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Abstract—With the widespread deployment of video surveil-1

lance systems the automatic detection of abnormal events in2

video streams has become increasingly important. An abnormal3

event can be considered as a deviation from the regular scene;4

however, the distribution of normal and abnormal events is5

severely imbalanced, since the abnormal events do not frequently6

occur. To make use of a large number of video surveillance7

videos of regular scenes, we propose a semi-supervised learning8

scheme, which only uses the data that contains the ordinary9

scenes. The proposed model has a two-stream structure that is10

composed of appearance and motion stream. For each stream,11

a recurrent variational autoencoder can model the probabilistic12

distribution of the normal data in a semi-supervised learning13

schemes. The appearance and motion features from the two14

streams can provide complementary information to describe this15

probabilistic distribution. Comprehensive experiments validate16

the effectiveness of our proposed scheme on several public17

benchmark datasets including Avenue, Ped1, Ped2, Subway-entry,18

and Subway-exit.19

Index Terms—Abnormal Event Detection, Variational Autoen-20

coder, Convolutional LSTM, Reconstruction Error Probability,21

Two-stream Fusion22

I. INTRODUCTION23

The widespread deployment of surveillance cameras in24

airports, malls, and streets has resulted in the rapid increase25

of video data. A large workforce is often needed to process26

this video surveillance data due to the lack of computer27

vision solutions. To ensure the safety and security of the28

public environment, abnormal events, such as people fighting29

or urgent events like fire, should be detected quickly and30

accurately. However, abnormal events have a low probability31

of occurring, which makes manual detection a very tedious job.32

As a result, the automatic detection of rare or unusual incidents33

and activities in a surveillance video is urgently needed.34

Generally, it is difficult to define an anomaly without a35

specific context. For example, running is a normal event on36

a football pitch but an abnormal event in other locations37

such as a restaurant. Hence, it is quite difficult to build a38

supervised learning model to discriminate these anomalies39

from normalities since only a small proportion count for the40

abnormal events. This is the well-known imbalance problem in41

machine learning [1]. Despite the efforts that equate anomaly42

detection with a binary classifier (normal and abnormal) [2],43

the scheme is often unrealistic, in real-world applications since44

the abnormal event footage in video sequences are rare, which45
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makes the training of conventional classifiers impractical. As 46

an alternative, recent research tries to accomplish abnormal 47

event detection in a semi-supervised way, which only analyzes 48

the distribution of ordinary data, and signifies the abnormal 49

score during testing. Examples of this kind of scheme include 50

the exploration of spatial-temporal features [3], dictionary 51

learning [4], sparse representation [5] [6] and autoencoders 52

[7] [8]. 53

In the last two years, deep learning has become one of 54

the most promising approaches for image processing, due to 55

its excellent performance in various vision tasks including 56

image classification [9] [10], object detection [11] and action 57

recognition [12]. Deep neural networks can learn essential 58

and discriminative features using their multi-layer non-linear 59

transformations. It is therefore natural to apply deep neural 60

networks to abnormal event detection in videos. Previous 61

endeavours include the autoencoder-based approaches [7]. To 62

detect an abnormal event in a video, an autoencoder tries to 63

reconstruct the video frames and generates the reconstruction 64

error which is considered as a regularity score. This can be 65

considered as a kind of semi-supervised learning schemes in 66

which an autoencoder is trained on the normal data to model its 67

probability distribution through reconstruction. When testing, 68

if there is an abnormal event in a video, the corresponding 69

reconstruction error score is higher than the normal data since 70

the model has not met the abnormal pattern during training. 71

Hence, the comprehensive modeling of the normal data is of 72

vital importance. 73

An inherited deficiency of the conventional autoencoder is 74

its deterministic nature, which means no probabilistic inter- 75

pretation or inference could be made about the data. Recently, 76

a new generative model, called the variational autoencoder 77

(VAE), has been proved to be a powerful tool [13]. A VAE 78

with an autoencoder-like architecture is a directed probabilistic 79

graphical model in which the posterior probability distributions 80

are approximated by a neural network. Compared with a 81

conventional autoencoder, VAE is unique as it encodes the 82

original image into a prior distribution instead of deterministic 83

features. Consequently, the VAE has shown superior results 84

on some learning tasks such as image reconstruction and 85

generation [13] [14]. Based on these considerations, we apply 86

the VAE to abnormal event detection in videos. 87

Nevertheless, there are some obstacles to directly applying 88

the vanilla VAE as it is targeted at static image reconstruction. 89

How to capture the spatial-temporal features of a given video 90

sequence is a primary question. It is well-known that the 91

recurrent connections in a neural network is a powerful and 92

effective way to model the dynamics of a sequence [15]. 93
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Hence, we apply recurrent units in the VAE model to better94

