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1. LUNG CANCER SCREENING CHALLENGES. IS IMAGING SUFFICIENT 
FOR SUCCESSFUL SCREENING? THE UNMET NEEDS 
Current evidence supports screening of subjects who fit the NCI sponsored 

National Lung Screening Trial (NLST) criteria. The NLST compared annual low-

dose computed tomography (LDCT) screening with conventional chest 

radiography and found that LDCT screening achieved a 20% lung cancer 

mortality reduction after only three rounds of screening1. Prospective data 

accrued by the International Early Lung Cancer Action Program (iELCAP) from 

thousands of screening rounds, also support annual screening with LDCT 

(Henschke et al 2006), while data from the European NELSON trial, a Dutch-

Belgian initiative, are also favourable to screening2. Consequently, 

recommendations from prominent scientific societies support screening with 

LDCT despite concerns regarding false positive findings, the risk of 

overdiagnosis, logistical challenges, and differences in selection criteria3–6. 

Chief among these concerns is the widespread adoption of NLST age (55-74) 

and tobacco exposure (Pack-Years≥30) inclusion criteria by screening 

guidelines. Current evidence suggests that such criteria may preclude 

screening of many individuals at risk7–11. It is becoming clearer that a more 

sophisticated risk-based strategy, taking emphysema into account, for example, 

may be better than the current NLST criteria7,12–17  

The advantage of the LDCT based protocol is its simplicity and its high 

sensitivity. Refined criteria defining positive findings, largely based on nodule 

size and/or volume, reduce false positive rates. That notwithstanding, there is a 

need for evidence-based biomarkers to support pre- and post-test (LDCT) risk 

assessment18. Ideally, robust biomarkers would optimize image-based 

screening in two ways. First, they would allow further refinement of screening 

selection criteria, independent of age and tobacco exposure, in order to limit the 

costs of lung cancer screening. This risk management biomarker strategy would 

be a welcome addition to current screening practice. For example, a number of 

single nucleotide polymorphisms (SNPs) have been proposed in this regard as 

potential biomarkers of constitutive genomic risk for a given individual (see 

paragraph 4.4). Such biomarkers are the focus of ongoing research when 

integrated with current clinical-epidemiological risk models for lung cancer19. 
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Secondly, a validated panel of biomarkers may provide a post-test risk 

assessment capable of informing clinical decision making in the management of 

indeterminate pulmonary nodules (IPNs). Current management of IPNs is 

largely based on watchful waiting and may imply a risk of dissemination. 

Nodules found on annual screening, often so small that they are out of reach of 

current biopsy techniques, may benefit from a biomarker-based risk 

assessment. In particular biomarkers may be helpful in the case of patients with 

nodules that need sooner surveillance or a decision for biopsy. Patients with 

multiple nodules or those subject to frequent interval scans during screening 

might also benefit. Finally, biomarkers might also inform decisions regarding 

screening intervals, personalized follow up of survivors of screen detected early 

stage lung cancer, outcome prediction, or response to adjuvant therapy for 

those at high-risk of recurrence. In the present review we will refer only to the 

biomarkers intended for the first two unmet needs (risk management and IPN 

characterization). Other recent articles have dealt with early lung cancer 

prognostic biomarkers20,21. We will focus initially on biomarkers that are non-

invasive, reproducible and validated, and conclude the current review with other 

promising technologies which are being developed in the context of early 

detection.   
 
2. WHAT IS A GOOD BIOMARKER?  
The National Institutes of Health define a biomarker as “a characteristic that is 

objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention”22. A useful biomarker must influence clinical decision making in a 

manner that leads to improved patient care. The benefit of clinical decisions 

based on true test results must outweigh the harms of decisions based on false 

positives or negatives. In the risk management setting, a biomarker should 

minimize harm and expense without leading to an increase in lung cancer 

deaths. When used for IPN characterization, a biomarker should anticipate the 

diagnosis of malignancy without substantially increasing the number of 

diagnostic procedures performed for benign nodules or delaying therapeutic 

procedures for malignant nodules23. 
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2.1 Optimizing lung cancer biomarker discovery 

We believe that validation of a clinically useful biomarker should adhere to the 

following principles summarized in table 1. Study design. Much is gained from 

the careful selection of the molecular approach chosen and should be guided by 

the intended use, where the biomarker would find potential clinical utility24. All 

too often investigators focus on versatility, seeking biomarkers which address 

multiple clinical needs such as risk assessment, diagnosis, or response to 

therapy. Much merit lies in limiting scope by addressing specific clinical needs. 

