
The Early Bird Catches the Worm:
first Verify, then Monitor!

Angelo Ferrando

University of Genova, Via Dodecaneso 35, Genova, Italy
Department of Informatics, Bioengineering,

Robotics and Systems Engineering
(DIBRIS)

Abstract

Trace expressions are a compact and expressive formalism, initially devised for
runtime verification of agent interactions in multiagent systems, which has been
successfully employed to model real-world protocols, and to generate monitors
for mainstream multiagent system platforms, and generalized to support run-
time verification of different kinds of properties and systems. In this paper,
we propose an algorithm to check Linear Temporal Logic (LTL) properties sat-
isfiability on trace expressions. To do this, we show how to translate a trace
expression into a Büchi Automaton in order to realize an Automata-Based Model
Checking. We show that this translation generates an over-approximation of our
trace expression leading us to obtain a sound procedure to verify LTL properties.
Once we have statically checked a set of LTL properties, we can conclude that:
(1) our trace expression is formally correct (2) since we use this trace expres-
sion to generate monitors checking the runtime behavior of the system, the LTL
properties verified by this trace expression are also verified by the monitored
system.

Key words: Runtime Verification of Object-Oriented Programming; Trace
expressions; Automata-Based Model Checking; Runtime Monitoring;
Combining Static and Runtime Verification

1. Introduction

Runtime Verification (RV) is a software verification technique that comple-
ments formal static verification (like Model Checking [1, 2, 3, 4]) and testing
[5, 6, 7].

When the system we want to verify becomes larger, model checking it (as5

well as the environment where it is immersed) becomes quickly intractable. In
these scenarios, a valid alternative is RV. The main difference with respect to

Email addresses: angelo.ferrando@dibris.unige.it (Angelo Ferrando)

Preprint submitted to Journal of LATEX Templates September 21, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/187115358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

standard static verification is the stage when it is applied, which is at execution
time. In fact, in RV we do not need to simulate all possible paths that the
system may generate during its execution, but we limit the analysis directly to10

the paths exposed and generated by the system during its real execution. As a
consequence, RV could be more suitable and applicable than static verification
in black-box scenarios, where there is no access to the source code of the system
we want to verify.

One possible way to achieve the RV of a system is using one (or more)15

monitor(s) generated from a formal specification (that is the property we want
to verify, for instance an LTL property [8]).

Monitoring can be classified with respect to three main aspects:

1. When the monitoring is executed [9].

• online, the monitor checks the executions incrementally at runtime;20

• offline, the monitor checks recorded executions (for instance log files).

2. How the monitoring is implemented [10].

• inline, the monitor is inserted within the monitored program;

• outline, the monitor runs in a thread or process different from the
monitored program.25

3. Which kind of errors the monitor arises [11].

• precise, the monitor has observed an error in the execution trace an-
alyzed;

• predictive, the monitor indicates errors that have not occurred in the
observed execution trace but could possibly occur in other executions30

of the program.

A possible way to specify the monitor behavior is through the set of all
correct traces (finite or infinite sequences of events) which can be generated
during the system execution1. This set of traces can be defined using different
formalisms. In this paper we adopt trace expressions [12, 13], a formalism35

inspired by session types [14, 15]. As it will be clearer in the rest of the work,
with respect to the three main aspects reported above, our RV approach can be
classified as: online/offline2, outline, precise.

Since we generate a monitor starting from a formal specification, we rep-
resent statically what we will check dynamically. If the static representation40

of the allowed event traces were error-free, we would be sure that monitoring
a system according to that representation, would allow us to intercept all and
only the possible violations due to unexpected or unwanted sequences of events.
Unfortunately, our static representation might contain design and formalization

1For instance, the system might be a multiagent system and the events of interest might
be messages exchanged among agents which must respect some interaction protocol property,
or an object oriented systems, where events subject to monitoring might be method calls.

2We can analyze both the execution traces at runtime and the recorded traces (log files).

2

errors too, making unproductive to monitor the system behavior. If we were45

able to verify properties of the static representation before using it for the dy-
namic monitoring, the runtime verification would lead to more controlled and
meaningful results. In the case of trace expressions, a possible way for obtaining
this static check before the use at runtime is verifying whether all the traces
satisfy an LTL property [8]. For instance, a common useful property to be50

checked could be a⇒ ♦b which says that if a takes place sooner or later, b will
take place as well. Considering that the monitors used to verify the system are
generated starting from a trace expression3, we can conclude that all properties
satisfied by trace expressions are either satisfied by the monitored system, or
their violation is recognized by the monitor. This represents an important as-55

pect because we can fuse static and dynamic verification approaches obtaining
the best of both: the formal verification at the static level and the runtime
monitoring at the dynamic level. For instance, the combination of static and
runtime verification can simplify – reduce the size of – our monitors. If we were
able to check statically a part of our specification, we could verify dynamically60

at runtime only what we are not able to check at static time [16]. Or also, if
we want to reduce the state space analyzed by a static verifier, we can make
assumptions and relax the model that is being validated. But, in this way, we
can not be sure the real system is compliant with our assumptions, and if it is
not, it would make the static verification so obtained useless4. Combining the65

use of a monitor to the static verifier, we can simplify the model verified stat-
ically, and we can add a monitor at runtime in order to recognize assumption
violations with respect to our model [17]. These are just possible advantages
in combining static and runtime verification. In this work, we focus on another
possible combination of static and runtime verification, showing how we can70

first verify statically our monitors, and then, how to use them to monitor
our systems. Our research question can be summarized in:

How can we trust our specification before using it to monitor our system?

One possible way of achieving the static verification of our specification (thus,
our monitor) is translating it into a model more suitable for static verification75

purposes. In this work, we will show how to translate our specifications into
Büchi Automatons, that are the standard automata version of LTL formulas
used in model checking. We chose Büchi Automatons because they are a stan-
dard representation supported by most of the existing model checker [18]. In
particular, we will use the SPIN model checker [19, 20, 21] to verify LTL for-80

mulas directly on our specifications.
Naturally, if we used LTL for generating our monitor, we would not need

to verify anything statically, because the monitor would already denote the
properties we want to check. But, LTL could be too limiting when used for RV

3To be more precise, in our implementation the monitors interpret the trace expression by
implementing the transition rules which define the trace expression semantics.

4Our assumptions might be too strong and we need to relax them.

3

purposes, and we might need more expressive formalisms that allow defining85

more complex monitors. As we will see in Section 3.2, the formalism we chose
to use for defining our monitors is more expressive than LTL5. Thus, if we want
to be sure that our “complex” monitor still satisfies a set of LTL properties, we
need a way to verify them on it. Finally, we can conclude that, even though we
have a complex specification that is used to verify at runtime complex properties90

on our system, we are still able to guarantee that this specification satisfies a
given set of LTL properties (without being limited to only those).

The contents of the paper are organized in the following way: Section 2
presents the context of the work and the motivations, Section 3 introduces
all the preliminary concepts such as LTL, Büchi Automaton and the corre-95

sponding LTL Model Checking, Section 3.1 introduces trace expressions, Sec-
tion 4 describes the algorithm used to verify LTL properties on trace expressions
through an Automata-Based Model Checking approach, Section 5 shows two ex-
periments developed using the SWI-Prolog [22] implementation and the SPIN
Model Checker [19, 20, 21], while Section 6 provides a brief survey of related100

works. Conclusions are drawn in Section 7.

2. Motivations

As anticipated previously, RV can be seen as a middle approach between
model checking and testing.

More in detail, the main differences between RV and model checking can be105

summarized as follows [9]:

• time, model checking is applied statically on the system and not during
its execution;

• exhaustiveness, model checking generates all possible executions of the
system while RV checks only the executions generated by the system at110

runtime (language inclusion problem vs word problem);

• invasiveness, model checking (generally) is applied to white-box scenarios,
when the source code of the system is available, while RV can be used
both in white-box and black-box scenarios, when the source code could be
unavailable;115

• traces length, model checking can consider arbitrary positions of a infinite
trace while RV considers finite executions of increasing size.

In Section 1, we presented RV as a counterpart of testing. In particular, RV
is extremely close to a specific form of testing, which is sometimes termed as
oracle-based testing. In [9] the authors compare RV with oracle-based testing.120

In the following, we propose our revised version of the main differences between
RV and oracle-based testing [9]:

5Or better, it is more expressive than LTL when the latter is used for RV purposes.

4

• time, testing is applied during the development of the system while RV is
applied before and after the deployment6;

• granularity, testing can test only the output of the system while RV can go125

into the details of the system behavior checking not only the observable
outputs but also how these outputs have been generated (for instance,
RV can tackle the nondeterminism, so even if the observable events are
correct, they could have been generated in a nondeterministic way).

• formalization, in testing, an oracle is typically defined directly, rather than130

generated from some high-level specification as happen in RV.

After having compared RV with model checking and test, we are ready to
answer at the question: When RV should be used? [9]:

• when the complexity of the system makes it intractable for an exhaustive
analysis;135

• when some information is available only at runtime;

• when a precise description of the environment does not exist;

• when there are security issues in the case of safety-critical systems, where
it is useful to monitor properties that have been statically proved or tested,
mainly to have a double check.140

Now that the main differences among RV, model checking and testing have
been presented, we can focus on the motivations of the work.

Supposing we have a system to check, in order to do the RV of it we have
to start writing the specification we want to verify. In the next section we will
present a possible formalism that can be used to obtain this, but for now, we145

focus only on the problem. Once we have defined our specification, we can
use it to generate a monitor to check the system behavior. If the system does
something inconsistent with our specification, the monitor will notice it and
will act accordingly (implementation dependant). But, what happens if our
specification contains design errors? We believe that we have defined a correct150

specification that satisfies our intentions, but unfortunately we have introduced
errors in it. Even though we can not really check if the specification is actually
representing our intentions – too abstract concept inside our minds – we can
still check if our specification satisfies all the properties we think should. If we
were able to check our specification against these properties statically, we could155

resolve this trust problem.
Since RV does not need to exhaustively check the system behavior, it is less

inclined to fall in state space explosion problems. This results from the fact

6RV applied before the deployment is used to check if the system respects our model.
RV applied after the deployment is used to monitor the system behavior in order to prevent
malfunctions (or at least signalling the user in time to reduce the damage).

5

that, in its mathematical essence, RV answers the “word problem”, i.e. the
problem whether a given word is included in some language [9]. Model check-160

ing, which tries to solve the “language inclusion” problem, is traditionally used
to verify finite-state systems against regular specifications. But, requirements
which involve counting cannot be formalized by regular specifications. To the
best of our knowledge, the must common approach to solve this issue is using
pushdown specifications [23], i.e., context-free properties represented by push-165

down automata. Anyway, research on model-checking techniques for pushdown
specifications is rare [24]. In RV instead, it is not uncommon to be interested in
verifying complex properties and many formalisms exist [25]. Unfortunately, the
complexity can lead to introduce mistakes also in the development of our speci-
fications compromising the entire RV process (design errors). One possible way170

to solve this problem is by checking directly the specification statically before
using it. With such preprocessing we can achieve the two following advantages:

• trust, the RV process is more reliable since we are sure that our complex
property satisfies a set of constraints (verifiable statically);

• propagation, as long as the system is consistent with the monitor gener-175

ated by the specification, it is also consistent with the constraints checked
statically (by construction).

In this paper we have chosen to use the trace expression formalism [13] to
represent our specifications.

3. Background180

LTL [8, 26, 27, 28] is a modal logic which has been introduced for specifying
temporal properties of systems; despite its original main application in static
verification through model checking, more recently it has been adopted as a
specification formalism for RV, and some RV tools support it [29, 30].

LTL syntax and semantics. Given a finite set of atomic propositions AP , the185

set of LTL formulas over AP is inductively defined as follows:

• true is an LTL formula;

• if p ∈ AP then p is an LTL formula;

• if ϕ and ψ are LTL formulas then ¬ψ, ϕ∨ψ, Xψ, and ϕUψ are LTL
formulas.190

Additional operators can be derived in the standard way: ϕ∧ψ = ¬(¬ϕ∨¬ψ),
ϕ⇒ ψ = ¬ϕ∨ψ, Fϕ (or ♦ϕ) = true Uϕ, and Gϕ (or �ϕ) = ¬(true U¬ϕ).

Let Σ = 2AP be the set of all possible subsets of AP ; if p ∈ AP and a ∈ Σ,
then p holds in a iff p ∈ a. An LTL model is an infinite trace w ∈ Σω; w(i)
denotes the element a ∈ Σ at position i in trace w; more formally, if w = aw′,195

then w(0) = a, and w(i) = w′(i− 1) if i > 0.
The semantics of a formula ϕ depends on the satisfaction relation w, i � ϕ

(w satisfies ϕ in i) defined as follows:

6

• w, i � p iff p ∈ w(i);

• w, i � ¬φ iff w, i 2 φ;200

• w, i � ϕ ∨ ψ iff w, i � ϕ or w, i � ψ;

• w, i � Xϕ iff w, i+ 1 � ϕ (next operator);

• w, i � ϕUψ iff ∃j ≥ 0 w, j � ψ and ∀0 ≤ k < j w, k � ϕ (until operator).

