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The paper deals with the problem of clustering of intuitionistic fuzzy
data. A modification of a heuristic algorithm of possibilistic cluster-
ing for intuitionistic fuzzy data that account for the information coming
from the labeled objects is proposed. The paper describes the basic ideas
of the method and gives the plan of the partially supervised version of a
direct possibilistic clustering algorithm. Illustrative examples of appli-
cation of the method to two intuitionistic fuzzy data sets are provided.
Preliminary conclusions are formulated and some perspectives outlined,
notably for the analysis of agricultural value chain.
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1 INTRODUCTION

1.1 Partially supervised fuzzy clustering
Clustering is the unsupervised classification of objects into groups. It can be
considered as a useful approach for finding similarities in data and putting
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2 JAN W. OWSIŃSKI et al.

similar objects into dissimilar sets known as clusters. Needless to say that
possible applications of clustering span an extremely wide spectrum of areas.

Cluster analysis aims at identifying groups of related objects and so that
it helps to discover assignment of objects and correlations in large data sets.
The idea of data grouping is simple to use and in its nature is very near to
human thinking; whenever people are presented with a large amount of data,
humans tend to summarize these the data in a small number of classes or
categories so as to further facilitate the analysis.

Fuzzy clustering is used, when the boundaries among the clusters are
uncertain and confusing. Fuzzy clustering is a well established area, and
fuzzy clustering algorithms are standard tools in unsupervised machine learn-
ing and applied statistics. Different methods have been developed in fuzzy
clustering, based on different assumptions on the data and on different prop-
erties that the resulting clusters should satisfy. Heuristic methods, hierarchi-
cal methods and objective function-based methods are the main approaches
in fuzzy clustering.

Partially supervised fuzzy clustering is used in discovering structure in
data when labeled patterns are present. This setting applies to many systems
in many areas. To just name a few, on the one hand, speech recognition sys-
tems or robot vision systems can be mentioned, and on the other hand, prob-
lems related to the analysis of data in many socio-economic systems, exem-
plified by broadly perceived agricultural systems.

A priori knowledge of labels of some objects is very useful for classifi-
cation which has implied the development of fuzzy clustering with partial
supervision. Such algorithms were proposed, for instance, by Pedrycz [1].
Numerical experiments show that knowing the membership of a small por-
tion of patterns can significantly improvey clustering results in the sense that
the partition matrix can better reflects a real structure existing in the data
set. Moreover, the speed of convergence of the scheme can be considerably
improved. These facts were demonstrated by Pedrycz [2].

The idea of partial supervision in fuzzy clustering was developed by dif-
ferent researchers. For example, an original semi-supervised modification of
the FCM-algorithm was proposed by Bensaid, Hall, Bezdek and Clarke in
[3]. The method is well suited to problems like image segmentation. In par-
ticular, the procedure was effectively applied to magnetic resonance image
segmentation [3]. Interesting and important results in the fuzzy clustering
with partial supervision were presented by Bouchachia and Pedrycz [4].

The objective function based approach is the most commonly used in
fuzzy clustering. Yet, the heuristic algorithms of fuzzy clustering display a
low level of complexity and a high level of clarity and comprehensibility.
Some heuristic clustering algorithms are based on a very definition of the
cluster concept and they aim at detecting clusters fulfilling a given definition.

MVLSC-D552˙V1 2



HEURISTIC ALGORITHM OF POSSIBILISTIC CLUSTERING 3

Such algorithms are called algorithms of direct classification or direct clus-
tering algorithms [5].

A possibilistic approach to clustering was proposed by Krishnapuram and
Keller [6] and this approach can be considered as a special case of the fuzzy
approach to clustering because all methods of possibilistic clustering are the
objective function based methods. On the other hand, constraints in the possi-
bilistic approach to clustering are weaker than constraints in the fuzzy objec-
tive function based approach to clustering and values of the membership
function of a possibilistic partition can be considered as typicality degrees.
So, the possibilistic approach to clustering is more general and flexible than
the fuzzy approach. Many fuzzy and possibilistic clustering algorithms can
be found in the books [7, 8, 9, 10], in particular cf. the recent Wierzchoń and
Kłopotek’s [36] book.

A heuristic approach to possibilistic clustering is proposed in [11]. Basi-
cally, the essence of the heuristic approach to possibilistic clustering is that
the sought clustering structure of the set of observations is formed directly on
the basis of a formal definition of a fuzzy cluster, and possibilistic member-
ships are determined, also directly, from the values of the pairwise similarity
of observations. The notion of the allotment among fuzzy clusters is the basic
concept of the approach considered and the allotment among fuzzy clusters is
a special case of the possibilistic partition [6]. It should be noted that partially
supervised algorithms of possibilistic clustering are absent in the framework
of the objective function based approach to clustering. On the other hand, a
heuristic algorithm of possibilistic clustering with partial supervision is pre-
sented in [11].

1.2 Brief introduction to intuitionistic fuzzy clustering approaches
Since the original Atanassov’s [12] paper, the theory of intuitionistic fuzzy
sets has been applied to many areas and new concepts were introduced, cf.
[13, 14] for a comptehensive account. In particular, intuitionistic fuzzy clus-
tering procedures were elaborated by different researchers. There are rela-
tional and prototype based intuitionistic fuzzy clustering procedures. The
matrix of an intuitionistic fuzzy tolerance or intolerance relation is the input
for the relational procedures. Let us consider in brief some of the methods
proposed.

A fuzzy clustering method, based on the intuitionistic fuzzy tolerance rela-
tions, was proposed by Hung, Lee and Fuh [15]. An intuitionistic fuzzy sim-
ilarity relation matrix is obtained starting from an intuitionistic fuzzy tol-
erance relation matrix by using an extended n-step procedure involving the
application of the composition of intuitionistic fuzzy relations. A hard par-
tition obtained for some thresholds α and β is the result of classification.
Several types of the max-T and min-S compositions can be used in the Hung,
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Lee and Fuh’s approach, where T is some T-norm (trangular norm) and S is
a corresponding S-norm (triangular co-norm).

Then, the concepts of the association matrix and of the equivalent associ-
ation matrix were defined by Xu, Chen and Wu [16] who introduced some
methods for calculating the association coefficients of intuitionistic fuzzy
sets. The proposed clustering algorithm uses the association coefficients of
intuitionistic fuzzy sets to construct an association matrix, and utilizes a pro-
cedure to transform it into an equivalent association matrix. The α-cutting
matrix of the equivalent association matrix is used to cluster the given intu-
itionistic fuzzy sets. So, a hard partition for some value of α is the result of
classification.

In turn, Cai, Lei and Zhao [17] presented a clustering technique based on
the intuitionistic fuzzy dissimilarity matrix and (α,β)-cutting matrices. The
method is based on the transitive closure technique.

