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Summary The statistical concept of sampling is often given little direct attention, typically
reduced to the mantra “take a random sample”. This low resource and adaptable
activity demonstrates sampling and explores issues that arise due to biased
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Keywords: Teaching; Teaching statistics; Sampling; Biased sampling; Practical activity.

INTRODUCTION

It is difficult to communicate statistical concepts
in a meaningful way using only abstract defini-
tions. Using interactive activities that highlight
the key concept, consisting of a physical process
that can be followed and manipulated, can
greatly support learning. The focus of this article
is to describe such an activity to demonstrate
sampling.

Sampling is an interesting concept to commu-
nicate. With a reasoned line of questions, we
can convey an intuitive understanding of the
concept in genuine population contexts, namely,
that ‘taking a sample’ is required to learn some-
thing about a large group without having to
investigate everyone. By large group, we mean
the population of interest, which naturally leads
to a discussion about the term population; dif-
ferentiating its common meaning – number of
living things or items – from its traditional sta-
tistical usage covering all contexts and meaning
a general situation described by a probability
model.

There are many questions we can use to stim-
ulate this discussion and give it a real-life con-
text. For example, ‘what pets do people own?’,
‘how many people have dementia?’, ‘how will
people vote in the next election?’ or ‘in how
many films does the lead actress have more
lines than the lead actor?’ In each case, we first

have to consider what the population of interest
is; for questions about people, we may consider
a local region, a country or even all the people
of the world, but that does not make sense for
how people will vote in an election – with differ-
ent political parties in different countries. When
thinking about films, we have to think about
what we mean by the word ‘film’: only films with
a lead actress and lead actor – not all films have
both, only fictional films or documentaries, ma-
jor studio releases or fan-made short films, all
films ever or only in recent years, what about
different languages. This may seem pedantic,
but it can be at the core of a discussion on
sampling.

If we could find every member of the popula-
tion, then we would find the answer to our ques-
tion, there would be no uncertainty. However,
i.e. typically not feasible (either it would take too
long or cost too much money) so instead we only
consider some members of the population – we
take a sample. From a sample, we will obtain an
estimate of a quantity of interest about the
population.

The aim of this activity is to explore ideas
around taking a sample, with a focus on the
issue of biased sampling. The learning aim is
to understand the need for a well-designed
sampling scheme to ensure an unbiased sample
from the population that will lead to an unbiased
estimate.
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OVERVIEW

The activity is designed in such a way that
participants will typically generate nonrandom
samples, i.e. the probability of a given sample
is not equal to the probability of drawing the
individuals at random. We will call samples
generated in this way biased samples; since this
will result in estimates that are quickly shown to
be biased.

The scope and depth of the investigation can be
tailored to the available time, context of the activ-
ity and level of the target audience by including
different aspects. In the following sections, we
present a suggested template for delivering the
activity and key discussion points.

As an aside, especially if using this as a class-
room investigation, it may be appropriate to
discuss how to use weighing scales properly. Spe-
cifically, ensuring that the scales are set to zero
with the container in place, using the tare feature
to zero the scales.

MATERIALS

The required resources are minimal and easy to
source or adapt, making the activity portable for
science festivals, as well as reasonable to create
multiple sets for use in a classroom investiga-
tion. Figure 1 illustrates an example set of mate-
rials using dice; we have also successfully used
chocolate bars (from a well-known company)
that come in full-sized and miniature-sized ver-
sions, building blocks (wooden and plastic) and
other toys.

Our set requires 25 objects of two distinct sizes
distinguishable using a visual trait (e.g. colour). It
is important that the different sized objects,
which we shall call small and large, have distinct

weights and are easy to distinguish by touch. For
the visual trait, we shall use colour and the labels
blue and not-blue. Hence, the four types of object
are small–blue, large–blue, small–not-blue and
large–not-blue. The exact number of each type
does not matter, however, we have found a
good mix to be 3 large–blue, 2 large–not-blue, 4
small–blue and 16 small–not-blue (figure 1). In
a classroom setting, the multiple sets do not need
to be identical.

In addition to the objects, we require a set
of weighing scales and a bag able to contain
all the objects and easily draw out samples.
Note, it is important that the small objects
are sufficiently heavy to register individually
on the scales. We recommend small objects
weighing 5–10 g and large objects weighing
20–50 g.

WEIGHING ACTIVITY

Determine the mean object weight

To prepare for the activity, place the objects in
the bag in secret, then explain the problem:
there are 25 objects in the bag and we are inter-
ested in their total weight, how could we work
that out?