capture the temporal dependencies of the video frames. The95

widely known Long-Short Term Memory (LSTM) network96

[16] is the first option due to its advantages among the97

different recurrent neural networks (RNNs), particularly the98

solution to the gradient vanishing problem [17]. In this paper,99

we apply LSTM to learn the long-term dependencies of a100

video sequence. However, LSTM is known to be limited in101

its expression of spatial information, which is vital to the102

high-level visual semantics. To tackle the issue, we apply103

the convolutional LSTM [18] in which all the state-to-state104

transitions of memory cells are convolutional operations. The105

model can not only capture the temporal dependencies but also106

preserve the spatial information.107

Recently, another developing approach for video processing108

in the deep learning framework is two-stream networks, which109

had been successfully applied in video-based action recogni-110

tion [12] [19], often with state-of-the-art results. The method111

is also end-to-end learning, which is vital for many real-world112

applications. Two-stream networks extract features from both113

the spatial and temporal streams and then fuse them appro-114

priately for subsequent processing [19]. The spatial stream115

is implemented with a CNN specializing in static frames116

[12] while the temporal stream uses another CNN, which is117

designed to extract temporal features. Compared with a general118

RNN scheme whose emphasis is on the temporal sequence119

modeling, the two-stream networks focus on the extraction120

of discriminative and complementary features. It is intuitive121

to combine the ideas from these two methodologies, which122

conforms to the proven effective practice of a combination123

of classifiers for different tasks [20]. For instance, [21] used124

two separate LSTM networks on the spatial stream and optical125

flows for action recognition. [22] systematically evaluated two-126

stream architectures for action recognition. In their research,127

the final performance is increased by employing LSTMs on128

both of the two streams. Optical flow can be considered as a129

low-level motion feature whilst LSTMs capture the long-term130

dependencies on the spatial features or the motion features.131

Hence, employing LSTMs and using two-stream fusion at132

the same time is advantageous; on the other hand, the long-133

term dependencies might be neglected when solely relying134

on the CNN-based model. For abnormal event detection, the135

information fusion from two streams is also expected to136

improve the system performance. In this paper, we set up137

a two-stream architecture for our VAE model with a novel138

double fusion scheme by utilizing both early fusion and late139

fusion.140

In short, our contributions can be summarized as follows:141

• We propose a novel model, namely the two-stream recur-142

rent VAE, which provides a semi-supervised solution for143

abnormal event detection in videos.144

• The recurrent VAE can model the probability distribution145

of video sequences by capturing the spatial-temporal146

features, and a two-stream architecture can learn features147

from both the spatial frames and optical flows. Subse-148

quently, the advantage of the combination of the recurrent149

VAE and a two-stream architecture is validated.150

• Our methods achieve improved results on the frame-151

level, event-level and pixel-level evaluations compared 152

with current leading methods on several publicly available 153

datasets. 154

II. RELATED WORKS 155

A. Abnormal Event Detection 156

As it is easier to obtain surveillance video data where the 157

scene is normal, most research focused on the setting where 158

the training data contains only normal visual patterns. Most 159

video-based abnormal event detection approaches involve a 160

local feature extraction step followed by learning a model 161

using the training data, which only contains normal events. 162

Any event that is an outlier from the learnt model is regarded 163

as the anomaly [7]. This can be considered as a type of semi- 164

supervised learning. 165

One of the popular local features is the trajectory-based fea- 166

ture. Trajectories have been very powerful in video processing 167

and abnormal event detection [23] [24] [25] [26]. For example, 168

Zhou et al. [26] proposed an abnormal event detection scheme 169

based on the trajectory features and a Multi-Observation 170

Hidden Markov Model (MOHMM) to detect abnormal events. 171

Despite the fact that trajectory-based approaches have achieved 172

successes in various video tasks [27] [28] [26], the dependence 173

on tracking poses a bottleneck as it is still a challenge in 174

computer vision. On the other hand, tracking-based methods 175

are often not practical for crowded scenes event detection. 176

Other local features include spatial-temporal features such as 177

the histogram of oriented gradients [29] and the histogram of 178

oriented flows [30]. 179

Typical models based on these features in abnormal event 180

detection include Bag of Visual Words (BoVW), where the 181

local features are clustered in groups, according to some 182

similarity metrics [31]. Sparse reconstruction is a similar 183

codebook-based model in abnormal event detection [5]. For 184

instance, [32] proposed detecting abnormal events via sparse 185

reconstruction over the normal bases (dictionary). One of 186

the advantages of sparse reconstruction is the suitability on 187

modeling the high-dimensional data using relatively few train- 188

ing samples [32] [33]. Normal events are likely to generate 189

sparse reconstructions with a small reconstruction cost while 190

abnormal data tends to generate dense representation since 191

the data is dissimilar with the pattern of normal data. Yu et al. 192

[34] proposed to use Multi-scale Histogram of Optical Flow 193

(MHOF) and Multi-scale Histogram of Gradient (MHOG) for 194

feature representation and sparse models to detect abnormal 195

events. Most of the codebook-based approaches, however, 196

have the disadvantage of ignoring the spatial relationships 197

among the image patches, which substantially limit their 198

expression capability. On the other hand, the determination 199

of the codebook size is often ad-hoc, which cannot guarantee 200

optimal performance in real applications. 201

Some probabilistic graphical models have also been ap- 202

plied to abnormal event detection, e.g., the Hidden Markov 203

Model (HMM) [31]. Similarly, the Conditional Random Field 204

(CRF) can be used as the model to guarantee the global 205

consistency of the anomaly judgments. For example, Li et al. 206

[35] used a set of dynamic texture models to calculate the 207
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spatial and temporal abnormality maps, which are considered208