Then, a method of constructing an intuitionistic fuzzy tolerance matrix
from a set of intuitionistic fuzzy sets and a method to cluster intuitionistic
fuzzy sets via the corresponding intuitionistic fuzzy tolerance matrix were
presented by Wang, Xu, Liu and Tang [18]. A hard partition is here the result
of classification and the clustering depends on the chosen value of the confi-
dence level α ∈ [0,1].

Let us consider some prototype-based intuitionistic fuzzy clustering meth-
ods. These methods are based on the representation of the initial data by a
matrix of attributes. Some of these methods are objective function-based clus-
tering procedures. So, Pelekis, Iakovidis, Kotsifakos and Kopanakis [19] pro-
posed a variant of the well-known FCM algorithm that copes with uncertainty
and involves a similarity measure between intuitionistic fuzzy sets which is
then appropriately integrated in the clustering algorithm. The ordinary fuzzy
c-partition is the clustering result. An application of the proposed clustering
technique to image segmentation was described in [20].

Then, Torra, Miyamoto, Endo and Domingo-Ferrer [21] proposed a clus-
tering method, based on the FCM-algorithm, for constructing an intuitionis-
tic fuzzy partition. In the clustering method, the intuitionistic fuzzy partition
deals with the uncertainty present in different executions of the same cluster-
ing procedure. The authors considered intuitionistic fuzzy partitions for the
traditional fuzzy c-means, intuitionistic fuzzy partitions for the entropy-based
fuzzy c-means, and intuitionistic fuzzy partitions for the fuzzy c-means with
tolerance.

Following the above line of reasoning, an intuitionistic fuzzy approach
to distributed fuzzy clustering was considered by Visalakshi, Thangavel and
Parvathi in [22]. The corresponding IFDFC algorithm works at two differ-
ent levels: local and global. At the local level, ordinary numerical data are
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converted into intuitionistic fuzzy data and the data are clustered indepen-
dently from each other using the modified FCM algorithm. At the global
level, the global centroid is calculated by clustering all local cluster centroids
and the global centroid is again transmitted to local sites to update the local
cluster models.

A simple clustering technique, based on calculating cluster etalons, was
proposed by Todorova and Vassilev [23]. Their technique assumes that the
number of clusters is equal two. The algorithm stops when all objects are
assigned to crisp clusters according to the similarity measure adopted.

Agglomerative hierarchical clustering algorithms for classification of
ordinary intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets
were proposed by Xu [24]. On each stage of both binary clustering proce-
dures, the centers of clusters are recalculated using the average of intuition-
istic fuzzy sets assigned to the cluster, and the distance between two clusters
is to be determined as the distance between the centers of each cluster.

In turn, an intuitionistic fuzzy c-means method to cluster intuitionistic
fuzzy sets was presented by Xu and Wu [25]. The corresponding IFCM algo-
rithm assumes that the initial data are in the form of a set of intuitionistic
fuzzy sets, defined on the universe of attributes. The method is extended
for clustering interval-valued intuitionistic fuzzy sets and the corresponding
IVIFCM algorithm is also described in [25]. The fuzzy c-partition is obtained
from both algorithms.

Following this idea, the WIFCM-algorithm, based on weighted intu-
itionistic fuzzy sets was proposed in [26]. The concepts of an equivalent
classification object and a weighted intuitionistic fuzzy set were introduced,
and the objective function for the WIFCM algorithm was derived from these
concepts.

Then, an intuitionistic fuzzy possibilistic c-means algorithm to cluster
intuitionistic fuzzy sets was proposed in [27]. The corresponding IFPCM
algorithm is based on hybridizing the concepts of the FPCM clustering
method [28], intuitionistic fuzzy sets and distance measures. The IFPCM-
algorithm resolves the inherent problems with the availability of informa-
tion on the membership values of objects in each cluster by generalizing
the membership and non-membership with a hesitancy degree. Moreover, the
IFPCM algorithm is extended in [27] for clustering interval-valued intuition-
istic fuzzy sets, leading to interval-valued intuitionistic fuzzy possibilistic
c-means algorithm. This IVIFPCM-algorithm involves the membership and
non-membership degrees as intervals. Different intuitionistic fuzzy-set clus-
tering methods are also described by Xu [29].

A heuristic approach to possibilistic clustering is generalized for the case
of an intuitionistic fuzzy tolerance and the corresponding D-PAIFC algorithm
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is proposed in [11]. Moreover, the intuitionistic fuzzy prototype based heuris-
tic D-PAIFC-TC algorithm of possibilistic clustering is given in [30] and the
relational D-AIFC algorithm is presented in [31].

The aim of the present paper is to propose a new intuitionistic fuzzy rela-
tional heuristic algorithm of possibilistic clustering with a partial supervision.
The structure of the paper is as follows: in the second section basic defini-
tions of the intuitionistic fuzzy sets theory are given, basic concepts of the
intuitionistic fuzzy generalization of the heuristic approach to possibilistic
clustering are considered and the semi-supervised D-AIFC-PS(c) algorithm
is proposed, in the third section two illustrative examples are provided, in
fourth section some conclusions are formulated, both related to the new algo-
rithm itself and its potential further applications, and perspectives of future
investigations are outlined.

2 OUTLINE OF THE NEW HEURISTIC APPROACH TO
INTUITIONISTIC FUZZY CLUSTERING

2.1 Basic definitions of the intuitionistic fuzzy sets theory
Let X = {x1, . . . , xn} be a set of elements from some universe of discours
X . An intuitionistic fuzzy set I A in X is given by the ordered triple I A =
{〈xi , μI A(xi ), νI A(xi )〉 |xi ∈ X}, where μI A, νI A : X → [0, 1] should sat-
isfy

0 ≤ μI A(xi ) + νI A(xi ) ≤ 1 (1)

for all xi ∈ X . The values μI A(xi ) and νI A(xi ) denote the degree of mem-
bership and the degree of non-membership of element xi ∈ X to I A, respec-
tively.

For each intuitionistic fuzzy set I A in X an intuitionistic fuzzy index hes-
itation margin) of an element xi ∈ X in I A can be defined as follows [12]

ρI A(xi ) = 1 − (μI A(xi ) + νI A(xi )) . (2)

The intuitionistic fuzzy index ρI A(xi ) can be considered as a hesitation degree
of xi to I A. Naturally, 0 ≤ ρI A(xi ) ≤ 1 for all xi ∈ X . Obviously, when
νI A(xi ) = 1 − μI A(xi ), for each xi ∈ X , the intuitionistic fuzzy set I A is
an ordinary fuzzy set in X . For each ordinary fuzzy set A in X , we have
ρA(xi ) = 0, for all xi ∈ X .

