
Implementing Lean Thinking in Software Development – A Case Study from 

India 

 

Gopalakrishnan Narayanamurthy 

Fellow Program in Management 

Quantitative Methods & Operations Management (QM & OM) Area 

Indian Institute of Management Kozhikode (IIMK)  

IIMK Campus, Kunnamangalam, Kozhikode, Kerala – 673570, India. 

E-mail: gopaln06fpm@iimk.ac.in 

Phone: +91-8943687765 

 

 
Anand Gurumurthy  

Associate Professor  

Quantitative Methods & Operations Management (QM & OM) Area 

Indian Institute of Management Kozhikode (IIMK)  

IIMK Campus, Kunnamangalam, Kozhikode, Kerala – 673570, India. 

E-mail: anandg@iimk.ac.in 

Phone: +91-495-2809435  

Fax: +91-495-2803010 

 

Shyam Prasath B 

Post-graduate Program in Management 

Indian Institute of Management Kozhikode (IIMK)  

IIMK Campus, Kunnamangalam, Kozhikode, Kerala – 673570, India. 

E-mail: shyamprasathrao@gmail.com 

Phone: +91- 9741400893 

 

                                                           
 Corresponding Author  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/187115394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

1 

 

Biographical Statements 

 

Gopalakrishnan Narayanamurthy is pursuing his Fellow (Doctoral) Program in Management in 

Quantitative Methods and Operations Management (QM & OM) in Indian Institute of Management 

Kozhikode (IIMK), Kerala, India. He is a recipient of Fulbright-Nehru Doctoral Research fellowship 

and worked at Carlson School of Management, University of Minnesota during his fellowship. His 

research focuses on assessment of process improvements in services. 

 

Anand Gurumurthy is an Associate Professor in the area of “Quantitative Methods and Operations 

Management (QM&OM)” at the Indian Institute of Management, Kozhikode (IIMK), Kerala, India.  

Earlier, he was an Assistant Professor with the Mechanical Engineering Department of Birla Institute 

of Technology & Science (BITS) Pilani, Pilani Campus, Rajasthan, India, where he also completed 

his PhD in the area of Lean Manufacturing and ME in Manufacturing Systems Engineering. He 

received his BE in Mechanical Engineering from the University of Madras, India. He has around 12 

years of teaching/research experience.  He started his career as a Production Engineer with one of 

India’s leading industrial houses – the TVS Group. He has published around 40 papers in peer-

reviewed national and international journals such as International Journal of Production Research, 

and Production Planning & Control. He has also presented many papers in various 

national/international conferences. His current research interests include lean thinking, application of 

lean thinking in other sectors, operations management and world-class manufacturing. 

 

Shyam Prasath B, currently works with Wipro Technologies as a Business Analyst in Bengaluru, 

India. Shyam has a PGDM from IIM Kozhikode and is an ardent researcher in the field of Software 

Development Process. He has a good blend of technology expertise and business acumen that help in 

studying the best practices followed in the industry in this domain and correlating them with the 

business needs of the industry and effectively contributing to the research in this area. 

 



 

2 

 

Implementing Lean Thinking in Software Development – A Case Study from 

India 

 

Abstract: Implementation of lean thinking (LT) in the service sector has been widely reported. Although few 

studies describing the application of LT in software development (SD) are available, not many are from an 

emerging market such as India. Our study addresses this gap by using a single-case study methodology to 

understand the lean approach adapted by a firm in India to overcome the issues faced in its SD process. Data 

were collected through direct observation for a period of 1 year. Difficulty in integrating work from various 

teams, long release cycles for the developed software products, late shipments, quality issues, customers’ 

dissatisfaction, and high operational costs were the problems faced by the case company. These problems 

motivated the case company to adopt LT at the team level by following the scrum process. This study 

identified how the LT approach guided the case company to achieve responsiveness, regular interaction 

between employees, involvement of customers, accomplishing targets within the planned timeline and so on. 

This study helps both academicians and practitioners to understand the approach followed to implement LT in 

a SD firm in India. 

 

Keywords: Lean thinking; software development; lean services; case study; India. 



 

3 

 

Implementing Lean Thinking in Software Development – A Case Study from 

India 
 

1. Introduction 

According to the “IT-BPO Sector in India: Strategic Review 2012” report developed by India’s 

National Association of Software and Services Companies, India’s export of outsourced software 

product development (SPD) crossed the billion dollar mark in FY2011. The report also stated that 

the market for outsourced SPD had consistently experienced double-digit growth rates over the 

past 5 years and is expected to grow faster than the industry average of 17% to cross USD 1.2 

billion in exports. Figure 1 captures the growth of information technology (IT) market in India at 

different time points. 

 

“Insert figure 1 here” 

 

A noticeable shift in the Indian software product business ecosystem is being observed, in 

terms of acceleration in software product business activity, improvements in the talent and 

support and innovations in software product technology and delivery/business models. Apart 

from these, changes in the Indian economy are also helping in the development of the domestic 

market for software products. Increasing IT adoption in India has helped in creating a sizeable 

product business market opportunity locally. For instance, the market worth for Indian domestic 

software products segment is pegged at Rs. 180 billion in FY2012, a growth of nearly 13% over 

FY2011 which can be attributed to the need to replace legacy systems, technology advancements 

around cloud, mobility and so on. 

 

Some of the key advantages that promote the growth of software industry in India are the 

availability of abundant resources of science and technology talent, low cost of labor, high 

English proficiency among people, geographical advantages (12-hour time difference between 

India and the USA) and the supportive policies of the Government of India. Some of the 

disadvantages faced by the software industry in India are mentioned to be the lack of core 

technology and intellectual property rights, over-dependence on the world market (especially the 

USA) and serious insufficiency of IT industrial infrastructure. The above-mentioned facts about 

India’s SPD market clarify the importance of carrying out this study from an Indian context. 

 



 

4 

 

Post setting up the SD organizations in India to utilize the key advantages of the market, these 

firms face a variety of problems due to the inherently dynamic nature of the software market. SD 

business has been affected by frequently changing customer needs and rapid evolution of 

technology, which place these firms under immense pressure to deliver their outputs within the 

prescribed time frame at the agreed upon quality and cost. To remain competitive, companies are 

continuously attempting to react to the changing needs in an agile manner (Poppendieck and 

Poppendieck 2010). Not meeting up with the rapidly varying demands of the market would result 

in a higher risk of market lockout and reduced probability of market dominance. Hence, many of 

the Indian software organizations are attempting to maintain their competitive advantage in the 

global platform by reorganizing their SD processes (SDPs) by introducing improvements in the 

conventional SD life cycle models (such as waterfall model, incremental model and spiral 

model). Recently, Indian software organizations have been exploring the possibility of 

introducing the principles and concepts of lean thinking (LT) proposed by Womack et al. (2003) 

to improve the SDP. LT has been observed to have the capability to yield a significant reduction 

in cost and variability while improving the quality level and flexibility. In this study, an attempt 

has been made to understand the procedure of implementing lean SD (LSD) followed by an 

Indian case company. Figure 2 shows the steps adopted in conducting and reporting this study. 