as the potential functions of the CRF model. Additionally,209

one-class Support Vector Machines (SVM) can be used to210

model the distribution of the normal patterns given the feature211

representations of the samples. For instance, M.Erfani et al.212

[36] studied large-scale anomaly detection using Deep Belief213

Networks (DBN) as the feature extractor and a one-class214

SVM to model the distribution of the normal data. These215

methods often consider feature extraction and classification as216

two separate components. During implementation, a memory217

device with a large capacity is also needed to store the high-218

dimensional feature vectors. It is also less practical since using219

one-class SVMs for this application typically needs at least220

two steps (the feature extraction and the classification) to finish221

the task.222

Another effective and widely-used approach is based on223

autoencoders [37] [7]. An autoencoder [38] is a kind of neural224

networks that can be used for dimension reduction and image225

reconstruction. The successes of deep neural networks in226

various vision tasks consequently inspired autoencoder-based227

approaches in many vision tasks, including abnormal event de-228

tection. Neural networks based on deep learning architectures229

can automatically abstract different levels of features from the230

raw data. Researchers using the hierarchical structure of deep231

learning neural networks, e.g., deep convolutional neural net-232

works (CNNs) have achieved great success in many tasks such233

as image classification [10], object detection [11], semantic234

segmentation [39] and action recognition [12]. Xu et al. [37]235

proposed a deep model for abnormal event detection which236

uses an autoencoder for feature learning and a linear classifier237

for abnormal event detection. Hasan et al. [7] proposed an238

end-to-end learning model using a stacked autoencoder for239

abnormal event detection in videos, with good results. To240

better capture the temporal dependencies of video frames, [8]241

proposed to use a LSTM embedded into the autoencoder, also242

with improved results. A similar idea of using the LSTM to243

capture temporal information has also been reported in [40] for244

time series anomaly detection. Sabokrou et al. [41] proposed to245

use an auto-encoder to learn features and a Gaussian classifier246

to distinguish the normal and the abnormal events in a semi-247

supervised learning scheme.248

B. Variational Autoencoder249

As has been discussed previously, the conventional autoen-250

coder is deterministic, which lacks the capability to interpret251

probabilistically or infer from the data. [42] applied a VAE252

[13] for anomaly detection from images using reconstruction253

probability. [43] proposed to combine the RNNs and the vari-254

ational inference for anomaly detection in the time series data255

of a robot. Both of these two pieces of research demonstrated256

that the VAE-based models are better than the deterministic257

approaches, which inspired us to apply a recurrent VAE for258

abnormal event detection in video.259

A VAE is an unsupervised learning approach for compli-260

cated distributions modeling [44]. It is a generative model261

parameterized by neural networks, which can be trained by262

the backpropagation algorithm.263

Recently, the VAE has shown superior performance in 264

several image processing tasks, e.g., image generation. [13] 265

[45] applied VAEs to generate handwritten digits. [13] [46] 266

[47] proposed generating images of faces using VAEs. [48] 267

used the VAE to forecast future frames based only on static 268

images. Moreover, the VAE can also be applied in a semi- 269

supervised learning scheme. For instance, [49] extended the 270

VAE to semi-supervised learning with class labels. Some 271

traditional computer vision tasks such as image segmentation 272

can benefit from VAE, for example, [50] proposed the use of 273

a VAE to generate the segmentation map of an image. 274

Some hybrid learning systems have been proposed by the 275

combination of VAE and other deep neural network model- 276

s. [14] proposed an architecture incorporating convolutional 277

neural networks into a VAE for image and caption generation. 278

In their research, the deep generative deconvolutional network 279

is used as a decoder of the latent variables whilst the convo- 280

lutional neural network is used as the encoder of the given 281

image. Also, the recurrent connection has been proposed to 282

integrate into the VAE model to deal with sequence modeling 283

[51]. The variational recurrent autoencoder [51] can be applied 284

for efficient, large-scale unsupervised learning on time series 285

data by mapping the time series data to a latent vector 286

representation. [52] explored the inclusion of latent random 287

variables into RNNs by combining the elements of the VAE, 288

which can also be considered as one kind of recurrent VAE. 289

Since we are dealing with video sequences which contain both 290

the spatial and temporal information, convolutional operations 291

and recurrent connections are both needed. The convolutional 292

LSTM [18] preserves the convolution operation, which meets 293

our requirement. 294

Meanwhile, the two-stream fusion method for action recog- 295

nition in videos has achieved great success since the first 296

publication [12]. Much subsequent research borrowed the idea 297

from [12] in dealing with various vision problems [19] [53] 298

[54]. Hence, we set up a two-stream recurrent VAE model, 299

which is applied for semi-supervised learning of the data. Even 300

though the two-stream idea had been widely applied, to the 301

best knowledge of our knowledge, we are the first to propose 302

a two-stream architecture for a VAE model. 303

III. METHODOLOGY 304

A. Variational Autoencoder 305

The VAE [13] is a recently proposed generative learning 306

model [13]. A VAE introduces a set of latent random variables 307

z, which are used to capture the variations in the input 308

variables x. As one kind of directed graphical model, the joint 309

distribution is defined in Equation 1. 310

p(x, z) = p(x|z)p(z) (1)

The prior of the latent variables, p(z), is generally chosen 311

as a simple Gaussian distribution. The conditional probability 312

p(x|z) is parameterized by a highly flexible function approxi- 313

mator such as neural networks. This highly nonlinear mapping 314

from x to z results in an intractable inference of the posterior 315

p(z|x). Hence, the VAE chose to use another distribution 316
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Fig. 1. Illustration of the VAE-based and autoencoder-based reconstruction
schemes.

q(z|x) as the posterior that enables the use of variational lower317

bound as explained in Equation 2.318

logp(x) ≥ −KL(q(z|x)‖p(z)) + Eq(z|x)(logp(x|z)) (2)

where KL(P‖Q) is the Kullback-Leibler divergence between319

two distributions P and Q.320

In VAE, the approximate posterior q(z|x) is a Gaussian321

distribution whose mean µ and variance σ2 are the outputs322

of the non-linear mapping, i.e., neural networks, from inputs323

x. Ideally, we would like to sample from this distribution.324

However, the stochastic gradient descent via back propagation325

cannot handle stochastic units inside a neural network. The326

solution for VAE is called the reparameterization trick, which327

is to move the sampling to an input layer. Given µ and σ2,328

the mean and variance, we can firstly sample from a standard329

Gaussian distribution ε ∼ N(0, I), then calculate z = µ+σ ·ε,330

where · indicates elementwise multiplication. The generative331

model p(x|z) and inference model q(z|x) are jointly trained332

by maximizing the variational lower bound.333

A VAE-based image reconstruction scheme and a compar-334

ison with autoencoder-based reconstruction is shown in Fig.335

1.336

B. The Convolutional LSTM337

Our proposed recurrent convolutional VAE applies the con-338

volutional LSTM as the basic building block for recurrent339

connections inside the VAE model. Hence, we firstly introduce340

the basic principle of the convolutional LSTM proposed in341

[18].342

Let σ(x) = (1+e−x)−1 be the sigmoid non-linear activation343

function and φ(x) = ex−e−x

ex+e−x = 2σ(2x) − 1 be the tangent344

non-linear activation function, the convolutional LSTM model345

Fig. 2. The system diagram of convolutional LSTM

Fig. 3. The proposed recurrent convolutional VAE model

follows the following updating rules: 346

it = σ(Wxi ∗ xt +Whi ∗ ht−1 + bi)

ft = σ(Wxf ∗ xt +Whf ∗ ht−1 + bf )

ot = σ(Wxo ∗ xt +Who ∗ ht−1 + bo)

gt = σ(Wxg ∗ xt +Whg ∗ ht−1 + bg)

ct = ft · ct−1 + it · gt
ht = ot · φ(ct)
yt = φ(Wyt ∗ ht + by)