Finally, w � ϕ (w satisfies ϕ) holds iff w, 0 � ϕ holds.
We recall that the set of all models of LTL formulas is the language of205

star-free ω-regular languages over Σ [31].
In order to encode an LTL formula into an equivalent trace expression we ex-

ploit the result stating that an LTL formula can be translated into an equivalent
non deterministic Büchi automaton [32].

LTL Model Checking [33, 34]. Given a model M and an LTL formula ϕ: (1)210

all traces of M must satisfy ϕ, (2) if a trace of M does not satisfy ϕ we have
found a Counterexample.

We call ΣM the set of traces of M and Σϕ the set of traces that satisfy ϕ.
We check if ΣM ∩ Σ¬ϕ = Ø.

Büchi Automaton. A Büchi Automaton [35] is an automaton which accepts215

infinite traces.

Definition 1. A Büchi Automaton is a 4-tuple 〈S, I, δ, F 〉 where, S is a finite
set of states, I ⊆ S is a set of initial states, δ ⊆ S × S is a transition relation
and F ⊆ S is a set of accepting states.

An infinite sequence of states is accepted iff it contains (at least) one of the220

accepting states infinitely often.

Automata-Based Model Checking. Given a model M and an LTL formula ϕ:
(1) build the Büchi Automaton B¬ϕ; (2) compute product of M and B¬ϕ; (3)
the product accepts the traces of M that are also traces of B¬ϕ(ΣM ∩ Σ¬ϕ);
(4) if at least one sequence is accepted by the product, then we have found one225

counterexample.

3.1. Trace expressions

Trace expressions [13, 36] are a specification formalism expressly designed for
RV and inspired by initial work on monitoring of agent interactions in multiagent
systems [12, 37].230

Trace expressions are based on the basic notions of event and event type.

7

Events. In the following, we denote by E a fixed universe of events. A trace of
events over E is a possibly infinite sequence of events in E. In the rest of the
paper the meta-variables e, w, σ and u will range over the sets E, Eω, E∗, and
Eω ∪ E∗, respectively. A trace expression over E denotes a set of event traces
over E. As a possible example, if we consider an object-oriented scenario where
our events correspond to the invocation of methods, we might have

E = {o.m | o object identifier, m method name}

Event types. Defining trace expressions on top of the concept of events could
not be general enough. A way to make more flexible and general our trace
expressions is constructing them on top of event types (chosen from a set ET).
An event type can be represented as a predicate of arity k ≥ 1, where the first235

implicit argument corresponds to the event e under consideration. Considering
again the object-oriented scenario where the events are method invocations, we
may introduce the type safe(o) of all safe method invocations for a given object
o, defined by the predicate safe of arity 2 s.t. safe(e, o) holds iff e = o.isEmpty .

To make the definition of event types more compact we leave the first argu-240

ment of the predicate implicit, and we write e ∈ safe(o) to mean that safe(e, o)
holds.

In a similar way, we can specify the set of events denoted by the event type
ϑ as JϑK; for instance, Jsafe(o)K = {e | e ∈ safe(o)}.

To be more general, we do not specify the formalism used for defining event245

types; in practice, we do not expect that much expressive power is required.
From an implementation point of view, a word recognizer for trace expressions
exists and has been implemented in SWI-Prolog. The choice of SWI-Prolog has
brought to implement the concept of event types as very simple SWI-Prolog
predicates; in fact, they can be defined by plain facts (clauses without bodies).250

Trace expressions. Now that we have introduced the concept of events and event
types, we can present the formalism we are going to use in the rest of the work:
the trace expression formalism.

A trace expression τ denotes a set of possibly infinite event traces, and is
defined on top of the following operators:7255

• ε (empty trace), denoting the singleton set {ε} containing the empty event
trace ε.

• ϑ:τ (prefix), denoting the set of all traces whose first event e matches the
event type ϑ (e ∈ ϑ), and the remaining part is a trace of τ ..

• τ1·τ2 (concatenation), denoting the set of all traces obtained by concate-260

nating the traces of τ1 with those of τ2.

• τ1∧τ2 (intersection), denoting the intersection of the traces of τ1 and τ2.

7Binary operators associate from left, and are listed in decreasing order of precedence, that
is, the first operator has the highest precedence.

8

• τ1∨τ2 (union), denoting the union of the traces of τ1 and τ2.

• τ1|τ2 (shuffle), denoting the set obtained by shuffling the traces of τ1 with
the traces of τ2.265

• ϑ�τ (filter), it is a derived operator denoting the set of all traces contained
in τ , when deprived of all events that do not match ϑ.

Trace expressions are cyclic terms, thus they can support recursion without
introducing an explicit construct. These cyclic terms corresponds in particular
to trees where nodes are either the leaf ε, or the node (corresponding to the270

prefix operator) ϑ with one child, or the nodes ·, ∧, ∨, and | all having two
children. According to the standard definition of rational trees [38, 39], their
depth is allowed to be infinite, but the number of their subtrees must be finite.

As will be clear in the rest of the work, it is really important to understand
how and when a term is a subterm of another one. In particular, we give the275

intuition of subterm through the the concept of subtree. The notion of subtree
on infinite trees is intuitive but it is different from that on finite trees; in fact, it
is no longer an order relation (it is not antisymmetric). This concept will be used
in the following to indicate the presence of cycles inside our trace expressions.

Even though our trace expressions contain cycles, in the rest of the paper,280

we limit our investigation to contractive (a.k.a. guarded) trace expressions.

Definition 2. A trace expression τ is contractive if all its infinite paths contain
the prefix operator.

A contractive trace expression is a trace expression where all recursive subex-
pressions are always guarded by the prefix operator; for instance, the trace285

expression defined by T1 = (ε∨(ϑ:T1)) is contractive: its infinite path contains
infinite occurrences of ∨, but also of the : operator; conversely, the trace expres-
sion T2 = (ϑ:T2)|T2 is not contractive.

Trivially, every trace expression corresponding to a finite tree (that is, a non
cyclic term) is contractive. Trace expressions support recursion through cyclic290

terms expressed by finite sets of recursive syntactic equations.
For all contractive trace expressions, any path from their root must always

reach either a ε or a : node in a finite number of steps. Since in this paper all
definitions over trace expressions consider ϑ:τ as a base case, if we restrict our
trace expressions to be contractive, all our definitions and proofs can be done295

inductively (rather than coinductively). Also at the implementation level, trace
expressions becomes considerably simpler. For this reason, in the rest of the
paper we will only consider contractive trace expressions.

We can specify the semantics of trace expressions by the transition relation
δ ⊆ T× E× T, where T and E denote the set of trace expressions and of events,300

respectively. We write τ1
e→ τ2 to mean (τ1, e, τ2) ∈ δ. If we have the trace

expression τ1 that specifies the current valid state of the system, we say that an
event e is valid iff there exists a transition τ1

e→ τ2. In such a case, τ2 denotes
the next valid state of the system. Otherwise, the event e is not considered a

9

(prefix)

ϑ:τ
e→ τ

e∈ϑ (or-l)
τ1

e→ τ ′1

τ1∨τ2
e→ τ ′1

(or-r)
τ2

e→ τ ′2

τ1∨τ2
e→ τ ′2

(and)
τ1

e→ τ ′1 τ2
e→ τ ′2

τ1∧τ2
e→ τ ′1∧τ ′2

(shuffle-l)
τ1

e→ τ ′1

τ1|τ2
e→ τ ′1|τ2

(shuffle-r)
τ2

e→ τ ′2

τ1|τ2
e→ τ1|τ ′2

(cat-l)
τ1

e→ τ ′1

τ1·τ2
e→ τ ′1·τ2

(cat-r)
τ2

e→ τ ′2

τ1·τ2
e→ τ ′2

ε(τ1)

(cond-t)
τ

e→ τ ′

ϑ�τ e→ ϑ�τ ′
e∈ϑ (cond-f)

ϑ�τ e→ ϑ�τ
e 6∈ϑ

Figure 1: Operational semantics of trace expressions

(ε-empty)
ε(ε)

(ε-or-l)
ε(τ1)

ε(τ1∨τ2)
(ε-or-r)

ε(τ2)

ε(τ1∨τ2)
(ε-shuffle)

ε(τ1) ε(τ2)

ε(τ1|τ2)

(ε-cat)
ε(τ1) ε(τ2)

ε(τ1·τ2)
(ε-and)

ε(τ1) ε(τ2)

ε(τ1∧τ2)
(ε-cond)

ε(τ)

ε(ϑ�τ)

Figure 2: Empty trace containment

valid event in the current state denoted by τ1. Figure 1 defines the inductive305

rules for the transition function.
In Figure 1 we reported the rules for the transition relation δ that define

the non empty traces of a trace expression. While in Figure 2, we inductively
define the ε() predicate by its rules; through this predicate we specify trace
expressions that can contain the empty trace ε. If ε(τ) holds, then the empty310

trace is a valid trace for τ (in this way we can also recognize finite sequences of
events, definitely important in RV).

The set of traces JτK denoted by a trace expression τ is totally defined on
top of the transition relation δ, and the predicate ε(). Since JτK may contain
infinite traces, the definition of JτK is coinductive.315

Definition 3. For all possibly infinite event traces u and trace expressions τ ,
u ∈ JτK is coinductively defined as follows:

• either u = ε and ε(τ) holds,

• or u = e u′, and there exists τ ′ s.t. τ
e→ τ ′ and u′ ∈ Jτ ′K hold.

Deterministic trace expressions. There are trace expressions τ for which the320

problem of word recognition is less efficient because of non determinism. We
can have non determinism inside our trace expressions caused by the use of
the union, shuffle, and concatenation operators. These are the only operators
that can introduce non determinism because for each of them two possibly
overlapping transition rules are defined.325

10

In the rest of the paper we focus only on deterministic trace expressions:
in fact, the problem of word recognition is simpler and more efficient in the
deterministic case.

Deterministic trace expressions are defined as follows.

Definition 4. Let τ be a trace expression; τ is deterministic if for all finite330

event traces σ, if τ
σ→ τ ′ and τ

σ→ τ ′′ are valid, then Jτ ′K = Jτ ′′K.

Stack example. Always in the object-oriented scenario, besides the already in-
troduced event type safe(o) s.t. e ∈ safe(o) iff e = o.isEmpty , we define the
following other event types:

Jpop(o)K = {o.pop}, Jtop(o)K = {o.top}, Jpush(o)K = {o.push},335

Jstack(o)K = {o.pop, o.top, o.push, o.isEmpty},
Junsafe(o)K = {o.pop, o.top, o.push}.

Our purpose now is to specify through the Stack trace expression all and
only the safe traces of method invocations on a stack object o (initially empty).
Safety requires that methods top and pop can never be invoked on o when o340

represents the empty stack.
More in details, a trace of method invocations on a given object having

identity o is correct iff any finite prefix does not contain more pop(o) event
types than push(o), and the event type top(o) can appear only if the number
of pop(o) event types is strictly less than the number of push(o) event types345

occurring before top(o).
The Stack trace expression is deterministic and is defined as follows:

Stack = Any∧unsafe(o)�Unsafe
Any = ε∨stack(o):Any

Unsafe = ε∨(push(o):(Unsafe|(Tops · (pop(o):ε∨ε))))
Tops = ε∨top(o):Tops

A correct stack trace can be specified by Stack where we have the intersec-
tion of Any and unsafe(o)�Unsafe; Any specifies any possible trace of method
invocations on stack objects, whereas if an event has type unsafe(o), then it has
to verify the trace expression Unsafe, which requires that a push event must350

precede a possibly empty trace of top events, which, in turn, must precede an
optional event pop; the expression is shuffled with itself, since any push event
can be safely shuffled with a top or a pop event.

3.2. Trace expressions vs LTL3

Before going into the details of the original contents of the paper, we need to355

briefly summarize the relation between LTL3 and the trace expression formalism.
LTL3 is the three-valued semantics of LTL that has been proposed in [40]

to be used for RV purposes. With LTL3 we can focus on finite traces because a
third truth value “?” is introduced to specify that after a finite trace of events
has occurred, the outcome of a monitor can be inconclusive. That is a big360

11

difference with respect to LTL, where all the traces of events are supposed to
be always infinite.

Trace expressions semantics implicitly models the RV limitation to finite
traces of events. Thus, when we are interested in comparing the trace expression
formalism with LTL, we have to consider the three-valued semantics (so they365

are both applied to a RV scenario).
In [13] the authors demonstrated that when the three-valued semantics is

considered, then trace expressions are strictly more expressive than LTL. In the
following we report the summary of the demonstration.