 

“Insert figure 2 here” 

 

2. Literature Review 

In this section, literature review of LSD is performed in two directions: (a) recent literature of 

LSD and (b) case studies on LSD. The review of recent literature of LSD was carried out to 

understand the extent of implementation of LT in the domain of SD and also to identify the 

prerequisites, practices, principles and performance measures adopted. Case studies on LSD was 

reviewed separately as the current study is contributing to this literature. 

 

2.1. Recent literature of LSD 

In this section, the reviewed literature has been classified into the following categories (Anand et 

al., 2014): value and waste, lean practices in SDP and specialized tools and techniques (as 

categorized in Table 1). This review process clearly showed that the studies lacked a detailed 

description on the LT adoption procedure and none of the studies have been performed in the 

Indian context. Probable reasons could be that most of the Indian software organizations act as 

“outsourcing partners” or “service providers” to other big organizations in the USA. Due to data 



 

5 

 

security and confidentiality clauses in the agreements, many organizations are forced not to share 

their implementation journey. 

 

“Insert table 1 here” 

 

2.2. Case studies on LSD 

In this section, the literature on case studies in LSD were reviewed to understand the aspects of 

LSD from the perspective of a firm. Table 2 suggests that the implementation of LSD has started 

gaining importance among the practitioners, although the concept of LSD is still evolving. 

 

“Insert table 2 here” 

 

2.3. Research gaps 

Reviews documented in Sections 2.2 and 2.3 indicate that a good number of research papers and 

books dealing with the theoretical aspects of applying LT to SD are available in the literature. 

Researchers have attempted to identify the wastes that happen in SD and suggested different 

tools to identify and reduce/eliminate wastes. Other researchers have attempted to document the 

implementation aspect of LT in SD through case studies. However, almost all the studies are 

based on firms in the Western context (except that of Staats et al., 2011), even though India is a 

preferred market for outsourcing SD. The study of Staats et al. (2011) clearly indicates that 

implementation of LSD is happening in Indian software organizations. However, the objective of 

their study was to understand the impact of LT on performance improvement within the chosen 

case organization and was not to report how the case organization was implementing LSD, which 

is the objective of the current study. 

 

3. About the Indian case organization 

The chosen case company is a leading provider of global enterprise software, that is, business 

software solutions, and it has a major SD facility located in India. The global company has been 

in existence for more than 40 years and its SD facility in India has been in existence for more 

than 17 years. The current employee strength is approximately 82,000 globally, and the number 

of employees in its Indian development centre is approximately 6000. It has offices across 130 

countries in the world, which are split into four geographical regions: EMEA (Europe, Middle 

East, Africa), APJ (Asia Pacific, Japan), America (the USA and Canada) and LAC (Latin 

America and Caribbean). The company caters to a number of industry verticals such as aerospace 



 

6 

 

and defence, automotive, banking, consumer products, oil and gas, engineering and construction, 

health care, media, public sector, retail and telecom. The company implemented LT across the 

entire SDP and also for its support teams, and it clocked its highest revenue since inception after 

3 years of LT roll-out. This could be partially attributed to the new products that were introduced 

as well as to the LT that was implemented in the company. In this study, a detailed description of 

the procedure adopted by the case company to imbibe the LSD approach is discussed. Data were 

collected through direct observations and experiences over a period of 1 year by one of the 

authors. 

 

3.1. Drivers for Implementing LT 

The implementation of LT at the case organization was initiated after it was found that it was 

becoming increasingly cumbersome to integrate the work from various teams. The release cycles 

of the products were long and were split into many phases. Issues in output quality, frequent 

shipment delays, missed/unnoticed needs of the customers, and high operational cost were the 

problems faced. The average release cycle of a software product was 6 months, and within this 

period, there were drastic changes in the requirements of industry and customer. For example, a 

simple search feature was ordered by a customer at the initial stages of development, but at the 

end of 6 months while delivering the product, due to changes in the requirements and variations 

in the market dynamics, the customer incrementally modified the requirement to a full-text 

search feature. The case organization had to improve its responsiveness to accommodate such 

dynamic changes. The company was facing difficulties in satisfying its customer’s bug ratio 

specifications mentioned in the service-level agreement. For a fundamental error committed at 

the initial stages of SD, the number of valid bugs increased exponentially by the end of 6 months 

as the error had a cascading effect in generating the bugs with progressing in SD. 

 

To overcome these problems and attain a competency, the case organization started the roll-

out of LT in 2006. The adoption took place when the company was changing its business 

strategy. The company had identified new domains to invest for the future and was coming up 

with new software products for each of the new domains. Company adopted LT across the entire 

software product value chain and insisted on following the methodology for all the future new 

software products. Teams working on the new software products were trained on a fast-track 

basis. Fast-track training helped in setting the benchmark for other teams and also in conveying 

the seriousness of the LT initiative undertaken by the company. 

 



 

7 

 

To provide in-depth details and clarity about the LSD approach adopted in the case 

organization, both the organizational-level and the project team-level changes and adaptations are 

reported in this study. A project team working on developing the “search” software in the case 

organization is chosen for reporting the process adopted. The team comprises of 10 members 

catering to three functionalities: quality engineering and testing (QET), performance, and 

production. QET and performance were the main functionalities, and production was a support 

function. QET function checked the entire product functioning through feature testing, whereas 

performance function would carry out load testing with heavy data for measuring the response 

time. Production function catered to QET and performance functions by performing installations, 

data loading, and other support functions. Current problems faced, associated wastes and LSD 

practices as solutions to the problems identified are listed in Table 3. 

 

“Insert table 3 here” 

 

4. LSD Implementation 

4.1. Communication 

The entire company was informed about the importance of adopting LT through e-mails, town 

halls and other business unit-level meetings. The training was made mandatory for all the 

employees. Constant meetings and demo sessions were conducted to explain how LT can be 

adapted in each and every team. Specific days were reserved to conduct tutorial sessions on lean 

principles, and subject-matter experts were invited to attend the sessions. On average, 60 

employees spread across multiple teams and multiple products were trained in a period of 1 

month. Different teams were formed with each team essentially comprising a solution owner, a 

product owner, a line manager and a dedicated scrum master. Individual roles of team members 

are detailed in Section 4.2. Each “search” software project team member underwent training for 2 

weeks on lean and scrum. 

 

4.2. Team Formation 

Team comprises of three important players described below: 

 

a) Solution owner: A problem or task from customers along with the inputs is given to the 

solution owner through various channels. Solving a problem might require one or more products 

existing in the portfolio. The solution owner identifies those products and then transfers the 

problem on hand to the respective product owners along with the completion deadline. The 



 

8 

 

solution owner is responsible for the communication with the external stakeholders regarding the 

solution in hand and coordinates with the product owners of various products. 

 

b) Product owner: Every product in the company has a product owner. The level of granularity 

attributed to the product is high, and even a small application in a large software may be 

classified as a product sometimes depending on the quantum of the work involved in its 

development and maintenance. For instance, a search feature in an enterprise resource planning is 

considered as a product; it has a separate product team and its product owner is responsible for all 

the activities regarding the product. Usually, such teams are formed at the inception of the 

product and expertise is developed on the product from then on. These teams expand slowly and 

steadily based on the growth of features in the product. The role of a product owner is highly 

diverse ranging from project management to technical program management. The product owner 

heads the cross-functional team that specializes in all parts of SD such as development, testing, 

production and performance. He/she is accountable for the quality and shipment of the product.  