Explain that the trivial solution to weigh all
the objects is often not possible. Instead, if we
knew the mean weight of an object, we could
calculate the weight of the bag as 25 times
the mean weight. Hence, the weight of the
bag is equivalent to knowing the mean object
weight. There is no prior knowledge about the
objects, so we will take a sample of objects
and use these to estimate the population mean
object weight; here, we introduce the concept
of a sample mean (or fully, the sample mean
weight).

Fig. 1. Example of required materials: 25 objects, a weighing scale and a draw bag. Note that we have small/
large and blue/not-blue objects. [Colour figure can be viewed at wileyonlinelibrary.com]
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Defining unbiased mean

It must be stressed that there are lots of different
possible samples, each will (likely) result in a dif-
ferent sample mean. A desirable property of a
sample mean would be that, across all possible
samples, we would expect the sample mean to
equal the (true) population mean.

Informally, if we imagine all possible samples
we could take, then the mean of all the associated
sample means would equal the population mean.
We call such estimates unbiased. Formally, let M
denote the population mean and mk denote the
sample mean from sample k, then we are saying
that the expected value or mean of the sample
means being equal to the population mean,
Ek[m] = M, is a desirable property and called be-
ing unbiased.

As an aside, typical notation for the population
meanwouldbe theGreek letterμ, but thismaycon-
fusepresentingtheactivity.Further,thisactivitycan
bepresentedentirelyverballywithoutrelyingonany
writingboard/flipchart/etc.Hence,inthisarticle,we
present a written/notation-based and descriptive
approachtoexplainingtheactivity.

In summary, we do not expect a specific sample
mean to exactly equal the population mean, i.e.
the ‘price’ of using a sample – you cannot get
something for nothing. However, we expect that
‘on average’ across all possible samples, we
would obtain the population mean.

Activity

Instruct the participant to draw a sample of
objects at random from the bag, weigh this
sample, calculate the sample mean (i.e. add all
the weights and divide by the number of objects)
and hence obtain an estimate of the total weight
of the bag. With 25 objects as described in the
Materials section, use a sample size equal to the
number of large objects, namely, a sample size of
five (this will be helpful when revealing the popu-
lation and samples in the next stage).

The participant may realize there are different
types of object within the bag. If they ask or men-
tion this while drawing their sample, remind them
to draw a random sample from the bag.

At this point, it may be worth exploring the use
of the mean object weight in the presence of
different types of object. We are interested in
the total weight of the population,W, that consists
of N objects. Hence, the population mean object
weight is M = W/N. It does not matter that the N
objects may have different weights. We collect a
sample to estimate the population mean object
weight, M, with our sample mean m, so we are

explicitly allowing for objects to have different
weights.

The participant should then repeat the activity,
replacing all the objects and drawing a new
sample (of the same size, five say) and recording
the new sample mean. Let the participant have
several repeats, each will likely have a different
estimate.

For example, in figure 2, the participant’s first
estimate of themean object weight is 17.8 g, then
8.4 and 12.2 g. The true population mean object
weight is 8.44 g.

Reveal the population and possible samples

Empty the entire bag but do not weigh all the ob-
jects just yet. Following from figure 1 (and Mate-
rials section), there will be 5 large and 20 small
objects. The participant should recognize some
of the objects from their samples, we hope each
sample contained some unique objects but that
is not necessary.

Return the discussion to the different possible
samples, for the moment, ignore the slight varia-
tion in weight between similar objects and say we
have large (L) objects that each weigh wL and
small (S) objects that each weigh wS.

Continuing our example, if we take a sample
of size five, how many different types of sample
can we have? The answer is six, specifically:
(LLLLL), (LLLLS), (LLLSS), (LLSSS), (LSSSS) and
(SSSSS). The order of drawing objects from the
bag does not matter. Ask the participant to recall
what their samples consisted of, how many of
these six types of sample did they draw?

Although there are six different types of sam-
ple, explain that they do not occur equally often
if drawing objects at random. We can calculate
the number of ways of drawing l large and s small
objects. Given the sample size, we can work out
how many possible random samples of each type
there are, essentially the number of ways of
choosing the objects from the bag. The formula
involves the product of two binomials,

# l; sf g ¼ L
l

� �
S
s

� �
¼ L!

L� lð Þ!l!
S!

