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A B S T R A C T

Ongoing, pre-stimulus oscillatory activity in the 8–13 Hz alpha range has been shown to correlate with both true
and false reports of peri-threshold somatosensory stimuli. However, to directly test the role of such oscillatory
activity in behaviour, it is necessary to manipulate it. Transcranial alternating current stimulation (tACS) offers a
method of directly manipulating oscillatory brain activity using a sinusoidal current passed to the scalp. We
tested whether alpha tACS would change somatosensory sensitivity or response bias in a signal detection task in
order to test whether alpha oscillations have a causal role in behaviour. Active 10 Hz tACS or sham stimulation
was applied using electrodes placed bilaterally at positions CP3 and CP4 of the 10–20 electrode placement
system. Participants performed the Somatic Signal Detection Task (SSDT), in which they must detect brief so-
matosensory targets delivered at their detection threshold. These targets are sometimes accompanied by a light
flash, which could also occur alone. Active tACS did not modulate sensitivity to targets but did modulate re-
sponse criterion. Specifically, we found that active stimulation generally increased touch reporting rates, but
particularly increased responding on light trials. Stimulation did not interact with the presence of touch, and
thus increased both hits and false alarms. TACS stimulation increased reports of touch in a manner consistent
with our observational reports, changing response bias, and consistent with a role for alpha activity in soma-
tosensory detection.

1. Introduction

There is a wide range of evidence across multiple sensory modalities
that spontaneous, ongoing neural oscillations in the alpha band –
8–13 Hz – have a direct role in perception and determining which sti-
muli are detected and which missed (e.g., Busch et al., 2009; Chaumon
and Busch, 2014; Craddock et al., 2017; Ergenoglu et al., 2004; Neuling
et al., 2012). Much of this evidence is necessarily correlative, based on
observations recorded using magneto- or electroencephalography (M/
EEG). More direct evidence of causation requires direct manipulation of
the ongoing oscillatory rhythms naturally and spontaneously exhibited
by the brain.

Transcranial electrical stimulation (tES) offers one such method of
directly influencing ongoing brain activity (Paulus, 2011). Three com-
monly used tES methods are transcranial direct current stimulation
(tDCS), transcranial alternating current stimulation (tACS, Antal and
Paulus, 2013), and transcranial random noise stimulation (tRNS). Of

these, tACS is particularly promising as a method by which to interact
with endogenous rhythms, since it allows application of a sinusoidal
current at a desired frequency. Indeed, there are several reports that
tACS stimulation at or around 10 Hz modulates alpha power, increasing
it even after stimulation has ended (Helfrich et al., 2014; Vossen et al.,
2015; Zaehle et al., 2010). Furthermore, modulation of alpha oscilla-
tions using tACS also influences detection of visual targets phasically
(Helfrich et al., 2014), consistent with the pattern found previously in
the absence of tACS stimulation (e.g., Mathewson et al., 2009, 2011;
VanRullen et al., 2011).

Effects of tACS on other sensory modalities, including audition
(Neuling et al., 2012) and pain (Arendsen et al., 2018), have been re-
ported. Most relevant here, however, is how tACS stimulation may in-
fluence somatosensation. As in vision, tactile detection can vary with
the power of alpha oscillations recorded over somatosensory regions.
We found that detection of peri-threshold tactile stimuli was predicted
from alpha power in a period shortly before stimulus onset (Craddock
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et al., 2017). In that study, participants performed the Somatic Signal
Detection Task (SSDT; Lloyd et al., 2008), in which they were asked to
detect brief somatosensory stimuli delivered to their left index finger at
detection threshold. Brain activity was simultaneously recorded using
EEG. We found that power in the alpha frequency band influenced both
true and false reports of somatosensory perception. As pre-stimulus
alpha power increased, the probability of reporting touch decreased,
both in the presence and absence of target stimuli. Given that alpha
plays a similar role in both visual and tactile detection, and that alpha
tACS modulates visual detection, it follows that manipulation of alpha
using tACS may also modulate somatosensory detection.