Let IFS(X ) denote the family of all intuitionistic fuzzy sets in X . The basic
operations on the intuitionistic fuzzy sets were defined by Atanassov [12, 13,
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14]. In particular, if I A, I B ∈ IFS(X ), then

I A ∩ I B =
{ 〈xi , μI A(xi ) ∧ μI B(xi ), νI A(xi ) ∨ νI B(xi )〉

|xi ∈ X

}
, (3)

and

I A ∪ I B =
{ 〈xi , μI A(xi ) ∨ μI B(xi ), νI A(xi ) ∧ νI B(xi )〉

|xi ∈ X

}
, (4)

Moreover, some properties of the intuitionistic fuzzy sets were also given in
[32]. For example, if I A, I B ∈ IFS(X ), then

I A ⊆ I B ⇔ μI A(xi ) ≤ μI B(xi ) and
νI A(xi ) ≥ νI B(xi ), ∀xi ∈ X

, (5)

I A ⊂ I B ⇔ μI A(xi ) ≤ μI B(xi ) and
νI A(xi ) ≤ νI B(xi ), ∀xi ∈ X

, (6)

I A = I B ⇔ I A ⊆ I B and I A ⊇ I B, ∀xi ∈ X, (7)

I A = {〈xi , νI A(xi ), μI A(xi )〉 |xi ∈ X} . (8)

Some definitions will be useful for further considerations. In particular, an
α, β-level of an intuitionistic fuzzy set I A in X can be defined as

I Aα,β = {xi ∈ X |μI A(xi ) ≥ α, νI A(xi ) ≤ β} , (9)

where the condition

0 ≤ α + β ≤ 1, (10)

is met for any values α and β, α, β ∈ [0, 1].
The concept of the (α, β)-level intuitionistic fuzzy set was defined in [11]

as follows. The (α, β)-level intuitionistic fuzzy set I A(α,β) in X is given as:

I A(α,β) =
{〈

xi ∈ I Aα,β, μI A(α,β) (xi ) = μI A(xi ),
νI A(α,β) (xi ) = νI A(xi )

〉}
, (11)

where α, β ∈ [0, 1] should satisfy the condition (10) and I Aα,β is the α, β-
level of an intuitionistic fuzzy set I A satisfying (9).
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If I A is an intuitionistic fuzzy set in X , where X is the set of elements,
then the (α, β)-level intuitionistic fuzzy set I A(α,β) in X , for which

μI A(α,β) (xi ) =
{

μI A(xi ), if μI A(xi ) ≥ α

0, otherwise
, (12)

and

νI A(α,β) (xi ) =
{

νI A(xi ), if νI A(xi ) ≤ β

0, otherwise
, (13)

is called an (α, β)-level intuitionistic fuzzy subset I A(α,β) of the intuitionistic
fuzzy set I A in X , for some α, β ∈ [0, 1], 0 ≤ α + β ≤ 1.

Obviously, the condition I A(α,β)≺ I A is met for any intuitionistic fuzzy
set I A and by its (α, β)-level intuitionistic fuzzy subset I A(α,β), for any
α, β ∈ [0, 1], 0 ≤ α + β ≤ 1. This important property will be very useful in
further considerations.

Let us recall some basic definitions, which were considered by Burillo
and Bustince [32, 33]. In cluster analysis, one is only interested in relations
in a set X of classified objects. So, let X = {x1, . . . , xn} be an ordinary non-
empty set. The binary intuitionistic fuzzy relation I R on X is an intuitionistic
fuzzy subset I R of X × X , which is given by the expression

I R = {〈
(xi , x j ), μA(xi , x j ), νA(xi , x j )

〉 |xi , x j ∈ X
}
, (14)

where μI R : X × X → [0, 1] and νI R : X × X → [0, 1] satisfy 0 ≤
μI R(xi , x j ) + νI R(xi , x j ) ≤ 1, for each (xi , x j ) ∈ X × X .

Let IFR(X ) denote the set of all intuitionistic fuzzy relations on X ,
and let us consider some basic properties of the intuitionistic fuzzy rela-
tions. An intuitionistic fuzzy relation I R ∈ IFR(X ) is reflexive, if for each
xi ∈ X , μI R(xi , xi ) = 1 and νI R(xi , xi ) = 0. An intuitionistic fuzzy rela-
tion I R ∈ IFR(X ) is symmetric, if for all (xi , x j ) ∈ X × X , the conditions
μI R(xi , x j ) = μI R(x j , xi ) and νI R(xi , x j ) = νI R(x j , xi ) are met.

An intuitionistic fuzzy relation I T in X is called an intuitionistic fuzzy
tolerance, if it is reflexive and symmetric. An intuitionistic fuzzy relation
I S in X is called an intuitionistic fuzzy similarity relation, if it is reflexive,
symmetric and transitive.

An n-step procedure, using the composition of the intuitionistic fuzzy rela-
tions, beginning with an intuitionistic fuzzy tolerance, can be used for the
construction of the transitive closure of an intuitionistic fuzzy tolerance I T
and the transitive closure is an intuitionistic fuzzy similarity relation I S. The
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procedure is the basis of the clustering algorithm, proposed by Hung, Lee and
Fuh [15].

An α, β-level of an intuitionistic fuzzy relation I R in X was defined in
[15] as

I Rα,β = {
(xi , x j )|μR(xi , x j ) ≥ α, νR(xi , x j ) ≤ β

}
, (15)

where condition (10) is met for any values α and β, α, β ∈ [0, 1]. So, if 0 ≤
α1 ≤ α2 ≤ 1 and 0 ≤ β2 ≤ β1 ≤ 1 with 0 ≤ α1 + β1 ≤ 1 and 0 ≤ α2 + β2 ≤
1, then I Rα2,β2 ⊆ I Rα1,β1 . The respective proposition was formulated in [15].

The (α, β)-level intuitionistic fuzzy relation I R(α,β) in X was defined in
[11] as follows:

I R(α,β) =
⎧⎨
⎩

〈 (xi , x j ) ∈ I Rα,β,

μI R(α,β) (xi , x j ) = μI R(xi , x j ),
νI R(α,β) (xi , x j ) = νI R(xi , x j )

〉 ⎫⎬
⎭ , (16)

where α, β ∈ [0, 1] should satisfy condition (10) and I Rα,β is the α, β-level
of an intuitionistic fuzzy relation I R, which satisfies condition (15). The con-
cept of the (α, β)-level intuitionistic fuzzy relation will be very useful in fur-
ther considerations.

