES risk measure, for example, the difference is integrated over the right tail of the
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4.4 Calculation of the cascade sensitivity

distributions, that is over {y > H−1(α)}. Formula (4.5) also implies that the cascade

sensitivity is robust to small changes in the weight function γ of the distortion risk

measure. In particular, the cascade sensitivities for the risk measures VaRα and ESα

are robust in α.

4.4.2 Stressing through an additive shock

The representation of the cascade sensitivity to stressing input factor Xi through a

shock Xi,ε = Xi+εZ is immediate from Proposition 4.3.6. The choice of the shock Z is,

however, not unique and should be aligned with the purpose of the sensitivity analysis.

Tsanakas and Millossovich (2016) argue that the only meaningful shocks are functions

of Xi. We consider shocks comonotonic to input Xi, specifically, Xi,ε = Xi + εk(Xi),

for non-decreasing Lipschitz continuous functions k : R → R with Lipschitz constant 1.

Moreover, in this section we make further (non-restrictive) regularity assumptions on

the input Xi as stated in Lemma 4.A.2. This choice of shock leads to a representation

of the cascade sensitivity, similar to that of Proposition 4.4.1, without involving the

aggregation function’s gradient.

Examples of additive shocks as above include stressing the tails of an input factor:

Xi,ε = Xi + ε(Xi − t1)1{Xi≤t1} + ε(Xi − t2)1{Xi≥t2}, for t1 ≤ t2 ∈ R. Alternatively, for a

unimodal input factor Xi with mode m, one may define Xi,ε = Xi + ε(Xi −m). Scaling

deviations from the mode preserves, to some extent, the shape of the distribution of

Xi. For example, if input factor Xi ∼ N(µ, σ2), then Xi,ε ∼ N(µ, (1 + ε)2σ2), while

for an exponentially distributed input factor, Xi ∼ Exp(λ), the stressed input follows

Xi,ε ∼ Exp( λ
1+ε).

Proposition 4.4.3. Let (ψ,V ) ∈ Ri and define the stress Xi,ε = Xi + εk(Xi), for

a non-decreasing Lipschitz continuous function k : R → R with Lipschitz constant 1,

that satisfies k(x) ≤ 0 on the set where fi(x) is non-decreasing and k(x) ≥ 0 on the set
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where fi(x) is non-increasing. Under Assumptions 4.A.1 in the appendix, the cascade

sensitivity to input factor Xi is

Ci(X, g, ργ) = E
[
H(Y ) − H̃(Y )

h(Y ) γ(H(Y ))
]
,

where H̃ denotes the distribution function of Ỹ = g(ψ(X̃i,V )), with X̃i = F̃−1
i (UXi)

and distribution function F̃i(x) = Fi(x) − k(x)fi(x), x ∈ R.

Proof. By Lemma 4.A.2, F̃i is indeed a distribution function and we denote its density

by f̃i. Define ξ(y) = γ(H(y)), y ∈ R. Using independence of Xi and V and the

definition of F̃i, the cascade sensitivity to stress Xi,ε can be written as

Ci(X, g, ργ) = E(k(Xi)(g ◦ψ)1(Xi,V )ξ(Y ))

= E
( ∫

R
k(x)(g ◦ψ)1(x,V )ξ(g(ψ(x,V )))fi(x)dx

)
= E

( ∫
R
(Fi(x) − F̃i(x))β(x)dx

)
,

where we denote β(x) = (g ◦ ψ)1(x,V )ξ(g(ψ(x,V ))) and B(s) =
∫ ess supXi
s β(x)dx

hence suppressing the dependence on V . Applying Fubini, we obtain

E
( ∫

R
(Fi(x) − F̃i(x))β(x)dx

)
= E

( ∫
R

∫
R

(
fi(s) − f̃i(s)

)
1{s≤x}dsβ(x)dx

)
= E

( ∫
R

(
fi(s) − f̃i(s)

)
B(s)ds

)
= E(B(Xi)) − E(B(X̃i)).
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4.4 Calculation of the cascade sensitivity

Applying the change of variable u = g(ψ(t,V )) we obtain

B(Xi) =
∫ ess supXi

Xi
β(t)dt

=
∫ ess supXi

Xi
(g ◦ψ)1(t,V )ξ(g(ψ(t,V )))dt

=
∫ ess supY

Y
ξ(u)du,

and similarly, B(X̃i) =
∫ ess sup Ỹ
Ỹ

ξ(u)du. Thus, using Lemma 4.A.3 the cascade sensi-

tivity becomes

Ci(X, g, ργ) =
∫
R
(1 − H̃(y))ξ(y)dy −

∫
R
(1 −H(y))ξ(y)dy

=
∫
R
(H(y) − H̃(y))γ(H(y))dy

= E
(
H(Y ) − H̃(Y )

h(Y ) γ(H(Y ))
)
.