A study by Gundlach et al. (2016) found evidence consistent with
this suggestion. They had participants perform a somatosensory de-
tection task before, during, and after active alpha or sham tACS sti-
mulation delivered over bilateral somatosensory cortices. Tactile sti-
muli were delivered to the participants' right index finger. The intensity
of the stimuli was continuously varied, but maintained at detection
threshold using a staircase procedure. Detection thresholds for the sti-
muli in the periods before, during, and after the stimulation period did
not differ on average. However, during active stimulation, detection
thresholds varied in a phasic manner. Detection thresholds at opposite
phases of the driving oscillations differed from baseline (pre-stimula-
tion) performance in opposing fashion: some phases were associated
with decreased thresholds while others were associated with increased
thresholds.

However, a limitation of Gundlach et al.’s (2016) study was that
stimuli were always present. Thus, it is impossible to determine whe-
ther the changes in detection performance they observed were related
to genuine variation in tactile sensitivity. TACS stimulation in the alpha
frequency range may also induce faint tactile sensations contralateral to
the stimulated region (Feurra et al., 2011), which might increase false
reports of touch during stimulation. A typical way of assessing perfor-
mance on detection tasks is to calculate signal detection measures
(Macmillan and Creelman, 2005), which account for both hit rates –
correct detection of target stimuli – and false alarm rates— false reports
of target stimuli when the stimulus is absent. Sensitivity (d′) describes
the ability to discriminate signal from noise. Response criterion (c)
describes the degree of bias towards responding that a signal is present
or absent.

In signal detection terms, the pattern of results reported in Craddock
et al. (2017) is consistent with changes in response criterion rather than
sensitivity, since alpha power shifted hit and false alarm rates in the
same direction. In addition, Gundlach et al. (2017) reported that the
somatosensory alpha rhythm decreased in power after tACS stimula-
tion. Thus, in accordance with our results, decreases in power should
increase reporting rates for touch, increasing both false alarms and hit
rates, and thus not increase somatosensory sensitivity per se (Craddock
et al., 2017). TACS stimulation might then change response criterion,
biasing participants towards or against reporting stimuli, rather than
changing sensitivity or detection threshold. Therefore, in order to test
whether alpha tACS stimulation would induce changes in response bias,
we had participants perform the SSDT while undergoing tACS.

2. Material and methods

2.1. Participants

Twenty-one right-handed participants (19 female, two male; ages:
μ=19.7 years, σ= .097) were recruited from the undergraduate po-
pulation of the University of Leeds. Five additional participants were
excluded following initial screenings for contraindications to receiving
tACS stimulation (e.g. unremovable facial piercings, history of mi-
graines). Participants received course credit or cash vouchers for par-
ticipation. The study was approved by the ethical committee of the
School of Psychology at the University of Leeds (ethics reference: 16-
0019). All participants reported normal or corrected-to-normal vision

and no tactile sensory deficits, and gave fully informed written consent.

2.2. Apparatus

The stimulus array comprised a soft foam block in which a piezo-
electric tactile stimulator (PTS) was embedded (Dancer Design, St.
Helens, UK), with a red light-emitting diode (LED) attached next to the
PTS. Participants placed their left index finger on top of the PTS. Tactile
stimuli were produced by an auditory signal delivered from the ex-
perimental PC to the tactile amplifier (TactAmp 4.2, Dancer Design).
Note that vibrations from the PTS were entirely inaudible when it was
embedded in the foam block. A monitor located behind the stimulus
array delivered instructions and visual cues. Participants sat approxi-
mately 70 cm in front of the monitor, with the stimulus array to the left
of their midline. Participants responded with a button box held in their
right hand. Timing and presentation of the stimuli was controlled using
EPrime 2.0.