2.2 An intuitionistic fuzzy generalization of the heuristic approach to
possibilistic clustering

Let us now consider intuitionistic extensions of the basic concepts of the
D-PAFC algorithm which was proposed in [11]. Let X = {x1, ..., xn} be the
initial set of elements from Xand I T be some binary intuitionistic fuzzy tol-
erance on X = {x1, ..., xn}, μI T (xi , x j ) ∈ [0, 1] being its membership func-
tion and νI T (xi , x j ) ∈ [0, 1] its non-membership function. Let α and β be the
α, β-level values ofI T , α ∈ (0, 1], β ∈ [0, 1), 0 ≤ α + β ≤ 1. The columns
or lines of the intuitionistic fuzzy tolerance matrix are intuitionistic fuzzy sets
{I A1, ..., I An}.

Let {I A1, ..., I An} be intuitionistic fuzzy sets on X , which are generated
by an intuitionistic fuzzy tolerance I T . The (α, β)-level intuitionistic fuzzy
set, defined as

I Al
(α,β) =

{
(xi , μI Al (xi ), νI Al (xi ))|
μI Al (xi ) ≥ α, νI Al (xi ) ≤ β, xi ∈ X

}

is an intuitionistic fuzzy (α, β)-cluster or, simply, an intuitionistic fuzzy clus-
ter.

MVLSC-D552˙V1 9
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So I Al
(α,β) ⊆ I Al , α ∈ (0, 1], β ∈ [0, 1), I Al ∈ {I A1, . . . , I An}, and μli

is the membership degree of xi ∈ X , for some intuitionistic fuzzy cluster
I Al

(α,β), α ∈ (0, 1], β ∈ [0, 1), l ∈ {1, . . . , n}. On the other hand, νli is the
non-membership degree of xi ∈ X for the cluster I Al

(α,β). The value of α is
the tolerance threshold of the elements of the intuitionistic fuzzy cluster and
value of β is the difference threshold of the elements of the intuitionistic
fuzzy.

The membership degree of element xi ∈ X for some intuitionistic fuzzy
cluster I Al

(α,β), α ∈ (0, 1], β ∈ [0, 1), 0 ≤ α + β ≤ 1, l ∈ {1, . . . , n} can be
defined as

μli =
{

μI Al (xi ), xi ∈ I Al
α,β

0, otherwise
, (17)

where an α, β-level I Al
α,β of an intuitionistic fuzzy set I Al is the sup-

port of the intuitionistic fuzzy cluster I Al
(α,β). So, the condition I Al

α,β =
Supp(I Al

(α,β)) is met for each intuitionistic fuzzy cluster I Al
(α,β). The mem-

bership degree μli can be interpreted as a degree of typicality of an element
to an intuitionistic fuzzy cluster.

The non-membership degree of the element xi ∈ X for an intuitionistic
fuzzy cluster I Al

(α,β), α ∈ (0, 1], β ∈ [0, 1), 0 ≤ α + β ≤ 1, l ∈ {1, . . . , n}
can be defined as

νli =
{

νI Al (xi ), xi ∈ I Al
α,β

0, otherwise
. (18)

and can be interpreted as a degree of non-typicality of an element to an intu-
itionistic fuzzy cluster.

In other words, if columns or lines of the intuitionistic fuzzy tolerance
matrix I T are intuitionistic fuzzy sets {I A1, ..., I An} on X , then intuitionistic
fuzzy clusters {I A1

(α,β), ..., I An
(α,β)} are intuitionistic fuzzy subsets of fuzzy

sets {I A1, ..., I An}, for some values α ∈ (0, 1] and β ∈ [0, 1), 0 ≤ α + β ≤
1. So, the condition 0 ≤ μli + νli ≤ 1 is met for some intuitionistic fuzzy
cluster I Al

(α,β).
If the conditions μli = 0 and νli = 0 are met for some element xi ∈ X and

for an intuitionistic fuzzy cluster I Al
(α,β), then the element will be called the

residual element of the intuitionistic fuzzy cluster I Al
(α,β). The value zero for

a fuzzy set membership function is equivalent to the non-belongingness of
an element to a fuzzy set. That is why the values of tolerance threshold α are
considered in the interval (0, 1]. So, the value of the membership function of
each element of the intuitionistic fuzzy cluster is the degree of similarity of
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the object to some typical object of the fuzzy cluster. On the other hand, the
value one for an intuitionistic fuzzy set non-membership function is equiv-
alent to the non-belongingness of an element to an intuitionistic fuzzy set.
That is why the values of difference threshold β are considered in the inter-
val [0, 1).

Let I T be an intuitionistic fuzzy tolerance on X , where X is the set of ele-
ments, and {I A1

(α,β), ..., I An
(α,β)} be the family of intuitionistic fuzzy clusters

for some α ∈ (0, 1] and β ∈ [0, 1). The point τ l
e ∈ I Al

α,β , for which

τ l
e = arg max

xi

μli , ∀xi ∈ I Al
α,β (19)

is called a typical point of the intuitionistic fuzzy cluster I Al
(α,β). Obviously,

the membership degree of a typical point of an intuitionistic fuzzy cluster
is equal one because an intuitionistic fuzzy tolerance I T is a reflexive intu-
itionistic fuzzy relation. So, the non-membership degree of a typical point
of an intuitionistic fuzzy cluster is equal zero. Moreover, a typical point of
an intuitionistic fuzzy cluster does not depend on the value of the tolerance
threshold and an intuitionistic fuzzy cluster can have several typical points.
That is why we use symbol e to denote the index of the typical point.

Let I Rα,β

c(z)(X ) =
{

I Al
(α,β)|l = 1, c, c ≤ n,

α ∈ (0, 1], β ∈ [0, 1)

}
be a family of intuitionis-

tic fuzzy clusters for some value of the tolerance threshold α ∈ (0, 1] and
some value of the difference threshold β ∈ [0, 1), 0 ≤ α + β ≤ 1. These
intuitionistic fuzzy clusters are generated by some intuitionistic fuzzy tol-
erance I T on the initial set of elements X = {x1, ..., xn}. If the conditions

c∑
l=1

μli > 0, ∀xi ∈ X (20)

and

c∑
l=1

νli ≥ 0, ∀xi ∈ X (21)

are met for all I Al
(α,β), l = 1, c, c ≤ n, then the family is the allotment of

elements of the set X = {x1, . . . , xn} among the intuitionistic fuzzy clus-
ters {I Al

(α,β), l = 1, c, 2 ≤ c ≤ n}, for some value of the tolerance threshold
α ∈ (0, 1] and some value of the difference threshold β ∈ [0, 1). It should be
noted that several allotments I Rα,β

c(z)(X ) can exist for a pair of thresholds α

and β. That is why we introduce the symbol z as the index of an allotment.
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Condition (20) requires each object xi , i = 1, n to be assigned to at least
one intuitionistic fuzzy cluster I Al

(α), l = 1, c, c ≤ n with the membership
degree higher than zero and this condition is similar to the definition of the
possibilistic partition [6, 11]. The condition 2 ≤ c ≤ n requires that the num-
ber c of intuitionistic fuzzy clusters in I Rα,β

c(z)(X ) be higher than two. Other-
wise, the unique intuitionistic fuzzy cluster will contain all objects, possibly
with different membership and non-membership degrees.