 

c) Line manager: Line manager is typically appointed to monitor two to three teams, and he/she 

is a homegrown member with good amount of experience (5–8 years) in monitoring the team 

performance. The role of a line manager in a scrum team is that of a facilitator. For example, if a 

team member needs to coordinate with external or internal stakeholders from other teams for 

knowledge transfer, it is facilitated by the line manager. Line manager is held responsible for 

arranging the required resources including hardware, arranging for training, authorizing leaves 

and other human resource activities such as appraisals, performance ratings and bonus payments. 

The line manager plays very minimum role in the actual scrum process, but every update in the 

team goes through him/her. Line manager is aware of every deliverable and its progress with the 

current status. He/she also handles the finance of the team and monitors all the costs incurred. 

Line manager reports to the program director of the business unit, who in turn reports to the vice 

president of the business unit. “Search” software project team comprises of 10 team members 

with a product owner, a solution owner, and a line manager, who have multiple projects 

functioning under their purview. 

 

4.3. Micro Level Lean Implementation 

Implementation of LT is attempted at the team level through a process called scrum (as shown in 

Figure 3). Scrum is a methodology that dictates the way in which every team member has to 

work and gives the broad guidelines for deliverables along with the timelines (Poppendieck & 



 

9 

 

Poppendieck, 2003; Vlaanderen et al. 2011). Figure 4 shows in detail the scrum procedure 

starting from the release plan to the final shipping of the product. 

 

“Insert figure 3 & 4 here” 

 

“Search” software team consisting of 10 members is divided into three scrum teams catering 

to three individual functionalities mentioned earlier (as shown in Figure 5). Scrum teams are 

formed such that the common team members prevail across the functionalities. Splitting the three 

functionalities into three scrum teams reduces the total time spent by each individual in meetings 

as initially all the team members have to sit for every meeting irrespective of their task relevance 

to that meeting. In this scenario, meetings are specific to functionality teams, and only members 

(both specific and common) belonging to those functionalities attend the meeting, thereby 

providing more aggregate time to each individual to work on their task. The common members of 

the functionalities share the relevant knowledge and updates from their scrum meeting to reduce 

the information asymmetry between the functionalities. 

 

“Insert figure 5 here” 

 

Scrum team: Every scrum team has a scrum master, who is ideally the most senior person in the 

team, to coordinate the scrum process (Rising & Janoff, 2000). The scrum master has a thorough 

knowledge of the list of deliverables that is updated every month and the approximate time 

available to complete the deliverables (Marchesi et al., 2007). The backlogs (smallest unit of the 

job) are released every month by the scrum master for the entire team along with the expected 

completion timeline. The team members choose the backlogs based on what they can finish in a 

sprint, which is mostly a month long. Depending on the team’s composition and the nature of 

work, the team can also choose to have a 2-week sprint. All the three scrum teams with their 

scrum masters decide to follow the monthly sprint as it would help in synchronizing the project 

flow. This decision is updated to the top management with complete details, including the 

meeting frequency, meeting day in a week and timing in a day. 

 

Scrum process: The scrum process consists of multiple sprints/takts (Rising & Janoff, 2000; 

Hossain et al., 2009). The requirements that are communicated to the product owner from the 

solution owner are broken down into pieces as final deliverables and communicated to each team. 

Internal project monitoring tools track the uploaded backlog list of the product owner, individual 



 

10 

 

backlog progress and final sprint completions. Every backlog is assigned a status based on its 

position in the scrum process. Five statuses given in general are unassigned, assigned, in 

progress, blocker and completed. The blocker status is assigned to a set of backlogs that cannot 

be completed because of non-availability of required software/hardware resources or skills. Once 

a team member is allotted to perform a task, it is his or her responsibility to assign a suitable 

status to the tasks from then on. Every scrum team maintains a separate interface with tools 

similar to the project monitoring tool and is accessed by the team members. Administrator rights 

are provided with the scrum master and product owner who can assign suitable access rights to 

the team members. In the “search” software project being discussed, the progress of the three 

individual scrum teams and individual team members are displayed to the entire “search” 

software project team to coordinate and operate in synchronization. 

 

Process flow: In the beginning of every sprint, the product owner releases the list of deliverables 

to each scrum team. A sprint planning meeting is held and all the teams under a product owner, 

that is, the cross-functional team under that product owner, are part of it. Tasks are assigned to 

the team members based on their availability and the requirements of the tasks. In the sprint 

planning meeting, the dependencies that each member have on each other are discussed and who 

has to assist and coordinate with each other is also identified. At the end of the sprint planning 

meeting, a list of deliverables/backlogs taken up for that sprint is finalized and the ones that could 

not be taken up are left for the next sprint. After finalizing the list of deliverables, tasks and 

activities to achieve the target are taken up at the scrum team level. For example, a list of 

deliverables that need to be submitted in one particular sprint by the QET scrum team of “search” 

software project include data type validation, scenario analysis of full-text search and automated 

script generation for model creation. These deliverables are assigned by the scrum master to the 

QET scrum team by choosing the backlogs provided by the product owner after attaining the 

consent from the scrum team members.  

 

Daily scrum meeting: Ten-minute meeting or the daily stand-up called the scrum meeting is 

conducted every day (Fitsilis, 2008). It is compulsory for every team member to be present at the 

meeting. The team members stand in a semicircle facing each other with a scrum board in the 

middle, which typically is a whiteboard filled with sticky notes detailing the backlog names and 

their statuses (as shown in Figure 6). Over time, backlogs are grouped based on their status. In 

the daily scrum meeting, every team member discusses the backlog he/she has been working on 

the previous day, its current status and the working agenda for the current day, and finally 



 

11 

 

indicates the expected date of completion of the remaining tasks in the backlog. This meeting 

gives an opportunity for every member to voice his/her issues being faced in completing the 

backlogs. For instance, when a team member experiences any blocker, it should be brought to the 

attention of other team members. This kind of short meetings helps in finding a person with the 

experience to solve the problem. For example, any other team member with past experience and 

know-how on similar issues suggests potential solutions or approaches to solve it, thereby 

making the prior knowledge available to the team members easily rather than spending time in 

researching on the problems that have been already solved. 

 

“Insert figure 6 here” 

 

The number and time zone of global teams involved from different locations for solving the 

backlogs affect the quantum of work and the frequency of scrum meeting. This is a customization 

that is left to the prerogative of the scrum team. The multi-location teams typically have two 

scrum meetings a week via teleconferencing. The product owner needs to be part of the everyday 

scrum meeting to monitor the progress of the deliverables and give inputs from time to time 

depending on the updates from the external stakeholders. 