Biomarker stability. Information about the stability of the analyte over time, 

including changes in temperature, pH, enzymatic or oxidative stress is critical25. 

Analytical validation. Biomarker measurements should follow a well-defined 

strategy, and be accurate, precise and robust. Validation should include testing 

reproducibility against larger sources of variability such as biospecimen 

collection (e.g., sample processing, freeze thaw cycles, duration of storage, 

etc.), operator characteristics, laboratory environment, and quality control 

(standard curves, SOPs). Some variability is inherent to the technology itself 

(energy source, enzymatic activity, temperature control)26. Metrics of success 

include coefficient of variance, Z statistic, limits of detection, and quantitation. 

Clinical validation. The ideal diagnostic biomarker is both sensitive and 

specific, with diagnostic likelihood ratios independent of known predictors of the 

disease (e.g. age, smoking history or COPD). Validation should be performed in 

the clinical context of intended use. Case control studies are discouraged while 

prospective cohort studies and observational registries are preferable. The 

biomarker will be tested in multiple cohorts with similar prevalence of disease. 

Biomarkers rarely perform well across a large range of disease prevalence and 

their performance characteristics are often susceptible to changes in simple 

variables such as age or disease stage. Clinical utility. The biomarker should 

be tested for clinical utility in larger studies in a pragmatic setting, not disrupting 

the clinical workflow. The goal of any biomarker is to achieve superior 

performance compared to standard of care approaches and eventually reduce 

cost and harm of testing while limiting false negative rates23. Study design is 

challenging due to randomization and the need to impact clinical management 

(see below a potential trial design). Ultimately, implementation of the biomarker 

in routine practice will determine its true value for clinical decision making.  
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2.2. The metrics of success 
Biomarker performance and accuracy are dependent on the intended use and 

current alternatives. A successful biomarker must supersede the current 

standard of care27,28, be cost effective, welcomed by the community, and 

eventually demonstrate cancer control if early detection is the goal (Figure 1), or 

promote personalized medicine by identifying candidates for targeted 

therapies1. Understanding traditional metrics of success in this context is key. 

Sensitivity and specificity, for example, are often unstable over multiple 

variables such as age or disease stage. Positive and negative predictive values 

(PPV and NPV) are dependent on the prevalence of disease. ROC curves, i.e. 

true-positive vs false-positive rates (TPR and FPR), are helpful, but complicate 

decision making because of the need for dichotomous biomarker cut-off values. 

Reclassification indices have a role in testing a biomarker’s ability to accurately 

reclassify cases and controls and therefore influence clinical decision making.   
 

3. CURRENT PROMISING MOLECULAR BIOMARKERS 

3.1 Molecular biomarkers for lung cancer screening 

Blood is an obvious first choice as the source of biomarker candidates for lung 

cancer screening. Blood-based biomarkers provide an overview of the whole 

patient body, including the primary tumor, metastatic disease, immune 

response, and peri-tumoral stroma. However, sputum, bronchial lavage or 

aspirate samples, exhaled breath, or airway epithelium sampling are unique to 

lung and other respiratory tract cancers as potential sources of alternative 

biomarkers. These may provide information regarding molecular changes which 

may be anatomically closer to the tumor cells and their microenvironment and 

therefore potentially more relevant to clinical decision making in screened 

patients with early stage disease (Figure 2). Urine or saliva have also been 

collected as potential sources of biomarkers. The former is particularly useful in 

a metabolomics-based approach. 

A concise review of the most prominent molecular biomarkers for lung cancer 

screening includes examples of molecular candidates for both risk management 
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and IPN characterization in diverse stages of validation. We have included 

those which we consider most promising. We are well aware of the risk of 

omitting potential candidates. Table 2 includes a list of biomarkers which have 

reached different levels of validation. 

3.1.1. Autoantibodies 
Autoantibodies (AAbs) develop in response to an abnormal tumor antigen in 

some patients with lung cancer, often in the pre-clinical phase well before 

symptoms appear or imaging-based detection is possible. Autoantibodies have 

been identified in all histologic types and stages of lung cancer. They are 

usually absent or found in low titers in those without cancer, but also in many 

patients with the disease. Autoantibody panels are therefore likely to be specific 

but not sensitive. A well validated autoantibody panel has been studied in 

different screening cohorts as a lung cancer risk management approach29–36. In 

a clinical validation study including all lung cancer histologies and stages the 

panel performed well with 93% specificity, but only 40% sensitivity37. Similarly, a 

practice audit of 1699 patients (61 with lung cancer and 1/3 in stage I) found 

that the panel had robust specificity (91%) but low sensitivity (37%)33. 