The number c of fuzzy clusters can be equal the number of objects, n. This
is taken into account in our further considerations.

The allotment I Rα,β

I (X ) =
{

I Al
(α,β)|l = 1, n,

α ∈ (0, 1], β ∈ [0, 1)

}
of the set of

objects among n intuitionistic fuzzy clusters, for some pair of thresholds α

and β, 0 ≤ α + β ≤ 1, is the initial allotment of the set X = {x1, ..., xn}. In
other words, if the initial data are represented by a matrix of an intuitionistic
fuzzy tolerance relation I T , then lines or columns of this matrix are the intu-
itionistic fuzzy sets I Al , l = 1, n and (α, β)-level fuzzy sets I Al

(α,β), l = 1, n,
α ∈ (0, 1], β ∈ [0, 1) are the intuitionistic fuzzy clusters. These intuitionistic
fuzzy clusters constitute an initial allotment for a pair of thresholds α and β,
and they can be considered as clustering components.

If the conditions

c⋃
l=1

I Al
α,β = X, (22)

and

card(I Al
α,β ∩ I Am

α,β ) = 0,

∀I Al
(α,β), I Am

(α,β), l �= m, α, β ∈ (0, 1]
, (23)

are met for all clusters I Al
(α,β), l = 1, c of the allotment I Rα,β

c(z)(X ) ={
I Al

(α,β)|l = 1, c, c ≤ n,

α ∈ (0, 1], β ∈ [0, 1)

}
, then the allotment is the allotment among

fully separate intuitionistic fuzzy clusters.
The intuitionistic fuzzy clusters in the sense of definitions (17), (18) can

have intersections. If the intersection area of any pair of different intuition-
istic fuzzy clusters is empty, then the conditions (22) and (23) are met and
the intuitionistic fuzzy clusters are called fully separate intuitionistic fuzzy
clusters. Otherwise, the intuitionistic fuzzy clusters are called particularly
separate intuitionistic fuzzy clusters and w ∈ {0,. . . , n} is the maximum
number of elements in the intersection of different intuitionistic fuzzy clus-
ters. For w = 0, the intuitionistic fuzzy clusters are fully separate. Thus, the
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HEURISTIC ALGORITHM OF POSSIBILISTIC CLUSTERING 13

conditions (22) and (23) can be generalized for the case of particularly sepa-
rate intuitionistic fuzzy clusters. Therefore, the conditions

c∑
l=1

card(Al
α,β ) ≥ card(X ),

∀Al
(α,β) ∈ I Rα,β

?(z)(X ), α ∈ (0, 1], β ∈ [0, 1)

, (24)

and

card(Al
α,β ∩ Am

α,β) ≤ w,

∀Al
(α,β), Am

(α,β), l �= m, α ∈ (0, 1], β ∈ [0, 1)
, (25)

are generalizations of the conditions (22) and (23). The conditions (24) and
(25) were formulated in [33]. Obviously, if w = 0 in (24) and (25), then the
conditions (22) and (23) are met. The adequate allotment I Rα,β

?(z)(X ) for some
values of tolerance threshold α ∈ (0, 1] and difference threshold β ∈ [0, 1)
is a family of fuzzy clusters which are elements of the initial allotment
I Rα,β

I (X ) for values of α and β, and the family of fuzzy clusters should sat-
isfy the conditions (24) and (25). So, the construction of the adequate allot-
ments I Rα,β

?(z)(X ) = {Al
(α,β)|l = 1, c, c ≤ n} for values α and β is a trivial

combinatorial problem.
Thus, the problem of cluster analysis boils downs, in general, to estab-

lishing a unique allotment I R∗
c (X ), corresponding to either the most natural

allocation of objects among intuitionistic fuzzy clusters or to the researcher’s
opinion about their classification. In the first case, the number of intuitionis-
tic fuzzy clusters ? is not fixed. In the second case, the researcher’s opinion
determines the kind of the allotment sought and the number of clusters ? can
be fixed. Finding the number c of the partially separated intuitionistic fuzzy
clusters can be considered as the aim of classification.

Several allotments among intuitionistic fuzzy clusters can exist for a pair
of thresholds α and β. Thus, the problem consists in selecting the unique
principal allotment I R∗

c (X ) among c intuitionistic fuzzy clusters from the
set B(c) of allotments, B(c) = {I Rα,β

c(z)(X )}, which is the class of possi-
ble solutions of the concrete classification problem. Here, z is the index
of allotments. The selection of the unique allotment I R∗

c (X ) from the set
B(c) = {I Rα,β

c(z)(X )} of allotments is made on the basis of the criterion

F(I Rα,β

c(z)(X ), α, β) =
(

c∑
l=1

1
nl

nl∑
i=1

μli − α · c

)
−

−
(

c∑
l=1

1
nl

nl∑
i=1

νli − β · c

) , (26)
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14 JAN W. OWSIŃSKI et al.

where c is the number of intuitionistic fuzzy clusters in the allotment
I Rα,β

c(z)(X ) and nl = card(I Al
α,β ), I Al

(α,β) ∈ I Rα,β

c(z)(X ) is the number of ele-
ments in the support of the intuitionistic fuzzy cluster I Al

(α,β), and they can
be used for the evaluation of allotments. The criterion (26) is the intuitionistic
extension of the one proposed in [11] for the D-AFC(c) algorithm.

The maximum value of criterion (26) corresponds to the best allotment of
objects among an a priori given number c of intuitionistic fuzzy clusters. So,
the classification problem consists in finding I R∗

c (X ) satisfying

I R∗
c (X ) = arg max

I Rα,β

c(z)(X )∈B(c)
F(I Rα,β

c (X ), α, β), (27)

where B(c) = {I Rα,β

c(z)(X )} is the set of allotments of objects among an a priori
given number c of intuitionistic fuzzy clusters corresponding to the pair of
thresholds α and β.