 

Sprint review: On the last day of every sprint, a sprint review meeting is held and this time all 

scrum teams report to the product owner (Schwaber, 1997). In this meeting, each and every 

deliverable committed for the sprint is taken up and discussed. The update is given by each 

member on his/her deliverables, and if the backlog remains incomplete, the reason for the same is 

stated. For instance, a QET scrum team of the “search” software project had the backlog of 

incomplete full-text search. The backlog had a defect with respect to long text data type, and the 

issue was raised to the development team. The status of the issue raised by the development team 

was presented at the sprint review, and this moved the accountability for the backlog to the 

development team from the QET scrum team. Individual as well as team performances were 

explicitly visible to the product owner from the status of the backlogs assigned at the start of the 

sprint. At the end of this meeting, the product owner took up the completed tasks and committed 

them to the solution owner, and the incomplete tasks were brought back to the next sprint. After 

every sprint, there is a gap of 1–3 days to look back at the sprint and analyse what went wrong 

and how it can be further improved in the future. Several project-related suggestions and contacts 

of experts are mentioned in the sprint reviews to improve the lead time by completing the 

backlogs with zero delays. 



 

12 

 

 

Sprint retrospective: In this meeting, every team member shares his/her tacit knowledge learned 

and discusses what went right or wrong in his/her approach towards a deliverable (Marchesi et 

al., 2007). Any other member with the knowledge of rectifying the problem communicates it to 

the entire team. This provides the opportunity for a new member to speak up about his/her 

difficulties and seek knowledge transfer from another experienced member in the team on how to 

overcome the difficulties. The line managers are not part of this meeting so as to provide space 

for the members of the team to share their true opinions and suggestions without the worry of 

career growth in the organization. After completing the sprint retrospective, the product owner 

and the scrum master discuss to finalize the deliverables that need to be taken up for the next 

sprint, how they can be performed with the available resources, and the steps that need to be 

taken to incorporate the proposed suggestions. Deliverables chosen after the discussion are 

communicated to the solution owner. Necessary steps are also taken to organize any required 

training to impart skills essential for the deliverables chosen. 

 

Continuous improvement process: Continuous improvement meetings are organized by the line 

managers individually for every scrum team at regular intervals, mostly once in two sprints 

(Sutherland et al., 2008). In these meetings, all the team members speak up about the whole 

scrum process and give their suggestions for improvement. For example, a suggestion was made 

by the team members that the sprint retrospective meeting was not turning out to be very useful. 

This suggestion was taken up, and from then on, its frequency was changed from once in a sprint 

to once in two sprints. Such suggestions made by the team members are taken up by considering 

the phase of the product life cycle. If the product is new and is undergoing a lot of changes, there 

is a lot of scope for information exchange and transfer of tacit knowledge; hence, the frequency 

of meetings for retrospective is kept high. Continuous improvement is seen as a double-edged 

sword by few of the team members. They feel that most of the time and efforts are spent on the 

meetings for continuous improvement, thus leaving very less time for implementing the 

improvements. Hence, a balance has to be drawn between the time allotted for meeting in the 

scrum process and the time allotted for performing the task. 

 

Customizations and adaptations in lean: Every team does customization to the roles according 

to its workload and time constraints. For instance, according to the actually mandated process, 

the scrum master should not be part of the task of deliverables. However, in reality, the scrum 

master is typically the team lead who has been in the team since its inception and knows the 



 

13 

 

product along with the quantum of work involved in every deliverable. His/her role is analogous 

to that of a supervisor or operations manager on the shop floor of a manufacturing company 

adopting lean principles. Therefore, this puts an additional workload on the team leader to 

coordinate the entire scrum process along with the regular tasks performed earlier. This also 

gives the team members a scope to stay abreast with the new challenges faced by the team and 

also learn in the due process. 

 

The shipment is always done with an expectation to improve and resend the product perfectly 

in the next shipment of the subsequent sprint. As described, the product manager ships 

deliverables irrespective of its full completion (provided the bugs are within the limits 

prescribed), thereby providing a chance for the customer to review the shipped product and 

provide immediate feedback which can be incorporated by the developer in the subsequent 

sprints. This ensures frequent interaction between the customer and the developer, and helps in 

correcting the defects as and when they occur without carrying them forward to the finished 

product, which in turn would demand larger rework for rectification. This practice also helps in 

avoiding misunderstanding and deviations from the specifications. 

 

5. Results and Discussion 

The experience of implementing LT had a complete transformation as it imparted a sense of 

agility in the minds of the employees. Transformation helped in bringing down the release cycle 

from 6 months to 4 weeks, and once in every 4 weeks, a new version of the product was shipped. 

This new system created a reformed thinking process for the employees to work under strict 

deadlines. Employees mentioned that they were working constantly towards the objective and felt 

more motivated and focused. Daily scrum meetings were analogous to the Kanban practice in the 

manufacturing sector, where every scrum employee updates the backlog status being worked on 

and the next backlog that he/she will be taking up. It was also noticed that LSD mandates 

customers to adopt the LT approach. For instance, the current case organization that ships the 

products at an interval of 2–4 weeks (sprint duration) would require the customers’ team to 

respond within that specific time duration, which in turn would require them to adopt the LT 

approach. 

 

LT practices applied in SD showed how the implemented solutions guided the case company 

to achieve improved knowledge transfer, regular interaction of employees, involvement of 

customers and thereby facilitate shipping under short deadlines. Table 4 captures the changes in 



 

14 

 

performance measures after implementation of LT. An increase in the bug ratio from 40% to 

80% can be attributed to a significant decrease in the total number of issues raised (from 165 to 

15) and a comparatively little decrease in the actual number of valid defects (from 66 to 12) after 

LSD implementation. On the contrary to the reduction of the redundant tasks, it was noticed that 

number of meetings, e-mails transacted, and tickets raised per team increased significantly. 

However, these redundant tasks helped in reducing the problems that were noticed in the 

beginning. 

 

Though the company was found to improve in its performance measures as a result of 

adopting the LSD approach, there were few questions from the employees that lacked a clear 

answer. The questions were as follows: what should be the ideal set of actions when the planned 

deliverables are not met completely within the assigned time? Should the shipment be delayed 

until the deliverables are completed or should it be shipped in the present form with an agenda 

for fixing the leftover issues in the subsequent sprint? LSD is still evolving in the case 

organisation and is considered to be a potential tool to reduce non-value-adding activities and 

improve value-adding attributes to the end customer. Through the study of the case organization, 

it was clearly observed that scrum was attempting to implement pull production where customers 

were involved regularly at the end of the sprint, and their feedback along with subsequent 

requirements was accommodated in the subsequent sprint. 

  

6. Conclusion 

In the beginning of this paper, it was claimed that this study would address the gap of absence of 

studies describing the application of LT in SD from an emerging market such as India. Using the 

single-case study methodology, the LT approach that was followed by a software firm in India 

was enumerated. To answer the research question of how LT in Indian SD firms is being 

implemented, what impact it has on the SDPs and how it can be improved, empirical data were 

collected through direct observations. By understanding the data collected, the procedure 

followed by the case company to implement LT at the team level through a process called scrum 

was documented in detail. Insights were also drawn from the case study’s experience on how LT 

approach can guide SD firms in achieving responsiveness, information transfer between 

employees, involvement of customers and targeted deadlines. This study provides a detailed 

report for researchers and practitioners to understand how an Indian company is adopting LSD. 