Autoantibodies may find a place in clinical practice by improving the overall test 

accuracy of hybrid panels featuring diverse biomarkers38. 

 
3.1.2 Complement fragments  
Lung cancer can activate the complement cascade via the classical 

complement pathway39. Concentrations of a downstream split product of this 

pathway, C4d, are increased in biological fluids from lung cancer patients. 

Plasma C4d levels have been linked to increased lung cancer risk in a cohort of 

190 asymptomatic individuals, including 32 patients with screening detected 

cancer, enrolled in the iELCAP cohort (odds ratio = 4.38; 95% CI = 1.61 to 

11.93). In that study, potential confounders such as emphysema and COPD did 

not appear to affect C4d plasma levels39. Unfortunately, its use as a marker for 

the selection of risk patients could not be validated using samples from the 

MILD CT-screening trial40. Nevertheless, results on its use for the management 

of indeterminate pulmonary nodules are more promising. Plasma samples from 

patients from two independent cohorts with malignant nodules, presented 
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significantly higher levels of C4d than those with benign nodules. In selected 

patients with intermediate-sized pulmonary nodules (8-30 mm), C4d plasma 

levels identified benign lung nodules with an 84% NPV and a 54% PPV. Once 

again the test enjoyed high specificity (89%), at the expense of low sensitivity 

(44%)40. 

 
3.1.3 miRNAs  
Circulating microRNAs (miRNAs) reflecting tumor-host interactions, have 

emerged as potential biomarkers for cancer diagnosis and prognosis 

irrespective of tumor stage and mutational bourden36 (Verri et al, JTO 2017). 

The role of miRNA-based liquid biopsies has been assessed in the context of 

screening with LDCT in two large Italian retrospective validation studies37,38. 

Use of the miRNA signature classifier (MSC) and the miR-Test resulted in a 

five- and four-fold reduction in the LDCT-false positive rate with comparable 

specificity (81-75%) and sensitivity (87-78%). In post-surgical plasma samples, 

the MSC showed good performance in monitoring disease relapse (Sestini et al. 

Oncotarget 2015). The two tests are now undergoing prospective validation in 

three independent screening trials enrolling a total of 16,000 high-risk subjects.  
3.1.4 Circulating tumor DNA 
The value of circulating tumor DNA (ctDNA) as a biomarker in advanced tumor 

stages is well established41,42. However, its role in early lung cancer detection is 

still uncertain43. Abbosh et al. reported 48% sensitivity overall, setting a 

threshold of 2 single-nucleotide variants (SNVs) in 96 stage I-III NSCLC 

patients. Sensitivity ranged from 15% for stage I adenocarcinomas to 100% for 

stage II-III squamous cell carcinomas44. Current efforts to develop Next 

Generation Sequencing (NGS) technologies in order to study ctDNA in the 

context of early detection may improve sensitivity in this context (see below). 

 
3.1.5 Serum DNA methylation 
Tumor tissue is characterized by a global DNA hypomethylation status together 

with hypermethylation of specific CpG islands in the promoter region of tumor-

suppressor genes45. Hypermethylation of at least one of four studied genes was 

detected twenty years ago in 15 of 22 (68%) NSCLC tumors but not in any 

paired normal lung tissue. In these primary tumors with methylation, 11 of 15 



9 
 

(73%) samples also had abnormal methylated DNA in the matched serum 

sample46. More recently, a 64-qPCR-assay was studied in 204 serum samples 

from 33 lung cancer, 68 fibrotic ILD and 42 COPD patients, as well as 61 

healthy controls. The test had 88% sensitivity, 90% specificity when compared 

to controls, and 88% specificity when compared to COPD and ILD patients47. In 

2017, Ooki et al. reported that a 6-gene panel correctly classified 43 stage IA 

and 42 control subjects with 72% sensitivity and 71% specificity48. Hulbert et al. 

recently described a three-gene model discriminating subjects with suspicious 

nodules on CT imaging (150 stages I-II NSCLC and 60 controls) with 98% 

sensitivity and 71% specificity in sputum and 93% sensitivity and 62% 

specificity in plasma samples49.  