(3)

where t is the time step in RNNs, it, ft, ot are the input, forget 347

and output gates of the LSTM model, respectively. ct is the 348

cell memory while ht is the hidden state of the LSTM model. 349

gt controls the update of the cell memory. yt is the output 350

of the LSTM model. A ∗ indicates the convolution operation. 351

W∼, b∼ are convolutional weights and bias, respectively. xt is 352

the input to the LSTM model at each time step. Fig. 2 shows 353

the system diagram of the convolutional LSTM. 354

C. The Proposed R-ConvVAE Model 355

Blending LSTMs with the VAE architecture has been pro- 356

posed previously to solve the natural language processing 357

problem in [55], where a language generation model with both 358

a LSTM and VAE is applied to explicitly model the holistic 359

properties of sentences such as style, topic, and high-level 360



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

syntactic features. [56] also introduced an LSTM-VAE neural361

network for the task of automated FAQs. These two pieces of362

research share the similar idea of combining an LSTM and363

a VAE to model the sequence. In this paper, a convolutional364

LSTM is embedded into the VAE to model the video sequence365

for abnormal event detection. We call this model R-ConvVAE.366

In the proposed encoder network, video frames are firstly367

processed by a set of convolutional layers, followed by a368

convolutional LSTM block. The convolutional LSTM is set369

to capture the temporal dependencies of the video sequences.370

The distribution over the latent variable z is obtained from the371

last state vector of the convolutional LSTM, which is described372

by Equation 4.373

µ =Wµ ∗ hend + bµ

log(σ) =Wσ ∗ hend + bσ
(4)

where hend is the last hidden state of the convolutional LSTM.374

µ and σ are the mean and variance of the latent variables. W∼375

and b∼ are the convolutional weights and bias, respectively. z376

can be obtained using Equation 5.377

ε =∼ N(0, I)

z = µ+ σ · ε
(5)

where ∼ indicates the sampling operation.378

Using the reparameterization trick, z is sampled from the379

encoder. Then z is used to initialize the hidden state of the380

convolutional LSTM of the decoder, which is followed by a381

set of deconvolutional operations for the reconstruction of each382

video frame. The proposed model is shown in Fig. 3.383

D. VAE for Abnormal Event Detection384

We propose an abnormal event detection method which385

uses a recurrent convolutional VAE to calculate the anomaly386

score from the reconstruction error probability. The variational387

lower bound in Equation 2 is considered as the reconstruction388

error probability and reflects the probability distribution of the389

reconstruction of the original image.390

The reconstruction error probability is different from the391

reconstruction error defined in conventional autoencoder-based392

abnormal event detection. Firstly, the latent variables z in a393

VAE model are stochastic variables. However, in a convention-394

al autoencoder, the hidden state h is a deterministic variable.395

Also, the VAE model takes account of the variability of the396

latent variables by the procedure of sampling. This mostly397

extends the expressive power of the VAE model.398

Also, reconstruction by a VAE is a stochastic process, which399

not only considers the difference between the reconstruction400

and the original data but also the variability of the distribution401

itself. This characteristic enables the VAE model to have a402

strong modeling capability for data, thus ensuring the gener-403

alization capability. This feature is missed in the conventional404

autoencoder, which makes its generalization capability poor.405

In practice, we compute the reconstruction error probability406

of a pixel’s intensity value I at location (x, y) in frame t of a407

given video. From each frame, we compute the reconstruction408

error probability by summing up all the pixel-based proba-409

bilities. If we can define the reconstruction error probability410

of a frame as p(t), the regularity score can be defined as in 411

Equation 6. 412

s(t) = 1− p(t)−mintp(t)
maxtp(t)−mintp(t)

(6)

The regularity score corresponds to the level of normality of 413

each frame in the video. Like many detection scenarios such as 414

object detection [57] [58], the regularity score plays a role in 415

indicating the confidence of detection results. A preferable way 416

to evaluate the detection performance with these confidence 417

scores is to use the Receiver Operating Characteristic (ROC) 418

curve, which will be further discussed in Section IV-C3. 419

E. Two-stream Architecture for Abnormal Event Detection 420

We set up a two-stream architecture for abnormal event 421

detection. The two-stream model for action recognition was 422

proposed in [12] who proved that the temporal features of 423

optical flow and deep spatial features are complementary. 424

Different from the recognition tasks in [12], our motivation 425

is to fuse the reconstruction error probabilities for abnormal 426

event detection. Our idea of employing the two-stream ar- 427

chitecture is that the temporal regularity of the appearance 428

features and the motion features can be complementary in 429

deciding the abnormal events in a semi-supervised scheme. 430

Since the normal pattern needs to be modeled properly in the 431

semi-supervised scheme, using a two-stream architecture is 432

more comprehensive than a single stream. 433

The system model can be seen in Fig. 4. The spatial stream 434

is to reconstruct the spatial frames using a recurrent VAE while 435

the temporal stream is to reconstruct the stacked optical flows 436

with a similar VAE network. Specifically, we use the GPU 437

implementation of optical flow of [19], with a stride of 2. As 438

the optical flow only captures the neighboring motion, it is 439

desirable that LSTMs can be employed to capture the long- 440

term dependencies. To model the probabilistic distribution of 441

the motion features, we stack the vertical and horizontal parts 442

of the optical flows into a two-channel image so as to compute 443

the reconstruction error probabilities. The networks for both of 444

the spatial stream and temporal stream are the recurrent con- 445

volutional VAE described previously, with a similar network 446

structure. 447

To establish an early fusion scheme, we stack the static 448

frame (gray image) and optical flow image (two-channel 449

image) into a three-channel input to a recurrent convolutional 450

VAE with the same architecture, which we call an early fusion 451

stream. Once formulated as one image in the early fusion 452

stream, the convolutional operation considers the static frame 453

and optical flow image as a whole to compute the hierarchical 454

features, level by level. 455

The spatial stream and temporal stream can be trained 456

jointly and independently. During testing, the reconstruction 457

error probabilities from the spatial stream and the temporal 458

stream are fused by summation, which is denoted as late 459

fusion. The difference between early fusion and late fusion 460

was discussed in [19], which reveals that late fusion yields 461

better performance. 462

The late fusion results can be added to the early fusion 463

results for the reconstruction error probability fusion, denoted 464
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as double fusion. In this paper, we prove that the early fu-465