The cascade sensitivity for the risk measures VaR and ES when stressing an input

factor via Xi,ε = Xi + εk(Xi), for a function k fulfilling the assumptions in Proposition

4.4.3, are analogous to Corollary 4.4.2, replacing Ĥ with H̃.

The representation of the cascade sensitivities in Proposition 4.4.3 involves a

weighted difference of the distribution functions H̃ and H, similarly to Proposition

4.4.1. Thus, calculating the sensitivity to a shock Xi,ε = Xi + εk(Xi), corresponds to

comparing the output Y with the distorted output Ỹ = g
(
ψ(F̃−1

i (UXi),V )
)
, where

F̃i(x) = Fi(x) − k(x)fi(x), x ∈ R. The next proposition shows that, provided that

E(k(Xi)) ≥ 0, F̃−1
i (UXi) dominates Xi in increasing convex order, so that the distorted

output Ỹ could be seen as more conservative than Y , when g is non-decreasing and

X positively dependent. Recall that a random variable W dominates Z in increasing
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convex order, Z ⪯icx W , if E(l(Z)) ≤ E(l(W )), for all increasing convex functions

l : R → R such that the expectations exist (Müller and Stoyan, 2002).

Proposition 4.4.4. Let Xi have finite expectation and define the random variable X̃i

with distribution function F̃i(x) = Fi(x) − k(x)fi(x), x ∈ R, as in Proposition 4.4.3.

Then the following hold:

1. If E(k(Xi)) ≥ 0, then Xi ⪯icx X̃i.

2. If 0 < ess sup k(Xi), then Xi does not dominate X̃i in increasing convex order.

Proof. Applying Lemma 4.A.2 we see that F̃i is a distribution function. Note that X̃i

dominates Xi in increasing convex order, Xi ⪯icx X̃i, if and only if E((X̃i − t)+) ≥

E((Xi − t)+) for all t ∈ R. For case 1: let t ∈ R and apply Fubini,

E
(
(X̃i − t)+

)
− E

(
(Xi − t)+

)
=
∫ ∞

t
(x− t)

(
f̃i(x) − fi(x)

)
dx

=
∫ ∞

t

∫ ∞

t

(
f̃i(x) − fi(x)

)
1{u≤x}dxdu

=
∫ ∞

t

(
Fi(u) − F̃i(u)

)
du

=
∫ ∞

t
k(u)fi(u)d(u)

= E(k(Xi)1{Xi>t}).

Recall that k is a non-decreasing function, thus if k(t) ≥ 0, the above expectation

is non-negative. If k(t) < 0, we have that E(k(Xi)1{Xi>t}) ≥ E(k(Xi)), which is

non-negative by assumption.

To see case 2: note that E(k(Xi)1{Xi>t}) is negative if and only if

E(k(Xi) | Xi > t) < 0 for all t ∈ R,

which is a contradiction to the assumption that 0 < ess sup k(Xi).
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Consider an input factor that is symmetric around zero and the stress Xi,ε =

Xi + ε(Xi − t1)1{Xi≤t1} + ε(Xi − t2)1{Xi≥t2} for t1 < 0 < t2, such that the density of the

input is non-decreasing on {x ≤ t1} and non-increasing on {x ≥ t2}. Then, Proposition

4.4.4 case 1, is fulfilled if t2 < |t1|. For a one-sided stress of an input factor, that is

Xi,ε = Xi + ε(Xi − t)+, t > 0, Proposition 4.4.4 case 1 is always satisfied. For an

unimodal input factor Xi with mode m and stress Xi,ε = Xi + ε(Xi −m), Proposition

4.4.4, case 1 is satisfied if E(Xi) ≥ m, and case 2 holds if m < ess supXi.