S� sð Þ!s! ;

where a! ¼ að Þ� a� 1ð Þ� a� 2ð Þ�···� 2ð Þ� 1ð Þ:
When n= 25, we have the following table of the

number of different samples of size five:

#{5,0} LLLLL 1
#{4,1} LLLLS 100
#{3,2} LLLSS 1,900
#{2,3} LLSSS 11,400
#{1,4} LSSSS 24,225
#{0,5} SSSSS 15,504
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It is not necessary to work out these numbers
exactly with the participant. If the sample size
equals the number of large objects (which we rec-
ommend), then there is only one possible sample
consisting only of large objects – i.e. the starting
point. Then, consider the number of ways to draw
one small and the remainder large objects, which
can be seen to be L × S by picking one of the L
large objects to omit and one of the S small ob-
jects to replace it. It is usually sufficient to explain
the first and second lines in the above table.

The importantpoint tomake is that ifwe take the
‘average’ sample mean across all these possible
samples, it will equal the population mean (shown
in algebra in Appendix A) assuming that all of the
53,130 ( ¼ 25

5

� �
) possible samples are equally

likely; which is true under random sampling.

Discussion and biased estimate

With the participant’s estimates to hand, weigh
all the objects and compare; in our example
(figure 2), the population mean weight is 8.44 g.
Recall, we do not expect any estimate to be
exactly right, i.e. the ‘price’ of taking a sample.
However, to be a useful estimate, we would like
it to be unbiased, as previously described in the
Defining unbiased mean section.

At this point, reveal a chart of all previous
participant’s first estimate. Although participants

may have multiple repeats, only record the first
on this overall chart. Consider the distribution of
estimates, ‘on average’ do they match the true
total weight of all objects?

In our experience running this activity, and en-
couraged by the design of the activity, samples
will typically include more of the large objects
than they should; this will result in an over esti-
mate, a biased estimate, of the mean weight
(and hence the total weight).

It is essential that this part of the activity is
not mentioned before the participant has drawn
their first sample. The activity is designed to in-
duce biased samples based on a natural inclina-
tion to grab larger objects within the bag. If the
participant is aware of this effect, they will likely
consciously alter their sampling behaviour.

If the activity is ‘working’, then participants’ first
guesses will give a distribution of sample means
such that the expected value will be larger than
thepopulationmean–onaverage,participantswill
overestimate the sample mean. That is, we will
have a biased estimate of the populationmean.

The exact bias is difficult to understand using
algebra, different participants may have a differ-
ent sampling bias (including no bias at all). The
effect of taking a biased sample is that all the pos-
sible samples are no longer equally likely; but not
every participant may be biased in the same way.
An unfortunate outcome might be that bias in

Fig. 2. The mean object weight from three samples of five objects (a–c) and the true population mean object
weight (d). [Colour figure can be viewed at wileyonlinelibrary.com]
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both directions is present, one group of people
tend to oversample the large objects while
another tend to oversample the small objects.

At the end of the activity, it is important to
return to the original example/context used to
motivate the activity.

How much should we ‘trust’ an estimate? A
question of confidence

When taking a single sample, even if it is an un-
biased random sample, there is uncertainty in
the estimated mean. So an obvious question to
explore is how much do we ‘trust’, or what is
our confidence in, the estimated mean?

Firstly, what dowemean by trust or confidence?
We know that, by chance, wemay get an estimate
that is quite different to the population mean. But
how likely is that? For any given sample mean,
can we say something about how confident we
are in that estimate of the population mean?

For advanced groups, this discussion naturally
leads into the topics of standard deviation, stan-
dard errors and confidence intervals. However,
that goes beyond the scope of this article. Instead
of explicitly calculating the confidence interval,
we could present example uncertainties. For ex-
ample, wemay consider the impact of uncertainty
when the mean weight estimate is 10 g plus or
minus 10 g, compared with 10 g plus or minus
1 g; these two ranges of uncertainty change our
opinion (or more colloquially, our trust) of the
10 g estimate.

PROPORTION ACTIVITY

After considering estimates of weights in the
Weighing Activity section, we translate the key
learning points to a different context; namely, es-
timating the proportion of objects that are blue by
taking a sample of 10 objects.

The activity follows exactly as before, except
we record the proportion of blue objects. If con-
tinuing from sample means the participant will
be familiar with the issue of biased sampling.
Swapping object sets, so that the bag contains a
new set of unknown objects would effectively re-
set the problem. However, it would not alter the
knowledge gained about sampling; it is likely par-
ticipants will now consciously alter their sampling
behaviour. That is worth mentioning explicitly, as
the purpose of this activity is to consider if we
can have biased proportions in the same way we
had biased means.

