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Background: Clinical and experimental acute pancreatitis feature histone release within the pancreas
from innate immune cells and acinar cell necrosis. In this study, we aimed to detail the source of
circulating histones and assess their role in the pathogenesis of acute pancreatitis.
Methods: Circulating nucleosomes were measured in patient plasma, taken within 24 and 48 h of onset
of acute pancreatitis and correlated with clinical outcomes. Using caerulein hyperstimulation, circulating
histones were measured in portal, systemic venous and systemic arterial circulation in mice, and the
effects of systemic administration of histones in this model were assessed. The sites of actions of
circulating histones were assessed by administration of FITC-labelled histones. The effects of histones on
isolated pancreatic acinar cells were further assessed by measuring acinar cell death and calcium
permeability in vitro.
Results: Cell-free histones were confirmed to be abundant in human acute pancreatitis and found to
derive from pancreatitis-associated liver injury in a rodent model of the disease. Fluorescein isothianate-
labelled histones administered systemically targeted the pancreas and exacerbated injury in experi-
mental acute pancreatitis. Histones induce charge- and concentration-dependent plasmalemma leakage
and necrosis in isolated pancreatic acinar cells, independent of extracellular calcium.
Conclusion: We conclude that histones released systemically in acute pancreatitis concentrate within the
inflamed pancreas and exacerbate injury. Circulating histones may provide meaningful biomarkers and
targets for therapy in clinical acute pancreatitis.
© 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Introduction

Acute pancreatitis (AP) is one of the commonest gastrointestinal
causes of hospital admission [1,2] with rising incidence and sig-
nificant socio-economic cost [3,4]. Severe disease features persis-
tent organ failure, often with profound pancreatic injury [5].
However, where pancreatic necrosis was once thought as causative
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of organ failure, it is accepted that necrosis occurs both with and
without distal organ injury and it is the systemic insult that most
contributes to mortality [6e8]. Experimental models demonstrate
causal relationships between the innate immune system, pancre-
atic and systemic injury [9], suggestive of immune feedback exac-
erbating end-organ damage [10].

A potential mechanism by which the innate immune system
exacerbates pancreatic injury is the generation and release of
neutrophil extracellular traps (NETs). Neutrophils release NETs, a
primary structural and functional component of which are histones
[11e13], in a process termed NETosis [13]. Histones are nuclear
chaperone proteins that are highly conserved across species [14]
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with microbicidal properties [15] and therefore considered an
evolutionarily ancient component of the innate immune system.
Histones furthermore act as damage-associated molecular patterns
(DAMPs) via toll-like receptors, stimulating the NLRP3 inflamma-
some or inducing calcium influx into target cells by an unknown
mechanism [16,17]. The ability to generate calcium influx into cells
is of particular interest, as calcium overload is a critical pathway
towards acinar cell necrosis in acute pancreatitis [18,19].

NETosis has recently been demonstrated to contribute to disease
severity in an experimental model of acute pancreatitis [11,20].
Furthermore, the concentration of circulating histones correlates
with severity of experimental pancreatitis [21] and has most
recently been shown to be predictive of organ failure in human
pancreatitis [22]. This is consistent with a hypothesis that histones
are released either passively from necrotic pancreatic acinar cells
[23] or actively through pro-inflammatory NETosis. In this work, we
aim to determine the primary source of histones in circulation and
detail the mechanisms by which they contribute to pancreatic
acinar cell injury, better understanding of which will allow design
of novel therapies.