4.4.3 Numerical evaluation via importance sampling

In practical applications, when the marginals and the copula of the input vector are

separately specified and estimated, the calculation of an inverse Rosenblatt transform

of X may be available. For example the R package copula (Hofert et al., 2017) provides

the inverse conditional distribution functions for Archimedean and elliptical copulas.

An algorithm for the computation of the inverse Rosenblatt transform of canonical and

D-vine copulas is presented in Aas et al. (2009, Algorithm 5 and 6), and for R-vine

copulas in Schepsmeier (2015). So that ψ(X̂i,U) and ψ(X̃i,U) in Propositions 4.4.1

and 4.4.3, respectively, can explicitly be calculated.

A computationally expensive aggregation function, however, might render a direct

calculation of the cascade sensitivity unfeasible, as Propositions 4.4.1 and 4.4.3 require

the evaluation of Ŷ = g
(
ψ(X̂i,V )

)
and Ỹ = g

(
ψ(X̃i,V )

)
, respectively. For example,

in a Monte Carlo simulation setting with sample size M , the calculation of the

cascade sensitivity to one input factor requires an inverse Rosenblatt transform and

M evaluations of Ŷ or Ỹ . Fortunately, using importance sampling, the distribution

functions Ĥ, H̃ can be computed on the same Monte Carlo sample without the need
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to explicitly calculate an inverse Rosenblatt transform. It holds that, for t ∈ R,

Ĥ(t) = E
(
1{g(ψ(X̂i,V ))≤y}

)
= E

(
1{Y≤t}

f̂i(Xi)
fi(Xi)

)
, (4.6)

where f̂i denotes the density of F̂i and f̂i(Xi)
fi(Xi) play the role of importance weights. Note

that, due to independence of X̂i and V , the importance weights are a function of Xi

only. An analogous formula holds for H̃. Thus, starting with a Monte Carlo sample

of the input vector X and the knowledge of the density f̂i or f̃i, the calculation of

the cascade sensitivity is straightforward without the need to calculate an inverse

Rosenblatt transform of X. Specifically, the cascade sensitivity in Propositions 4.4.1

(4.4.3), can be estimated through the following procedure

1. Sample M multivariate scenarios x1 = (x1
1, . . . x

1
n), . . . ,xM = (xM1 , . . . xMn ) from

input vector X and calculate the corresponding realisations of the output y1 =

g(x1), . . . , yM = g(xM).

2. Estimate the distribution function and density of the output Y , for example

through the empirical distribution function and a kernel density estimator

H
emp(t) = 1

M

M∑
j=1

1{yj≤t}, t ∈ R,

h
emp(t) = 1

M

M∑
j=1

κ(t− yj), t ∈ R,

for a suitable kernel κ.

3. Estimate the cascade sensitivity by

Cemp

i = 1
M

M∑
j=1

γ(Hemp(yj))
hemp(yj)

Hemp(yj) − 1
M

M∑
k=1

f̂i(xki )
fi(xki )

1{yk≤yj}

.
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Alternatively, representation (4.5) of the cascade sensitivity allows for a calculation

without the need to estimate h.

4.5 Application to a non-linear insurance portfolio

4.5.1 The insurance portfolio

The marginal and the cascade sensitivity measures are illustrated on the following

insurance portfolio. An insurance company has two lines of business X1, X2 that are

subject to the same multiplicative factor X3. On its loss, L = X3(X1 + X2), the

insurance company has a reinsurance contract with deductible d = 380 and limit l = 30.

The insurance portfolio includes another line of business X4, also subject to the factor

X3. Thus, the total loss faced by the insurer is

Y = L− min{(L− d)+, l} +X3X4.

The two lines of business, X1, X2 follow a Log-Normal(µ = 4.98, σ2 = 0.232) distribu-

tion with mean 150 and standard deviation 35. X3 is Log-Normal(µ3 = −0.005, σ2
3 =

0.12) distributed with mean 1 and standard deviation 0.1. The line of business X4 is

Gamma(100,1) distributed with mean 100 and standard deviation 10 and is indepen-

dent of X1, X2 and X3. The sub-vector X−4 = (X1, X2, X3) is dependent through a

Gaussian copula with correlation matrix

R =


1 0.3 0.8

0.3 1 0

0.8 0 1

 .
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Figure 4.1: Marginal and cascade sensitivity of the risk measure VaRα, 0.075 <
α < 0.925, for input factor X1 (left) and input factor X2 (right), for stress Xi,ε =
Xi + ε(Xi −m), i = 1, 2.