2.2.1. Transcranial alternating current stimulation (tACS)
Transcranial alternating current stimulation was applied using a

neuroConn DC-Stimulator-Plus (Eldith, Neuroconn, Ilmenau,
Germany). Two rubber electrodes (5 cm by 5 cm) in foam sponges – pre-
soaked in saline solution – were placed over positions CP3 and CP4 of
the international 10–20 electrode placement system. The sponges and
electrodes were held in place using a rubber strap. Although im-
pedances were not monitored during the experiment, the initial im-
pedance could not exceed 5 kΩ.

2.3. Procedure

All participants took part in two experimental sessions separated by
at least two days. Before beginning the experiment, the tACS montage
was set up as above. The experiment itself was split into two parts. In
the first part, each participant's sensory threshold (i.e., 50% detection
rate) was established using a two-alternative forced choice adaptive
staircase procedure. Participants were given a series of trials consisting
of two consecutive 1420ms time periods. Each time period began with
a green arrow presented for 400ms on the left side of the monitor and
pointing down towards the participant's finger. The numbers “1” and
“2” were written on arrows marking the start of the first and second
periods respectively. After the offset of each arrow, the screen remained
blank for 1020ms. On each trial, a 20ms tactile pulse was delivered
500ms after the offset of either the first or second arrow. After both
time periods had elapsed, participants were prompted on screen to
press button 1 or 2 on the button box to report whether the stimulus
had been presented in the first or second time period. A further 1000ms
elapsed before the start of a new trial. Trials were repeated until a
stable 50% detection threshold was reached or up to a maximum of 150
repetitions (no participant exceeded this maximum). Participants did
not receive feedback.

In the main experiment, participants were asked to detect brief
20ms tactile pulses delivered at sensory threshold. In the sham condi-
tion, random noise stimulation was applied for 30 s at 1.5 milliamps
(mA). In the active condition, a 10 Hz alternating current was delivered
at 1.5mA for 25min(the approximate length of the experiment). The
order of stimulation conditions was counterbalanced across subjects. In
both conditions, stimulation ramped up from zero to 1.5mA over 30 s
at the beginning, and sloped back down to zero over 10 s at the end. At
the start of each trial, a green arrow pointing down towards the par-
ticipant's left index finger appeared for 500ms. This was replaced with
a blank screen for 1 to 1.5 s, which was followed by a 20ms stimulus
period.

There were four possibilities in the stimulus period: a touch deliv-
ered alone, a light flash alone, a touch and light flash delivered si-
multaneously, or neither a touch nor a light flash. Each of these oc-
curred on a quarter of trials. There were 204 trials in total Thus, each of
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the four trial types – touch alone, light alone, both light and touch, and
no stimulus – occurred 51 times. After the 20ms stimulus period, there
was a further 750ms of blank screen. Finally, a response screen ap-
peared asking the participant if they had felt a touch. Participants were
asked to respond using the button box held in their right hand with one
of four buttons to indicate “Definitely yes”, “Maybe yes”, “Maybe no”,
or “Definitely no”. The response screen disappeared when the response
was made. No feedback was provided. Finally, the screen remained
blank for 1 to 1.5 s before the next trial.

2.4. Data analysis

We first performed three analyses using a standard ANOVA frame-
work. These analyses were performed primarily for comparison with
previous studies using the SSDT, which used standard ANOVA analyses
of touch reporting rates and of the signal detection measures sensitivity
(d′) and response criterion (c). For all analyses, we combined
“Definitely yes” and “Maybe yes” into “yes” reports and “Definitely no”
and “Maybe no” into “no” reports.

For the analysis of Type-I signal detection measures, we calculated
d′ and c separately for trials with and without a light, and during active
and sham stimulation. “Yes” reports on touch trials were hits; “yes”
reports on no touch trials were false alarms. “No” reports on touch trials
were misses; “no” reports on no touch trials were correct rejections.
Thus, we had four d′ and four c measures for each participant. The log-
linear correction was used to account for cells with either 100% or 0%
reports of touch. For the analysis of reporting rates, we ran a repeated-
measures ANOVA with the factors Touch (Touch/No touch), Light
(Light/No light), and Stimulation (Active/Sham) with the percentage of
reports of touch as the dependent variable. Where necessary, post-hoc t-
tests with Bonferroni-Holm correction for multiple comparisons were
conducted to decompose significant interactions.