 
3.1.6 Serum protein profiling 
Many studies have identified measurable serum antigens in lung cancer 

patients. Panels of serum cancer antigens have been developed to improve 

diagnostic accuracy. One panel of 3 serum proteins (CEA, CA-125, CYFRA 21-

1) and an AAb (NY-ESO-1) performed well in a high-risk cohort with 71% 

sensitivity and 88% specificity for lung cancer38. Clinical validation was 

performed in a separate high-risk cohort (based on age and smoking history) 

with lower sensitivity (49%) but higher specificity (96%). The incorporation of 

clinical variables improved accuracy50. A different panel of cancer antigens 

(CEA, CA15.3, SCC, CYFRA 21-1, NSE, ProGRP) increased the AUC of a 

clinical prediction model based on nodule size, age, and smoking status from 

0.85 to 0.93 in a series of 3144 symptomatic individuals, including 1828 with 

lung cancer (52% stage IV) (Molina et al 2016). A two-protein biomarker ratio 

combined with a lung nodule clinical risk predictor had a sensitivity of 97% and 

a specificity of 44% for malignant disease in a series of 178 patients with 

suspicious lung nodules. This integrated classifier could have led to a 40% 

relative reduction in invasive testing for patients with benign nodules (10% 

ARR) while potentially delaying the management of 3% of malignant 

nodules50,51. 

 
3.1.7 RNA airway and nasal signature 
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Based on the “field of injury” paradigm52, airway epithelial gene-expression has 

been developed as a diagnostic biomarker for lung cancer. Initial studies 

focused on bronchial airway epithelial cells obtained via endobronchial 

brushings of the mainstem bronchus53,54. A 23-gene biomarker measured in 

bronchial epithelial cells has been tested as an adjuvant diagnostic biomarker 

for patients undergoing bronchoscopy for suspected lung cancer55. This 

biomarker underwent clinical validation in 2 independent prospective cohorts, 

demonstrating a sensitivity of 88-89% and a specificity of 48%. The biomarker 

was particularly helpful in patients with an intermediate (10-60%) pre-test risk of 

lung cancer (91% NPV). Patients with inconclusive bronchoscopy results could 

have benefited from the biomarker’s negative predictive value by avoiding 

further invasive testing, suggesting they could be followed safely with serial 

imaging studies28. Following analytic validation56 and other clinical studies57,58, 

the test received a favourable Medicare coverage decision in 2017. 

 

The same “field of injury” concept may be useful in samples of nasal epithelial 

cells. This approach has obvious advantages as a minimally invasive diagnostic 

alternative for those not undergoing bronchoscopy as part of their clinical work 

up. A 30-gene nasal expression panel has been developed for diagnosing lung 

cancer among ever smokers with suspected disease, demonstrating 

improvement in AUC, sensitivity, and NPV when combined with clinical risk 

models59.  

 

3.2 Current trials in which biomarkers are considered or included. 
Clinical validation study results have been published for a handful of 

biomarkers. Other biomarkers linger at various stages of development, while a 

few have entered formal clinical testing. The aforementioned panel of 

autoantibodies29 is currently being assessed as part of a Scottish NHS funded 

randomized controlled screening study enrolling 12,000 subjects (the ECLS 

study; NCT01925625). A bronchial gene-expression classifier that could 

improve the diagnostic performance of bronchoscopy is being tested in a large 

registry. The combination of the plasma MSC with LDCT results informs 

screening intervals in 4119 at risk subjects in the bioMILD screening trial 

(NCT02247453)60. Plasma samples prospectively collected during the 
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COSMOS II screening trial have been profiled to set-up and validate the clinical 

utility of the miR-Test (Lococo F et al, Lung 2015).  The DECAMP-1 and -2 

prospective observational trials (NCT01785342 and NCT02504697) have been 

designed to examine a variety of existing biomarkers for lung cancer diagnosis 

as well as new biomarkers discovered specifically in this clinical setting. 

DECAMP-1 seeks to improve follow-up of patients with IPNs by determining 

whether analyzed biomarkers are able to distinguish incidentally detected 

malignant from benign pulmonary nodules in high-risk smokers, while 

DECAMP-2 will test biomarkers of risk in asymptomatic high-risk screened 

individuals.  

 

An exciting amount of high-quality discovery and clinical validation work is 

ongoing. Some companies are in the process of planning true clinical utility 

studies for lung nodule management. The lack of an established trade-off 

regarding the consequences of true and false biomarker results is a challenge 

that every biomarker developer will face. It would behoove the clinical 

community to provide guidance regarding acceptable trade-offs both in the 

screening and the lung nodule management settings23. 

 

4. EMERGING BIOMARKERS, NEW TECHNOLOGIES TO FOLLOW AND 
FUTURE DIRECTIONS. THE POWER OF INTEGRATION 
The aforementioned biomarkers have been the object of intense research and a 

number of them are being assessed in a risk management strategy to 

recommend screening or aiming to characterize IPNs. We will now discuss 

promising new technologies with potential, including integrated approaches to 

biomarker development in lung cancer screening.  