Materials and methods

Patient samples

Patients with acute pancreatitis included in the National Insti-
tute of Health Research Liverpool Pancreas Biomedical Research
Unit Acute Pancreatitis Biobank were selected at random and
plasma samples obtained as approved by the regional ethics com-
mittee (REC 10/H1308/31). All adult (18e99 years of age) patients
attending the Royal Liverpool University Hospital with a diagnosis
of acute pancreatitis of any aetiology (amylase >450IU, typical pain
and/or pancreatic inflammation on cross-sectional imaging) were
eligible for inclusion to the biobank. Patients who were unable to
consent (e.g. unconscious), had a history of recurrent acute or
chronic pancreatitis or a history of pancreatic surgery or malig-
nancy were excluded. Samples were collected prospectively within
24 h of admission from consenting patients who had presented
within 72 h of onset of pain, together with clinical data that allowed
severity stratification according to the 2012 Revised Atlanta Clas-
sification [5] after discharge. All samples were processed within
30 min of blood sampling and stored at �80 �C. Collection, pro-
cessing, storage, monitoring and usage of samples followed pre-
defined standard operating procedures and Good Clinical Practice.

Experimental animals

All animal studies were ethically reviewed and conducted as per
the UK Animals (Scientific Procedures) Act 1986 under a project
license approved by the UK Home Office (PPL 70/8109). Male
C57BL/6J mice (age 8e10 weeks) were purchased from Charles
River UK Ltd (Margate, Kent, UK), housed in a pathogen-free unit
with 12h light-dark cycles and had free access to standard lab chow
and water.

Reagents

Digitonin was from Calbiochem (Manchester, UK). BCA protein
assay was from Thermo (Rockford, USA). Anti-histone H3 antibody
was from Abcam (Rabbit monoclonal, 1:00 dilution; Abcam, Cam-
bridge, UK), Calf-thymus histones, propidium iodide (PI), poly-D-
glutamic acid (PGA), caerulein, acetic anhydride, protease in-
hibitors, phosphate-buffered saline (PBS) and other chemicals were
from Sigma-Aldrich (Gilliangham, UK) of highest quality available.
Non-specific polyacetylation of histones was achieved by addition
of a molar excess of acetic anhydride, similar to established pro-
tocols [24]. Histones were recovered by solvent evaporation in a
fume cabinet and resuspended in PBS prior to use. For some ex-
periments histones were conjugated with fluorescein isothiocya-
nate (FITC) and passed through an ion exchange column to remove
excess dye according to established procedures [25].
In vitro assays

Murine pancreatic acinar cells were freshly isolated as previ-
ously described [26e28]. Cell death assays were performed with
minor modifications of previous protocols [29,30]. In brief, freshly
isolated pancreatic acinar cells were suspended in PBS in the
presence of PI (2 ml) with or without PGA (50 mg/ml) and seeded on
a 96 well plate in a total volume of 200 ml per well. Signal was
recorded every minute (Ex 540 nm/Em 620 nm) for 150min using a
BMG POLARstar Omega Microplate Reader (Imgen Technologies,
New York, USA). Histones (50, 100 or 200 mg/ml) or digitonin
(600 mM) was added after 30 min of establishing a stable baseline.
Percentage cell death in each experimental well was calculated as a
proportion of maximum fluorescence in digitonin wells. Confocal
images of isolated acinar cells were taken using a Zeiss LSM 710
(ZEISS Microscopy, Cambridge, UK) inverted confocal microscope
with a 40x objective.
Cellular Ca2þ measurements

Murine acinar cells were loaded and incubated with fura-2
(5 mM) as previously described [31]. Cells were visualised using a
Till Photonics imaging system (Till Photonics Gmbh, Germany),
exciting at 340 and 380 nm (and in selected experiments at
360 nm) and emission collected using a 510 nm narrow band-pass
filter. Data for each excitationwavelength as well as the ratio of 340
vs 380 excitation were collected.
In vivo experiments