All calculations in this section are based on a simulated Monte Carlo sample of size

M = 100, 000. We consider the marginal and cascade sensitivity to input factors X1

and X2 for the risk measures VaR and ES. Both input factors X1 and X2 are stressed

by applying the shock Xi,ε = Xi + ε(Xi −m), where m = 138.5 is the mode of either.

Note that X1 and X2 follow the same (unimodal) distribution and the aggregation

function is symmetric in X1, X2, but the dependence structure is not; X1 is highly

correlated to X3, while X2 is independent of X3.

The effect of the asymmetric dependence structure of the input factors on the

marginal and the cascade sensitivities respectively, is shown in Figures 4.1 and

4.2. Figure 4.1 displays the marginal and cascade sensitivity of the risk measure

VaRα, 0.075 < α < 0.925, to both input factors X1 and X2. The marginal and cascade

sensitivities to X1 and X2 for the risk measure ESα, 0.075 < α < 0.925, are plotted in

Figure 4.2. For α ≥ 0.5, in Figures 4.1 and 4.2, the cascade sensitivity to input factor

X1, C1, is seen to be substantially larger than the marginal sensitivity, indicating that
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Figure 4.2: Marginal and cascade sensitivity of the risk measure ESα, 0.075 < α < 0.925,
for input factorX1 (left) and input factorX2 (right) for stressXi,ε = Xi+ε(Xi−mi), i =
1, 2.

the marginal sensitivity does not reflect the indirect effects of the dependence between

risks factors.

For the ESα risk measure, the marginal and the cascade sensitivity to input X1

exceed, for all severity levels α, the respective sensitivity measures for X2. Thus

the marginal and the cascade sensitivity for ESα produce consistent ranking of the

input factors. The VaRα risk measure, however, does not provide a consistent ranking

between the marginal and the cascade sensitivity to input factors X1 and X2, see also

Section 4.5.2 for further discussion.

A criticism of sensitivity measures defined as partial derivatives is, that for input

factors on different scales, no conclusion can be drawn regarding their relative impor-

tance (Antoniano-Villalobos et al., 2018). In the insurance portfolio example, inputs

X1 and X2 follow the same distribution and thus are stressed in exactly the same

fashion, allowing for a direct comparison of S1,S2 and C1, C2. In Section 4.6 we provide

a framework, that allows to consistently stress input factors and which is independent

of the distributional assumptions of the input vector.
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4.5.2 Cascade sensitivity via importance sampling

In this section we provide the analytical formulae of the marginal and the cascade

sensitivity. First, note that the gradient of the aggregation function is given by

(
X31{L<d}∪{L>l+d}, X31{L<d}∪{L>l+d}, (X1 +X2)1{L<d}∪{L>l+d} +X4, X3

)
.

The marginal sensitivities for the risk measures VaRα and ESα to input factors Xi, i =

1, 2, following Proposition 4.3.2, are thus

Si(X, g,VaRα) = E
(
(Xi −m)X31{L<d}∪{L>l+d}1{Y=H−1(α)}

)
,

Si(X, g,ESα) = 1
1 − α

E
(
(Xi −m)X31{L<d}∪{L>l+d}1{Y >H−1(α)}

)
.

To calculate the cascade sensitivity, we apply Proposition 4.4.3, using the importance

sampling routine of Section 4.4.3. The cascade sensitivities for the risk measures VaRα

and ESα to input factors Xi, i = 1, 2, are given by

Ci(X, g,VaRα) = 1
h(H−1(α))

[
α− E

(
f̃i(Xi)
fi(Xi)

1{Y≤H−1(α)}

)]
, (4.7a)

Ci(X, g,ESα) = 1
1 − α

[
E
(
f̃i(Xi)
fi(Xi)

(
Y −H−1(α)

)
+

)
− E

((
Y −H−1(α)

)
+

)]
.