In addition to our standard ANOVA analyses, we also fitted a
Bayesian generalized linear mixed effects model using the brms package
(see below). Mixed-effects models are extensions of standard general
linear regression models that allow simultaneous modelling of both
fixed and random effects. When multiple observations are recorded
from individual groups, they yield correlated observations that would
violate the assumption of independence necessary to model them using
a standard fixed-effects model. Simultaneously modelling random ef-
fects allows the correlation structure to be appropriately incorporated
into the model.

In addition, using a generalized linear model allows us to appro-
priately model data that does not follow a normal distribution. For this
analysis, we combined “Definitely yes” and “Maybe yes” into “yes”
reports and “Definitely no” and “Maybe no” responses into “no” reports.
We then coded “yes” responses as 1 and “no” responses as 0, and thus,
our outcome for each trial was binary. As mean reporting rates ap-
proach 100% or 0%, the variance decreases. ANOVA conducted on
percentages does not account for such changes in variance and can lead
to misleading conclusions (Jaeger, 2008). We therefore chose to use a
logistic link function, and thus a logistic regression model or our data.

2.4.1. Generalized linear mixed effects models
For further clarification, first, we describe the relationship between

a standard linear model and a generalized linear model. A standard
general linear model is given by the equation:

= +y Xb e

y is the response variable. X is a matrix of linear predictors or in-
dependent variables. b is vector of the unknown effects of those pre-
dictors, which are the quantities to be estimated by the model fitting
process. The effects – typically called model coefficients – are inter-
pretable as the change in the response variable resulting from a one unit
change in the predictor variable. Finally, e is a normally distributed
error term (N∼ (0, σ2)). Note that we could expand them equation out

to show individual terms, e.g.

= + +y β β ϵj0

where β0 is the intercept – or the grand average across all conditions –
and βj are individual coefficients for each of j terms in the model.

In the above formulation, we are assuming only fixed effects.
However, to appropriately capture the hierarchical structure, we have
to also model how effects vary across participants. If i∈ {1, …, n} where
n= the number of participants, then we can expand the model as fol-
lows:

= + +y X b Z v ei i i i i

y î is now the response vector for each individual participant. X is
the design matrix for the fixed effects expanded across all participants,
and b a vector of fixed effects coefficients. Note that these are not
participant-specific. Z is the random effects design matrix, v is the
vector of random effects coefficients. These are participant-specific es-
timates of the random effects. In this formulation, all effects are mod-
elled as varying across participants.

However, as noted above, our response variable is binomial, and the
model errors cannot be assumed to be normal. We thus need to adapt
the model further. Generalized linear models replace the assumption of
a normally distributed error term with a link function that transforms
the model residuals, allowing, for example, modelling of data where the
variance depends on the mean:

= −E y g Xb( ) 1

Here, g−1 represents the link function, while E(y) represents the
expected value (i.e. mean) of y. When the data to be modelled is bi-
nomial, we are thus modelling the probability of y taking on the value 1
as a function of the predictors.

A natural way to express the probability of an outcome is in terms of
odds, which are derived from probability p of a given outcome occur-

ring as =
−( )odds p

p1 . Odds increase as the probability of a given event
increases. However, odds cannot be linearly combined, and are typi-
cally transformed to the log-odds or logit scale by taking their natural

logarithm — =
−( )logit p( ) ln p

p

^

1 ^ where p̂ is the expected proportional

response. Thus, what is modelled is the proportional response as a
function of design matrix X and the vector of coefficients b. Note that
this means expected proportions are expressed in logits, and the coef-
ficients are expressed as the change in logits.