Possible estimates

Why did we change the sample size from 5 to 10
for estimating a proportion? With a sample of five
objects, the only possible proportion estimates
are 0%, 20%, 40%, 60%, 80% or 100%. Unlike
when investigating the mean object weight, the
range of possible proportion estimates is directly
linked to the sample size.

The population proportion in our example
(figure 1) is 7/25 = 28%. Hence, without a larger
sample size, we cannot obtain estimates that are
close. As an extreme example, imagine a sample
of only one object, then our estimated proportion
can be either 0% or 100%.

Recall that we do not expect the sample esti-
mate to exactly equal the population value. The
case of proportions clearly demonstrates this,
since it is highly unlikely that the set of possible
sample proportions includes the true population
proportion; as is the case in our activity example.
However, this does not impact our concept of an
unbiased estimate. Although no sample estimate
may equal the truth, the average of all possible
sample estimates may.

Is bias a problem for proportions?

When weighing the objects, there were distinct
weights for small and large objects, this in turn
led to a biased estimate of the mean when a bi-
ased sample is taken. Although not as obvious,
there is a difference with regard to the colour,
60% (3/5) of the large objects are blue compared
20% (4/20) of the small objects. A biased sample
that oversamples the large objects will overesti-
mate the proportion of blue objects, similarly
to over estimating the weight. This is a subtle
point, translating the obvious difference in object
weight to a difference in proportion of blue objects
by size.

To extend this idea, and to challenge under-
standing of biased sampling, imagine a bag where
the proportion of blue objects was the same
across small and large objects; in this case, would
a sample biased due to object size matter when
estimating the proportion? The answer is no,
because even if we over represent the large ob-
jects, they are equivalent to the small in terms
of colour.

SUMMARY

The concept of sampling is often discussed in
abstract terms, with the message that most
people learn being ‘take a random sample’ and
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everything will be fine. We have presented a tried
and tested activity that is designed to explore the
statistical ideas of sampling in a practical way,
specifically demonstrating the issue of biased
sampling.

We have used the activity at several science
festivals, where there is a strong need to adapt
the content based on the age and level of the au-
dience; alternatively, it can be part of a classroom
investigation and used as a foundation to intro-
duce more advanced topics, such as quantifying
uncertainty and confidence intervals.

Designing good studies is the cornerstone of
good science. There are numerous recent and
historical examples in political science of biased
samples; seeKennedyetal. (2016) foranexample
ofmodernelection polling andRothman (2016) for
an account of the Literary Digest’s infamous 1936
poll. It is not only political science that suffers from
biased sampling and examples can be found in
many contexts. Any situation where the make-up
of the sample is affected by another factor can in-
duce sampling bias, e.g. the so-called
survivorship-bias demonstrated byAbrahamWald
when studying damage to aircraft; nicely summa-
rized by Jordan Ellenberg (2016). This can also
lead into discussions on nonrandom samples, e.g.
convenience samples; in the context of ouractivity
if it is easier (more convenient) to sample the large
objects, they will appear in samples more often
than by chance.

The key message of the activity is to explore
the idea of bias in sampling. The aim of the ac-
tivity is for participants to gain a deeper insight
and understanding of the overly simple and
overused mantra ‘take a random sample’, and
the potential impact on estimates if the mantra
is not heeded.
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Appendix A: Proof of unbiasedness
Using the following algebra, we can show that,
given a random sample where all possible sam-
ples are equally likely, we obtain an unbiased esti-
mate of the mean object weight.

Recall that to be unbiased, the average of all
possible sample mean weights, mk, should be
equal to the true population mean weight, M.
From the table in the Reveal the population and
possible samples section, we know how many dif-
ferent ways there are to draw a sample consisting
of a number of small and large objects, with an
associated sample mean weight. So we take the
average of all those possible samples, one term
per row in the table,

Ek m½ � ¼ 1
53130

1ð Þ 5wL

5

� �
þ 100ð Þ 4wL þwS

5

� ��

þ 1900ð Þ 3wL þ 2wS

5

� �

þ 11400ð Þ 2wL þ 3wS

5

� �

þ 24225ð Þ wL þ 4wS

5

� �
þ 15504ð Þ 5wS

5

� ��

¼ 1
53130

53130wL þ 212520wS

5

� �

¼ wL þ 4wS

5

which can also be written as,

¼ 5wL þ 20wS

25
by definition this is;¼ M:

Hence, the average of all possible sample mean
weights equals the population mean weight.
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