(4.7b)

The distorted densities f̃i, i = 1, 2, are equal and given by

f̃i(x) = x−m

x

(
1 + ln(x) − µ

σ2

)
fi(x), x > 0. (4.8)

Figure 4.3 displays the densities f1, f̃1 of input factor X1 and its distortion X̃1, respec-

tively. As seen in the plot, the density f̃1 places more emphasis on the tails of the

input factor, separating the probability mass away from m.
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Figure 4.3: Densities f1, f̃1, defined in equation (4.8), for the input factor X1 and the
distortion X̃1, respectively.

The left plot in Figure 4.4 shows the importance weights f̃1(X1)
f1(X1) against the input

factor X1. The importance weights are zero at the mode of X1 and give more weight

to high and low realisations of X1. The right plot of Figure 4.4 depicts the importance

weights against the output Y , indicating the positive dependence between X1 and Y .

Note that the importance weights inflate both high and low values of the output.

The empirical distribution functions Hemp of the output Y and H̃emp of the distorted

output Ỹ = g
(
ψ(X̃1,V )

)
are displayed in Figure 4.5. The crossing of the distribution

functions is due to the importance weights accentuating both high and low realisations

of Y . Figure 4.5 enables a visual interpretation of the cascade sensitivity, as the

integrated difference of H̃ and H, weighted according to the risk measure, see equation

(4.5). Thus, it illustrates why the cascade sensitivity of the VaRα, Figure 4.1, is

negative for α fulfilling H(α) < H̃(α). The cascade sensitivity for ESα, Figure 4.2, on

the other hand is positive for all 0 ≤ α < 1, since the difference of the distribution

functions is integrated over {y > H−1(α)}.
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Figure 4.4: Importance weights f̃1(X1)
f1(X1) against input factor X1 (left) and output Y

(right), used for the calculation of cascade sensitivity by importance sampling.

4.5.3 Cascade sensitivity via the inverse Rosenblatt trans-

form

We continue with the discussion of the insurance portfolio example to provide further

insight by calculating the cascade sensitivity via an inverse Rosenblatt transform. Note

that the representation of the cascade sensitivity in Proposition 4.4.3 does not require

an inverse Rosenblatt transform of the input vector. However, due to the Gaussian

copula structure, an inverse Rosenblatt transform is easily obtained in analytical

form. Recall that X = (X−4, X4), where X−4 is independent of X4, has Log-Normal

marginals and a Gaussian copula with correlation matrix R. An inverse Rosenblatt

transform of the input vector can be obtained through the Cholesky decomposition of

R = DD⊤, where

D =
(
di,j
)

1≤i,j,≤3
=


1 0 0

0.3 0.95 0

0.8 −0.25 0.54

 .
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Figure 4.5: Empirical distribution function of the output Y, Hemp, and the empirical
distribution function of the distorted output Ỹ = g(ψ(X̃1,V )), H̃emp, calculated using
importance sampling, (4.6).

Thus, we can write

X1 = exp{µ+ σZ},

X2 = exp
{
µ+ σ

[
d2,1Z + d2,2 Φ−1(V1)

]}
,

X3 = exp
{
µ3 + σ3

[
d3,1Z + d3,2 Φ−1(V1) + d3,3 Φ−1(V2)

]}
,

X4 = F−1
4 (V3),

for a standard normal random variable Z with distribution function Φ and a vector of

independent standard uniform random variables V = (V1, V2, V3). Hence, an inverse

125



Cascade Sensitivity Measures

Rosenblatt transform of X = ψ(X1,V ), (ψ,V ) ∈ R1, is given by

ψ(1)(X1,V ) = X1,

ψ(2)(X1,V ) = X
d2,1
1 exp{µ(1 − d2,1) + σd2,2 Φ−1(V1)},

ψ(3)(X1,V ) = X
d3,1

σ3
σ

1 exp
{
µ3 − σ3

[
µ
d3,1

σ
+ d3,2 Φ−1(V1) + d3,3 Φ−1(V2)

]}
,

ψ(4)(X1,V ) = F−1
4 (V3).