As this study is adopting the single-case study methodology, it lacks the generalizability of the 

inferences, and future study can overcome this limitation by empirically studying several other 



 

15 

 

organizations adopting LSD. Future studies can also attempt to generalize the insights and the 

impact of implementation of LSD in Indian firms by adopting a survey methodology. 

 

References 

1. Ahmad, M. O., Markkula, J., & Oivo, M. (2013, September). Kanban in software development: A systematic 

literature review. In Software Engineering and Advanced Applications (SEAA), 2013 39th EUROMICRO 

Conference on (pp. 9-16). IEEE. 

2. Alegría, J.A.H., Bastarrica, M.C. & Bergel, A. (2011). Analyzing software process models with AVISPA. 

Proceedings of the ICSSP’2011. Available at: http://www.bergel.eu/download/papers/Berg11a-icssp11.pdf 

(accessed on 20 July 2011). 

3. Anand, G., Chandrashekar, A., & Narayanamurthy, G. (2014). Business process reengineering through lean 

thinking: a case study. Journal of Enterprise Transformation, 4(2), 123-150. 

4. Antinyan, V., Staron, M., Meding, W., Osterstrom, P., Wikstrom, E., Wranker, J., ... & Hansson, J. (2014, 

February). Identifying risky areas of software code in Agile/Lean software development: An industrial 

experience report. In Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014 

Software Evolution Week-IEEE Conference on (pp. 154-163). IEEE. 

5. Bastarrica, M.C., Alegría, J.A.H. & Bergel, A. (2011). Toward lean development in formally specified software 

processes. Proceedings of the 18th EuroSPI’11. Available at: 

http://www.bergel.eu/download/papers/Berg11eLeanProcess.pdf (accessed on 20 July 2011). 

6. Bocock, L. and Martin, A. (2011). There’s something about lean: A case study.  Proceedings of the 2011 Agile 

Conference, 8–12 August, Salt Lake City, Utah, pp.10-19. 

7. Bosch, J., Olsson, H. H., Björk, J., & Ljungblad, J. (2013). The early stage software startup development model: 

a framework for operationalizing lean principles in software startups. In Lean Enterprise Software and Systems 

(pp. 1-15). Springer Berlin Heidelberg. 

8. Cawley, O., Richardson, I. & Wang, X. (2011). Medical device software development - A perspective from a 

lean manufacturing plant. In O'Connor, R.V., Rout, T., McCaffery, F. & Dorling, A. (eds), Software process 

improvement and capability determination (84-96). Berlin: Springer.  

9. Corona, E. & Pani, FE. (2012). An investigation of approaches to set up a kanban board, and of tools to manage 

it. In Niola, V., Kadoch, M. & Zemliak, A. (eds.) Recent Researches in Communications, Signals and 

Information Technology, pp. 53-58. Wisconsin, USA: World Scientific and Engineering Academy and Society 

(WSEAS). 

10. Curtis, B. (2011). Cutting IT costs by applying lean principles. White paper. Available at: 

http://www.castsoftware.com/castresources/materials/wp/leanapplicationmanagement.pdf (accessed on 20 July 

2011). 

11. Fitsilis, P. (2008). Comparing PMBOK and Agile Project Management software development processes. In 

Advances in Computer and Information Sciences and Engineering (pp. 378-383). Springer Netherlands. 

12. Gautam, N. and Singh, N. (2008), "Lean product development: Maximizing the customer perceived value 

through design change (redesign)", International Journal of Production Economics, Vol. 114 No. 1, pp.313-332. 

13. Gong, Y., & Janssen, M. (2014). The Use of Lean Principles in IT Service Innovation: Insights from an 

Explorative Case Study. In Digital Services and Information Intelligence (pp. 58-69). Springer Berlin 

Heidelberg. 

14. Hossain, E., Babar, M. A., & Paik, H. Y. (2009, July). Using scrum in global software development: a 

systematic literature review. In 2009 Fourth IEEE International Conference on Global Software Engineering 

(pp. 175-184). Ieee. 

15. Iberle, K. (2010). Lean system integration at Hewlett-Packard. Proceedings of the 28th Annual Pacific Northwest 

Software Quality Conference, 18–19 October, Portland, Oregon, USA,  pp.187-204. 

16. Ikonen, M., Pirinen, E. Fagerholm, F., et al. (2011).  On the impact of kanban on software project work: An 

empirical case study investigation. Proceedings of the 16th IEEE ICECCS doi:10.1109/ICECCS.2011.37. 

17. Janes, A., & Succi, G. (2014). Enabling Lean Software Development. In Lean Software Development in Action 

(pp. 129-148). Springer Berlin Heidelberg. 

http://www.castsoftware.com/castresources/materials/wp/leanapplicationmanagement.pdf


 

16 

 

18. Kirovska, N., & Koceski, S. (2015). Usage of Kanban methodology at software development teams. Journal of 

Applied Economics and Business, 3(3), 25-34. 

19. Kundu, G., & Manohar, B. M. (2012). Critical success factors for implementing lean practices in it support 

services. International Journal for Quality Research, 6(4), pp. 301-312. 

20. Kundu, G.K., Manohar, B.M. & Bairi, J. (2011). IT support service: identification and categorisation of waste, 

International Journal of Value Chain Management, 5(1), pp. 68-91. 

21. Kupiainen, E., Mäntylä, M. V., & Itkonen, J. (2015). Using metrics in Agile and Lean Software Development–A 

systematic literature review of industrial studies. Information and Software Technology, 62, 143-163. 

22. Kuusela, R. & Koivuluoma, M. (2011). Lean transformation framework for software intensive companies: 

responding to challenges created by the cloud. Proceedings of the 37th EUROMICRO Conference on Software 

Engineering and Advanced Applications (SEAA 2011), 30 August - 2 September, Oulu, Finland, pp.378-382. 

23. Malladi, S., Dominic, P.D.D. & Kamil, A. (2011). Lean principles in IT services: a case study on 

implementation and best practices, International Journal of Business Information Systems, 8(3), 247-268. 

24. Mandic, V., Oivo, M., Rodriguez, P., Kuvaja, P., Kaikkonen, H. & Turhan, B. (2010). What is flowing in lean 

software development? In Abrahamsson, P. & Oza, N. (eds), Proceedings of the 1st International Conference on 

Lean Enterprise Software and Systems (LESS 2010), 17-20 October, Helsinki, Finland, pp.72-84. 

25. Mäntylä, M. V., Adams, B., Khomh, F., Engström, E., & Petersen, K. (2015). On rapid releases and software 

testing: a case study and a semi-systematic literature review. Empirical Software Engineering, 20(5), 1384-

1425. 

26. Marchesi, M., Mannaro, K., Uras, S., & Locci, M. (2007, June). Distributed Scrum in research project 

management. In International Conference on Extreme Programming and Agile Processes in Software 

Engineering (pp. 240-244). Springer Berlin Heidelberg. 

27. Middleton, P. & Joyce, D. (2011). Lean software management: BBC Worldwide case study. IEEE Transactions 

on Engineering Management, doi: 10.1109/TEM.2010.2081675. 