sion and late fusion provide complementary information. The466

fused reconstruction error probabilities are then utilized for467

post-processing and evaluation. Note that the post-processing468

corresponds to different operations in frame-level and event-469

level evaluations which are described in Section IV-C3.470

IV. EXPERIMENTS471

In this section, we introduce two use cases, the frame-472

level and pixel-level experimental procedures are used for473

different purposes: the frame-level detection is to find temporal474

regularity whilst the pixel-level detection is to localize the475

abnormal events in a video frame.476

A. Model Configuration477

Table I shows the detailed configuration of the proposed478

model for the spatial stream. Specifically, the model contains479

an encoder and a decoder. The encoder consists of four480

convolutional layers, followed by a convolutional LSTM layer481

to capture the temporal information of the video frames. The482

decoder firstly uses a convolutional LSTM to decode the483

latent variable z sampled from the encoder, followed by four484

deconvolutional layers to reconstruct the video frame.485

A convolutional layer can connect multiple input activations486

within a fixed receptive field to a single activation output.487

On the other hand, a deconvolutional layer is to densify the488

sparse inputs by convolution-like operations with multiple489

filters. Hence, the spatial size of the output feature maps of490

a deconvolutional layer is larger than the spatial size of its491

corresponding inputs.492

Also, there are two pooling layers after the Conv2 and493

Conv4 layers in the encoder network, and two unpooling494

layers after Deconv1 and Deconv4 in the decoder network.495

The max pooling operation in the encoder provides translation496

invariance. The unpooling layer in the decoder is to perform497

the reverse operation of pooling and reconstruct the original498

size of activations [59] [60] [61].499

Table II presents the parameters of the architecture of the500

proposed model for the temporal stream. As we stack the501

vertical and horizontal parts of the optical flows, the inputs502

to the network are of depth 2. The other parameters are the503

same as that in the spatial stream.504

B. Datasets505

We conducted experiments on several challenging datasets506

to test our methods. There are several public benchmark507

datasets targeting at abnormal event detection, namely, Avenue508

[3], UCSD pedestrian [62] and Subway datasets [63].509

For the Avenue dataset, there are a total of 16 training and510

21 testing video sequences. Each of the sequences is short,511

about 1 to 2 minutes long. The total number of training frames512

is 15,328 and there are 15,324 testing frames. The resolution513

of each frame is 640 × 360 pixels.514

The UCSD pedestrian dataset contains two parts: UCSD-515

Ped1 and UCSD-Ped2. In UCSD-Ped1, there are 34 short clips516

for training, and another 36 clips for testing. All testing video517

clips have frame-level ground-truth labels, which indicate 518

which frames of the video clip are abnormal. Each clip has 519

200 frames, with a resolution of 238 × 158 pixels. The UCSD- 520

Ped2 has 16 short clips for training, and another 12 clips for 521

testing. Each clip has 150 to 200 frames, with a resolution of 522

360 × 240 pixels. 523

In the Subway dataset, the videos are taken from two 524

surveillance cameras in a subway station. One monitors the 525

exit and the other monitors the entrance [63]. In both videos, 526

the resolution is 512 × 384 pixels. The Subway-entry video 527

is 1 hour 36 minutes long with 144, 249 frames in total, and 528

the Subway-exit video is 43 minutes long with 64, 901 frames 529

in total. All the testing videos have frame-level ground-truth 530

labels. 531

C. Frame-level detection 532

1) Data Augmentation: For frame-level abnormal event 533

detection, following [7], we apply a data augmentation scheme 534

to prepare for training because the available data is still not 535

sufficient for the proposed model. Firstly, we extracted each 536

frame from the raw video data, then resized it to a resolution 537

of 227 × 227 pixels. As a common normalization practice in 538

training the deep learning model, we subtract the global mean 539

value of the pixels from each of the video frames. After that, 540

the video frames are converted to grey scale images to reduce 541

their dimensionality. All these operations are conducted using 542

Matlab. The input to the model is a sequence of frames with 543

a length of 10. To increase the size of the training data, we 544

skip different strides to obtain the following frame sequences. 545

For example, the first stride-1 sequence is composed of frames 546

{1, 2 ,3, 4, 5, 6, 7, 8, 9, 10}. The stride-2 sequence is made 547

of frames {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}, and the stride-3 548

sequence would contain frames {1, 4, 7, 10, 13, 16, 19, 22, 549

25, 28}. These operations can not only increase the size of 550

the training data but also enable the model to capture long- 551

term dependencies with the increase of skipped strides. For 552

the temporal stream, we first stack the vertical and horizontal 553

parts into a two-channel static image. Then the same data 554

augmentation techniques are applied. 555

2) Training Details: [7] trained their convolutional au- 556

toencoder on all of the datasets together instead of on each 557

individual one. [7] had proved that training on all the datasets 558

does not influence the generalization capability of the model. 559

Also, since we are dealing with a semi-supervised learning 560

scheme based on the generative model, we do not use a 561

pre-trained CNN model as in many deep learning schemes. 562

We need a comparatively larger dataset in order to avoid the 563

overfitting problem. Hence, we train our two-stream model on 564

all the datasets used in this paper: Avenue, Ped1, Ped2, Entry 565

and Exit. 566

We use an Adam optimizer [64] and a learning rate of 567

0.01 to train our recurrent VAE model from a Xavier uniform 568

random weights initialization [65]. The batch size is set as 32. 569

Usually, we find that the model converges in several epochs. 570

The model was built using the Keras platform [65]. Moreover, 571

all the experiments were undertaken on a PC equipped with 572

a NVIDIA TITAN X GPU and running the Ubuntu 14.04 573

operating system. 574
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Fig. 4. Two-stream Architecture for Abnormal Event Detection

TABLE I
NETWORK CONFIGURATION FOR THE SPATIAL STREAM

Encoder
Image Conv1 Conv2 Conv3 Conv4 ConvLSTM

1 × 227 × 227 128 × 55 × 55 128 × 27 × 27, Pooling 64 × 27 × 27 64 × 13 × 13, Pooling 32 × 13 × 13