If we now adapt the mixed-effects model equation given above, we
have a generalized linear mixed models with a logistic link function:

= +logit p X b Z v( ) i i i

This model properly accounts for both the binomial nature of the
response variable and the hierarchical structure of the data. After model
fitting, the fixed-effects coefficients, b, are thus changes in logits as a
function of the predictors given in design matrix X, and marginalized
over the participant-specific coefficients, v. These coefficients have the
same interpretation as in standard GLMs, in that they represent the logit
change in the response variable as a result of a one unit change in the
predictor. However, they are difficult to intuitively interpret, since they
are on a very different scale from the original response variable. A
common approach is to exponentiate the logit coefficient, which returns
an odds ratio. Odds-ratios have a much more intuitive interpretation.
For example, an odds ratio of 2 for a given predictor indicates that
increasing that predictor by 1 unit makes a response twice as likely.

2.4.2. Specification and interpretation of the Bayesian GLMM
The model contained three fixed effects factors – Stimulation

(Active or Sham), Touch (Touch or No touch), and Light (Light or No
light) – and all interactions between them. Participant was specified as
a random effect, with random slopes for each fixed effect and all in-
teractions, random intercepts, and a full, unstructured correlation
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matrix. The model was fit using an adaptive Hamiltonian Monte-Carlo
Markov-Chain (MCMC) algorithm implemented in Stan (Carpenter
et al., 2017). In brief, this process estimates regression coefficients
through exploration of the parameter space to produce a posterior
distribution. The posterior distribution thus represents plausible para-
meter values after taking into account both our priors and the data we
observed. Here, we use the mean of the posterior distribution for each
parameter as the estimated β coefficient for that parameter. We ad-
ditionally summarise each distribution using 95% credible intervals,
which capture 95% of the posterior probability mass. To further aid
interpretation, we also report the posterior probability as the propor-
tion of the posterior distribution that is below zero. The higher this
proportion, the more likely it is that a particular parameter is above
zero under this model, and vice versa. Thus, a proportion of .5 would
indicate that parameter is equally likely to above or below zero.

We used non-informative priors in our analysis. Specifically, there
were improper uniform priors from negative to positive infinity on the
mean for population-average (i.e. fixed) effects, including the inter-
cepts; an LKJ-prior (ν=1) on the correlations between the random
slopes and the intercept; and a half (i.e. constrained to be positive)
Student-t prior with shape parameter 3 and scale parameter 10 on the
standard deviations of the random slopes. These priors provide little
information regarding the parameter values, primarily serving to reg-
ularize the estimates of the parameters of the random effects structure.
This ensures that all parameters are identifiable, and biases them
against reaching improbably large values. We ran four Markov chains
simultaneously, each for 5000 iterations. The first 2500 of those
iterations were discarded as warm-up samples to adaptively tune the
MCMC sampler. Convergence of the chains was assessed by visual in-
spection of their traces, which indicated that they mixed well and
converged on the same parameter spaces. The R̂ statistic (Gelman and
Rubin, 1992) was ~1.00 for all parameters.

All analyses were conducted using R (Version 3.5.1; R Core Team,
2018) and the R-packages afex (Version 0.22.1; Singmann et al., 2018),
brms (Version 2.6.0; Bürkner, 2017), emmeans (Version 1.3.0; Lenth,
2018), metaSDT (Version 0.5.0; Craddock, 2018), papaja (Version
0.1.0.9842; Aust and Barth, 2018), tidybayes (Version 1.0.3; Kay, 2018),
and tidyverse (Version 1.2.1; Wickham, 2017).

3. Results

3.1. Standard ANOVA analyses

We first examined performance in a classical SDT framework. We
found no significant difference in sensitivity (d′) between trials with a
light (1.70) and trials without a light (1.79, [F(1,20)= 2.07,
MSE=0.08, p= .165, =η̂ .001G

2
]), and no significant effect of

Stimulation on d′ [Sham=1.69; Active= 1.80; F(1,20)= 0.16,
MSE=1.59, p= .693, =η̂ .002G

2
]. There was also no significant inter-

action between Stimulation and Light on d′ [F(1,20)= 1.04,
MSE=0.04, p= .319, =η̂ .000G

2
], see Fig. 1a.