28. Middleton, P. (2001). Lean software development: two case studies. Software Quality Journal, 9, 241–252. 

29. Middleton, P. Flaxel, A. & Cookson, A. (2005). Lean software management case study: Timberline Inc. In 

Baumeister, H., Marchesi, M. & Holcombe, M. (eds), Extreme programming and agile processes in software 

engineering, 1st edn. Springer, Berlin: Springer. 

30. Mohan, K.K., Harun, R.S., Srividya, A. & Verma, A.K. (2010). Quality framework for reliability improvement 

in SAP netweaver business intelligence environment through lean software development–a practical perspective. 

International Journal of Systems Assurance Engineering and Management, 1(4), pp. 316-323. 

31. Nord, R. L., Ozkaya, I., & Sangwan, R. S. (2012). Making architecture visible to improve flow management in 

lean software development. Software, IEEE, 29(5), 33-39. 

32. Norrmalm, T. (2011). Achieving lean software development: implementation of agile and lean practices in a 

manufacturing-oriented organization, Thesis, available via: 

http://www.utn.uu.se/sts/cms/filarea/1102_Thomas%20Norrmalm.pdf. 

33. Pernstal, J., Feldt, R., & Gorschek, T. (2013). The lean gap: A review of lean approaches to large-scale software 

systems development. Journal of Systems and Software, 86(11), 2797-2821. 

34. Petersen, K. & Wohlin, C. (2011). Measuring the flow in lean software development. Journal of Software: 

Practice and Experience, 41(9), pp. 975–996. 

35. Petersen, K. & Wohlin, C. (2010). Software process improvement through the lean measurement (SPI-LEAM) 

method. Journal of Systems and Software, 83(7), pp. 1275-1287. 

36. Petersen, K. (2012). A palette of lean indicators to detect waste in software maintenance: A case study. In Aalst, 

W. Mylopoulos, J. Rosemann, M. Shaw, M.J. & Szyperski, C. (eds), Agile processes in software engineering 

and extreme programming (108-122). Berlin: Springer. 

37. Poppendieck, M. & Poppendieck, T. (2010). Leading Lean Software Development: Results are not the point, 

New Jersey: Addison-Wesley. 

38. Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development: An Agile Toolkit: An Agile Toolkit. 

Addison-Wesley. 

39. Poppendieck, M., & Poppendieck, T. (2006). Implementing Lean Software Development: From Concept to 

Cash, USA: Addison-Wesley Professional. 

40. Raman, S. (1998). Lean software development: Is it feasible? Proceedings of the 17th IEEE Digit Avionics 

System Conference, doi: 10.1109/DASC.1998.741480. 



 

17 

 

41. Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams. IEEE software, 

17(4), 26. 

42. Rodriguez, P., Mikkonen, K., Kuvaja, P., Oivo, M., & Garbajosa, J. (2013). Building lean thinking in a telecom 

software development organization: strengths and challenges. In Proceedings of the 2013 International 

Conference on Software and System Process, San Francisco, pp. 98-107. 

43. Rodriguez, P., Partanen, J., Kuvaja, P., & Oivo, M. (2014, January). Combining lean thinking and agile methods 

for software development: A case study of a finnish provider of wireless embedded systems detailed. In System 

Sciences (HICSS), 2014 47th Hawaii International Conference on (pp. 4770-4779). IEEE. 

44. Rudolf, H. & Paulisch, F.  (2010). Experience Report: Product Creation through Lean Approaches.  In 

Abrahamsson, P. and Oza, N. (eds), Proceedings of the 1st International Conference on Lean Enterprise 

Software and Systems (LESS 2010), 17-20 October, Helsinki, Finland, pp.104-110. 

45. Schwaber, K. (1997). Scrum development process. In Business Object Design and Implementation (pp. 117-

134). Springer London. 

46. Staats, B.R., Brunner, D.J. & Upton, D.M. (2011). Lean principles, learning, and knowledge work: Evidence 

from a software services provider. Journal of Operations Management, 29(5), pp. 376-390.  

47. Staron, M., Meding, W., & Palm, K. (2012). Release readiness indicator for mature agile and lean software 

development projects. In Agile Processes in Software Engineering and Extreme Programming (pp. 93-107). 

Springer Berlin Heidelberg. 

48. Sutherland, J., Jakobsen, C. R., & Johnson, K. (2008, January). Scrum and CMMI level 5: The magic potion for 

code warriors. In Hawaii International Conference on System Sciences, Proceedings of the 41st Annual (pp. 

466-466). IEEE. 

49. Vlaanderen, K., Jansen, S., Brinkkemper, S., & Jaspers, E. (2011). The agile requirements refinery: Applying 

SCRUM principles to software product management. Information and software technology, 53(1), 58-70. 

50. Wang, X., Conboy, K., & Cawley, O. (2012). “Leagile” software development: An experience report analysis of 

the application of lean approaches in agile software development. Journal of Systems and Software, 85(6), 1287-

1299. 

51. Widman, J. Hua, S.Y. & Ross, S.C. (2010). Applying lean principles in software development process – a case 

study. Issues in Information Systems, 9(1), 635-639. 

52. Womack, J.P. & Jones, D.T. (2003). Lean Thinking: Banish Waste and Create Wealth in YourCcorporation, 

New York: Simon & Schuster. 

 



 

18 

 

Figures 

 

 
Figure 1: Composition of IT market in India: 2008-2012 

(Source: In Nasscom website on Indian IT-BPO Industry) 

 

 

 

 
Figure 2: Steps adopted in conducting the current study 

 



 

19 

 

 

Figure 3: Flow in Scrum Process



 

20 

 

 

Figure 4: Snapshot of Scrum Process 

 

Function Specific Common Total  

QET 4 

QET & Performance - 

2 

QET & Production – 1 

7 

Performance 1 
QET & Performance – 

2 
3 

Production 2 QET & Production - 1 3 

Figure 5: Search software team composition 

 

 

Figure 6: Scrum Board

QET 

(4) 

Performance 

(1) 

Production  

(2) 

 

2 1 



 

21 

 

Tables 

Table 1: Review and categorization of literature on LSD 

Theme of LT Authors & Year Results 

Value and waste Poppendieck & 

Poppendieck (2006) 

Discussed the seven wastes in software development 

 Mandic et al. (2010) Took opposite view of Poppendieck & Poppendieck (2006) by interpreting LT from the software development angle and 

explained the nature of flows in software development. 

 Kundu et al. (2011) Studied twelve IT support service lines to identify waste/non-value added activities 

 Kupiainen et al. 

(2015) 

Reviews the literature to understand the metrics used in industrial Agile software development. Metrics used are focused on 

sprint planning, progress tracking, software quality measurement, fixing software process problems, and motivating people. 

Most influential metrics in studies reviewed were found to be Velocity and Effort estimate. 

Lean Practices in 

SDP 

Curtis (2011) Jidoka was argued to be capable of detecting and eliminating defects and rework in application development and maintenance 

projects. 

 Petersen and Wohlin 

(2011)  

Continuous flow would help in immediately delivering the value to the software customer. 

 Corona and Pani 

(2012) 

Kanban was used in LSD to schedule work. 