 

4.1 Exhaled breath biomarkers 
There is growing evidence to support the use of exhaled breath (EB), including 

exhaled breath condensate (EBC) for diagnostic purposes, including cancer 

detection. The EBC, which includes cells and DNA fragments, may even 

support detection of resistant clones of EGFR cells61. The volatile fragments of 

the EB are sensitive biomarkers of lung cancer. Volatile organic compounds 

(VOCs) can be captured and analysed by a wide range of technologies, 
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including GC-MS, nano-sensors, colorimetric sensors, and other methods.62,63 

An artificially intelligent nano-array sensor has been used in the diagnosis and 

classification of 17 different diseases from breath samples of 1404 subjects, 

with 86% accuracy. Some studies suggest that such an array may discriminate 

benign from malignant pulmonary nodules64, or predict response to therapy and  

recurrence65. It may also distinguish histologic type66 or predict molecular 

analysis results67. Interestingly, it apparently may also discriminate between 

different types of cancer (lung, breast, colorectal, and prostate)68. 

 

4.2 Sputum cell based image analysis 
While sputum cytology has traditionally failed to yield either adequate or useful 

samples for lung cancer screening, the advent of “enhanced cytology”, in which 

sophisticated image analysis algorithms are combined with artificial intelligence, 

may yet prove sputum useful in this context. A newly developed test can identify 

abnormal cells in sputum samples of screened patients69. This test may be used 

as a primary screening modality with a reported sensitivity of 90% when 800 or 

more bronchial cells are available for analysis, or integrated with LDCT in the 

context of a conventional CT based screening program for IPN 

characterization70. In the latter case, fewer cells may be needed, since the 

clinician can integrate clinical, molecular or conventional sputum cytology data 

together with imaging results for greater diagnostic accuracy. 

 
4.3 Metabolomics 
A range of different analytical platforms and methodologies have been applied 

to identify metabolic biomarkers of lung cancer71. Metabolomics provides a 

direct functional readout of the phenotypic changes associated with the 

development of lung tumors and their microenvironment. Metabolomics has 

several advantages when compared to other omics, including a reduced 

number of metabolites and a wide range of biological samples that can be 

tested. Changes in lung cancer metabolites include those involved in glycolysis, 

the citric acid cycle, amino acid metabolism and cell membrane synthesis71,72. 

Metabolomics can differentiate between histological subtypes or genetic 

backgrounds73,74. A panel of metabolites excreted in the urine, including 

creatine riboside (CR) and N-acetylneuraminic acid (NANA), have been 
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associated with lung cancer risk prior to clinically detectable disease75,76. Panels 

as well as individual markers in blood, sputum, or exhaled breath condensate 

have also been proposed to identify high-risk candidates for screening or to 

discriminate between benign and malignant IPNs77–82. Finally, other -omics, 

such as microbiomics, are providing us with novel diagnostic markers that merit 

a closer look83 . 

 

4.4 Genetic predisposition to lung cancer 
The advent of GWAS analysis potentially could provide the lung cancer 

community with strong evidence of genetic susceptibility genes, which may be 

included in lung cancer risk prediction models12,13,84. Current evidence from a 

major review in 2017 of over 1000 candidate association studies, identified 22 

variants in 21 genes, which had strong cumulative epidemiological evidence of 

significant associations with lung cancer risk14.The OncoArray consortium 

research programme19 has provided recent new insights and a new set of 

susceptibility genes85, however, it still needs to be demonstrated that they make 

a significant contribution to risk prediction models used in lung cancer screening 

trials, over and above the patient’s epidemiological and clinical information86. 

However, these susceptibility genes do provide an insight into the biological 

process and association with specific pathologies, which are relevant to lung 

cancer aetiology87,88. The question which has to be asked, is how should we 

utilize the state of art mathematical and statistical approaches which can 

incorporate very large numbers of SNPs within risk models, through artificial 

intelligence and supervised machine learning approaches.  Clearly there is a 

wealth of information captured within the current GWAS data sets. We just need 

to find the next generation of tools to release it89,90. 

 

 
4.5 Integrating molecular biomarkers with radiomics and artificial 
intelligence 
The current scientific field of radiomics, a term first used by Dutch researcher 

Philippe Lambin in 2012, is a newcomer in search of biomarkers among the 

seemingly limitless supply of data related to lung cancer imaging based 

phenotypes and tumor microenvironment91,92. The accumulation of detailed 
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imaging data in the current era of artificial intelligence has set the stage for 

much progress in this field. Deep-learning architectures, for example, can be 

useful in lung nodule characterization93,94. Current research in the field is 

centered on robust identification of the region of interest in time, direct spatio-

temporal phenotypic characterization of tumor microenvironments, the 

integration of multiscale information at the local (nodule), regional (lobe), and 

organ levels, as well as the integration of imaging, clinical and -omics data in 

end to end learning architectures. 