For response criterion (c), there was no significant main effect of
Stimulation (Sham=0.89; Active= 0.76; [F(1,20)= 1.02,
MSE=0.35, p= .325, =η̂ .012G

2
]). However, there was a significant

main effect of Light [F(1,20)= 10.03, MSE=0.02, p= .005,
=η̂ .006G

2
], with a more liberal bias (i.e. an increase in “yes” reports) on

light trials (c=0.77) than on no light trials (c=0.87). Importantly,
there was a significant interaction between Stimulation and Light [F
(1,20)= 5.16, MSE=0.02, p= .034, =η̂ .004G

2
], see Fig. 1b. This in-

teraction was driven by a significant difference between light and no-
light trials in the Active stimulation condition (p= .001, Bonferroni-
Holm corrected for 6 comparisons). Specifically, there was lower c on
trials with a light (c=0.67) than on trials with no light (c=0.84). In
Fig. 1b, the pattern of lines in the interaction plot suggest a degree of
heterogeneity in the interaction between Stimulation and Light for

response criterion, but with the most consistent change being a shift
towards a more liberal response criterion for light trials relative to no
light trials (i.e. more negative values). No other comparisons were
significant (all ps= 1) .

In our analysis of reporting rates, there was a significant effect of
Touch [F(1,20)= 57.56, MSE=0.13, p< .001, =η̂ .516G

2
], with re-

ports of touch much more likely on trials with touches (48.51%) than
without (6.26%). No other effects were significant (all ps > .06; see
Table 1 and Fig. 2).

3.2. Bayesian multilevel model

The Bayesian GLMM proved notably different from the repeated
measures ANOVA on reporting rates (see Table 2 and Fig. 3). The
Bayesian R2 for the model was .429 (Gelman et al., 2017). The strong
effect of Touch on reporting rates was consistent with the ANOVA, but
the model also suggests that there was a small increase in reporting
rates on Light trials, with the vast majority of posterior samples for this
coefficient being above zero (p(β < 0)=0.02). Furthermore, the in-
teraction between Light and Touch was also strongly likely to be ne-
gative (p(β < 0)=0.96). On touch trials, the difference between light
and no light trials was inconsistent, sometimes positive, sometimes
negative. On no touch trials, reporting rates were consistently higher on
light trials than on no light trials (see Fig. 4a).

More importantly, the model also suggested that some Stimulation
effects were also non-zero. The coefficient for the effect of Stimulation
was negative (β=0.80), and most of the posterior density fell below 0
(p(β < 0)=0.91), indicating that the coefficient has a high probability
of being below zero. Thus, reporting rates were likely higher overall in
the Active condition than in the Sham condition. Importantly, the in-
teraction between Stimulation and Light, though small, was also likely
to be negative (β=0.94, CIs= [0.86, 1.02], p(β < 0)=0.92). As can
be seen in Fig. 4b, on Sham stimulation trials, there was little difference
between trials with a light and without a light. But during Active sti-
mulation, all participants showed increased reporting of touches during
trials with a light compared to trials without a light.

Critically, there was little evidence of an interaction between
Stimulation and Touch. The posterior density spanned zero, with only a
low probability of the parameter being negative (p(β < 0)=0.57).
The three-way interaction between Stimulation, Touch, and Light was
similarly equivocal, albeit with a posterior probability more in favour of
the parameter being positive than negative (p(β < 0)=0.29). Thus, to
the extent that Stimulation had effects on reporting of touch, these ef-
fects were driven by changes in responses to the light.