Mild oedematous acute pancreatitis was induced by 4 hourly
[21] and necrotizing acute pancreatitis by 12 hourly [21,32] intra-
peritoneal injections of caerulein (50 mg/kg). FITC-tagged histones
(20 mg/kg) were administered via the tail vein immediately
following the last caerulein injection. Animals were sacrificed 6 h
following administration of the first caerulein injection. Organs
were harvested, washed in PBS and briefly dried on sterile gauze.
Organs were imaged using an IVIS Spectrum preclinical imaging
system (Perkin Elmer, Waltham, MA, USA) utilizing the epifluor-
escence function collecting signal for 8 s. In selected experiments,
calf-thymus histones (20 mg/kg) or PBS (200 ml) was administered
in the same way as above. Animals were sacrificed and tissues
harvested for further analysis 12 h after the first caerulein injection.
For portal, central venous and arterial blood sampling animals
received an overdose of pentobarbital, abdominal and thoracic
cavities where opened and plasma samples taken into EDTA sy-
ringes containing 1%w/v heparin from portal vein, thoracic inferior
vena cava and left ventricle. Histone quantification was performed
by Western blot and densitometry performed in ImageJ [33].
Pancreatic myeloperoxidase activity

Pancreatic myeloperoxidase activity was determined as previ-
ously described [34] and protein concentration measured by a
standard BCA protein assay (Pierce BCA Protein Assay Kit, Thermo
Fisher Scientific, UK) as per the manufacturer's instructions.
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Pancreatic histopathology

Pancreatic tissue was fixed in 10% formalin, embedded in
paraffin and stained (haematoxylin and eosin). Histological scoring
was performed on 10 random fields (x200) by two experienced,
independent investigators blinded to the experimental groups.
Scores (0e3) were given for each of oedema, inflammatory cell
infiltration and acinar cell necrosis as described [32].
Statistical analysis

All analyses were performed in GraphPad Prism version 6.05 for
Windows (GraphPad Software, La Jolla, CA, USA). Data are pre-
sented as mean ± SEM. The differences between groups were
compared using two-way ANOVA followed by Tukey's multiple
comparisons test. P value < 0.05 was considered significant.
Results

Histone concentration in circulation correlates with disease
severity in patients.

In accordance with our hypothesis and in agreement with data
published by our group using alternative methods [22], we
demonstrated that circulating histone concentrations (measured as
DNA-histone complexes) correlate with AP severity in plasma
samples from 50 patients (mild and/or moderate, n ¼ 36; severe,
n ¼ 14) taken on admission to hospital. Using the revised Atlanta
classification (RAC) of AP5 levels of circulating, cell-free nucleo-
somes were significantly higher in severe compared to mild/mod-
erate disease (Fig. 1A, P < 0.0001), in keeping with what is known
about experimental AP21. ROC curve analysis revealed 0.87 accuracy
(Fig. 1B, P ¼ 0.001) in discrimination between mild/moderate and
severe AP on admission, highlighting the potential clinical utility of
measuring circulating nucleosome levels in predicting severe AP.

Circulating histones derive primarily from the liver and
concentrate in the pancreas in AP.

We postulated that the primary source of circulating histones in
AP would be either necrotic pancreatic acinar cells or recruited
innate immune cells within the pancreas, which have been shown
to release histones as part of neutrophil extracellular trap com-
plexes locally in the context of AP11. We induced necrotic AP by 12
hourly injections of caerulein, collected plasma from three different
sites of each experimental animal: portal vein, thoracic inferior
vena cava and left ventricle, and measured relative concentrations
of histone H3 by Western blot (Fig. 1C). Histone H3 levels were
significantly elevated in central venous blood (Fig. 1D) over both
portal and arterial blood. Levels of alanine aminotransferase (ALT)
were elevated in AP mice (Fig. 1E), however liver histology revealed
only vacuolisation of hepatocytes e and no necrosis - in zone 3
(Fig. 1F).