 

The combination of imaging based deep learning with molecular biomarkers 

may be very powerful in the characterization of IPNs. Radiomics can identify 

EGFR and KRAS mutated tumors95,96. Imaging signatures based of quantitative 

analysis of imaging data can also predict survival97. Some studies have shown 

that the integration of plasma biomarkers and radiological characteristics is a 

better predictor of lung cancer in patients with IPNs98. Prediction models 

integrating serum biomarkers with clinical characteristics and radiographic 

features of suspicious nodules correctly identified malignant nodules in several 

studies27,99. The integrated models outperform the use of serum biomarkers 

alone and overall represent a very promising approach for the future of early 

lung cancer detection, especially if artificial intelligence is incorporated100–102. 

 
4.6 Integration of multiple next generation sequencing (NGS) analysis in 
circulating DNA.  
We have already alluded to the use of NGS of ctDNA as a promising strategy 

for early lung cancer detection. The biggest technical challenge is sensitivity. In 

an attempt to overcome this limitation, a recently reported test for pan-cancer 

early detection combined the NGS analysis of ctDNA in blood with a large panel 

of protein biomarkers in 1,005 stage I-III pan-cancer patients and 812 cancer-

free controls103. While specificity was > 99%, sensitivity ranged from 33% for 

breast cancer to 98% for ovarian cancer. The sensitivity for lung cancer was 

59% in 104 patients. Although promising, the study had some important 

limitations including the fact that most cancer patients were symptomatic, and 

control subjects had no comorbidities which could have acted as confounding 

variables. 
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The scientific community is also awaiting results of the Circulating Cell-free 

Genome Atlas Study (CCGA) for early cancer detection, enrolling 15,000 

participants including cancer-free controls in the U.S. and Canada. Plasma 

samples collected at baseline and during 5 years of follow-up will be analyzed 

by whole-genome sequencing (WGS) for copy number variation (CNV), 

targeted DNA sequencing (507-gene panel), and whole genome methylome 

profiling. Preliminary results in an observational case-control setting include 

95% specificity, high sensitivity for advanced lung cancer in 54 patients (85% 

for targeted sequencing, 91% for CNV WGS, and 93% for methylome profiling), 

and modest sensitivity for 63 patients with stage I-III lung cancer (48% for 

targeted NGS, 54% for CNV WGS, and 56% for methylome profiling)104. The 

generalizability of these findings to the screening setting is uncertain. A recent 

review by Aravanis, Lee and Klausner105 addressed the challenges NGS faces 

in early cancer detection. The authors suggested that a successful pan-cancer 

screening NGS-based blood test would have to test up to 1000 genes, and the 

ctDNA limit of detection (sensitivity) would have to improve ten-fold from the 

current 0.1% to less than 0.01%. More importantly, a validation trial would have 

to enroll between 10,000 and 100,000 individuals. Despite these seemingly long 

odds, an observational trial (NCT02889978) investigating the discriminating 

power of the CCGA test is already under way. 

 
5. FUTURE RESEARCH CHALLENGES  
 
Table 3 summarizes the research challenges faced by biomarker development 

in the context of lung cancer screening. The interaction between genetics and 

environment is multidimensional and hard to control. Samples need to be 

carefully collected, processed using standard operating procedures, and 

annotated using clinical variables reliably collected from patients and/or 

electronic medical records106. Informed consent is essential to preserve 

confidentiality (CoC). Researchers with a CoC may only disclose identifiable, 

sensitive information if the subject consents, while anyone conducting research 

as a sub-awardee or receiving a copy of identifiable sensitive information must 

also comply with and understand disclosure restrictions. Even though samples 
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may be anonymized, genetic fingerprints may reveal a subject’s identity 

rendering us vulnerable to the misuse of our most personal information. On the 

other hand, genetic privacy acts can hinder progress in this field107.  

 

Because so many biomarkers are approaching clinical validation, the field is in 

great need of standardized metrics of clinical utility. In the context of lung 

cancer screening, we can envision a study design (Figure 3) that would test the 

clinical utility of a biomarker-based risk assessment strategy. Because many 

patients with lung cancer do not meet NLST screening criteria, the study would 

test the value of a candidate biomarker as a predictor of risk independent of age 

and tobacco exposure and therefore justify annual screening with LDCT for 5 

years (the duration of the trial). Conceivably, patients not meeting the U.S. 