Decoder
ConvLSTM Deconv1 Deconv2 Deconv3 Deconv4 Reconstruction

32 × 13 × 13 64 × 13 × 13, Unpooling 64 × 27 × 27 128 × 27 × 27 128 × 55 × 55, Unpooling 1 × 227 × 227

TABLE II
NETWORK CONFIGURATION FOR THE TEMPORAL STREAM

Encoder
Image Conv1 Conv2 Conv3 Conv4 ConvLSTM

2 × 227 × 227 128 × 55 × 55 128 × 27 × 27, Pooling 64 × 27 × 27 64 × 13 × 13, Pooling 32 × 13 × 13

Decoder
ConvLSTM Deconv1 Deconv2 Deconv3 Deconv4 Reconstruction

32 × 13 × 13 64 × 13 × 13, Unpooling 64 × 27 × 27 128 × 27 × 27 128 × 55 × 55, Unpooling 2 × 227 × 227

3) Evaluation Metrics for Frame-level Detection: We eval-575

uate the frame-level detection using two metrics, correspond-576

ing to the frame-level and event-level, respectively.577

• Frame-level: If a frame contains at least one abnormal578

event, it is considered as a correct detection. These579

detections are compared to the frame-level ground-truth580

label. The Receiver Operating Characteristic (ROC) curve581

is used to measure the performance of the frame-level582

detection. To generate the ROC curve, the true positive583

rate (TPR) and the false positive rate (FPR) are calculated584

and plotted at various threshold settings of the confidence585

score of the detection outputs. The Area Under Curve586

(AUC) and the Equal Error Rate (EER) are the two587

metrics for evaluation based on the ROC curve [66].588

• Event-level: This evaluation criterion was used in [7].589

To reduce the noisy and meaningless local minima in590

the regularity score, they used the Persistence1D [67]591

algorithm to group local minima. In [7], they used a fixed592

temporal window of 50 frames to group local minima. In 593

other words, local minima within 50 frames belong to 594

the same abnormal event. We followed this practice to 595

group the detected events and set the threshold as 0.2. 596

The detected temporal windows which overlap by more 597

than 50% with the ground-truth abnormal event windows 598

are considered as a detection. Hence, this is an event-level 599

evaluation criteria. 600

4) Results: To determine the best model for subsequent 601

experiments, we first evaluated the frame-level detection in 602

different control settings. The results of the control experi- 603

ments on the spatial stream are shown in Table III. We tested 604

the proposed recurrent variational autoencoder with different 605

cost functions and the vanilla autoencoder with the same 606

architecture. It can be seen, from the table, that the VAE- 607

based model often yields better results than the conventional 608

autoencoder and usually the Mean Squared Error (MSE) loss 609

(which corresponds to the Euclidean Distance between the 610
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inputs and outputs) is better than the Binary Cross Entropy611

(BCE) loss for the AUC and EER results. This is because the612

MSE is a more straightforward indicater in the reconstruction613

tasks. [68] also reported the MSE loss generates a smaller614

reconstruction error than BCE for the stacked autoencoder.615

The results in Table III indicate that the proposed model with616

MSE yields the best performance. Hence, in the following617

experiments, we set the loss function as the MSE.618

We also conducted experiments to validate the improve-619

ments brought by using the VAE and the convolutional LSTM.620

To be more specific, we re-implemented the ConvAE model621

described in [7] and followed the training procedure. We then622

implemented the ConvVAE model where we use the same623

structure of the ConvAE described in [7] but with a VAE624

training and inference algorithm. The results of the VAE model625

are shown in Table IV where is can be observed that our R-626

ConvVAE model generates the best results.627

TABLE III
FRAME-LEVEL RESULTS OF DIFFERENT SETTINGS ON THE SPATIAL

STREAM

Method
AUC/EER(%)

Avenue Ped1 Ped2 Subway Entry Subway Exit

R-ConvAE+BCE 74.2/32.4 69.2/34.2 82.1/24.0 81.3/22.7 88.2/23.3

R-ConvAE+MSE 74.3/32.7 69.4/35.9 82.3/24.1 82.1/22.1 88.5/23.0

R-ConvVAE+BCE 74.8/31.2 71.1/36.7 84.3/23.0 83.5/21.7 88.3/24.0

R-ConvVAE+MSE 75.0/31.4 72.7/32.4 85.0/20.4 84.6/20.6 89.2/22.1

TABLE IV
SUMMARY OF FRAME-LEVEL RESULTS OF DIFFERENT APPROACHES ON

THE SPATIAL STREAM

Method
AUC/EER(%)

Avenue Ped1 Ped2 Subway Entry Subway Exit

ConvAE [7] (Our Results) 73.5/31.6 72.6/33.0 83.3/23.1 84.2/21.6 88.1/24.4

ConvVAE 74.2/30.8 72.7/32.0 83.7/22.0 84.4/20.7 88.7/21.3

R-ConvAE 74.3/32.7 69.4/35.9 82.3/24.1 82.1/22.1 88.5/23.0

R-ConvVAE 75.0/31.4 72.7/32.4 85.0/20.4 84.6/20.6 89.2/22.1

Next, we tested the spatial and temporal streams for abnor-628

mal events detection using the proposed model. The results629

are shown in Table V. It is clear that using only the spatial630

or temporal stream by itself cannot generate the best result.631

However, with the information from the two-stream fused, the632

model has improved results compared with a single stream,633

which indicates that the information from the two-streams are634

complementary, and the two-streams fusion approach is an635

effective method. The early fusion described previously is not636

as good as late fusion. Nevertheless, our double fusion scheme637

can generate improved results, which can be seen in Table V.638

Fig. 5 and Fig. 6 show the ROC curves of the spatial stream,639

temporal stream, two-streams early fusion and two-streams640

late fusion on each of the five datasets.641

In the proposed double fusion scheme, the spatial stream642

and temporal stream can be trained jointly, which means that643

the two streams share the latent prior probabilities but with644

different encoder and decoder networks. This structure can645

also be considered as a multi-task network in which one646

network performs two different tasks: the reconstruction of647

(a) The frame-level ROC curve on the Avenue dataset

(b) The frame-level ROC curve on the Ped1 dataset

(c) The frame-level ROC curve on the Ped2 dataset

Fig. 5. ROC curve of the frame-level detection on the Avenue, Ped1 and
Ped2 datasets