To determine whether circulating histones could accumulate
within the pancreas, we injected FITC-labelled histones (20 mg/kg,
a dose without significant organ toxicity [35]) into a mild oedem-
atous AP model induced by 4 hourly injections of caerulein and
measured fluorescence in all major organs after 6 h using an IVIS
spectrum epifluorescence chamber. The only detectable FITC signal
was in pancreata of AP mice, indicating specific targeting of his-
tones to the pancreas with pre-existing injury (Fig. 2A and B).
Treatment with unconjugated FITC alone did not produce a similar
signal (Supp. Fig. 1A), indicating concentration of histones within
the inflamed pancreas and not hyperaemia or an exudative mech-
anism. There was no detectable signal in the heart, lungs, liver,
kidneys or spleen in caerulein-treated (Supp. Fig. 1B) or control
animals (Supp. Fig. 1C & Supp. Fig. 3).
Circulating histones exacerbate pancreatic necrosis in vivo

Given that levels of circulating histones correlate with disease
severity and that histones accumulate in the inflamed pancreas
in vivo, we hypothesised circulating histones could exacerbate
pancreatic injury in AP, as seen in ischaemia-reperfusion liver
injury [35]. We administered histones (20 mg/kg) intravenously via
the tail veins of C56Bl6/J mice following either 4 hourly injections
of caerulein or saline andmeasured parameters of pancreatic injury
12 h after the first caerulein injection. Histones alone did not raise
serum amylase levels or pancreatic myeloperoxidase activity
beyond control, but administration of histones in the context of
mild caerulein-induced AP increased pancreatic inflammation as
measured by myeloperoxidase activity above caerulein alone
(Fig. 2C and D). Similarly, histones markedly increased pancreatic
inflammatory cell infiltration and acinar cell necrosis in caerulein-
induced AP (Fig. 2E), confirmed by blinded histopathological scores
(Fig. 2FeH).

Histone toxicity is dose- and charge-dependent

Freshly isolated murine pancreatic acinar cells were treated
with histones in the presence of propidium iodide (PI) to interro-
gate their effects on cell integrity. A concentration-dependent in-
crease of PI fluorescence was observed using histone
concentrations relevant to experimental AP models [21] (0, 50, 100
and 200 mg/ml), with 200 mg/ml causing necrosis of almost all cells
within 60 min (Fig. 3A). Histone-induced necrotic cell death
pathway activation was inhibited by polyglutamic acid, a biologi-
cally inert, negatively charged polypeptide of similar molecular
weight with high charge density (Fig. 3B). Poly-acetylation of his-
tones with acetic anhydride had a similar effect (Fig. 3C). Applica-
tion of FITC-labelled histones resulted in fluorescence exclusively at
the acinar cell membrane persisting until membrane integrity was
lost (Fig. 3D), consistent with binding of strongly positive histones
to negatively charged membrane phospholipids [36].

Disruption of plasmalemma is main mechanism of histone toxicity

As calcium overload is critical in pancreatic acinar cell injury and
there is uncertainty as to the role and mechanism of intracellular
Ca2þ changes in histone-mediated cellular injury [12], we
measured intracellular Ca2þ changes in fura-2 loaded pancreatic
acinar cells treated with histones. Two types of response were
observed (Fig. 3E and F), sometimes in the same cell: fluorescence
elevations at 340 nm excitation mirrored by opposing falls at
380 nm, indicative of true Ca2þ signals, and elevations at 340 nm
followed by significant falls in signal below baseline that indicated
loss of dye through cell permeabilization. When repeated in Ca2þ-
free solution, similar falls were seen without preceding elevations,
confirmed by recordings with excitation at 360 nm, close to the
Ca2þ-independent isosbestic point of fura-2 (Supp. Fig. 2A). The
signal recorded at 360 nm was stable until cell permeabilization
occurred, when the signal dropped to a new baseline (Supp.
Fig. 2B). Higher histone concentrations led to greater and more
rapid dye loss (Supp. Fig. 2C). Together, these data indicate that
histones permeabilize cells non-specifically to small molecules in a
Ca2þ-independent manner. This was confirmed measuring PI sig-
nals in response to increasing concentrations of histones in Ca2þ-
free solution supplemented with Ca2þ chelator (0.5% EGTA) or
supra-maximal extracellular Ca2þ (5 mM). There were no differ-
ences in histone-related cell permeability in any of these groups
compared to standard buffer (1.2 mM Ca2þ HEPES buffer; Fig. 3G).
This finding does not exclude the possibility that histones partici-
pate in Ca2þ-dependent signalling pathways observed by others at