The intuition is based on the fact that all LTL formulas ϕ, can be represented370

as a Finite State Machine (FSM), which is a Deterministic Finite Automaton
(DFA). Meaning that, the behavior of the resulting FSM respects the LTL3

semantics of ϕ.
The sequence of steps required to generate from an LTL formula ϕ an FSM

that respects the LTL3 semantics of ϕ [40] is summarized in Figure 3.375

Input (1)Formula (2)NBA (3)Emptiness per state (4)NFA (5)DFA (6)FSM

ϕ // Aϕ // Fϕ // Âϕ // Ãϕ

((
ϕ

66

((
Mϕ

¬ϕ // A¬ϕ // F¬ϕ // Â¬ϕ // Ã¬ϕ

66

Figure 3: Steps required to generate a FSM from an LTL formula ϕ, where NBA is the acronym
for Nondeterministic Büchi Automaton and NFA for Nondeterministic Finite Automaton.

To translate an LTL formula ϕ into a trace expression τ s.t. the three-
valued semantics is preserved, we exploit the result presented in [40]. First, ϕ is
translated into an equivalent FSM Mϕ, then Mϕ is translated into an equivalent
contractive and deterministic trace expression τϕ.

The latter translation is defined as follows:380

• if the initial state returns >, then ϕ is a tautology, and the corresponding
trace expression is the constant 1;

• if the initial state returns ⊥, then ϕ is a unsatisfiable, and the correspond-
ing trace expression is the constant 0;

• if the initial state returns ?, then the corresponding trace expression is385

defined by a finite set of equations X1 = τ1, . . . , Xn = τn, where n is the
number of states in Mϕ that return ?. The expressions τi are defined as
follows: let k be the number of states q1, . . . , qk that do not return ⊥ for
which there exists an incoming edge, labeled with the element ai ∈ 2AP ,
from the node associated with Xi; we know that k > 0, because the node390

associated with Xi returns ?. Then τi = a1:f(q1)∨ . . .∨ak:f(qk), where
f(q) is defined as follows: if q returns >, then f(q) = 1, otherwise (that

12

is, q returns ?), f(q) = Xq (that is, the variable uniquely associated with
q is returned).

In [13] it is also presented the theorem supporting the correctness of this395

translation.

4. Trace expressions Model Checking

In this section, we present the model checking process used to check if an
LTL property is satisfied by a trace expression.

Given a trace expression τ , we want to verify if an LTL property ϕ is satisfied400

by all the traces recognized by τ . To achieve this, we can follow this 3-steps
algorithm:

1. Rewrite τ obtaining its abstraction τ ′ (over-approximation). Following the
definition of JτK (Definition 3), given as the set of traces denoted by the
trace expression τ , we have that Jτ ′K ⊇ JτK.405

2. Translate τ ′ into an equivalent Büchi Automaton Bτ ′ .

3. Compute the product of Bτ ′ and B¬ϕ. If the product accepts some traces,
τ does not satisfy ϕ and a trace representing the counterexample is raised.

4.1. 1st step: Rewriting

The first step is the most important one, in fact, it consists in translating a410

given trace expression to a trace expression representing its over-approximation.
This phase is necessary because, in general, it is not always possible to translate
a trace expression into an equivalent Büchi Automaton; this is due to expres-
siveness differences. We assume the reader to be familiar with the theory of
formal languages and of ω-regular languages, see for example [41, 42, 43]. A415

Büchi Automaton recognizes ω-regular languages while trace expressions can
represent more expressive languages ([13] for more details) that can be also ω-
context-free and ω-context-sensitive. Consequently, we have to manage all trace
expressions which are too expressive (through abstraction).

Non-expansive trace expressions. As analyzed by Ancona et al. in [13], trace420

expressions are a formalism more expressive than LTL when used for RV pur-
poses. In particular, trace expressions are able to recognize also context-free and
context-sensitive languages (and the corresponding ω version). This expressiv-
ity is due to the presence of expansive terms which allow trace expressions, for
instance, to count events (necessary for recognizing context-free languages, such425

as anbn).

Definition 5. A concatenation τ = τ1·τ2 is expansive if τ is a subtree of τ1.

Example 1. An example of an expansive concatenation term is:
Jϑ1K = {e1} Jϑ2K = {e2}
τ = τ1·τ2 τ1 = (ϑ1:τ)∨ε τ2 = ϑ2:ε430

τ
e1→ (τ1·τ2)·τ2

e1→ ((τ1·τ2)·τ2)·τ2
e1→ (((τ1·τ2)·τ2)·τ2)·τ2

e1→ ...

13

Definition 6. A shuffle τ = τ1|τ2 is expansive if τ is a subtree of τ1 or τ2.

Example 2. An example of an expansive shuffle term is:
Jϑ1K = {e1} Jϑ2K = {e2}
τ = τ1|τ2 τ1 = ϑ1:ε τ2 = ϑ2:τ435

τ
e2→ τ1|(τ1|τ2)

e2→ τ1|(τ1|(τ1|τ2))
e2→ τ1|(τ1|(τ1|(τ1|τ2)))

e2→ ...

Non-expansive trace expressions are defined as follows.

Definition 7. Let τ be a trace expression; τ is non-expansive if it does not
contain neither expansive concatenations nor expansive shuffles terms.

Below we report the pseudocode of a recursive implementation of the rewrite440

function (Algorithm 1). This algorithm takes three arguments, that are: the
trace expression we want to over-approximate, a map of dangerous trace expres-
sions (dangerous), a set of already seen trace expressions (safe ∪ dangerous),
and it returns the over-approximation of the trace expression.

The most interesting part of the algorithm concerns the expansive terms445

recognition. As we have already seen before, an expansive term is a term con-
taining or a concatenation (τ1 · τ2) having a cycle in the head, or a shuffle (τ1 |
τ2) containing a cycle in its left or right branch (expansive concatenations/shuf-
fles). In order to recognize them, we have to remember the trace expressions
we have already visited during the exploration of the trace expression’s subtrees450

differentiating between safe and dangerous cycles. To achieve this, we maintain
in memory the history of all visited states {safe ∪ dangerous} and the history
of the dangerous states. In this way, we can detect if a cycle is expansive, or
not, simply searching inside the dangerous map, which must be updated each
time we find a new concatenation (or shuffle) operator.455

More precisely, the dangerous map can be represented as a set of tuples
(TExp, Danger) that the algorithm uses to keep track of possibly expansive
cycles; where, Danger ∈ {maybe, true}, meaning that, if (t, true) ∈ danger-
ous, t is an expansive term and we have to rewrite it, while, if (t, maybe) ∈
dangerous, we have already seen t in the analysis of TExp and it could be an460

expansive term because it contains a concatenation or a shuffle subtree. Con-
cluding, if both (t, true) and (t, maybe) /∈ dangerous, it means that t is not
considered, for now, a dangerous term, because we do not have encounter any
concatenation or shuffle subtree inside it.

Before going into the details of the algorithm implementation, it could be465

useful showing what we obtain when we apply it to a simplified version of the
stack example.

Example 3. Considering a stack object, we define the set of correct traces, hav-
ing only the methods push and pop.

470

JϑpushK = {o.push} JϑpopK = {o.pop}

τ = τpush · τpop

14

τpush = ϑpush : (τ ∨ ε)
τpop = ϑpop : ε475

rewrite(τ, {}, {}) → τ ′

τ ′ = τ ′push · τ ′pop

τ ′push = (ϑpush : ε) · (τ ′push ∨ ε)
τ ′pop = (ϑpop : ε) · (τ ′pop ∨ ε)480

Before going on with the presentation of the rewrite algorithm’s pseudocode,
we can spend some words on this example. Starting from our trace expression
τ , we want to obtain a trace expression τ ′, such that JτK ⊆ Jτ ′K (τ ′ is an over-
approximation of τ). We can easily note that simply deriving the two languages
defined by τ and τ ′

JτK = {o.pushno.popn|n ∈ N+} ∪ {o.pushω}

Jτ ′K = {o.pushno.popm|n ∈ N+,m ∈ N} ∪ {o.pushω} ∪ {o.pushno.popω|n ∈ N+}

and, since {o.pushno.popn|n ∈ N+} ⊆ {o.pushno.popm|n ∈ N+,m ∈ N}, we
conclude that JτK ⊆ Jτ ′K. Intuitively, we have just passed from a context-free
language to a regular language. With τ we defined that a trace of events con-
taining o.push and o.pop was a correct trace iff the number of o.push was equal
to the number of o.pop (with also the possibility of having an infinite number of485

o.push8). With τ ′ we want to reduce instead the expressivity relaxing our con-
straints. In this specific case, since we are counting and constraining the number
of events (making the recognized language at least context-free), when we relax
the constraints reducing the expressivity we can simply stop counting the events.
Practically speaking, we can just stop forcing o.push and o.pop to have the same490

cardinality. Removing this constraint it is easy to note that the language we
are recognizing now is not context-free anymore, but it is regular. We will show
in the the rest of the paper that these kinds of over-approximations allow us to
have a more suitable representation of our specifications, in particular, when we
are interested in verifying them statically.495

In Algorithm 1 we reported the pseudocode of the rewrite function. In the
following we describe step by step all the cases handled by the algorithm.

The first case (line 1) tackled is when the trace expression texp is the empty
trace ε. This is the simplest case because we do not have to rewrite anything
and we just return the empty trace ε.500

The second case (line 3) handles the presence of dangerous cycles. If texp
belongs already to the dangerous set9, it means that texp is a cyclic term (since
it is in dangerous we have already seen it), and it is a subtree of the head of
a concatenation term or of a shuffle term. Consequently, texp is an expansive

8Until we see the first o.pop a monitor can not say if the trace is good o not and consequently
we accept also the infinite trace of o.push.

9We do not care if it is maybe or true, because now force it to be true.

15

Algorithm 1 Rewrite function’s pseudocode
function TExp rewrite(texp, dangerous, already seen){
1: if texp = ε then
2: return ε
3: else if (texp,) ∈ dangerous then
4: remove (texp, maybe) from dangerous
5: /*texp already visited, we are in a dangerous term*/

add (texp, true) to dangerous
6: return ε
7: else if texp ∈ already seen then
8: return rewritten(texp, already seen) /*texp visited, we are not in dangerous term*/
9: else if texp matches head · tail then

10: /*update the set of texps already visited*/
already seen1 = (already seen ∪ {texp})

11:
/*example: {(s1, true), (s2, maybe)} ∪ {s1, s2, s3} =
{(s1, true), (s2, maybe), (s3, maybe)}*/
dangerous head = dangerous ∪ already seen1

12: /*rewrite the head subterm*/
new head = rewrite(head, dangerous head, already seen1)

13: if {t | t ∈ already seen1 and (t, true) ∈ dangerous head} 6= Ø then
14: /*the concatenation is expansive, thus rewrite the tail subterm*/

dangerous tail = dangerous ∪ already seen1
15: new tail = rewrite(tail, dangerous tail, already seen1)
16: /*create new head and new tail*/

T1 = new head · (T1 ∨ ε)
17: T2 = new tail · (T2 ∨ ε)
18: return T1 · T2

19: else
20: remove already seen1 from dangerous
21: new tail = rewrite(tail, dangerous, already seen1)
22: return new head · new tail /*there are no cycles*/
23: else if texp matches left | right then
24: already seen1 = (already seen ∪ {texp})
25: dangerous left = (dangerous ∪ already seen1)
26: dangerous right = (dangerous ∪ already seen1)
27: /*dangerous variables refer to different objects*/

new left = rewrite(left, dangerous left, already seen1)
28: new right = rewrite(right, dangerous right, already seen1)
29: dangerous = dangerous left ∪ dangerous right
30: t = {t’ | t′ ∈ already seen1 and (t’, true) ∈ dangerous}
31: if t 6= Ø then
32: T1 = new left · T1

33: T2 = new right · T2

34: return T1 | T2

35: else
36: return new left | new right
37: else if texp matches left ∨ right then
38: /*(the same for ∧)*/

already seen1 = copy(already seen ∪ {texp})
39: new left = rewrite(left, dangerous, already seen1)
40: new right = rewrite(right, dangerous, already seen1)
41: return new left ∨ new right /*(the same for ∧)*/
42: else if texp matches prefix : body then
43: /*(the same for �)*/

already seen1 = copy(already seen ∪ {texp})
44: new body = rewrite(body, dangerous, already seen1)
45: return prefix : new body /*(the same for �)*/

}

16

term and we have to update the dangerous set (now we know it is true). After505

that, we return ε (why ε will be clear in the fourth and fifth cases).
The third case (line 7) considers the safe cycles. We are not inside the

head of a concatenation nor a shuffle, otherwise texp would have been inside
the dangerous set (second case). Consequently, if texp belongs to the set of
the already seen trace expressions, it means that we have found a cycle that510

is not dangerous. We can not return directly texp, because texp is the old
version that can be expansive. Instead, we want to return the new rewritten
version of texp. In all the cases of the algorithm, each time we update the set
of already seen trace expressions, we also implicitly add the rewritten version
of the trace expression10. In this way, when we encounter a safe cycle we can515

just return the term that will contain the non-expansive rewritten version of
texp. We can achieve this using a function called rewritten that, given a trace
expression and a set of already seen trace expressions, returns the rewritten
version.