To calculate the cascade sensitivity to input factor X2, we need an inverse Rosenblatt

transform of X starting with input factor X2. First, we reorder the input vector to

(X2, X1, X3, X4), exchanging input factors X1 and X2. The corresponding correlation

matrix and the Cholesky decomposition of the reordered vector X−4 are given by

R∗ =


1 0.3 0

0.3 1 0.8

0 0.8 1

 , D∗ =
(
d∗
i,j

)
1≤i,j≤3

=


1 0 0

0.3 0.95 0

0 0.84 0.54

 ,

with R∗ = D∗D∗⊤. Analogously to the above construction, an inverse Rosenblatt

transform of X = ϕ(X2,U), for (ϕ,U) ∈ R2, is given by

ϕ(1)(X2,U) = X
d∗

2,1
2 exp{µ(1 − d∗

2,1) + σd∗
2,2 Φ−1(U1)},

ϕ(2)(X2,U) = X2,

ϕ(3)(X2,U) = exp
{
µ3 + σ3

[
d∗

3,2 Φ−1(U1) + d∗
3,3 Φ−1(U2)

]}
,

ϕ(4)(X2,U) = F−1
4 (U3),

where we write U = (U1, U2, U3). Note that we used above that d∗
3,1 = Corr(X2, X3) =

0.
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4.5 Application to a non-linear insurance portfolio

The partial derivatives of both (ψ,V ) ∈ R1 and (ϕ,U) ∈ R2, are displayed in

Table 4.1. Note that d2,1 = d∗
2,1 = Corr(X1, X2) = 0.3, thus the terms reflecting the

indirect effects of the dependence between the input factors are scaled according to

their correlation with the stressed input factor.

Table 4.1: Derivative of the inverse Rosenblatt transforms of input vector X, (ψ,V ) ∈
R1 and (ϕ,U ) ∈ R2. Note that in ψ(j)

1 the derivative is taken with respect to X1 while
in ϕ

(j)
1 it is taken with respect to X2.

j = 1 j = 2 j = 3 j = 4

ψ
(j)
1 1 Corr(X1, X2)

X2

X1
Corr(X1, X3)

σ3

σ

X3

X1
0

ϕ
(j)
1 Corr(X1, X2)

X1

X2
1 0 0

The cascade sensitivities for the VaRα risk measure to input factors X1 and X2 are

given by Proposition 4.3.6:

C1 = S1 + Corr(X1, X2)E
(
X2

X1
(X1 −m)X31{L<d}∪{L>l+d}1{Y=H−1(α)}

)
+ σ3

σ
Corr(X1, X3)E

(
X3

X1
(X1 −m)

(
(X1 +X2)1{L<d}∪{L>l+d} +X4

)
1{Y=H−1(α)}

)
,

C2 = S2 + Corr(X1, X2)E
(
X1

X2
(X2 −m)X31{L<d}∪{L>l+d}1{Y=H−1(α)}

)
.

The cascade sensitivity C1 includes the terms accounting for the dependence between

X1, X2 and X1, X3, while C2 only incorporates the term reflecting dependence between

X1, X2, explaining the larger (absolute) values of C1.

4.5.4 Influence of indirect dependence between input factors

We illustrate the indirect effects of the dependence structure of the input vector on

the marginal and cascade sensitivity, by considering different correlations between

input factors X1 and X3. The marginal and cascade sensitivities to X1 and X2 for the
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risk measure ES0.9 and for Corr(X1, X3) = 0.0, ..., 0.8, are calculated using (4.7) and

reported in Table 4.2. In the last two columns of Table 4.2, we state Cj−Sj
Cj , j = 1, 2,

that is, the percentage of the cascade sensitivity that stems from the indirect effects of

the dependence between the input factors.

While the absolute values of the marginal and the cascade sensitivity measures

cannot be compared in a direct manner, their relative change for different correlation

coefficients provides some insight. As seen in Table 4.2, both the marginal and the

cascade sensitivity to input factor X1 increase with the correlation between X1 and

X3, where the extent of change is more substantial in C1 than in S1. The marginal

sensitivity to input factor X2 is constant, implying that S2 does not account for changes

of the dependence between X1 and X3. This is in contrast to the cascade sensitivity to

input factor X2, which increases by 5%, thus indicating that the correlation between

X1 and X3 plays a role in the cascade sensitivity to input factor X2.