Fig. 1. Circulating nucleosomes correlate with human AP severity and extracellular histones induce plasmalemma leakage and cell death. (A) Admission plasma nucleosome levels
in patients with AP (median ± IQR; RAC mild/moderate n ¼ 36; severe n ¼ 13); (B) ROC curve of circulating nucleosomes and CRP in predicting severe disease; (C) Semi-quantitative
Western Blot of histone H3 from plasma of mice with severe AP (12 hourly i.p. caerulein 50 mg/kg injections). The first three lanes contain recombinant histone H3, the next six are
biological repeats. Matched portal venous, central venous and arterial samples are from the same animal; (D) Relative densities of histone H3 bands frommurine plasma; (E) Plasma
alanine aminotransferase levels in mice with severe AP and saline control; (F) Representative Haematoxylin/Eosin micrograph of livers of mice with severe AP and saline controls.
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Fig. 2. Systemically administered histones aggregate within the inflamed pancreas to exacerbate necrosis. (A) Representative epifluorescent image of pancreas and spleen of
animals with mild AP injected with FITC-labelled histones or saline 6 h following the first caerulein injection; (B) Maximum pancreatic fluorescence at 6 h in AP and control animals
injected with FITC-histones or saline; (C) Serum amylase and (D) pancreatic myeloperoxidase 12 h following first caerulein injection; (E) Representative H&E image of pancreas
(�400 magnification) and histopathological (F) edema, (G) inflammatory cell infiltration and (H) necrosis scores. All data mean ± SEM unless otherwise indicated from 3 to 6
independent experiments. *P < 0.05 vs saline alone or histones alone groups, **P < 0.01 vs all other groups, #P < 0.05 vs caerulein with saline group.
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Fig. 3. Histones disrupt the pancreatic acinar cell plasmalemma, allowing influx of ions and small molecules. (A) Maximum PI fluorescence within 60 min of histone treatment, and
following pre-treatment with 50 mg/ml PGA (B) or using toxic dose of poly-acetylated histones (C), as a proportion of fluorescence after digitonin lysis; (D) Representative confocal
micrograph of freshly isolated murine pancreatic acinar cell cluster over time (transmitted light image, upper row), with toxic dose of FITC-labelled histones (green) at 5 min,
observing for PI (red) uptake; Representative trace (340 nm ¼ solid line; 380 nm ¼ dotted line) of fluorescent intracellular Ca2þ measurements in response to histones (50 mg/ml) in
fura-2 loaded murine pancreatic acinar cells in HEPES and (E) 1.2 mM Ca2þ or (F) 0 mM Ca2þ; (G) Percentage PI uptake following increasing histone concentrations with physi-
ological Ca2þ (1.2 mM), low Ca2þ (0 mM), Ca2þ chelator (0.5% EGTA), or high Ca2þ (5 mM). All data mean ± SEM unless otherwise indicated from at least 3 independent experiments.
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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lower histone concentrations and in other cell types [37], however
at the clinically relevant concentrations used in our experiment
disruption of the plasmalemma appeared to be the predominant
mechanism of toxicity.
Discussion

Mechanisms of innate immunity and inflammation contribute
greatly to organ injury and mortality in acute pancreatitis and this
work advances understanding of some of the pathways involved,
summarised in Fig. 4. We demonstrate correlation between circu-
lating histone concentration and severity of AP, in agreement with
data from experimental models [21] and patients [38] alike. We
furthermore demonstrate an early rise in histone concentration
within 24 h of disease onset in patients with AP.