TABLE V
FRAME-LEVEL RESULTS OF THE TWO-STREAM FUSION

Method
AUC/EER(%)

Avenue Ped1 Ped2 Subway Entry Subway Exit

Spatial Stream 75.0/31.4 72.7/32.4 85.0/20.4 84.6/20.6 89.2/22.1

Temporal Stream 75.0/30.4 67.1/37.2 88.3/18.2 75.6/33.0 84.5/24.1

Two-Stream Early Fusion 77.6/28.4 71.9/33.9 84.6/19.6 85.1/19.9 91.3/17.4

Two-Stream Late Fusion 78.3/28.1 74.8/32.7 92.4/15.2 85.1/20.4 91.5/17.0

Two-Stream Double Fusion 79.6/27.5 75.0/32.4 91.0/15.5 85.1/19.8 91.3/16.9

the static frames and the reconstruction of the optical flow 648

images. Joint training performs slightly worse than indepen- 649

dent training as shown in Table VI. One possible reason is that 650

the prior distribution of the VAE can model more accurately 651

when dealing with a single task. Hence, finally, we choose to 652

train the spatial and temporal streams independently. 653

In Table VII, we compare our results with other published 654

methods. The ConvAE proposed by Hasan, et al. [7], and R- 655

ConvAE proposed in [8] are the closest results to ours. We 656

achieve comparable results with these leading methods, and 657

comparison experiments show that our methods improve on 658

the baselines. A full list of the results can be seen in Table 659
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(a) The frame-level ROC curve on the Entry dataset

(b) The frame-level ROC curve on the Exit dataset

Fig. 6. ROC curve of the frame-level detection on the Entry and Exit datasets

TABLE VI
COMPARISON OF FRAME-LEVEL RESULTS OF TWO STREAM FUSION

USING DIFFERENT TRAINING STRATEGIES.

Training Strategy Method
AUC/EER(%)

Avenue Ped1 Ped2 Subway Entry Subway Exit

Independent Training
Spatial Stream 75.0/31.4 72.7/32.4 85.0/20.4 84.6/20.6 89.2/22.1

Temporal Stream 75.0/30.4 67.1/37.2 88.3/18.2 75.6/33.0 84.5/24.1

Joint Training
Spatial Stream 71.1/35.2 70.0/33.4 84.2/21.2 84.4/20.7 89.7/21.3

Temporal Stream 75.2/31.1 72.7/34.3 84.0/22.8 68.6/37.9 80.0/22.7

VII.660

TABLE VII
FRAME-LEVEL RESULTS AND COMPARISON WITH OTHER METHODS

Method
AUC/EER(%)

Avenue Ped1 Ped2 Subway Entry Subway Exit

Adam [63] 77.1/38.0 -/42.0

SF [69] 67.5/31.0 55.6/42.0

MPPCA [62] 66.8/40.0 69.3/30.0

MPPCA+SF [62] 74.2/32.0 61.3/36.0

HOFME [70] 72.7/33.1 87.5/20.0 81.6/22.8 84.9/17.8

ConvLSTM [71] 84.0/- 67.0/- 77.0/- - -

ConvLSTM-AE [71] 50.0/- 43.0/- 25.0/- - -

VAE [71] 78.0/- 63.0/- 72.0/- - -

ConvAE [7] 70.2/25.1 81.0/27.9 90.0/21.7 94.3/26.0 80.7/9.9

ConvAE [8] 74.5/- 68.1/- 81.1/- 91.0/- 80.2/-

R-ConvAE [8] 77.0/- 75.5/- 88.1/- 93.3/- 87.7/-

ConvAE (Our Results) 73.5/31.6 72.6/33.0 83.3/23.1 84.2/21.6 88.1/24.4

R-ConvAE (Our Results) 74.3/32.7 69.4/35.9 82.3/24.1 82.1/22.1 88.5/23.0

Two-Stream R-ConvVAE (Our Results) 79.6/27.5 75.0/32.4 91.0/15.5 85.1/19.8 91.7/16.9

Following [7], we also evaluated the event-level detection661

on each of the five datasets. Table VIII shows the experimental662

results of event-level detection. From the table, the spatial663

stream tends to have better performance than the temporal664

stream. For instance, on the Avenue dataset, the spatial stream665

detects 36 abnormal events with 8 false alarms while the666

temporal stream detects 32 abnormal events with 12 false667

(a) The visualization of abnormal events on video #4 of the Avenue dataset

(b) The visualization of abnormal events on video #32 of the Ped1 dataset

(c) The visualization of abnormal events on video #4 of the Ped2 dataset

Fig. 7. Visualization of the abnormal event detection on the Avenue, Ped1
and Ped2 datasets

(a) The visualization of regularity scores on video #6 of the Entry dataset

(b) The visualization of regularity scores on video #3 of the Exit dataset

Fig. 8. Visualization of the regularity scores on the Entry and Exit datasets
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(a) The visualization of abnormal events on video #15 of the Avenue dataset

(b) The visualization of abnormal events on video #32 of the Ped1 dataset

(c) The visualization of abnormal events on video #7 of the Ped2 dataset

Fig. 9. Visualization of the regularity scores of different streams and their
fusion. In the figures, the red regions indicate the ground-truth frames of
abnormal events.