4. Discussion

We examined the effects of 10 Hz transcranial alternating current
stimulation (tACS) over centro-parietal regions on performance of the
Somatic Signal Detection Task. We previously reported that oscillatory
activity in this frequency range influenced reporting of touch in-
dependently of whether touch is actually present (Craddock et al.,
2017). Our analysis of signal detection measures suggested that tACS
stimulation did not influence detection sensitivity, but did introduce a
more liberal bias towards responding that touch was present, especially
when the light was present. Our Bayesian model also suggests that re-
ports of touch were increased during active stimulation, with an addi-
tional increase in the presence of light flashes. This was independent of
whether a target touch stimulus was present or not. In combination,
these results suggest that tACS stimulation at 10 Hz modulated response
bias independently of sensitivity.

We reported in Craddock et al. (2017) that reports of touch decline
as pre-stimulus alpha power increases and increase as it decreases, in-
dependent of whether touch is present. This would imply that tACS
would need to decrease alpha power in order to increase reports of
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touch. For visual alpha, oscillatory power during stimulation shows an
online increase during stimulation (e.g. Helfrich et al., 2014). This in-
crease persists after stimulation (e.g. Kasten et al., 2016; Vossen et al.,
2015; Zaehle et al., 2010), and thus the offline effects mirror the online
effects of stimulation. Gundlach et al. (2017) reported a decrease in the
power of somatosensory alpha rhythms after 10 Hz tACS stimulation,
but online effects of tACS stimulation on somatosensory alpha are as yet
unclear. If online effects of 10 Hz tACS on somatosensory alpha mirror
offline effects, as in vision, they would lead to an increase in reporting

of touch and a more liberal response bias, as found here.
There are grounds to suggest that the stimulation montage itself

may influence the direction of changes in alpha power. With tACS, the
direction of current flow alternates between electrodes, so a peak at the
left electrode would be mirrored by a trough at the right electrode and
vice versa. A typical anterior-posterior montage used for stimulating
parieto-occipital alpha would produce phasic stimulation of the alpha
generators, whereas the non-central montage we used and that used by
Gundlach et al., stimulate bilateral somatosensory cortices in antiphase.

Fig. 1. Boxplots of the signal detection measures d′
(row a) and c (row b). Boxes indicate the inter-
quartile range. Lines within the boxes indicate the
median. Whiskers extend 1.5 times above and below
the inter-quartile range. Individual dots show in-
dividual participant scores. The right column shows
the difference between d′ and c in the Light and No
Light conditions in order to show the interaction
between light and stimulation. Lines connecting in-
dividual dots join data points belonging to the same
participant.

Table 1
Results of the repeated measures ANOVA on touch reporting rates.

Effect F df1 df2 MSE p η̂G
2

Touch 57.56 1 20 0.13 < .001 .516
Light 1.78 1 20 0.00 .197 .001
Stimulation 0.22 1 20 0.04 .644 .001
Touch×Light 0.52 1 20 0.00 .479 .000
Touch×Stimulation 0.04 1 20 0.05 .844 .000
Light× Stimulation 3.99 1 20 0.00 .060 .001
Touch×Light× Stimulation 0.19 1 20 0.00 .666 .000

Fig. 2. Boxplots of mean response rates in each combination of stimulation,
touch and light conditions. Boxes indicate the inter-quartile range. Whiskers
extend 1.5 times above and below the limits of the inter-quartile range. Lines
within the boxes show the median. Individual dots indicate mean response rates
for individual participants.

Table 2
Table of fixed effects from the Bayesian GLMM.

Term Beta SE Lower CI Upper CI

Intercept 0.17 1.37 0.09 0.32
Stimulation1 0.80 1.18 0.56 1.10
Light1 1.10 1.05 1.01 1.22
Touch1 7.08 1.40 3.66 13.95
Stimulation1:Light1 0.94 1.05 0.86 1.02
Stimulation1:Touch1 0.97 1.20 0.68 1.40
Light1:Touch1 0.93 1.05 0.84 1.01
Stimulation1:Light1:Touch1 1.02 1.04 0.94 1.12

Note. CIs are 95% credible intervals. All units are odds-ratios.