 Ikonen et al. (2010) Discusses the effectiveness of Kanban for visualizing and organizing the current work 

 Wang et al. (2012) Examined 30 experience reports on applying lean approaches in agile software development published in past agile software 

conferences. Six types of lean application were found in the reports - non-purposeful combination of agile and lean, agile 

within lean out-reach, lean facilitating agile adoption, lean within agile, from agile to lean, and synchronizing agile and lean. 

 Nord et al. (2012) Documented experiences regarding the role architecture plays in lean software management practices. Release plans giving 

emphasis to both architecturally significant tasks and feature-based high-priority functionality will achieve improved 

outcomes. 

 Pernstal et al. (2013) Reviewed 38 papers on LSD, of which 42% were on large-scale development. The review concluded that research in the 

much-hyped field of LSD is in its nascent state in large scale development. 

 Janes and Succi 

(2014) 

Described different ideas on how to apply Lean principles within software development to answer the question how to create 

a “Lean Software Development (LSD)” methodology. 

Specialized tools and 

techniques for LSD 

Raman (1998) Explored the feasibility of applying the principles of LT to software development and inferred that it is highly feasible. Study 

also suggested various tools and techniques such as reusability, rapid prototyping, object-oriented technologies, component-

based software development, concurrent engineering, quality function deployment, etc. 

 Petersen and Wohlin 

(2010) 

Discussed a new approach in the name of “Software Process Improvement through the Lean Measurement (SPI-LEAM)”. 

 Mohan et al. (2010) SAP implementation projects use Accelerated SAP methodology similar to SDLC in software projects. 

 Bastarrica et al. Observed that software companies define and formalize their processes to make them predictable. 



 

22 

 

(2011) 

 Alegría et al. (2011) Designed “Analysis and VIsualization for Software Process Assessment (AVISPA)” tool to identify error patterns in different 

phases of LSD 

 Kuusela and 

Koivuluoma (2011) 

Proposed a lean transformation framework by focussing on the significance of learning, iterative execution, and a holistic 

approach 

 Ahmad et al. (2013) Analyzed the current trend of Kanban usage in software development using systematic literature review and lists the benefits 

obtained and challenges involved. Benefits of using Kanban were reported to be improved lead time to deliver software, 

improved quality of software, improved communication and coordination, increased consistency of delivery, and decreased 

customer reported defects. Challenges reported were lack of knowledge and specialized training. 

 Bosch et al. (2013) With an objective to provide operational support for software startup companies, this study proposes the ‘Early Stage 

Software Startup Development Model’ (ESSSDM) which extends already existing lean principles. 

Source: Adapted from Anand et al. (2014) and updated by authors. 



 

23 

 

Table 2: Review of case studies in LSD 

Nature of Case 

Studies 

Author Year Nature of Company Remarks 

Practices, 

principles, and 

performance 

measures 

Middleton  2001 Software Development Performed the "before" and "after" analysis and confirmed that LSD can produce rapid quality and 

productivity gains. 

Middleton and 

Joyce  

2011 Software Development Examined how the lean ideas behind the TPS can be applied to software project management using a case 

study of a nine-person software development team employed by BBC Worldwide based in London 

Middleton et 

al.  

2005 Software Development Noted that Timberline Software in Oregon in 2002 with 450 staff was the first recorded full industrial 

implementation of LSD. Timberline, Inc started their lean initiative in Spring 2001 and this study recorded 

their journey, results and lessons learned up to Fall 2003 and thereby demonstrated that lean thinking can work 

successfully for software developers. 

Cawley et al. 2011 Medical Device Company Reported about a case study of a large US medical device company, which utilized the concepts of lean 

principles for developing software during the design of medical devices. 

Widman et al.  2010 IMVU Inc. - a virtual 

worlds company 

Explained the implementation of 5 traditional tenets of lean and thereby identified and reduced common 

wastes in software development process. 

Petersen  2012 Software Maintenance 

Process 

Proposed four lean indicators aiming at detecting the waste in the software maintenance process using a case 

study of Ericsson AB. 

Rudolf and 

Paulisch  

2010 Siemens business unit Described how lean approaches should be interpreted for the creation of software-based systems through a 

case study at a Siemens business unit. 

Iberle  2010 HP Inkjet and LaserJet 

businesses.   

Highlighted that lean is capable of handling situations which are difficult to handle using the most commonly 

known agile methods. Discussed implementation of lean integration in HP printer business which made 

complex programs easier to manage by providing visibility into what the product can and cannot do at any 

point in the development, improved the customer’s experience by making customer workflows functional and 

visible early and often throughout the lifecycle, and reduced cost by driving synchronization of delivery across 

technology components. 

Bocock and 

Martin 

2011 Open source project titled 

‘Apollo’ 

Studied how a high-performing, open source team adopted LSD and found that the existing meritocratic 

decision-making culture of the team assisted in the application of LSD. Using a case study methodology, 

explored how industry practitioners are using Lean principles and practices on software development projects 

through interviews. 

 Rodriguez et 

al. 

2013 Ericsson R&D Finland Explored the implementation of lean principles in software development companies and the challenges that 

arise when applying LSD by conducting a case study at Ericsson R&D Finland. 

 Staron et al. 2012 Ericsson in Sweden Presented the release readiness indicator that can predict the time in weeks to release the product by studying 

a large LSD project at Ericsson in Sweden. 

 Rodriguez et 

al.  

2014 Elektrobit Wireless 

Segment 

Studies how lean can be combined with Agile methods to enhance software development processes. Studies a 

case company named Elektrobit Wireless Segment, which has used Agile from 2007 and began to adopt Lean 



 

24 

 

Nature of Case 

Studies 

Author Year Nature of Company Remarks 

in 2010. Scaling flexibility, business management involvement, and waste reduction were found as challenges, 

whilst setting up teams, self-organization and empowerment appeared easier to achieve. 

 Antinyan et al. 2014 Ericsson AB and Volvo 

Group Truck Technology 

Presented a method to identify the risky areas and assess the risk involved in developing software code in 

Lean/Agile environment by conducting an action research project in two large companies, Ericsson AB and 

Volvo Group Truck Technology. Complexity and revisions metric of a source code file help in assessing its 

risk. 

 Anand et al. 2014 Software Development Demonstrated the application of VSM and identifies various associated waste. Proposes different lean tools to 

re-engineer the business process of an Indian software firm that provides supply chain software solutions to 

logistics providers. 

 Kirovska and 

Koceski 

2015 Software development in a 

IT company 

Presented Kanban methodology and its practical usage within a software development environment. Practical 

implementation of this concept is presented using a web-based application called KanbanMAK within an IT 

company. 

Organization and 

human resources 

requirements for 

LSD 

Norrmalm  2011 SDP of a large 

manufacturing-oriented 

organization 

Improvement areas in terms of lead time and quality were identified using VSM and a framework of seven 

common improvement areas in software development was designed. 

Malladi et al.  2011 IT service industry Identified some of the best practices in lean methodology as applicable to the IT service delivery and used a 

case study approach to demonstrate its application. 

Staats et al.  2011 Wipro(Indian software 

services firm) 

Examined the applicability of lean production to knowledge work and found that LSD projects performed 

better than non-lean projects. 