The fourth case (line 9) is one of the complex cases. Here we handle the520

concatenation terms. The first thing we have to do is to update the set of
already seen trace expressions adding texp (the current one). After that, dif-
ferently from the other simple cases, we have to update also the dangerous set,
merging it with the set of already seen states. Since now we are approaching to
analyze the head of the concatenation, all the terms we have already encounter525

can cause an expansion of our term, because texp is a subtree of each one of
them. First of all, we need to analyze the head of the concatenation, if we find
a cycle, we handle it as a bad one (second case) and not as a good one (first
case). This is totally derived from the definition of expansive concatenation
(Definition 5). If we find a dangerous cycle inside the head (the if statement at530

line 13), we have to rewrite first the tail, and after that, we can construct the
new trace expression corresponding to the over-approximation of our expansive
concatenation. We can obtain that concatenating the new head with the new
tail (line 18). Naturally, we have also the good scenario where our concatenation
is not expansive, and this can be derived from the absence of dangerous cycles535

inside the head of the concatenation. In this scenario, we do not change the
structure of the concatenation and we limit to concatenate the rewritten head
with the rewritten tail. Even though the concatenation is not expansive, there
might be expansive terms inside the head or the tail that have been rewritten
from the rewrite function (expansive terms not influencing our concatenation540

because we have checked it at line 13). Before going on with the fifth case, it is
time to motivate why at the second step we returned ε. In order to understand
this, it is enough to see what we do with the rewritten head returned by the
function and saved into the variable new head. We create a new term (line 16)
concatenating new head with itself. If we think about the original head of the545

10Even though it is not ready, we can add a reference to the term that will be unified with
it (in SWI-Prolog, on which the algorithm is actually implemented, we can easily obtain this
using free variables).

17

concatenation, where now we have an ε, before we had a cycle that made the
concatenation expansive. This cycle allowed the concatenation to accumulate
a new tail and restart consuming a new head (and so on). If we remove this
cycle, we have to simulate the same behavior without the accumulation of the
tail. To do so, we can substitute the cycle with a ε and combine the new head550

so generated with itself. In this way we obtain a cycle on the content of the
head, as we were doing before but without the accumulation of the tail. To
simulate this accumulation we can just do the same thing for the tail, we con-
catenate the new tail with itself and we conclude concatenating the two terms
so generated (line 18). In this way, before we could consume n time the head555

concatenating with the expansion of the term n times the tail, now, we simply
consume a certain number of times n the head without accumulating and, after
that, we consume a certain number of times m the tail (where n and m might
be different).

The fifth case (line 23) is the other complex case and it is very similar to the560

fourth one. Here we handle the shuffle terms. Also in this case, we first update
the set of already seen terms and then we update the dangerous set considering
all the super terms of the shuffle (the terms that have texp as subtree). After
that, we check if we have found a bad cycle inside the left or the right operand,
and if so, we rewrite the shuffle using the two new rewritten versions obtained565

from the two function calls. As it was for the concatenation term, also here
we might have found a good shuffle term; consequently, we just construct the
new trace expression combining the two rewritten operand terms (left and right)
with the shuffle operator. This is totally derived from the definition of expansive
shuffle (Definition 6).570

In both the fourth and fifth cases, we expect that, if the subtrees of texp are
not dangerous and do not contain any other expansive terms, texp is rewritten
into itself.

The sixth case (line 37) handles the union terms (equivalently also the inter-
section terms). If texp is an union term, we simply apply the rewrite function575

to its operands and we combine the results so obtained using the union opera-
tor. Since the union operator does not introduce expansivity per se, we do not
have to update the dangerous set (only concatenations and shuffles introduce
expansivity, Definition 5 and 6).

The seventh case (line 42) handles the prefix terms (equivalently also the580

filter terms). If texp is a filter term, we simply apply the rewrite function to the
remaining of the trace expression. The result will be combined again with the
prefix operator, and then returned.

Removing the expansive subtrees (subterms) from our trace expression, we
obtain a spurious solution, namely a solution representing a bigger set of traces;585

this is entirely due to the fact that only using expansive terms, as cyclic con-
catenations and shuffles, trace expressions are able to recognize languages more
expressive than regular. But, having a less expressive trace expression (the over-
approximation) we can translate it to an equivalent Büchi Automaton (second
step of the algorithm).590

Before going on with the presentation of the second step that presents how

18

to translate the rewritten trace expression to its equivalent Büchi Automaton,
we have to spend more words on the correctness of the rewrite algorithm. In
particular, we have to show that the trace expression returned by it is actually
an over-approximation. In order to show this, we have to think about what we595

are trying to do with the rewrite function, that is to remove all the expansive
subtrees from our trace expression. Consequently, we can show the correctness
of our approach through two steps:

1. First of all, we have to show that given a trace expression τ , the rewrite al-
gorithm removes all expansive subtrees from it returning the corresponding600

trace expression τ ′, after that,

2. we have to show that such trace expression τ ′ is an over-approximation of
τ , meaning that JτK ⊆ Jτ ′K.

In order to prove the rewrite algorithm removes all the expansive subtrees
we have to recall briefly which kind of expansive subtrees we can have, that605

are expansive concatenations (Definition 5) and expansive shuffles (Definition
6). But, what actually makes a concatenation expansive? As we have already
seen previously, a concatenation is expansive if the entire concatenation is a
subtree of its head. For instance, τ = (ϑpush :(τ∨ε))·(ϑpop :ε) is an expansive
concatenation because τ is inside the head. In the same way, we can recall610

when a shuffle is expansive, namely when the entire shuffle is inside the left or
the right operand. For instance, τ = (ϑpush :τ)|(ϑpop :ε) is an expansive shuffle
because τ is inside the left operand (left subtree of the shuffle).

Now we show that, starting from an expansive concatenation, the rewrite
algorithm removes all the expansive subtrees (the reasoning about the shuffle615

is almost the same). Recalling the algorithm’s pseudocode presented in Algo-
rithm 1, when τ is a concatenation we fall in the fourth case (line 9). The
first thing that the algorithm does is updating the set of already seen terms,
since now we are analyzing τ , we will add τ to it. After that, since we are in
a concatenation, we also update the dangerous set adding τ with value maybe620

(we do not know if it is really dangerous or not yet). Now we can call recur-
sively the rewrite function on the head of the concatenation, passing the new
updated sets. If the concatenation is expansive, that means we will encounter
it again during the evaluation of the head. Since before going into the head
we updated the dangerous set, if we encounter the concatenation during the625

evaluation of the head, we fall into the second step (line 3), because τ belongs
to the dangerous set (with value maybe). At this point we know that we are
analyzing an expansive subtree for sure. Thus, we can stop analysing it and
we can just return back ε. The new head is obtained simply concatenating the
head returned by the recursive call of the rewrite function, with itself (line 16).630

The new tail is also obtained in the same way (line 17). Consequently, the new
concatenation is just the concatenation of the new head with the new tail (line
18). As already anticipated when we commented the pseudocode presented in
Algorithm 1, combining the new head with the new tail we are simulating the
previous behavior without counting the events. The rest of the term structure635

is unchanged. Considering again the example sketched before, we do not count

19

o.push and o.pop anymore, but we preserve their order. For instance, it will
never happen that o.push is observed after o.pop (and so on).

For the expansive shuffle terms is almost the same. We update the dangerous
set, we evaluate the left and right operands and once the rewritten versions are640

returned, we simply concatenate the left operand with itself (the same for the
right operand) and we construct the result as the shuffle of the two terms so
constructed.

Now that we have shown informally that given a trace expression τ the
rewrite function remove the expansive cycles returning the rewritten version τ ′;645

we have to show that τ ′ is an over-approximation of τ .
If τ is an expansive trace expression, it means that contains expansive con-

catenations or expansive shuffles inside. When the rewrite function finds an
expansive concatenation, it rewrites it simulating its behavior without the ac-
cumulation of the tail. As we have shown before, we obtain in this way a new650

non-expansive concatenation where the number of events generated consuming
the head is independent from the number of events generated consuming the
tail. But if it is so, it means that the new concatenation generates a bigger
set of events, namely JτK ⊆ Jτ ′K. Thus, we can conclude that τ ′ is an over-
approximation of τ (a similar reasoning can be done also for expansive shuffle655

terms).
Now that we have finished to present the first step of the algorithm and we

have obtained the over-approximation of our trace expression, we can show how
we can translate such trace expression into an equivalent Büchi Automaton.

4.2. 2nd step: Translation660

The second step consists in the translation of the trace expression, which was
previously rewritten, in an equivalent Büchi Automaton recognizing the same
language (set of traces).

Since this trace expression does not contain expansive terms (we removed
them in the first step), we can translate it directly simulating the δ transition665

relation.
Given a non-expansive trace expression τ :

1. create a Büchi Automaton Bτ with an initial state T0 associated to τ .

2. create a queue of couples Q containing the couple (τ , T0).

3. extract the first couple (τi, Ti) from Q, knowing that the set of events670

which belong to an event types is finite, for each event e s.t τi
e→ τ ′i :

• if τ ′i = ε, considering ψ a special event which does not belong to our

set of possible events, we create a new state Tψ and we add Ti
ψ→Tψ,

Tψ
ψ→Tψ and we make Ti final (if Tψ already exists, we add only the

edge from Ti to it).675

• otherwise if τ ′i has already been seen before, we retrieve the corre-

sponding automaton’s state Tr and we add Ti
e→Tr and we make Tr

final.

20

• otherwise, we create a new state T’i associated to τ ′i and we add

Ti
e→T′i.680

4. if Q is not empty, we restart from the point 3.

At the end of this process we obtain the Büchi Automaton Bτ equivalent to
τ (see Theorem 1).

The ψ special event is used to make acceptable by the Büchi Automaton
also the finite traces. In this way, if τ recognizes the finite trace σ = abcd,685

the corresponding Büchi Automaton will recognize the trace u = abcdψω. It
is important that the ψ event must not belong to the set of handled events in
order to avoid False Negative results, where the ψ could make an LTL property
erroneously satisfied by u.

Example 4. Considering the same τ ′ obtained at the end of Example 3, we690

create the following Büchi Automaton Bτ ′ :

T0start

T1T3 T2

o.p
u

sho.push
o.pop

o.push

o.pop

Figure 4: Büchi Automaton Bτ ′

In Example 4, the trace expression τ ′ and the corresponding Büchi Automa-
ton represent a superset of the traces recognized by the initial trace expression
τ . In particular, we lose the ability to bind the number of o.push with the
number of o.pop events. In fact, we can only represent traces where we have695

a number npush of o.push before a number npop of o.pop, with npush 6= npop

possibly. Thus, we have conserved only the causality between o.push and o.pop.

Lemma 1. Given a trace expression τ , if τ is non-expansive then the set of
trace expressions that can be obtained starting from τ in an arbitrary number of
steps is finite.700

Proof. If τ is non-expansive we do not fall back in the cases like that showed
in Example 1 and Example 2 where we have a trace expression generating an
infinite set of new states (through term expansion). Removing all the expan-
sive concatenations and shuffles, we have trace expressions that in an arbitrary
number of steps become ε (we can terminate because we have no more steps to705

do) or become a trace expression already seen (we can terminate because we
have already visited this trace expression). This is easy to note considering the
operational semantics of trace expressions (see Section 3.1).

21

Theorem 1. Let τ be a non-expansive trace expression, the Büchi Automaton
Bτ obtained simulating the δ transition relation is equivalent to τ and it is always710

computable (Lemma 1), thus

∀u infinite trace.u ∈ Jτ ′K ⇐⇒ Bτ ′ accepts u
∀σ finite trace.σ ∈ Jτ ′K ⇐⇒ Bτ ′ accepts σ·ψω.

Proof. It follows directly from the Büchi Automaton Bτ ′ construction.

4.3. 3rd step: Product715

The last step consists in the real model checking phase.
In the previous steps, starting from a trace expression τ representing our

model we generated its over-approximation τ ′ to have a model expressive as a
Büchi Automaton (1st step), after that we translated τ ′ to its corresponding
Büchi Automaton representation Bτ ′ (2nd step). The only step left to complete720

is check if an LTL property ϕ is satisfied by the model Bτ ′ , or not.
As we presented in Section 3, we can follow an Automata-Based Model Check-

ing approach computing the product Bτ ′×¬ϕ between Bτ ′ and B¬ϕ. Once
Bτ ′×¬ϕ is created, we can test its emptiness, and if it is not we have found
a counterexample and we can conclude that τ ′ does not satisfy ϕ.725

To fill the gap we have to remind that τ and τ ′ are related.

Observation 1. JτK ⊆ Jτ ′K, τ ′ over-approximation of τ .