A clustering procedure is then based on decomposition of the initial intu-
itionistic fuzzy tolerance I T [11]. The basic concepts of the method of
decomposition will now be presented. Let I T be an intuitionistic fuzzy tol-
erance in X , I T(α,β) an (α, β)-level intuitionistic fuzzy relation and the con-
dition (10) be met for values α and β,α ∈ (0, 1], β ∈ [0, 1). Let I Tα,β be
the α, β-level of an intuitionistic fuzzy tolerance I T in X and I Tα,β be the
support of I T(α,β). The membership function μI T(α,β) (xi , x j ) can be defined as

μI T(α,β) (xi , x j ) =
{

μI T (xi , x j ), i f μI T (xi , x j ) ≥ α

0, otherwise
, (28)

and the non-membership function νI T(α,β) (xi , x j ) as

νI T(α,β) (xi , x j ) =
{

νI T (xi , x j ), i f νI T (xi , x j ) ≤ β

0, otherwise
. (29)

Obviously, the condition I T(α,β) ⊂ I T is met for any intuitionistic fuzzy
tolerance I T and (α, β)-level intuitionistic fuzzy relation I T(α,β), for any
α ∈ (0, 1], β ∈ [0, 1), 0 ≤ α + β ≤ 1. So, we have the proposition that if
α�(α) ≤ α�+1(α) and β�+1(β) ≤ β�(β) with 0 ≤ α�(α) + β�(β) ≤ 1, 0 ≤ α�+1(α) +
β�+1(β) ≤ 1, then the condition I T(α�+1(α),β�+1(β)) ⊂ I T(α�(α),β�(β)) is met. Hence,
the ordered sequences 0 < α0 ≤ . . . ≤ α�(α) ≤ . . . ≤ αZ (α) ≤ 1 and 0 ≤
βZ (β) ≤ . . . ≤ β�(β) ≤ . . . ≤ β0 < 1 must be constructed for the decomposi-
tion of an intuitionistic fuzzy tolerance I T . A method of construction of such
sequences was developed in [11].
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2.3 A note on constructing the intuitionistic fuzzy tolerance relation
The method for constructing the intuitionistic fuzzy tolerance relation was
proposed by Wang, Xu, Liu and Tang in [18]. The corresponding similarity
measure is based on the normalized Hamming distance and the similarity
measure can be expressed by the formula

r (I A, I B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 0) , I A = I B⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 1
n

n∑
i=1

|νI A(xi ) − νI B(xi )| −

− 1
n

n∑
i=1

|ρI A(xi ) − ρI B(xi )|,

1
n

n∑
i=1

|νI A(xi ) − νI B(xi )|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, I A �= I B
, (30)

for all i, j = 1, . . . , n. That is why the closeness degree r (I A, I B) =
(μI T (I A, I B), νI T (I A, I B)) of the intuitionistic fuzzy sets I A and I B can
be constructed according to (29). Obviously, if all the differences of values
of the non-membership degree and the differences of values of the intuition-
istic fuzzy index of two objects I A and I B with respect to attributes xi ,
i = 1, . . . , n are smaller, then the two objects are more similar to each other.

The corresponding intuitionistic fuzzy relation has the properties of
symmetry and reflexivity. Moreover, the condition 0 ≤ μI T (I A, I B) +
νI T (I A, I B) ≤ 1 is met for any intuitionistic fuzzy sets I A and I B cf. [18].
It should be noted that other similarity measures were also proposed in [34]
and [35].

2.4 Partial supervision and the D-AIFC-PS(c) algorithm
Let us consider a subset of labeled objects XL = {xL(1), . . . , xL(c)} and XL ⊂
X .The condition card(XL ) = c must hold for the subset. Let the membership
grades yl( j), l = 1, . . . , c, j = 1, . . . , c and non-membership grades fl( j), l =
1, . . . , c, j = 1, . . . , c, correspond to each labeled object xL( j) ∈ XL , j =
1, . . . , c, as follows: if xi ∈ XL and xi = xL( j), the values of yl( j) and fl( j)

are given by the analyst. So, the construction of the allotment I R∗
c (X ) among

an a priori given number c of partially separate intuitionistic fuzzy clusters
can be considered as the aim of classification and each labeled object must
be assigned to a unique fuzzy cluster. Moreover, for each labeled object xi =
xL( j) its membership value μli , l = 1, . . . , c, i = 1, . . . , n, in the allotment
I R∗

? (X ) sought must be greater than an a priori determined membership grade
yl( j) ∈ (0, 1] and its non-membership value νli , l = 1, . . . , c, i = 1, . . . , n in
the allotment I R∗

? (X ) should be lower than an a priori given non-membership
grade fl( j) ∈ [0, 1).

MVLSC-D552˙V1 15



16 JAN W. OWSIŃSKI et al.

The corresponding D-AIFC-PS(c) algorithm for the determination of the
allotment I R∗

c (X ) is a twelve-step procedure of classification as given below:

1. The following condition is checked:

if for any labeled object xL( j) = xi , j = 1, . . . , c, i ∈ {1, . . . , n}
the condition 0 ≤ yli + fli ≤ 1 is met
then go to step 2
else print ‘Conditions of classification are incorrect‘ and stop;

2. Let w := 0;
3. Construct ordered sequences 0 < α0 ≤ . . . ≤ α�(α) ≤ . . . ≤ αZ (α) ≤ 1

and 0 ≤ βZ (β) ≤ . . . ≤ β�(β) ≤ . . . ≤ β0 < 1 of threshold values; let
�(α) := 0 and �(β) := 0;

4. The following condition is checked:

if the condition 0 ≤ α�(α) + β�(β) ≤ 1 is met
then construct the (α, β)-level intuitionistic fuzzy relation I T(α,β) in the sense
of definition (16) and go to step 5
else the following condition is checked:
if the condition �(β) < Z (β) is met
then let �(β) := �(β) + 1 and go to step 4;

5. Construct the initial allotment I Rα,β

I (X ) = {I Al
(α,β)|l = 1, n, α ∈

(0, 1], β ∈ [0, 1)} for calculated values α�(α) and β�(β);
6. The following condition is checked:

if for some intuitionistic fuzzy cluster I Al
(α,β) ∈ I Rα,β

I (X ) the condition
card(I Al

α,β ) = n is met
then let �(β) := �(β) + 1 and go to step 4
else go to step 7;

7. Construct allotments among an a priori given number c of intuition-
istic fuzzy clusters I Rα,β

c(z)(X ) = {I Al
(α,β)|l = 1, c, c ≤ n}, α = α�(α),

β = β�(β), which satisfy the conditions (24) and (25) for the pair
of values α�(α) and β�(β) from the sequences 0 < α0 ≤ . . . ≤ α�(α) ≤
. . . ≤ αZ (α) ≤ 1 and 0 ≤ βZ (β) ≤ . . . ≤ β�(β) ≤ . . . ≤ β0 < 1;