alarms. On most of the datasets, our two-stream fusion method668

tends to have less false alarms when detecting abnormal669

events. We outperform the methods in [7] on the Ped1, Ped2670

and Exit datasets.671

TABLE VIII
EVENT-LEVEL RESULTS OF THE PROPOSED MODEL

Method
Correct Detection/False Alarm

Avenue Ped1 Ped2 Subway Entry Subway Exit

Abnormal Events 47 40 12 66 19

ConvAE [7] 45/4 38/6 12/1 61/15 17/5

Spatial Stream 36/8 38/9 12/0 51/6 17/5

Temporal Stream 32/12 37/15 12/0 51/9 16/6

Two-Stream Late Fusion 32/6 37/5 12/0 52/8 18/4

Two-Stream Early Fusion 35/7 38/6 12/0 54/7 17/4

Two-Stream Double Fusion 34/6 38/5 12/0 56/7 18/4

5) Discussion and Visualization: Since the proposed672

scheme is a frame-level abnormal event detection method,673

the model does not locate the exact pixel position. During674

testing, the model generates a reconstruction error probability675

for each frame. The user only needs to analyse the frame-level676

reconstruction error probability to detect abnormal events. Re-677

garding the system efficiency, our model takes approximately678

0.0012s to generate a single reconstruction error probability on679

a Titan X (Maxwell Architecture) GPU. The testing time of680

the ConvAE, ConvVAE and R-ConvAE are same level, since 681

they are all end-to-end learning models. 682

To better analyze the performance of our abnormal events 683

detection scheme, we also plot the regularity score from each 684

of the five datasets in Fig. 7 and Fig. 8. Fig. 7 provides the 685

detected events and the corresponding regularity scores on the 686

Avenue, Ped1, and Ped2 datasets. It is clear from the figure 687

that the lower regularity scores correspond to abnormal events 688

while high regularity scores correspond to normal frames. Fig. 689

8 provides the visualization of regularity scores for the Entry 690

and Exit datasets, where the red color regions indicate the 691

frame-level ground-truth label of abnormal events. As can be 692

seen from the figure, the detection results match well with the 693

ground-truth frames. We also compared the regularity score 694

curve of the spatial, temporal, two-stream early fusion, two- 695

stream late fusion and two-stream double fusion in Fig. 9. In 696

the figure, the red curve indicates the regularity scores of the 697

two-stream double fusion, which normally better correspond 698

to the ground-truth abnormal frames. 699

D. Pixel-level Detection 700

1) Training and Testing Configurations: The previously 701

discussed training and testing scheme can be considered as 702

a type of frame-level abnormal event detection method since 703

this framework follows the research of [7], which is a typical 704

deep learning temporal regularity detection scheme (frame- 705

level). To enable the pixel-level abnormal event localization, 706

a patch-based training and testing method is also carried out 707

to test the feasibility of the proposed R-ConvVAE model. 708

Instead of training all the datasets together, in the patch- 709

based training scheme, we train each dataset separately. Ex- 710

plicitly, we validate the R-ConvVAE model on two datasets, 711

the Avenue, and Ped1 datasets, in which pixel level abnormal 712

masks are provided for evaluation. 713

Firstly, following [2], a temporal-spatial foreground cube is 714

detected. The frames in a video are first divided into some 715

non-overlapping patches, using sliding windows. Then the 716

foreground segmentation mask is generated by the Vibe algo- 717

rithm [72]. Then the overlapping ratio between the foreground 718

segmentation mask and each of the non-overlapping patches 719

is computed: if the overlapping ratio is above 10 percent, 720

the corresponding patch is recognized as a foreground. These 721

patches, are then used to form the temporal-spatial cubes for a 722

video: each patch that is considered to be foreground is used to 723

form a cube with a sequence of 10 frames. After ignoring the 724

duplicated cubes of a video, a set of temporal-spatial cubes is 725

collected, and is ready for training. By doing so, the training 726

efficiency is improved since only the foreground patches are 727

used for training, the large portion of the video which contains 728

only the background is ignored. The stride for the collection of 729

cubes is set as 2 to guarantee there is enough data for training. 730

During testing, we also feed the video frames to the fore- 731

ground detection algorithm to extract foreground patches to 732

speed up the process and also filter out some of the false 733

positive detections which might appear in the background 734

regions. The whole video is segmented into several temporal- 735

spatial cubes with 10 frames. For each cube in the video, we 736
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Fig. 10. Foreground detection for patch generation

Fig. 11. Pixel-level ROC curves on the Avenue and Ped1 datasets

employ the same practice discussed previously to calculate737

the reconstruction error probability for each pixel. The pre-738

precessing steps can be seen in Fig. 10.739

2) Results and Visualization: The ROC curves of the pixel-740

level evaluation of the Avenue and Ped1 dataset are shown741

in Fig. 11. The corresponding AUC value and comparison742

with previously-published results are presented in Table IX.743

As can be seen from the table, our R-ConvVAE method744

achieves the best AUC result on the Ped1 dataset, and with a745

satisfying result on the Avenue dataset. Our model only uses746

the appearance features to test the feasibility of the localization747

task. Also, the results using ConvAE, R-ConvAE, ConvVAE,748

and R-ConvVAE show consistency with the findings reported749

previously. A visualization of the detected abnormal regions750

on the Avenue dataset is shown in Fig. 12.751

Fig. 12. Pixel-level detection results on the Avenue dataset: Top row are the
ground-truth masks whilst the bottom row are the detection results. The frame
is the 2nd frame of the 8th video from the Avenue dataset.

TABLE IX
PIXEL-LEVEL RESULTS AND COMPARISON WITH OTHER METHODS

Method
AUC(%)

Avenue Ped1

Adam [63] - 46.1

SF [69] - 19.7

MPPCA [62] - 20.5

MPPCA+SF [62] - 21.3

Lu et al. [3] 92.9 63.8

Ren et al. [73] - 56.2

Xu et al. [37] - 67.2

Sum et al. [74] - 65.1

Del Giorno et al. [75] 91.0 -

Zhang et al. [6] - 67.6

Ours (ConvAE) 89.1 65.5

Ours (R-ConvAE) 91.0 67.0

Ours (ConvVAE) 90.3 67.5

Ours (R-ConvVAE) 90.6 67.7

V. CONCLUSION 752

To detect abnormal events from videos in a semi-supervised 753

learning scheme, we proposed a two-stream recurrent VAE. 754

The VAE is used to form a probability distribution of normal 755

data by probability inference and reconstruction. The recurrent 756

connection using a convolutional LSTM inside a VAE can pre- 757

serve the spatial information whilst simultaneously capturing 758

the long-term dependencies of video frames. The two-stream 759

fusion architecture also demonstrates a powerful information 760
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fusion capability in abnormal event detection. The proposed761

model was tested on five publicly available datasets, namely762

Avenue, Ped1, Ped2, Subway-entry and Subway-exit, with763

improved results over other published methods.764
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