Since τ ′ is an over-approximation of τ and Bτ ′ is its automata representation,
if we do not find any traces (counterexample) which belongs to Bτ ′×¬ϕ, we can
deduce:730

(from Theorem 1)
@u∈Bτ′ .u satisfies ¬ϕ ⇐⇒ @u∈Jτ ′K.u satisfies ¬ϕ

(from Observation 1)
@u∈Jτ ′K.u satisfies ¬ϕ =⇒ @u∈JτK.u satisfies ¬ϕ

In this way, we can conclude that, if the over-approximation τ ′ satisfies ϕ735

(no counterexample has been found) then also τ satisfies ϕ. From Observation
1 we can deduce the implication for only one direction (=⇒) because, since we
are over-approximating our model, there could exist a counterexample trace u
which does not satisfy ϕ s.t u ∈ Jτ ′K but u /∈ JτK (False Positive).

One of the main advantages of following a standardized approach as the740

Automata-Based Model Checking is that, once we have obtained the Büchi Au-
tomaton Bτ ′×¬ϕ, we can represent it directly using an existent and well-know
programming language as PROMELA inside the popular open-source software
verification tool SPIN11.

11http://spinroot.com/spin/

22

http://spinroot.com/spin/

5. Experiments745

In the following we continue to use the stack example used in the rest of the
paper. We show an experiment of use of our SWI-Prolog implementation of the
3-steps algorithm presented in Section 4.

Inside the SWI-Prolog environment, starting from our trace expression T

representing our very simple stack, we first rewrite T into the corresponding750

non-expansive abstraction Tr (1st Step) using the corresponding rewrite pred-
icate, then we translate Tr into the equivalent Büchi Automaton Buchi (2nd
Step) using the corresponding translate predicate, finally we create a promela
file stack.pml containing the Buchi representation and the LTL property that
we want to check (for instance, eventually pop (<>(pop))).755

?- T = ((push:(T\/epsilon))*(pop:epsilon)),

rewrite(T, Tr), translate(Tr, Buchi),

write_promela_file(stack, Buchi, ‘(<>(pop))’).
760

The previous SWI-Prolog implementation corresponds to the first two steps
of our 3-steps algorithm (Section 4.1 and 4.2). This execution brings to the
creation of the stack.pml file.

In the following we report the stack.pml content so obtained.
765

bool epsilon = 0;

bool pop = 0;

bool push = 0;

active proctype stack() {770

S0_init:

if

:: skip -> d_step { push=1; epsilon=0; pop=0 } goto accept_S1

fi

accept_S1:775

if

:: skip -> d_step { push=1; epsilon=0; pop=0 } goto S2

fi

S2:

if780

:: skip -> d_step { pop=1; epsilon=0; push=0 } goto accept_S3

:: skip -> d_step { push=1; epsilon=0; pop=0 } goto accept_S1

fi

accept_S3:

if785

:: skip -> d_step { epsilon=1; pop=0; push=0 } goto accept_Seps

:: skip -> d_step { pop=1; epsilon=0; push=0 } goto accept_S3

fi

23

accept_Seps:

if790

:: skip -> d_step { epsilon=1; pop=0; push=0 } goto accept_Seps

fi

}

ltl { (<>(pop)) }795

This file is the promela code corresponding to the Büchi Automaton pre-
sented in Figure 4.

The states in promela correspond to the Büchi Automaton states; for in-
stance, S0_init corresponds to T0 in Figure 4 (and similarly for all the other800

states involved). Also the Büchi Automaton transitions are translated into the
promela code, in particular using the d_step construct. For instance, the o.push
transition from T0 to T1 is translated into d_step{push=1;epsilon=0;pop=0}

from S0_init to accept_S1. In Figure 4, T1 was an accepting state and so it
is in promela. The accept_* pattern is the one used in promela to represent805

accepting states.
Finally, having the Büchi Automaton representation of our trace expression

resulting from the 2nd Step, we can do the product between Buchi and the LTL
property (Section 4.3) directly inside the SPIN model checker (3rd Step).

First of all, using the stack.pml file, we generate a verifier (model checker)810

for the specification.
In the shell we write:

-$ spin -a stack.pml

The output generated is a C file, named pan.c, that can be compiled to produce815

an executable verifier.
In the shell we compile the pan.c file obtaining the executable corresponding

to our verifier.

-$ gcc pan.c -o stack_verifier820

Then, we can run the verifier. Since the LTL property that we want to check
is a liveness property, we have to add the -a flag in order to find acceptance
cycles (violations are infinite executions).

-$./stack_verifier -a825

pan:1: acceptance cycle (at depth 4)

...

State-vector 28 byte, depth reached 12, errors: 1

24

8 states, stored (10 visited)

0 states, matched830

10 transitions (= visited+matched)

0 atomic steps

...

As we can see, the verifier finds an acceptance cycle (that is a violation of
the LTL property). Using the -r flag we can read and execute the trail file835

(generated in the previous step) containing the counterexample trace.

-$./stack_verifier -r

MSC: ~G 4

1: proc 0 (ltl_0) stack.pml:4 (state 3) [(!((pop)))]840

2: proc 1 (stack) stack.pml:8 (state 7) [(1)]

3: proc 0 (ltl_0) stack.pml:4 (state 3) [(!((pop)))]

4: proc 1 (stack) stack.pml:8 (state 5) [D_STEP8]

<<<<<START OF CYCLE>>>>>

5: proc 0 (ltl_0) stack.pml:4 (state 3) [(!((pop)))]845

6: proc 1 (stack) stack.pml:12 (state 15) [(1)]

7: proc 0 (ltl_0) stack.pml:4 (state 3) [(!((pop)))]

8: proc 1 (stack) stack.pml:12 (state 13) [D_STEP12]

9: proc 0 (ltl_0) stack.pml:4 (state 3) [(!((pop)))]

10: proc 1 (stack) stack.pml:16 (state 29) [(1)]850

11: proc 0 (ltl_0) stack.pml:4 (state 3) [(!((pop)))]

12: proc 1 (stack) stack.pml:17 (state 27) [D_STEP17]

spin: trail ends after 12 steps

#processes 2:

12: proc 0 (ltl_0) stack.pml:4 (state 3) (invalid end state)855

(!((pop)))

12: proc 1 (stack) stack.pml:12 (state 15) (invalid end state)

(1)

global vars:

bit pop: 0860

local vars proc 1 (stack):

This cycle corresponds to the infinite trace containing only the push event.
Consequently, it is not true that our specification recognizes only traces where
<>(pop) is satisfied. In fact, o.pushω ∈ JτK (that is exactly the trace causing
the generation of the trail file reported above).865

We can try to check another LTL property. This time a safety property,
for instance, globally push ([](push)). As before, we execute the predicates
corresponding to the two first steps of the algorithm directly inside SWI-Prolog
(passing the new LTL property as argument). After that we can compile the870

25

new pan.c file generated with the -DSAFETY flag. Since the LTL formula is a
safety property we need to search for assertion violations (violations are finite
executions).

Finally we can run the model checker obtaining the following result.
875

-$./stack_verifier

pan:1: assertion violated !(!((push))) (at depth 12)

...

State-vector 20 byte, depth reached 12, errors: 1

7 states, stored880

0 states, matched

7 transitions (= stored+matched)

0 atomic steps

...

Also here, we find a counterexample that violates our LTL property. This885

time, since we are verifying a safety property, we search for a state violating an
assertion.

As we did for the previous experiment, also here we can see the trail file
generated by the model checker.

890

-$./stack_verifier -r

MSC: ~G 3

1: proc 0 (ltl_0) stack.pml:3 (state 6) [(1)]

2: proc 1 (stack) stack.pml:8 (state 7) [(1)]

3: proc 0 (ltl_0) stack.pml:3 (state 6) [(1)]895

4: proc 1 (stack) stack.pml:8 (state 5) [D_STEP8]

5: proc 0 (ltl_0) stack.pml:3 (state 6) [(1)]

6: proc 1 (stack) stack.pml:12 (state 15) [(1)]

7: proc 0 (ltl_0) stack.pml:3 (state 6) [(1)]

8: proc 1 (stack) stack.pml:12 (state 13) [D_STEP12]900

9: proc 0 (ltl_0) stack.pml:3 (state 6) [(1)]

10: proc 1 (stack) stack.pml:16 (state 29) [(1)]

11: proc 0 (ltl_0) stack.pml:3 (state 6) [(1)]

12: proc 1 (stack) stack.pml:16 (state 21) [D_STEP16]

pan:1: assertion violated !(!((push))) (at depth 13)905

spin: trail ends after 13 steps

#processes 2:

13: proc 0 (ltl_0) stack.pml:3 (state 6) (invalid end state)

(!((push)))

(1)910

13: proc 1 (stack) stack.pml:21 (state 43) (invalid end state)

(1)

(1)

26

global vars:

bit push: 0915

local vars proc 1 (stack):

Differently from the previous experiment, we do not search for cycles, be-
cause we are verifying a safety property, but we search for assertion violations.
As we can see in the trail file generated, we find a violation after 13 steps,
when our property is violated since push is not satisfied anymore (for instance,920

{o.push o.push o.pop o.pop} ∈ JτK and {o.push o.push o.pop o.pop} does not
satisfy [](push)).

6. Related Work

In [44], Bodden et al. define a formalism which allows to build expressive
formulae over temporal traces in an intuitive way as well as a complete im-925

plementation of that formalism, which instruments any given Java application
in bytecode form with appropriate runtime checks. That approach is similar
to ours, in fact, both pass through the automata theory to generate monitors
for finite prefixes. In [44], the LTL over pointcuts version of the formalism is
transformed into monitors (Deterministic Büchi Automata) that are rewritten930

as advice in in AspectJ12, as in [13] where the trace expression formalism is
transformed into the corresponding automata representing the LTL313 monitor.

Session types are used to verify object-oriented languages in [46], where
the authors extend their work on session types for distributed object-oriented
languages in three ways:935

1. they attach a session type to a class definition, to specify the possible
sequences of method calls;

2. they allow a session type (protocol) implementation to be modularized, i.e.
partitioned into separately- callable methods;

3. they treat session-typed communication channels as objects, integrating940

their session types with the session types of classes.

Several papers by Dezani-Ciancaglini, Yoshida et al. [47, 48, 49, 50, 51]
have combined session types, as specifications of protocols on communication
channels, with the object-oriented paradigm. A characteristic of all of these
works is that a channel is always created and used within a single method call.945

LTL for Runtime Verification. In [52] the authors review LTL-derived logics
for finite traces from a RV perspective. In particular, a number of two-valued
semantics for LTL on finite traces have been proposed [53, 54, 55, 56, 57, 11].

12https://eclipse.org/aspectj/
13LTL3 is a a three-valued semantics [45, 32] for LTL formulas, devised to adapt the standard

semantics to RV, to correctly consider the limitation that at runtime only finite traces can be
checked.

27

https://eclipse.org/aspectj/

As remarked in Section 3, LTL was first proposed for the formal verification
of computer programs (statically). In [13] the authors demonstrate that the950

trace expression formalism is strictly more expressive than LTL3 [45], which
is a 3-valued semantics (true, false, inconclusive) for LTL on finite traces (one
possible exploitation of LTL for RV). Thanks to the greater expressivity, we can
verify more complex properties at runtime, but, this greater expressivity brings
also complexity in the static analysis of our properties. If we generate our955

monitor starting from an LTL3 property (or other LTL semantics), we know by
construction that the monitor satisfies the property (supposing the generation
process to be correct). Instead, starting from a trace expression, we may have
a complex property which can be more expressive than a combination of LTL
properties. Consequently, we might be interested in checking if such kind of960

complex property still preserve a set of LTL properties (we do not have this by
construction). Naturally, even though we lose the correctness by construction,
using a more expressive formalism we can define more complex properties for
more complex scenarios.

Combining Static and Runtime Verification. In [58, 59], Schneider et al. present965

a tool StaRVOOrs which combines static and runtime verification of Java pro-
grams using partial results extracted from static verification to optimize the run-
time monitoring process. StaRVOOrs combines the deductive theorem prover
KeY [60] and the runtime verification tool LARVA [61], and uses properties writ-
ten using the ppDATE specification language which combines the control-flow970

property language DATE used in the runtime verification tool LARVA with
Hoare triples assigned to states. In [62], Lin Gui et al. propose to combine
testing (in particular, hypothesis testing) and model checking (in particular,
probabilistic model checking) for non-deterministic systems. Their idea is to
apply hypothesis testing to system components which are deterministic and use975

probabilistic model checking to lift the results through non-determinism. In
[63], Artho et al. show how to retain information from static analysis for RV,
or to compare the results of both techniques inside the NJuke [64] framework
for static and dynamic analysis of Java programs. In this framework, a static
analyzer looks for faults. Reports are then analyzed by a human, who writes980

test cases for each kind of fault reported. RV will then analyze the program
possibly confirming the fault as a failure or counterexample.

Global types and multi-party sessions. Global types are formal specifications
that describe communication protocols in terms of their global interactions.
The multi-party sessions are the projection of global types on the participants985

of the protocol. In [65] the authors show how the projection can be obtained
preserving soundness and completeness with respect to the set of traces of the
originating global type.