Table 4.2: Marginal and cascade sensitivity for the ES0.9 with Corr(X1, X3) =
0.0, ..., 0.8.

Corr(X1, X3) S1 S2 C1 C2
C1−S1

C1
C2−S2

C2

0.0 46 45 55 55 0.16 0.18
0.2 54 45 76 55 0.29 0.18
0.4 63 45 101 56 0.38 0.20
0.6 71 45 129 57 0.45 0.21
0.8 80 45 162 58 0.50 0.22

4.6 Application to a black box model

This section illustrates the applicability of the cascade sensitivity measure to a black

box model: a setting where an analyst has no access to the full specification of either

F or g, but only to a set of input / output simulations. Such a situation is common in

insurance applications. The model represents a London Insurance Market portfolio
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4.6 Application to a black box model

loss of 72 input factors, measured on the same scale, and is currently in use by a

participant in the market. The analysis is based on a Monte Carlo sample of size

M = 500, 000, provided to us by the model owner, consisting of simulated observations

from input vector X and output Y . We do not have access to the marginal nor the

joint distribution of the input vector, indeed, the input factors are themselves output

of different models.

To allow for a comparison between the cascade sensitivities to different inputs, we

require a consistent way of stressing the 72 input factors. To this end, each input

factor Xj is transformed to a standard normal random variable Zj, comonotonic to

Xj, through

Xj = F−1
j (Φ(Zj)), j = 1, . . . , 72. (4.9)

Note that equation (4.9) allows to stress the input factors through distorting the

standard normal random variables Zj, j = 1, . . . , 72,. Applying an additive shock

Zj,ε = Zj(1 + ε) to the standard normal random variables Zj, for all j = 1, . . . , 72,

stresses the input factors in a consistent fashion. The cascade sensitivity to input Xj,

with shock Xj,ε = F−1
j (Φ(Zj,ε)), is then given by Proposition 4.4.3 with

Ỹ = g
(
ψ
(
F−1
j (Φ(Z̃j)

)
,V

)
, for (ψ,V ) ∈ Rj,

where Z̃ follows distribution function Φ̃(x) = Φ(x) − xΦ′(x), x ∈ R. The distorted

output distribution function H̃ of Ỹ , and thus the cascade sensitivities, can easily be

calculated via importance sampling, by the algorithm in Section 4.4.3. In particular it

holds that

H̃(y) = E

(
1{Y≤y}

Φ̃′(Zi)
Φ′(Zi)

)
.

Recall that the algorithm in Section 4.4.3 does not require the explicit knowledge of

the distribution of the input factors, the inverse Rosenblatt transform of X nor the
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Figure 4.6: Cascade sensitivity for the ES0.9 of the London Market portfolio, including
90% confidence intervals.

derivative of the aggregation function, hence making the cascade sensitivity framework

applicable to a black box model setting. Figure 4.6 displays the cascade sensitivities

for the 72 input factors for the risk measure ES0.9 including 90% confidence intervals,

calculated using bootstrap based on 500 simulations.

4.7 Conclusion

We propose a novel sensitivity measure, defined as a directional derivative of a distortion

risk measure applied to the model output in direction to a stressed input factor. The

cascade sensitivity captures not only the direct impact of the stressed input factor

on the output but also the indirect effects arising via dependence with other input
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factors. Through examples, we show that the dependence between input factors may

substantially contribute to the cascade sensitivity of a particular input.

We provide representations of the cascade sensitivity that allow for a straightforward

calculation on one Monte Carlo sample and without the knowledge of the gradient of

the aggregation function. In particular, we consider stresses consisting of either an

additive shock to an input factor or a perturbation, such that the stressed input factor

follows a mixture distribution. These representations of the cascade sensitivity make

implementation of the proposed sensitivity measure numerically efficient and, thus,

attractive for applications in practice.