Preventive Services Task Force (USPSTF) or other formally accepted 

screening criteria could be prospectively enrolled based on modeling outcomes. 

Indeed, the selection criteria could also include those used in other settings, 

such as the PanCAN and UKLS, with used risk-based prediction models19,85. 

The study would perform biomarker testing using a clinically validated 

biomarker(s) and assign patients to management strategies based on the 

results of combined testing.  Those identified by the biomarker as having a lung 

cancer risk akin to those meeting USPSTF, PLCO2012, LLPv2, or other 

accepted criteria would be offered LDCT. Those identified as having a lower risk 

profile would be followed without LDCT. All subjects would sign an informed 

consent and undergo biomarker testing (or a series of tests). The primary 

outcome of this hypothetical trial would be risk prediction accuracy. Nodule 

management would follow current clinical guidelines. Biomarker test results 

would be shared with the patient and his/her provider, who would in turn decide 

in light of the results whether LDCT is warranted or not.  We would recommend 

testing patient-reported outcomes based on expected risks and benefits of 

getting tested, the way the test results are communicated, anxiety related to test 

results, smoking habits, and willingness to undergo further testing based on 

biomarker results. We would also recommend determining the accuracy of the 

risk assessment before and after biomarker testing as well as outcome values. 

The best sequence (annual vs biannual) and combination of tests to offer 

should also be tested.  Such a study would pave the way for a biomarker of risk 
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driven strategy for lung cancer screening. An alternative trial designed to 

validate the clinical utility of diagnostic biomarkers in the context of IPNs found 

incidentally could also be undertaken.  
 
6. THE FUTURE OF MOLECULAR BIOMARKERS IN THE CONTEXT OF 
LUNG CANCER SCREENING 
Despite the vast potential of existing candidates and methodologies, no single 

lung cancer molecular biomarker is currently being used in routine clinical 

practice. The clinical validation and utility steps are critical, but much more 

demanding, resource needy, and time consuming than the initial discovery and 

retrospective validation. That notwithstanding, the unmet clinical needs remain. 

Individual risk needs to be refined, and screening criteria modified in order to 

impact lung cancer related mortality. Orphan images of IPNs stand to improve 

our success differentiating benign from malignant with a robust biomarker at our 

disposal. There is also a clear unmet need for prognostic molecular and clinical 

markers for patients with screening detected early stage tumors. Although some 

believe that testing a new biomarker would be comparable to the gargantuan 

effort embodied by the NLST, we believe that less complex and more affordable 

validation is possible in the setting of established lung cancer screening 

programs.  

There is plenty of room for improvement. We need to promote studies 

integrating promising candidate biomarkers, including molecular and image-

based, and the use of artificial intelligence technologies to help in the selection 

of the most appropriate combinations. Head to head comparisons of biomarkers 

in specific clinical scenarios would also be welcome. Deep mining of the troves 

of data provided by ongoing screening efforts with new mathematical and 

computational models based on machine learning will surely help. This will 

require a systematic collection of patient samples in the context of screening. 

Finally, ways to prove cost-effectiveness of the new tests as well as to 

overcome the potential hurdles to get the approval by regulatory agencies need 

to be considered in the list of challenges that we face ahead in the development 

of molecular biomarkers in screening. Although the logistics and expense of 

such an effort may seem daunting at first, we believe the long-term outcome 

may prove highly efficient. 
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TABLES AND FIGURES 
 
Table 1: Principles to optimize the research on lung cancer 
biomarker development 
 

• Principle 1: Selection of the molecular approach guided by the intended 
use. 

• Principle 2:  Look for stable analytes, minimally dependent on storage 
time, temperature, pH, enzymatic or oxidative stress. 

• Principle 3: The analyte should be measured with accuracy, precision 
and robustness. Thoroughly test for reproducibility across sources of 
variability, laboratories, conditions, etc.  

• Principle 4: Test the biomarker in multiple cohorts in the clinical context 
it will be considered for use (screening, nodule management). Case 
control studies are discouraged, while prospective cohort studies and 
eventually observational registries are favored though less convenient.  