Though trace expressions and global types [65, 66, 67] are rather similar
(indeed, global types correspond to trace expressions without the concatenation990

and the intersection operators), the aim of trace expressions diverges from that
of global types for many reasons:

28

• trace expressions are not intended to be used for annotating and statically
checking programs, but rather, for specifying properties that have to be
verified at runtime;995

• while global types are explicitly designed for describing multiparty inter-
actions between distributed components, trace expressions are meant as
a more general formalism which can be used for runtime verification of
different kinds of properties and systems;

• finally, trace expressions have a coinductive, rather than inductive, seman-1000

tics, hence they can denote sets containing infinite traces; this is important
for being able to verify systems that must not terminate.

Object-oriented languages. In the context of runtime verification of object-oriented
languages, there exist several formalisms for specifying valid or invalid traces
of method invocations. Program Query Language (PQL) [68] allows developers1005

to express a large class of application specific code patterns. PQL is more ex-
pressive than context-free languages, since its class of languages is that of the
closure of context-free languages combined with intersection, hence, the formal-
ism seems to be as expressive as trace expressions. However, no formal semantics
is defined for PQL, and it is not clear whether PQL queries can denote infinite1010

traces.
The jassda [69] framework and tool enable runtime checking of Java programs

against a CSP-like specification. Like in trace expressions, the trace semantics
of a process is defined by collecting all event sequences that are possible with
respect to the operational semantics. Processes are built with operators similar1015

to those of trace expressions, except for concatenation and intersection, which
are not supported by jassda. SAGA [70] is a tool for runtime verification of
properties of Java programs specified with attribute grammars. The implemen-
tation is based on four different components: a state-based assertion checker,
a parser generator, a debugger and a general tool for meta-programming. The1020

tool is extremely powerful and has been successfully applied to an industrial
case from the e-commerce with multi-threaded Java. The main difference w.r.t.
our approach is that SAGA has been developed for runtime checking of a com-
bination of protocol- and data-oriented properties of object-oriented programs,
whereas, at the moment, trace expressions have been successfully employed for1025

runtime verification of multiagent systems (trace expressions are totally inde-
pendent from their use and the implementation in the MAS context is only a
possible prototype application).

7. Conclusions and Future Work

In this paper, we showed how to use a standard static approach to verify1030

a rich formalism used to generate monitors for runtime verification of object-
oriented programs. By verifying LTL properties statically we obtain two main
advantages: (1) we can check if the specification of our monitor is coherent with

29

our intentions, and (2) the system monitored by the verified monitor satisfies
the same LTL properties, as long as it is consistent with the specification.1035

The first two steps of the algorithm presented in Section 4 are implemented in
SWI-Prolog, while the last step (the Büchi Automaton product) is implemented
using the SPIN model checker. The Büchi Automaton Bτ generated in the
second step and the LTL property ϕ we want to verify are both compiled to
PROMELA language.1040

The next steps will be to improve the search for cycles inside expansive terms,
and to study in greater detail the expressivity of trace expressions in order to
understand if an hybrid approach is possible, where the LTL properties verified
statically can bring us to simplify the trace expression generating consequently
a simpler version of the monitor.1045

In [71] the authors presented an parametric version of the trace expression
formalism. Thanks to parameters inside event types, this extension is extremely
more expressive than the standard one [13]. One possible future work will be
achieving the static verification also for a parametric trace expression. The pres-
ence of parameters makes not usable the standard automata-based approach.1050

One promising way to solve this problem is through the model checker Cubicle
[72] (used for symbolic backward reachability analysis on infinite sets of states).

Acknowledgements

Thanks to prof. Davide Ancona, prof. Viviana Mascardi, and the anony-
mous reviewers for the helpful comments on the previous versions of the paper.1055

References

[1] W. Visser, K. Havelund, G. P. Brat, S. Park, F. Lerda, Model checking
programs, Autom. Softw. Eng. 10 (2) (2003) 203–232. doi:10.1023/A:

1022920129859.
URL https://doi.org/10.1023/A:10229201298591060

[2] E. M. Clarke, O. Grumberg, D. A. Peled, Model checking, MIT Press, 2001.
URL http://books.google.de/books?id=Nmc4wEaLXFEC

[3] G. J. Holzmann, Software analysis and model checking, in: E. Brinksma,
K. G. Larsen (Eds.), Computer Aided Verification, 14th International Con-
ference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings,1065

Vol. 2404 of Lecture Notes in Computer Science, Springer, 2002, pp. 1–16.
doi:10.1007/3-540-45657-0_1.
URL https://doi.org/10.1007/3-540-45657-0_1

[4] S. Merz, Model checking: A tutorial overview, in: F. Cassez, C. Jard,
B. Rozoy, M. D. Ryan (Eds.), Modeling and Verification of Parallel Pro-1070

cesses, 4th Summer School, MOVEP 2000, Nantes, France, June 19-23,
2000, Vol. 2067 of Lecture Notes in Computer Science, Springer, 2000, pp.

30

https://doi.org/10.1023/A:1022920129859
https://doi.org/10.1023/A:1022920129859
https://doi.org/10.1023/A:1022920129859
http://dx.doi.org/10.1023/A:1022920129859
http://dx.doi.org/10.1023/A:1022920129859
http://dx.doi.org/10.1023/A:1022920129859
https://doi.org/10.1023/A:1022920129859
http://books.google.de/books?id=Nmc4wEaLXFEC
http://books.google.de/books?id=Nmc4wEaLXFEC
https://doi.org/10.1007/3-540-45657-0_1
http://dx.doi.org/10.1007/3-540-45657-0_1
https://doi.org/10.1007/3-540-45657-0_1
https://doi.org/10.1007/3-540-45510-8_1

3–38. doi:10.1007/3-540-45510-8_1.
URL https://doi.org/10.1007/3-540-45510-8_1

[5] T. S. Chow, Testing software design modeled by finite-state machines,1075

IEEE Trans. Software Eng. 4 (3) (1978) 178–187. doi:10.1109/TSE.1978.
231496.
URL https://doi.org/10.1109/TSE.1978.231496

[6] M. Broy, B. Jonsson, J. Katoen, M. Leucker, A. Pretschner (Eds.), Model-
Based Testing of Reactive Systems, Advanced Lectures [The volume is1080

the outcome of a research seminar that was held in Schloss Dagstuhl in
January 2004], Vol. 3472 of Lecture Notes in Computer Science, Springer,
2005. doi:10.1007/b137241.
URL https://doi.org/10.1007/b137241

[7] G. J. Myers, C. Sandler, T. Badgett, The Art of Software Testing, 3rd1085

Edition, Wiley Publishing, 2011.

[8] A. Pnueli, The temporal logic of programs, in: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, IEEE Computer Society, 1977, pp. 46–57.
doi:10.1109/SFCS.1977.32.1090

URL https://doi.org/10.1109/SFCS.1977.32

[9] M. Leucker, C. Schallhart, A brief account of runtime verification,
The Journal of Logic and Algebraic Programming 78 (5) (2009)
293 – 303, the 1st Workshop on Formal Languages and Anal-
ysis of Contract-Oriented Software (FLACOS?07). doi:https:1095

//doi.org/10.1016/j.jlap.2008.08.004.
URL http://www.sciencedirect.com/science/article/pii/

S1567832608000775

[10] Y. Falcone, You should better enforce than verify, in: H. Barringer, Y. Fal-
cone, B. Finkbeiner, K. Havelund, I. Lee, G. J. Pace, G. Rosu, O. Sokol-1100

sky, N. Tillmann (Eds.), Runtime Verification - First International Confer-
ence, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings, Vol.
6418 of Lecture Notes in Computer Science, Springer, 2010, pp. 89–105.
doi:10.1007/978-3-642-16612-9_9.
URL https://doi.org/10.1007/978-3-642-16612-9_91105

[11] M. d’Amorim, G. Rosu, Efficient monitoring of omega-languages, in:
K. Etessami, S. K. Rajamani (Eds.), Computer Aided Verification, 17th
International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-
10, 2005, Proceedings, Vol. 3576 of Lecture Notes in Computer Science,
Springer, 2005, pp. 364–378. doi:10.1007/11513988_36.1110

URL https://doi.org/10.1007/11513988_36

31

http://dx.doi.org/10.1007/3-540-45510-8_1
https://doi.org/10.1007/3-540-45510-8_1
https://doi.org/10.1109/TSE.1978.231496
http://dx.doi.org/10.1109/TSE.1978.231496
http://dx.doi.org/10.1109/TSE.1978.231496
http://dx.doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1007/b137241
https://doi.org/10.1007/b137241
https://doi.org/10.1007/b137241
https://doi.org/10.1007/b137241
https://doi.org/10.1007/b137241
https://doi.org/10.1007/b137241
https://doi.org/10.1007/b137241
http://dx.doi.org/10.1007/b137241
https://doi.org/10.1007/b137241
https://doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
http://www.sciencedirect.com/science/article/pii/S1567832608000775
http://dx.doi.org/https://doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/https://doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/https://doi.org/10.1016/j.jlap.2008.08.004
http://www.sciencedirect.com/science/article/pii/S1567832608000775
http://www.sciencedirect.com/science/article/pii/S1567832608000775
http://www.sciencedirect.com/science/article/pii/S1567832608000775
https://doi.org/10.1007/978-3-642-16612-9_9
http://dx.doi.org/10.1007/978-3-642-16612-9_9
https://doi.org/10.1007/978-3-642-16612-9_9
https://doi.org/10.1007/11513988_36
http://dx.doi.org/10.1007/11513988_36
https://doi.org/10.1007/11513988_36

[12] D. Ancona, S. Drossopoulou, V. Mascardi, Automatic generation of self-
monitoring mass from multiparty global session types in jason, in: M. Bal-
doni, L. A. Dennis, V. Mascardi, W. W. Vasconcelos (Eds.), Declara-
tive Agent Languages and Technologies X - 10th International Workshop,1115

DALT 2012, Valencia, Spain, June 4, 2012, Revised Selected Papers, Vol.
7784 of Lecture Notes in Computer Science, Springer, 2012, pp. 76–95.
doi:10.1007/978-3-642-37890-4_5.
URL https://doi.org/10.1007/978-3-642-37890-4_5

[13] D. Ancona, A. Ferrando, V. Mascardi, Theory and Practice of Formal1120

Methods: Essays Dedicated to Frank de Boer on the Occasion of His 60th
Birthday, Springer International Publishing, Cham, 2016, Ch. Comparing
Trace Expressions and Linear Temporal Logic for Runtime Verification, pp.
47–64. doi:10.1007/978-3-319-30734-3_6.
URL http://dx.doi.org/10.1007/978-3-319-30734-3_61125

[14] K. Honda, V. T. Vasconcelos, M. Kubo, Language primitives and type disci-
pline for structured communication-based programming, in: Proceedings of
the 7th European Symposium on Programming: Programming Languages
and Systems, ESOP ’98, Springer-Verlag, London, UK, UK, 1998, pp. 122–
138.1130

URL http://dl.acm.org/citation.cfm?id=645392.651876

[15] K. Takeuchi, K. Honda, M. Kubo, An interaction-based language and its
typing system, in: C. Halatsis, D. G. Maritsas, G. Philokyprou, S. Theodor-
idis (Eds.), PARLE ’94: Parallel Architectures and Languages Europe, 6th
International PARLE Conference, Athens, Greece, July 4-8, 1994, Proceed-1135

ings, Vol. 817 of Lecture Notes in Computer Science, Springer, 1994, pp.
398–413. doi:10.1007/3-540-58184-7_118.
URL https://doi.org/10.1007/3-540-58184-7_118

[16] T. L. Hinrichs, A. P. Sistla, L. D. Zuck, Model check what you can, runtime
verify the rest, in: HOWARD-60, Vol. 42 of EPiC Series in Computing,1140

EasyChair, 2014, pp. 234–244.

[17] A. Ferrando, L. A. Dennis, D. Ancona, M. Fisher, V. Mascardi, Recognising
assumption violations in autonomous systems verification, in: AAMAS,
International Foundation for Autonomous Agents and Multiagent Systems
Richland, SC, USA / ACM, 2018, pp. 1933–1935.1145

[18] M. Y. Vardi, Automata-theoretic model checking revisited, in: VMCAI,
Vol. 4349 of Lecture Notes in Computer Science, Springer, 2007, pp. 137–
150.