Appendix 4.A Assumptions and proofs

Assumption 4.A.1. Let ργ be a distortion risk measure, 0 < q < 1, and Xi,ε, ε ≥ 0,

a stress. With abuse of notation, we denote the stressed input vector by Xi,ε =

(X1, . . . , Xi,ε, . . . , Xn) for the marginal sensitivity and Xi,ε = ψ(Xi,ε,V ), (ψ,V ) ∈ Ri,

for the cascade sensitivity, respectively. We write Yi,ε = g(Xi,ε) for the stressed output

and denote its distribution function by Hi,ε.

i) There exists a random variable W with E(W ) < +∞, such that |Yi,ε2 − Yi,ε1| ≤

W |ε2 − ε1| for all ε1, ε2 > 0 in a neighbourhood of 0.

ii) The derivative with respect to ε of Yi,ε exists with probability 1 for all ε > 0 in a

neighbourhood of 0.

iii) For all ε > 0 in a neighbourhood of 0, Yi,ε has a continuous density in a

neighbourhood of H−1(q). The derivative of the distribution function with

respect to ε exists and is continuous (in both arguments) at H−1(q).

iv) For all ε > 0 in a neighbourhood of 0, the function E
(
∂
∂ε
Yi,ε |Yi,ε = y

)
is

continuous at y = H−1(q).
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v) It holds P
(
Yi,ε = H−1

i,ε (q)
)

= 0 for all ε > 0 in a neighbourhood of 0.

vi) The function H−1
i,ε (q) is differentiable for all ε > 0 in a neighbourhood of 0.

vii) The aggregation function g is invertible in at least one argument, say the jth,

and Xj has a conditional density given X−j.

viii) P (Hi,ε(Yi,ε) ∈ Dγ) = 1, where Dγ is the set where the weight function γ is

differentiable.

ix) ∂
∂ε
H−1
i,ε is bounded for all ε > 0 in a neighbourhood of 0.

Lemma 4.A.2. Let Z be an integrable random variable with distribution function

FZ and right-continuous density fZ whose support can be split into countably many

intervals on which fZ is monotonic. Let k : R → R a non-decreasing Lipschitz con-

tinuous function with Lipschitz constant 1, that satisfies k(x) ≤ 0 on the set where

fZ(x) is non-decreasing and k(x) ≥ 0 on the set where fZ(x) is non-increasing. Then

F̃Z(x) = FZ(x) − k(x)fZ(x), x ∈ R, defines a distribution function.

Proof. By Lipschitz continuity of k, it holds −(k(y) − k(x)) ≥ −(y − x), for all x < y.

Let a, b ∈ R such that fZ is non-decreasing on [a, b], then it holds for all a ≤ x < y ≤ b

that

F̃Z(y) − F̃Z(x) =
∫ y

x
fZ(u)du− k(y)fZ(y) − (k(y) − k(x))fZ(x) + k(y)fZ(x)

≥
∫ y

x

(
fZ(u) − fZ(x)

)
du− k(y)

(
fZ(y) − fZ(x)

)
≥ 0.
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Similarly, for a, b ∈ R such that fZ is non-increasing on [a, b], we have for all a ≤ x <

y ≤ b

F̃Z(y) − F̃Z(x) =
∫ y

x
fZ(u)du− (k(y) − k(x))fZ(y) − k(x)fZ(y) + k(x)fZ(x)

≥
∫ y

x

(
fZ(u) − fZ(y)

)
du+ k(x)

(
fZ(x) − fZ(y)

)
≥ 0.

For x < y, for which fZ is not monotone on [x, y], we define the partition x = m1 ≤

· · · ≤ mr = y such that fZ is monotone on [mj,mj+1], for all j = 1, . . . , r − 1. Then,

we can write F̃Z(y) − F̃Z(x) = ∑r−1
j=1 F̃Z(mj+1) − F̃Z(mj), and thus F̃Z is indeed a

distribution function.

Lemma 4.A.3. Let K : R → R be an absolutely function with representation K(x) =∫ x
b κ(s)ds for all x ≥ b, where κ is a non-negative function and b ≥ −∞. Then, for any

random variable Z ≥ b a.s. with E(K(Z)) < ∞ it holds that

E(K(Z)) =
∫ +∞

b
κ(s)P (Z > s)ds.

Proof. For any b ≥ −∞ we obtain using Fubini

E(K(Z)) = E
( ∫ Z

b
κ(s)ds

)
= E

( ∫ +∞

b
κ(s)1{Z≥b}ds

)
=
∫ +∞

−∞
κ(s)P (Z > s)ds.
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