8. The following condition is checked:

if allotments among a priori given number c of intuitionistic fuzzy clus-
ters I Rα,β

c(z)(X ) = {I Al
(α,β)|l = 1, c, c ≤ n}, α = α�(α), β = β�(β) which satisfy

conditions (24) and (25) are not constructed
then the following condition is checked:
if condition �(β) = Z (β) is met, let�(α) := �(α) + 1 and �(β) := 0 and go to
step 4
else let �(β) := �(β) + 1 and go to step 4
else go to step 9;

9. The following condition is checked:
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if allotments among a priori given number c of intuitionistic fuzzy clus-
ters I Rα,β

c(z)(X ) = {I Al
(α,β)|l = 1, c, c ≤ n}, α = α�(α), β = β�(β) which satisfy

conditions (24) and (25) are not constructed
then let w := w + 1 and go to step 3
else go to step 10;

10. Construct the class of possible solutions of the classification problem
B(c) = {I Rα,β

c(z)(X )}, which satisfy conditions (24) and (25) for the
calculated pair of values α�(α) and β�(β) and for the given number of
fuzzy clusters c as follows:

if for some allotment I Rα,β

c(z)(X ) the condition card(I Rα,β

c(z)(X )) = c is met
and for each labeled object xL( j) = xi , j = 1, . . . , c, i ∈ {1, . . . , n} condi-
tions μli ≥ yli , νli ≤ fli , I Al

(α,β) ∈ I Rα,β

c(z)(X ), j = 1, . . . , c are met

then I Rα,β

c(z)(X ) ∈ B(c)
else the following condition is checked:
if the condition w < n − c is met
then let w := w + 1 and go to step 4
else print ‘There is no solution of the classification problem for given condi-
tions’ and stop;

11. Calculate the value of the criterion (26) for each allotment
I Rα,β

c(z)(X ) ∈ B(c);
12. The result I R∗

c (X ) of classification is formed as follows:
if for some unique allotment I Rα,β

c(z)(X ) ∈ B(c) the condition (27) is met
then the allotment is the result of classification I R∗

c (X )
else print ‘The number c of classes is suboptimal’ and stop.

The unique principal allotment I R∗
c (X ) among the a priori given number c

of partially separate intuitionistic fuzzy clusters and the corresponding values
of the tolerance threshold α and the difference threshold β, 0 ≤ α + β ≤ 1
are the results of classification.

The functioning of the proposed D-AIFC-PS(c) algorithm for the intu-
itionistic fuzzy data will now be explained by some illustrative examples.

3 EXAMPLES

3.1 Example 1
Let us consider the application of the proposed D-AIFC-PS(c) algorithm to
the intuitionistic fuzzy data which originally appeared in [16]. A car dealer
wishes to classify five different cars xi , i = 1, . . . , 5. There are 6 car eval-
uation criteria: x1: fuel consumption, x2: friction coefficient, x3: price, x4:
comfort, x5: design, x6: safety. Evaluations of the cars regarding the criteria
xt1 , t1 = 1, . . . , 6 are represented by the intuitionistic fuzzy sets, shown in
Table 1.
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18 JAN W. OWSIŃSKI et al.

Cars
Criteria

x1 x2 x3 x4 x5 x6

x1 (0.3, 0.5) (0.6, 0.1) (0.4, 0.3) (0.8, 0.1) (0.1, 0.6) (0.5, 0.4)
x2 (0.6, 0.3) (0.5, 0.2) (0.6, 0.1) (0.7, 0.1) (0.3, 0.6) (0.4, 0.3)
x3 (0.4, 0.4) (0.8, 0.1) (0.5, 0.1) (0.6, 0.2) (0.4, 0.5) (0.3, 0.2)
x4 (0.2, 0.4) (0.4, 0.1) (0.9, 0.0) (0.8, 0.1) (0.2, 0.5) (0.7, 0.1)
x5 (0.5, 0.2) (0.3, 0.6) (0.6, 0.3) (0.7, 0.1) (0.6, 0.2) (0.5, 0.3)

TABLE 1
Car characteristics

IT x1 x2 x3 x4 x5

x1 (1.00, 0.00)
x2 (0.80, 0.10) (1.00, 0.00)
x3 (0.72, 0.12) (0.82, 0.08) (1.00, 0.00)
x4 (0.75, 0.13) (0.72, 0.10) (0.70, 0.05) (1.00, 0.00)
x5 (0.65, 0.22) (0.68, 0.18) (0.63, 0.23) (0.63, 0.25) (1.00, 0.00)

TABLE 2
Intuitionistic fuzzy tolerance relation matrix

So, the data constitute of the family X = {x1, . . . , x5} of the intu-
itionistic fuzzy sets, where xi = {〈

xt1 , μxi (x
t1 ), νxi (x

t1 )
〉 |xt1 ∈ Xt1

}
, Xt1 =

{x1, . . . , x6}. By applying the method of constructing the intuitionistic fuzzy
tolerance relation (30) to the set X , the matrix of the intuitionistic fuzzy tol-
erance relation I T was obtained, as shown in Table 2.

The proposed D-AIFC-PS(c)valgorithm was applied to the matrix of the
intuitionistic fuzzy tolerance relation I T . The first experiment was made for
the set of labeled objects XL = {x1 = xL(1), x5 = xL(2)} with their member-
ship functions y1(1) = 1.0, y2(5) = 1.0 and non-membership functions f1(1) =
0.0, f2(5) = 0.0. By executing the D-AIFC-PS(c) algorithm, the allotment
among two fully separated intuitionistic fuzzy clusters was obtained for
α = 0.70 and β = 0.25. The membership and non-membership values are
presented in Figure 1.

The second experiment was performed for the set of labeled objects XL =
{x4 = xL(1), x5 = xL(2)} with their membership functions y1(4) = 1.0, y2(5) =
0.9 and non-membership functions f1(4) = 0.0, f2(5) = 0.1. The result-
ing allotment among two fully separated intuitionistic fuzzy clusters was
obtained for α = 0.70 and β = 0.25. The membership and non-membership
values are presented in Figure 2.

In order to compare the proposed D-AIFC-PS(c)balgorithm with the D-
PAIFC-algorithm, the principal allotment among two fully separated intu-
itionistic fuzzy clusters was obtained from the D-PAIFC algorithm for α =
0.63 and β = 0.13. The membership and non-membership values are pre-
sented in Figure 3.
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FIGURE 1
Membership and non-membership values of two intuitionistic fuzzy clusters obtained by using
the D-AIFC-PS(c) algorithm for y1(1) = 1.0, f1(1) = 0.0, and y2(5) = 1.0, f2(5) = 0.0

FIGURE 2
Membership and non-membership values of two intuitionistic fuzzy clusters obtained by using
the D-AIFC-PS(c) algorithm for y1(4) = 1.0, f1(4) = 0.0, and y2(5) = 0.9, f2(5) = 0.1
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FIGURE 3
Membership and non-membership values of two intuitionistic fuzzy clusters obtained by using
the D-PAIFC-algorithm

The membership values of the first class are represented by ◦, non-
membership values of the first class are represented by •, membership values
of the second class are represented by � and non-membership values of the
second class are represented by � in all three figures.