[19] G. J. Holzmann, Design and Validation of Computer Protocols, Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1991.1150

[20] G. J. Holzmann, The model checker SPIN, IEEE Trans. Software Eng.
23 (5) (1997) 279–295. doi:10.1109/32.588521.
URL https://doi.org/10.1109/32.588521

32

https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-642-37890-4_5
http://dx.doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-642-37890-4_5
http://dx.doi.org/10.1007/978-3-319-30734-3_6
http://dx.doi.org/10.1007/978-3-319-30734-3_6
http://dx.doi.org/10.1007/978-3-319-30734-3_6
http://dx.doi.org/10.1007/978-3-319-30734-3_6
http://dx.doi.org/10.1007/978-3-319-30734-3_6
http://dx.doi.org/10.1007/978-3-319-30734-3_6
http://dx.doi.org/10.1007/978-3-319-30734-3_6
http://dl.acm.org/citation.cfm?id=645392.651876
http://dl.acm.org/citation.cfm?id=645392.651876
http://dl.acm.org/citation.cfm?id=645392.651876
http://dl.acm.org/citation.cfm?id=645392.651876
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1109/32.588521
http://dx.doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521

[21] G. J. Holzmann, The SPIN Model Checker - primer and reference manual,
Addison-Wesley, 2004.1155

[22] J. Wielemaker, T. Schrijvers, M. Triska, T. Lager, SWI-Prolog, Theory and
Practice of Logic Programming 12 (1-2) (2012) 67–96.

[23] R. Alur, Model checking: From tools to theory, in: 25 Years of Model
Checking, Vol. 5000 of Lecture Notes in Computer Science, Springer, 2008,
pp. 89–106.1160

[24] C. Dubslaff, C. Baier, M. Berg, Model checking probabilistic systems
against pushdown specifications, Inf. Process. Lett. 112 (8-9) (2012) 320–
328.

[25] E. Bartocci, Y. Falcone, A. Francalanza, G. Reger, Introduction to runtime
verification, in: Lectures on Runtime Verification, Vol. 10457 of Lecture1165

Notes in Computer Science, Springer, 2018, pp. 1–33.

[26] S. A. Kripke, Semantical analysis of modal logic i. normal propositional cal-
culi, Zeitschrift fur mathematische Logik und Grundlagen der Mathematik
9 (56) (1963) 67–96.

[27] A. N. Prior, Time and Modality, Greenwood Press, 1955.1170

[28] D. Gabbay, A. Pnueli, S. Shelah, J. Stavi, On the temporal analysis of
fairness, in: Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’80, ACM, New York,
NY, USA, 1980, pp. 163–173. doi:10.1145/567446.567462.
URL http://doi.acm.org/10.1145/567446.5674621175

[29] F. Chen, G. Rosu, Mop: an efficient and generic runtime verification frame-
work, in: OOPSLA 2007, 2007, pp. 569–588.

[30] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Serbanuta, G. Rosu,
Rv-monitor: Efficient parametric runtime verification with simultaneous
properties, in: RV’14, Vol. 8734, Springer, 2014, pp. 285–300.1180

[31] J. Cohen, D. Perrin, J. Pin, On the expressive power of temporal logic, J.
Comput. Syst. Sci. 46 (3) (1993) 271–294. doi:10.1016/0022-0000(93)

90005-H.
URL https://doi.org/10.1016/0022-0000(93)90005-H

[32] A. Bauer, M. Leucker, C. Schallhart, Runtime verification for LTL and1185

TLTL, ACM Trans. Softw. Eng. Methodol. 20 (4) (2011) 14:1–14:64. doi:
10.1145/2000799.2000800.
URL http://doi.acm.org/10.1145/2000799.2000800

[33] O. Lichtenstein, A. Pnueli, Checking that finite state concurrent programs
satisfy their linear specification, in: Proceedings of the 12th ACM SIGACT-1190

SIGPLAN Symposium on Principles of Programming Languages, POPL

33

http://doi.acm.org/10.1145/567446.567462
http://doi.acm.org/10.1145/567446.567462
http://doi.acm.org/10.1145/567446.567462
http://dx.doi.org/10.1145/567446.567462
http://doi.acm.org/10.1145/567446.567462
https://doi.org/10.1016/0022-0000(93)90005-H
http://dx.doi.org/10.1016/0022-0000(93)90005-H
http://dx.doi.org/10.1016/0022-0000(93)90005-H
http://dx.doi.org/10.1016/0022-0000(93)90005-H
https://doi.org/10.1016/0022-0000(93)90005-H
http://doi.acm.org/10.1145/2000799.2000800
http://doi.acm.org/10.1145/2000799.2000800
http://doi.acm.org/10.1145/2000799.2000800
http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1145/2000799.2000800
http://doi.acm.org/10.1145/2000799.2000800
http://doi.acm.org/10.1145/318593.318622
http://doi.acm.org/10.1145/318593.318622
http://doi.acm.org/10.1145/318593.318622

’85, ACM, New York, NY, USA, 1985, pp. 97–107. doi:10.1145/318593.
318622.
URL http://doi.acm.org/10.1145/318593.318622

[34] M. Y. Vardi, An automata-theoretic approach to linear temporal logic,1195

Springer Berlin Heidelberg, Berlin, Heidelberg, 1996, pp. 238–266. doi:

10.1007/3-540-60915-6_6.
URL https://doi.org/10.1007/3-540-60915-6_6

[35] J. R. Büchi, On a Decision Method in Restricted Second Order Arithmetic,
Springer New York, New York, NY, 1990, pp. 425–435. doi:10.1007/1200

978-1-4613-8928-6_23.
URL https://doi.org/10.1007/978-1-4613-8928-6_23

[36] D. Ancona, V. Bono, M. Bravetti, J. Campos, G. Castagna, P. M. Deniélou,
S. J. Gay, N. Gesbert, E. Giachino, R. Hu, E. B. Johnsen, F. Martins,
V. Mascardi, F. Montesi, R. Neykova, N. Ng, L. Padovani, V. Vasconcelos,1205

N. Yoshida, Behavioral types in programming languages, Foundations and
Trends in Programming Languages 3 (2-3) (2016) 95–230.

[37] A. D., M. Barbieri, V. Mascardi, Constrained global types for dynamic
checking of protocol conformance in multi-agent systems, in: Proceedings
of the 28th Annual ACM Symposium on Applied Computing, SAC ’13,1210

2013, pp. 1377–1379.

[38] D. Caucal, On infinite terms having a decidable monadic theory, in:
K. Diks, W. Rytter (Eds.), Mathematical Foundations of Computer Sci-
ence 2002, 27th International Symposium, MFCS 2002, Warsaw, Poland,
August 26-30, 2002, Proceedings, Vol. 2420 of Lecture Notes in Computer1215

Science, Springer, 2002, pp. 165–176. doi:10.1007/3-540-45687-2_13.
URL https://doi.org/10.1007/3-540-45687-2_13

[39] W. Damm, Languages defined by higher type program schemes, in: A. Sa-
lomaa, M. Steinby (Eds.), Automata, Languages and Programming, Fourth
Colloquium, University of Turku, Finland, July 18-22, 1977, Proceedings,1220

Vol. 52 of Lecture Notes in Computer Science, Springer, 1977, pp. 164–179.
doi:10.1007/3-540-08342-1_13.
URL https://doi.org/10.1007/3-540-08342-1_13

[40] A. Bauer, M. Leucker, C. Schallhart, Runtime verification for LTL and
TLTL, ACM Transactions on Software Engineering and Methodology1225

(TOSEM)In press.

[41] J. E. Hopcroft, J. D. Ullman, Formal languages and their relation to au-
tomata, Addison-Wesley series in computer science and information pro-
cessing, Addison-Wesley, 1969.

[42] W. Thomas, Automata on infinite objects, in: Handbook of Theoretical1230

Computer Science, Volume B: Formal Models and Sematics (B), 1990, pp.
133–192.

34

http://dx.doi.org/10.1145/318593.318622
http://dx.doi.org/10.1145/318593.318622
http://dx.doi.org/10.1145/318593.318622
http://doi.acm.org/10.1145/318593.318622
https://doi.org/10.1007/3-540-60915-6_6
http://dx.doi.org/10.1007/3-540-60915-6_6
http://dx.doi.org/10.1007/3-540-60915-6_6
http://dx.doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1007/978-1-4613-8928-6_23
http://dx.doi.org/10.1007/978-1-4613-8928-6_23
http://dx.doi.org/10.1007/978-1-4613-8928-6_23
http://dx.doi.org/10.1007/978-1-4613-8928-6_23
https://doi.org/10.1007/978-1-4613-8928-6_23
https://doi.org/10.1007/3-540-45687-2_13
http://dx.doi.org/10.1007/3-540-45687-2_13
https://doi.org/10.1007/3-540-45687-2_13
https://doi.org/10.1007/3-540-08342-1_13
http://dx.doi.org/10.1007/3-540-08342-1_13
https://doi.org/10.1007/3-540-08342-1_13

[43] L. Staiger, On omega-power languages, in: New Trends in Formal Lan-
guages, Vol. 1218 of Lecture Notes in Computer Science, Springer, 1997,
pp. 377–394.1235

[44] E. Bodden, Efficient and Expressive Runtime Verification for Java, in:
Grand Finals of the ACM Student Research Competition 2005, 2005.
URL http://www.bodden.de/pubs/bodden05efficient.pdf

[45] A. Bauer, M. Leucker, C. Schallhart, Monitoring of real-time proper-
ties, in: S. Arun-Kumar, N. Garg (Eds.), FSTTCS 2006: Foundations1240

of Software Technology and Theoretical Computer Science, 26th Interna-
tional Conference, Kolkata, India, December 13-15, 2006, Proceedings, Vol.
4337 of Lecture Notes in Computer Science, Springer, 2006, pp. 260–272.
doi:10.1007/11944836_25.
URL https://doi.org/10.1007/11944836_251245

[46] S. J. Gay, V. T. Vasconcelos, A. Ravara, N. Gesbert, A. Z. Caldeira, Mod-
ular session types for distributed object-oriented programming, SIGPLAN
Not. 45 (1) (2010) 299–312. doi:10.1145/1707801.1706335.
URL http://doi.acm.org/10.1145/1707801.1706335

[47] S. Capecchi, M. Coppo, M. Dezani-Ciancaglini, S. Drossopoulou, E. Gi-1250

achino, Amalgamating sessions and methods in object-oriented languages
with generics, Theor. Comput. Sci. 410 (2-3) (2009) 142–167. doi:

10.1016/j.tcs.2008.09.016.
URL http://dx.doi.org/10.1016/j.tcs.2008.09.016

[48] M. Dezani-Ciancaglini, E. Giachino, S. Drossopoulou, N. Yoshida, For-1255

mal Methods for Components and Objects: 5th International Sympo-
sium, FMCO 2006, Amsterdam, The Netherlands, November 7-10, 2006,
Revised Lectures, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007,
Ch. Bounded Session Types for Object Oriented Languages, pp. 207–245.
doi:10.1007/978-3-540-74792-5_10.1260

URL http://dx.doi.org/10.1007/978-3-540-74792-5_10

[49] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, S. Drossopoulou, Session
types for object-oriented languages, in: ECOOP 2006 - Object-Oriented
Programming, 20th European Conference, Nantes, France, July 3-7, 2006,
Proceedings, 2006, pp. 328–352. doi:10.1007/11785477_20.1265

URL http://dx.doi.org/10.1007/11785477_20

[50] M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, S. Drossopoulou, Trustwor-
thy Global Computing: International Symposium, TGC 2005, Edinburgh,
UK, April 7-9, 2005. Revised Selected Papers, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005, Ch. A Distributed Object-Oriented Language1270

with Session Types, pp. 299–318. doi:10.1007/11580850_16.
URL http://dx.doi.org/10.1007/11580850_16

35

http://www.bodden.de/pubs/bodden05efficient.pdf
http://www.bodden.de/pubs/bodden05efficient.pdf
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/11944836_25
http://dx.doi.org/10.1007/11944836_25
https://doi.org/10.1007/11944836_25
http://doi.acm.org/10.1145/1707801.1706335
http://doi.acm.org/10.1145/1707801.1706335
http://doi.acm.org/10.1145/1707801.1706335
http://dx.doi.org/10.1145/1707801.1706335
http://doi.acm.org/10.1145/1707801.1706335
http://dx.doi.org/10.1016/j.tcs.2008.09.016
http://dx.doi.org/10.1016/j.tcs.2008.09.016
http://dx.doi.org/10.1016/j.tcs.2008.09.016
http://dx.doi.org/10.1016/j.tcs.2008.09.016
http://dx.doi.org/10.1016/j.tcs.2008.09.016
http://dx.doi.org/10.1016/j.tcs.2008.09.016
http://dx.doi.org/10.1016/j.tcs.2008.09.016
http://dx.doi.org/10.1007/978-3-540-74792-5_10
http://dx.doi.org/10.1007/978-3-540-74792-5_10
http://dx.doi.org/10.1007/978-3-540-74792-5_10
http://dx.doi.org/10.1007/978-3-540-74792-5_10
http://dx.doi.org/10.1007/978-3-540-74792-5_10
http://dx.doi.org/10.1007/978-3-540-74792-5_10
http://dx.doi.org/10.1007/978-3-540-74792-5_10
http://dx.doi.org/10.1007/978-3-540-74792-5_10
http://dx.doi.org/10.1007/978-3-540-74792-5_10
http://dx.doi.org/10.1007/11785477_20
http://dx.doi.org/10.1007/11785477_20
http://dx.doi.org/10.1007/11785477_20
http://dx.doi.org/10.1007/11785477_20
http://dx.doi.org/10.1007/11785477_20
http://dx.doi.org/10.1007/11580850_16
http://dx.doi.org/10.1007/11580850_16
http://dx.doi.org/10.1007/11580850_16
http://dx.doi.org/10.1007/11580850_16
http://dx.doi.org/10.1007/11580850_16
http://dx.doi.org/10.1007/11580850_16
http://dx.doi.org/10.1007/11580850_16