Ikonen et al.  2011 R& D Software Company Studied the impact of Kanban on software project work and concluded that it provided considerable benefits in 

the form of motivation and control over the project activities. 

 Gong & 

Janssen 

2014 IT service organization 

and its two IT outsourcing 

providers 

Developed a conceptual framework to describe how Lean can drive IT service innovation within IT 

outsourcing relationships. A clear strategic direction and learning environment were found to be critical for 

achieving IT service innovation. 

 Mäntylä et al. 2015 Mozilla Firefox Investigates the changes in software testing effort after moving to rapid releases in the context of a case study 

on Mozilla Firefox. Rapid releases have a narrower test scope that enables a deeper investigation of the 

features and regressions with the highest risk and it makes testing more continuous with proportionally smaller 

spikes before the main release. 

Source: Adapted from Anand et al. (2014) and updated by authors. 



 

25 

 

Table 3: Problems mapped to wastes and LSD practices implemented as solutions in the case 

organization 

S. No. Current 

Problems 

Related Wastes LSD Practices as Solutions 

1 Lack of intra-

team integration: 

Updates were 

shared within the 

team less 

frequently 

1) Over-processing 

2) Defects 

3) Relearning 

4) Reworking 

1) Fast Feedback: Daily Scrum 

meetings and sprint review 

2) Improved synchronization 

(Andon/Jidoka) within the team 

3) Concurrent software 

development 

4) Documentation of repetitive 

tasks into modules for direct use 

5) Documentation of 

individual’s tasks for future 

knowledge transfer 

2 Lack of cross 

team integration: 

Updates were 

shared across the 

teams rarely 

1) Over-processing 

2) Waiting 

3) Defects 

4) Relearning 

5) Reworking 

1) Regular meetings of teams 

working on similar projects: 

Sprint retrospective 

2) Improved synchronization 

(Andon/Jidoka) across the team. 

3) Cross team knowledge 

sharing through employee 

involvement 

4) Access to tacit knowledge 

3 Long release 

cycles, late 

shipments, high 

lead time and 

high waiting 

time: Time 

consumed were 

mostly greater 

than the targeted 

timeline 

1) Partially done work 

2) Waiting 

3) Motion 

4) Task switching 

5) Handoffs, Defects & 

reworks 

6) Unrequired extra features 

(Over-processing) and 

lacking required features 

1) Submitting the software 

products in as it is state on target 

date 

2) Incremental development with 

in-between customer interactions 

(defect prevention through self-

inspection and successive 

inspection) 

 

3) Regular feedback 

4) Conceptual integrity between 

customers and developers 

5) Pull system 

4 High operations 

cost: Actual cost 

exceeded the 

budgeted cost 

1) Waiting 

2) Task switching 

3) Defects 

4) Handoffs 

5) Redundant training 

6) Rework 

1) Fast Feedback 

2) Concurrent software 

development 

3) Increasing expertise through 

knowledge sharing 

5 Defects, bugs, 

errors leading to 

rework in the 

final product 

1) Partially done work 

2) Waiting 

3) Motion 

4) Defects 

5) Rework 

1) Fast Feedback from customer  

2) Pull system 

3) Reduced repetitive iterations 

4) Improved synchronization 

(Andon/Jidoka) 

6 Late changes in 

software 

specifications 

1) Partially done work 

2) Waiting 

3) Motion 

4) Defects 

5) Rework 

1) Fast Feedback 

2) Conceptual integrity between 

customer and developer 

3) Pull system  

4) Improved synchronization 

(Andon/Jidoka) 

7 Lack of 

individual team 

member 

involvement 

1) Defects 

2) Relearning 

3) Waiting 

4) Rework 

1) Regular meetings to listen to 

their issues and problems (both 

technical and personal) 

2) Employee involvement 

3) Suggestion schemes 

4) Expertise increased 

8 Unclear 

requirements & 

responsibilities,  

inefficient 

scheduling, and 

information 

1) Partially done work 

2) Waiting 

3) Defects 

4) Rework 

5) Motion 

1) Regular meetings varying 

from daily to monthly at 

different levels in the 

organization 

2) Clarity on what to be done at 

the day level, month level, and 

3) Meetings to explain the 

contribution of each individual 

task to the complete final 

product (to attain global optima 

than optimizing at individual 

levels) 



 

26 

 

asymmetry task level. 4) Conceptual integrity 

 

9 Lack of 

standardization 

of repetitive task 

1) Waiting 

2) Relearning and 

reworking 

3) Extra features 

4) Extra processes 

5) Excess processes 

1) Modular development: 

Standardized modules for 

repetitive tasks 

2) Value stream improvement: 

Improving on value added tasks 

and reducing non-value added 

redundant tasks 

 



 

27 

 

Table 4: Performance measures before and after LSD adoption 

Before LSD After LSD % Improvement 

Frequency of within the team meeting = 5 per 

month 

Frequency of within the team meeting = 11 

per month 

120% increase 

Number of instances of knowledge transfer within 

the team = 2 per month 

Number of instances of knowledge transfer 

within the team = 10 per month 

400% increase 

Frequency of cross team meeting = 0 per month Frequency of cross team meeting = 1 per 

month 

100% increase 

Number of instances of knowledge transfer across 

the team = 0 per month 

Number of instances of knowledge transfer 

across the team = 1 per month 

100% increase 

Average release cycles (lead time) = 6 months Average release cycles (lead time) = 1 month 83% decrease 

Percentage of late shipments = 10% Percentage of late shipments = 2% (only 

when high priority bugs identified) 

8% decrease 

Average delay in shipments = 5 days Average delay in shipments = 1 day 80% decrease 

Average intra-team waiting time = 7 days Average intra-team waiting time = 1 days 86% decrease 

Total number of issues raised = 165 Total number of issues raised = 15 91% decrease 

Actual number of valid defects (bugs) = 66 Actual number of valid defects (bugs) = 12 82% decrease 

Bug ratio (actual number of accepted defects by 

total number of issues raised in the end product) = 

40% 

Bug ratio (actual number of accepted defects 

by total number of issues raised in the end 

product) = 80% 

40% increase 

Percentage of major reworks (when time taken to 

rework is more than 15% of the time taken to 

develop it) = 40% 

Percentage of major reworks (when time 

taken to rework is more than 15% of the time 

taken to develop it) =15% 

25% decrease 

Percentage of minor reworks (when time taken to 

rework is less than 15% of the time taken to 

develop it) = 60% 

Percentage of minor reworks (when time 

taken to rework is less than 15% of the time 

taken to develop it) = 35% 

25% decrease 

Average number of e-mails transacted = 180 per 

month 

Average number of e-mails transacted = 320 

per month 

78% increase 

Average number of suggestion schemes by a team 

= 3 per month 

Average number of suggestion schemes by a 

team = 6 per month 

100% increase 

Average number of tickets raised per team= 13 per 

month 

Average number of tickets raised per team = 

25 per month 

92% increase 

Percentage of task switching = 30% Percentage of task switching = 7% 23% decrease 

Number of days dedicated to technical training = 

14 days in 6 months 

Number of days dedicated to technical 

training =7 days in 6 months 

50% decrease 

 