Fig. 3. Posterior densities and credible intervals for the fixed effect coefficients.
Dots indicate the mean of the posterior distribution. Bars indicate 66% (thick)
and 95% (thin) credible intervals.
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A computational study by Kutchko and Fröhlich (2013) suggested that
phasic stimulation across multiple network sites should increase oscil-
latory power and enhance synchronization between those sites,
whereas antiphasic stimulation would disrupt synchronization and not
increase in oscillatory power. Nevertheless, non-central stimulation has
been used over occipital regions in the study of visual alpha, which
resulted in the typical increase in alpha power (Vossen et al., 2015;
Zaehle et al., 2010). Thus, another possibility is that the differences in
the direction of alpha power changes across somatosensory and visual
tACS studies may be driven by different dynamics in the targeted brain
regions, rather than differences in stimulation montage per se.

An explanation for the influence of alpha power on touch is that it
may reflect variation in cortical excitability (e.g., Iemi et al., 2016;
Kelly et al., 2006; Lange et al., 2013; Romei et al., 2008). Alpha power
increases as cortical inhibition increases, and decreases with increased
cortical excitability (Peterson and Voytek, 2017). The balance of ex-
citation and inhibition across cortical areas may reflect suppression of
sensory responses during selective attention (Foxe and Snyder, 2011).
For example, during visual spatial attention tasks, oscillatory power in
the alpha band is lower over the hemisphere contralateral to the at-
tended region of space and higher over the hemisphere ipsilateral to the
ignored region of space (e.g. Thut et al., 2006). Increasing inhibition
suppresses low-level cortical responses and restricts outflow of in-
formation to higher-level cortical areas (Jensen and Mazaheri, 2010).
Concomitantly, an increase in excitability lifts that gate and allows
more information out, therefore shifting to a more liberal response bias.

Nevertheless, in the context of an increase in cortical excitability in
somatosensory cortex, the interaction with the light is unexpected. We
might instead have expected overall response rates to increase irre-
spective of the influence of the light. However, the effect of light was
multiplicative with active stimulation. Active stimulation increased
reports of touch even without the light; the increase was simply larger
when the two were combined. During sham stimulation, there was little
consistent difference in reporting rates between light and no-light trials.
Thus, the combination of both active stimulation and light flashes in-
duced a more liberal response bias. An increase in output from soma-
tosensory regions would give increased opportunities for the light to
boost responses to perceived somatosensory stimulation. More broadly,
since regions beyond our putative target processes and oscillatory
rhythms in somatosensory cortex also play a role in the decision making
process, we must also consider the possibility that our stimulation in-
fluenced these additional, non-target regions. A primary candidate
would be motor cortex. However, current evidence suggests tACS at

10 Hz has little impact on motor cortex, with stimulation at 20 Hz, in
the beta frequency range, having a much stronger influence (Feurra
et al., 2011, 2013). Other studies of more abstract decision making
typically involve stimulation with different montages. More plausibly,
regions involved in supramodal processes, such as parietal cortex
(Levine and Schwarzbach, 2017), may have been affected by our sti-
mulation. This may have lead to a reweighting of sensory evidence
towards greater use of the visual signal.

Our results do come with some caveats. First, our comparison of
active versus sham stimulation would not allow us to make concrete
statements about the specificity of stimulation at a particular frequency,
since we stimulated only at a single frequency. Second, since we did not
record EEG before and after stimulation, we cannot be sure that we
directly influenced visual alpha or somatosensory alpha rhythms.
Finally, since we used only a single pair of stimulation locations, we
cannot necessarily distinguish between non-specific effects of tACS and
direct effects of stimulation on the specific rhythms of interest. Overall,
however, our results are consistent with tACS stimulation at 10 Hz over
somatosensory regions altering response bias in the SSDT, and thus
provide support for a direct role of alpha oscillatory rhythms in tactile
perception.
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