[51] R. Hu, N. Yoshida, K. Honda, ECOOP 2008 – Object-Oriented Program-
ming: 22nd European Conference Paphos, Cyprus, July 7-11, 2008 Pro-
ceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, Ch. Session-1275

Based Distributed Programming in Java, pp. 516–541. doi:10.1007/

978-3-540-70592-5_22.
URL http://dx.doi.org/10.1007/978-3-540-70592-5_22

[52] A. Bauer, M. Leucker, C. Schallhart, Comparing LTL semantics for runtime
verification, J. Log. Comput. 20 (3) (2010) 651–674. doi:10.1093/logcom/1280

exn075.
URL https://doi.org/10.1093/logcom/exn075

[53] D. Giannakopoulou, K. Havelund, Automata-based verification of temporal
properties on running programs, in: 16th IEEE International Conference
on Automated Software Engineering (ASE 2001), 26-29 November 2001,1285

Coronado Island, San Diego, CA, USA, IEEE Computer Society, 2001, pp.
412–416. doi:10.1109/ASE.2001.989841.
URL https://doi.org/10.1109/ASE.2001.989841

[54] D. Giannakopoulou, K. Havelund, Runtime analysis of linear temporal logic
specifications, Tech. rep. (2001).1290

[55] K. Havelund, G. Rosu, Synthesizing monitors for safety properties, in:
J. Katoen, P. Stevens (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems, 8th International Conference, TACAS 2002, Held
as Part of the Joint European Conference on Theory and Practice of Soft-
ware, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings, Vol.1295

2280 of Lecture Notes in Computer Science, Springer, 2002, pp. 342–356.
doi:10.1007/3-540-46002-0_24.
URL https://doi.org/10.1007/3-540-46002-0_24

[56] K. Havelund, G. Rosu, Monitoring java programs with java pathexplorer,
Electr. Notes Theor. Comput. Sci. 55 (2) (2001) 200–217. doi:10.1016/1300

S1571-0661(04)00253-1.
URL https://doi.org/10.1016/S1571-0661(04)00253-1

[57] V. Stolz, E. Bodden, Temporal assertions using aspectj, Electr. Notes
Theor. Comput. Sci. 144 (4) (2006) 109–124. doi:10.1016/j.entcs.2006.
02.007.1305

URL https://doi.org/10.1016/j.entcs.2006.02.007

[58] J. M. Chimento, W. Ahrendt, G. J. Pace, G. Schneider, Starvoors: A
tool for combined static and runtime verification of java, in: Runtime
Verification - 6th International Conference, RV 2015 Vienna, Austria,
September 22-25, 2015. Proceedings, 2015, pp. 297–305. doi:10.1007/1310

978-3-319-23820-3_21.
URL https://doi.org/10.1007/978-3-319-23820-3_21

36

http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
http://dx.doi.org/10.1093/logcom/exn075
http://dx.doi.org/10.1093/logcom/exn075
http://dx.doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1109/ASE.2001.989841
https://doi.org/10.1109/ASE.2001.989841
https://doi.org/10.1109/ASE.2001.989841
http://dx.doi.org/10.1109/ASE.2001.989841
https://doi.org/10.1109/ASE.2001.989841
https://doi.org/10.1007/3-540-46002-0_24
http://dx.doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1016/S1571-0661(04)00253-1
http://dx.doi.org/10.1016/S1571-0661(04)00253-1
http://dx.doi.org/10.1016/S1571-0661(04)00253-1
http://dx.doi.org/10.1016/S1571-0661(04)00253-1
https://doi.org/10.1016/S1571-0661(04)00253-1
https://doi.org/10.1016/j.entcs.2006.02.007
http://dx.doi.org/10.1016/j.entcs.2006.02.007
http://dx.doi.org/10.1016/j.entcs.2006.02.007
http://dx.doi.org/10.1016/j.entcs.2006.02.007
https://doi.org/10.1016/j.entcs.2006.02.007
https://doi.org/10.1007/978-3-319-23820-3_21
https://doi.org/10.1007/978-3-319-23820-3_21
https://doi.org/10.1007/978-3-319-23820-3_21
http://dx.doi.org/10.1007/978-3-319-23820-3_21
http://dx.doi.org/10.1007/978-3-319-23820-3_21
http://dx.doi.org/10.1007/978-3-319-23820-3_21
https://doi.org/10.1007/978-3-319-23820-3_21

[59] W. Ahrendt, G. J. Pace, G. Schneider, Starvoors - episode II - strengthen
and distribute the force, in: Leveraging Applications of Formal Meth-
ods, Verification and Validation: Foundational Techniques - 7th In-1315

ternational Symposium, ISoLA 2016, Imperial, Corfu, Greece, October
10-14, 2016, Proceedings, Part I, 2016, pp. 402–415. doi:10.1007/

978-3-319-47166-2_28.
URL https://doi.org/10.1007/978-3-319-47166-2_28

[60] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, M. Ulbrich1320

(Eds.), Deductive Software Verification - The KeY Book - From Theory to
Practice, Vol. 10001 of Lecture Notes in Computer Science, Springer, 2016.
doi:10.1007/978-3-319-49812-6.
URL http://dx.doi.org/10.1007/978-3-319-49812-6

[61] C. Colombo, G. J. Pace, G. Schneider, LARVA — safer monitoring of1325

real-time java programs (tool paper), in: Seventh IEEE International Con-
ference on Software Engineering and Formal Methods, SEFM 2009, Hanoi,
Vietnam, 23-27 November 2009, 2009, pp. 33–37. doi:10.1109/SEFM.

2009.13.
URL https://doi.org/10.1109/SEFM.2009.131330

[62] L. Gui, J. Sun, Y. Liu, Y. Si, J. S. Dong, X. Wang, Combining model
checking and testing with an application to reliability prediction and dis-
tribution, in: International Symposium on Software Testing and Analy-
sis, ISSTA ’13, Lugano, Switzerland, July 15-20, 2013, 2013, pp. 101–111.
doi:10.1145/2483760.2483779.1335

URL http://doi.acm.org/10.1145/2483760.2483779

[63] C. Artho, A. Biere, Combined static and dynamic analysis, Electr. Notes
Theor. Comput. Sci. 131 (2005) 3–14. doi:10.1016/j.entcs.2005.01.

018.
URL https://doi.org/10.1016/j.entcs.2005.01.0181340

[64] C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, B. Zweimüller,
Jnuke: Efficient dynamic analysis for java, in: Computer Aided Veri-
fication, 16th International Conference, CAV 2004, Boston, MA, USA,
July 13-17, 2004, Proceedings, 2004, pp. 462–465. doi:10.1007/

978-3-540-27813-9_37.1345

URL https://doi.org/10.1007/978-3-540-27813-9_37

[65] G. Castagna, M. Dezani-Ciancaglini, L. Padovani, On global types and
multi-party session, Logical Methods in Computer Science 8 (1).

[66] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types,
J. ACM 63 (1) (2016) 9:1–9:67. doi:10.1145/2827695.1350

URL http://doi.acm.org/10.1145/2827695

[67] L. Bettini, M. Coppo, L. D’Antoni, M. D. Luca, M. Dezani-Ciancaglini,
N. Yoshida, Global progress in dynamically interleaved multiparty sessions,

37

https://doi.org/10.1007/978-3-319-47166-2_28
https://doi.org/10.1007/978-3-319-47166-2_28
https://doi.org/10.1007/978-3-319-47166-2_28
http://dx.doi.org/10.1007/978-3-319-47166-2_28
http://dx.doi.org/10.1007/978-3-319-47166-2_28
http://dx.doi.org/10.1007/978-3-319-47166-2_28
https://doi.org/10.1007/978-3-319-47166-2_28
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1109/SEFM.2009.13
https://doi.org/10.1109/SEFM.2009.13
https://doi.org/10.1109/SEFM.2009.13
http://dx.doi.org/10.1109/SEFM.2009.13
http://dx.doi.org/10.1109/SEFM.2009.13
http://dx.doi.org/10.1109/SEFM.2009.13
https://doi.org/10.1109/SEFM.2009.13
http://doi.acm.org/10.1145/2483760.2483779
http://doi.acm.org/10.1145/2483760.2483779
http://doi.acm.org/10.1145/2483760.2483779
http://doi.acm.org/10.1145/2483760.2483779
http://doi.acm.org/10.1145/2483760.2483779
http://dx.doi.org/10.1145/2483760.2483779
http://doi.acm.org/10.1145/2483760.2483779
https://doi.org/10.1016/j.entcs.2005.01.018
http://dx.doi.org/10.1016/j.entcs.2005.01.018
http://dx.doi.org/10.1016/j.entcs.2005.01.018
http://dx.doi.org/10.1016/j.entcs.2005.01.018
https://doi.org/10.1016/j.entcs.2005.01.018
https://doi.org/10.1007/978-3-540-27813-9_37
http://dx.doi.org/10.1007/978-3-540-27813-9_37
http://dx.doi.org/10.1007/978-3-540-27813-9_37
http://dx.doi.org/10.1007/978-3-540-27813-9_37
https://doi.org/10.1007/978-3-540-27813-9_37
http://doi.acm.org/10.1145/2827695
http://dx.doi.org/10.1145/2827695
http://doi.acm.org/10.1145/2827695
https://doi.org/10.1007/978-3-540-85361-9_33

in: F. van Breugel, M. Chechik (Eds.), CONCUR 2008 - Concurrency
Theory, 19th International Conference, CONCUR 2008, Toronto, Canada,1355

August 19-22, 2008. Proceedings, Vol. 5201 of Lecture Notes in Computer
Science, Springer, 2008, pp. 418–433. doi:10.1007/978-3-540-85361-9_
33.
URL https://doi.org/10.1007/978-3-540-85361-9_33

[68] M. C. Martin, V. B. Livshits, M. S. Lam, Finding application errors and1360

security flaws using PQL: a program query language, in: OOPSLA 2005,
2005, pp. 365–383.

[69] M. Brörkens, M. Möller, Dynamic event generation for runtime checking
using the JDI, Electr. Notes Theor. Comput. Sci. 70 (4) (2002) 21–35.

[70] F. S. de Boer, S. de Gouw, Combining monitoring with run-time asser-1365

tion checking, in: M. Bernardo, F. Damiani, R. Hähnle, E. B. Johnsen,
I. Schaefer (Eds.), Formal Methods for Executable Software Models - 14th
International School on Formal Methods for the Design of Computer, Com-
munication, and Software Systems, SFM 2014, Bertinoro, Italy, June 16-20,
2014, Advanced Lectures, Vol. 8483 of Lecture Notes in Computer Science,1370

Springer, 2014, pp. 217–262. doi:10.1007/978-3-319-07317-0_6.
URL https://doi.org/10.1007/978-3-319-07317-0_6

[71] D. Ancona, A. Ferrando, L. Franceschini, V. Mascardi, Parametric trace
expressions for runtime verification of java-like programs, in: Proceed-
ings of the 19th Workshop on Formal Techniques for Java-like Programs,1375

Barcelona , Spain, June 20, 2017, ACM, 2017, pp. 10:1–10:6. doi:

10.1145/3103111.3104037.
URL http://doi.acm.org/10.1145/3103111.3104037

[72] S. Conchon, A. Goel, S. Krstic, A. Mebsout, F. Zäıdi, Cubicle: A parallel
smt-based model checker for parameterized systems - tool paper, in: CAV,1380

2012, pp. 718–724.

38

http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-319-07317-0_6
https://doi.org/10.1007/978-3-319-07317-0_6
https://doi.org/10.1007/978-3-319-07317-0_6
http://dx.doi.org/10.1007/978-3-319-07317-0_6
https://doi.org/10.1007/978-3-319-07317-0_6
http://doi.acm.org/10.1145/3103111.3104037
http://doi.acm.org/10.1145/3103111.3104037
http://doi.acm.org/10.1145/3103111.3104037
http://dx.doi.org/10.1145/3103111.3104037
http://dx.doi.org/10.1145/3103111.3104037
http://dx.doi.org/10.1145/3103111.3104037
http://doi.acm.org/10.1145/3103111.3104037

	Introduction
	Motivations
	Background
	Trace expressions
	Trace expressions vs LTL3

	Trace expressions Model Checking
	1st step: Rewriting
	2nd step: Translation
	3rd step: Product

	Experiments
	Related Work
	Conclusions and Future Work