• Principle 5:  Tests in larger cohorts to demonstrate superiority over 
standard of care, reduction of cost and false positive and negative rates 
reduction 
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Table 2: Candidate biomarkers for lung cancer early detection and phase of development 
Candidates Biomarker Target Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 References Trial 
 Discovery, 

prediction 
Assay 
validation 

Retrolongitudinal Clinical 
validation*  

Clinical 
utility 

  

SERUM/PLASMA          

Specific 
proteins/autoantibodies 

Three proteins (CEA, CA-125, and CYFRA 21–1) and 
1 AAb (NY-ESO-1) 

RMS   38  

Two proteins (LG3BP and C163A) and clinical 
features 

DIPN   51 NCT01752114 

Seven AAbs (p53, NY-ESO-1, CAGE, GBU4-5, SOX2, 
HuD, and MAGE A4) 

RMS    31,33 NCT01700257 

DIPN   36  
Six proteins (CEA, CA-125, CEA 15-3, SCC, CYFRA 
21–1, NSE, and proGRP) 

DIPN     109,110   

Complement fragment C4d RMS     39  

DIPN    40  
MiRNA Ratios among 24 miRNAs RMS    110,111 NCT02247453 

DIPN  
Signature of 13 microRNA + 6 for normalization RMS                           112 COSMOS II 

trial  DIPN     
Signature of 2 microRNA DIPN       113  

DNA methylation SOX2 and PTGER4 methylation RMS    114,115  
DIPN  

Circulating tumor nucleic 
acids 

Circulating tumor DNA; NGS technology RMS     104 NCT02889978 

 Circulating tumor DNA; NGS technology DIPN      116  
 Circulating tumor DNA; Ion Torrent DNA Sequencing 

technology 
DIPN      117  

 Circulating tumor DNA; TEC-Seq technology RMS      118  
 Signature of 29 genes (RNA) DIPN      119  
 ctDNA mutation and proteins (CA-125, CEA, CA19-9, 

PRL, HGF, OPN, MPO, and TIMP-1) 
DIPN      103  

TUMOR/AIRWAY EPITHELIUM  
Chromosome aberrations Chromosome regions copy number or fusions (FISH) DIPN      120  
mRNA gene expression 
classifier 

Twenty three gene classifier DIPN    NCT01309087 
NCT00746759 

SNPs 12 SNPs for COPD and clinical features RMS   100,121  
SPUTUM, BREATH AND 
URINE 

         

DNA methylation SHOX2 and RASSF1A methylation RMS    122  
MiRNA Signature of 3 microRNA DIPN     123  
Exhaled breath VOC- Nanoparticle Biometric Tagging (NBT) DIPN       

VOC- Field Asymmetric Ion Mobility Spectrometry 
(FAIMS) 

     NCT02612532 

Tumor cells >700 morphological features (by Cell CT) RMS       



32 
 

DIPN       
Buccal nanocytology RMS      124  

 Porphyrin differential uptake by tumor cells RMS     125  
Unrine markers Metabolites RMS      76  

RMS: risk management in screening context; DIPN: diagnosis of indeterminate pulmonary nodules; *DECAMP-1 and DECAMP-2 trials (NCT01785342 and NCT02504697) are currently recruiting 

patients in order to test some of these biomarkersAAB Autoantibody. 
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Figure 1. Metric for evaluation of clinical use of candidate biomarkers. Proposed 
metric for success is suggested for the level at or above the red arrows. From 
Atwater et al. Semin Respir Crit Care Med 2016;37:670–680. 
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Figure 2 Sources of biomarkers in lung cancer screening
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Fig 3 Potential design for testing the efficacy of a biomarker based test to 
optimize a LDCT lung cancer screening program  
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Table 3: Challenges faced by the research on lung cancer 
biomarker development 

•  
• Challenge 1: Need for deeper knowledge of lung carcinogenesis, tumor 

molecular and cellular landscape, gene-environment relationship, etc.  
• Challenge 2: Need for careful sample collection; processing using 

standard operating procedures and properly annotated clinical data in the 
intended use type of patient (screening cohorts). 

• Challenge 3:  Need to obtain the samples from individuals following 
informed consent and comply with all rules, regulations and policies 
regarding human subjects’ research. 

• Challenge 4: Need to establish robust consensus criteria for the 
selection of the single or integrated combined biomarkers to be tested  

• Challenge 5: Need to design and approve new mechanisms to show clinical 
utility of care, reduction of cost,  false positive/negative rates reduction 
and aceptable ratios of true and false results. 

• Challenge 6: Need to further convince stakeholders and research 
promoters and funders of the relevance of developing single and 
integrated biomarkers to optimize the efficacy of current lung cancer 
screening protocols.  

• Challenge 7: Need to analyze, determine the causes and try to 
overcome potentially unnecessary hurdles to approval even after utility 
testing is complete.   

 

 

 

Commented [MMP1]: There may be hurdles to approval even 
after utility testing is complete. 

Commented [LM2]: Please look at this new challenge to answer 
Peter Mazzones previous comment. 