The third experiment was made for the set of labeled objects XL = {x3 =
xL(1), x4 = xL(2)} with their membership functions y1(3) = 0.8, y2(4) = 0.7
and non-membership functions f1(3) = 0.1, f2(4) = 0.2. The allotment among
two intuitionistic fuzzy clusters does not exist for these conditions.

3.2 Example 2
Let us consider an application of the proposed D-AIFC-PS(c) algorithm to
Hung’s [15] relational intuitionistic fuzzy data. The respective matrix of intu-
itionistic fuzzy tolerance relation is given in Table 3.

The proposed D-AIFC-PS(c) algorithm was applied to the matrix of the
intuitionistic fuzzy tolerance relation I T for c = 4. The first experiment was
made for the set of labeled objects XL = {x2 = xL(1), x3 = xL(2), x5 = xL(3),
x8 = xL(4)} with their membership functions y1(2) = 0.7, y2(3) = 0.5, y3(5) = 0.6,
y4(8) = 0.5, and non-membership functions f1(2) = 0.2, f2(3) = 0.3, f3(5) = 0.3,
f4(8) = 0.4. By executing the D-AIFC-PS(c) -algorithm, the allotment among
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IT x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 (1.0, 0.0)
x2 (0.2, 0.7) (1.0, 0.0)
x3 (0.5, 0.5) (0.3, 0.6) (1.0, 0.0)
x4 (0.8, 0.1) (0.6, 0.4) (0.5, 0.4) (1.0, 0.0)
x5 (0.6, 0.3) (0.7, 0.2) (0.3, 0.6) (0.7, 0.2) (1.0, 0.0)
x6 (0.2, 0.7) (0.9, 0.1) (0.4, 0.5) (0.3, 0.6) (0.2, 0.7) (1.0, 0.0)
x7 (0.3, 0.7) (0.2, 0.7) (0.1, 0.9) (0.5, 0.4) (0.4, 0.5) (0.1, 0.7) (1.0, 0.0)
x8 (0.9, 0.1) (0.8, 0.2) (0.3, 0.6) (0.4, 0.6) (0.5, 0.5) (0.3, 0.7) (0.6, 0.3) (1.0, 0.0)
x9 (0.4, 0.5) (0.3, 0.7) (0.7, 0.2) (0.1, 0.8) (0.8, 0.1) (0.7, 0.2) (0.1, 0.8) (0.0, 0.9) (1.0, 0.0)
x10 (0.3, 0.7) (0.2, 0.7) (0.6, 0.3) (0.3, 0.7) (0.9, 0.1) (0.2, 0.7) (0.3, 0.7) (0.2, 0.8) (0.1, 0.8) (1.0, 0.0)

TABLE 3
Matrix of intuitionistic fuzzy tolerance relation

four partially separated intuitionistic fuzzy clusters was obtained for α = 0.1
and β = 0.4. The membership and non-membership values are presented in
Figure 4.

The membership values of the first class are represented by • in Figure
4, non-membership values of the first class are represented by �, member-
ship values of the second class are represented by ∇, non-membership values
of the second class are represented by �, membership values of the third
class are represented by �, non-membership values of the third class are

FIGURE 4
Membership and non-membership values of four intuitionistic fuzzy clusters obtained by
using the D-AIFC-PS(c)-algorithm for y1(2) = 0.7, f1(2) = 0.2, y2(3) = 0.5, f2(3) = 0.3, y3(5) =
0.6, f3(5) = 0.3 and y4(8) = 0.5, f4(8) = 0.4
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FIGURE 5
Membership values and non-membership values of four intuitionistic fuzzy clusters obtained by
using the D-AIFC(c)-algorithm for c = 4

represented by �, membership values of the fourth class are represented by
� and non-membership values of the fourth class are represented by �.

In order to compare the proposed D-AIFC-PS(c) algorithm with the D-
AIFC(c) algorithm proposed in [35], the allotment among four partially
separated intuitionistic fuzzy clusters was obtained from the D-AIFC(c)-
algorithm for α = 0.1 and β = 0.3. The membership and non-membership
values are presented in Figure 5, where the designations of memberships and
non-memberships are the same as in Figure 4.

4 CONCLUDING REMARKS

The heuristic D-AIFC-PS(c) algorithm of possibilistic clustering of the intu-
itionistic fuzzy data is proposed in the paper. The algorithm is based on
the mechanism of partial supervision. Numerical experiments show that the
results obtained by using the D-AIFC-PS(c) algorithm to the intuitionistic
fuzzy data set depends on the choice of the labeled objects and on their a
priori membership and non-membership functions.

The D-AIFC-PS(c)-algorithm can be applied directly to the data given as
the matrix of intuitionistic fuzzy tolerance coefficients. Thus, it can be used
with the object by attribute data, by choosing a similarity measure (29), or it
can be used in situations where object by object proximity data is available.
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The results of application of the D-AIFC-PS(c) algorithm to two intuitionistic
fuzzy data sets show that the D-AIFC-PS(c) algorithm is a precise, and effec-
tive and effective numerical procedure for solving the classification problem
in the presence of labeled objects.

The given membership and non-membership values can be different for
different labeled objects. A problem of choice of the membership and non-
membership function values for the labeled objects must be investigated.
Moreover, the method can be extended to the case of presence of a few
labeled objects for each class in the sought allotment among the intuition-
istic fuzzy clusters. These issues will be investigated in the future.

It should also be noted that the algorithm can be very useful for the broadly
perceived problems related to the analysis of value chains in agriculature
considered within the RUC-APS: Enhancing and implementing Knowledge
based ICT solutions within high Risk and Uncertain Conditions for Agri-
culture Production Systems. Basically, due to their inherent complexity the
agricultural data are often not only imprecisely known but also described
by human testimonies and judgments in which a “pro” – “con” structure,
i.e. involving arguments in favor and against a particular statement, can be
very convenient and human consistent. This may be quite effectively and effi-
ciently modeled by the intuitionistic fuzzy sets. Moreover, due to the above
mentioned complexity of the agricultural value chains, it may be expedient
to determine some groups (clusters) of elements, issues, etc. to be considered
consecutively, which should reduce the numerical complexity. Therefore, the
intuitionistic fuzzy clustering can come to the rescue, and the algorithm pre-
sented here can be applied. Its application to the agriculatural value chain
analyses will be presented in next papers.
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