Current understanding led us to hypothesize that the source of
histones in circulation was a combination of pancreatic cellular
necrosis and intra-pancreatic extracellular trap release by invading
innate immune cells [11]. This would mean the highest measure-
able histone concentration in any given animal with acute
pancreatitis should be the first common venous drainage channele
the portal vein. We clearly demonstrate peak histone concentra-
tions in the post-hepatic vena cava, concluding that the liver is the
predominant source of histones in circulation. While we further
demonstrate elevations in ALT and structural hepatocyte damage in
poorly oxygenated zone 3, it is worth noting that the role of ALT in



Fig. 4. Summary figure detailing the proposed interaction between systemic histone release and pancreatic acinar cell injury.
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human acute pancreatitis is less clear, as the two commonest
causes of pancreatitis (gallstones and ethanol) can independently
affect ALT levels. Apoptosis of lymphocytes [39] in systemic circu-
lation has also been postulated as primary cause of the rise in
circulating histones in AP21 or sepsis [40]. The relatively low his-
tone concentrations in arterial blood, however, adds further sup-
port to the liver as primary source in our model and indeed allows
us to hypothesize that the pulmonary circulation acts as a filter for
circulating histones. It is possible that rather than hepatocyte
injury, resident Kupffer cells or peritoneal macrophages, recruited
to the liver in inflammation [41,42], contribute to the release of
histones in response to portal vein DAMPs as previously shown
in vitro [43]. This interpretation would be supported by data
showing reduced liver injury in experimental AP following Kupffer
cell depletion [44] as well as reduced lung injury seen in AP with
Kupffer cell inhibition [45]. As one of the earlier descriptions of the
role of hepatic NETs was to limit systemic spread of micro-
organisms in sepsis [46] and bacterial translocation resulting
from intestinal barrier failure is a hallmark of human and experi-
mental acute pancreatitis [47,48], portal sepsis may be the principle
determinant of hepatic histone release. This hypothesis would
provide a mechanistic link between pancreatitis severity and he-
patic NET/histone release, and a potential explanation how
pancreatic infection could contribute to disease severity [49]. The
use of only a single experimental model of acute pancreatitis is an
obvious limitation when making conclusions about the source of
histones in acute pancreatitis. Nevertheless, we have previously
demonstrated similar patterns of extracellular histones in the sys-
temic circulation using several experimental models [21] as well as
in pancreatitis patients [22].

Irrespective of the primary source of circulating histones, we
needed to investigate the effect of systemic administration of his-
tones on the pancreas. Our data confirms that histones adminis-
tered via the tail vein of a mouse can not only concentrate within
the inflamed pancreas, but exacerbate organ injury. Histones have
been demonstrated to adhere to membranes of many cell types as
well as artificial bilayers and a previous report on organ distribu-
tion of systemically administered FITC-labelled histones
demonstrated targeting of the lung [25]. That study, however, used
more than double the histone concentration (45 mg/kg) in the
context of an experimental sepsis model, supporting our findings
that histones only concentrate within an inflamed pancreas.
Extravasation of net-positively charged histones is likely facilitated
by interaction with and exposure to the extracellular matrix and
net-negatively charge proteoglycans such as heparan sulfate. Given
that histones themselves exert antimicrobial activity and that
infection of necrosis significantly increases mortality in necrotizing
pancreatitis [49e51], this mechanismmay even offer some survival
benefit at the cost of exacerbating disease in the short term.

Our in vitro work documents the charge dependent interaction
between histones and pancreatic acinar cells and the predominant
mechanism of acinar cell death seen in our experimental set-up
using disease-relevant histone concentrations [21] is membrane
disruption. Histones and histone fragments have been shown to
form pore-like structures within lipid bilayers [52], which would
explain our observation of increased membrane conductance to
calcium and small molecular weight dyes in the context of cell
death independent of extracellular calcium concentrations. Previ-
ous work documents enhanced histone-membrane interactions
through negatively charged surface molecules [53] such as phos-
phatidylsereine [36], suggesting histones may preferentially bind
apoptotic cells and that neutralizing charge on extracellular his-
tones could be a potential therapeutic strategy.

Collectively, these data demonstrate circulating histones are
important early mediators of AP severity and implicate the liver as
the primary source in circulation; circulating histones concentrate
within the inflamed pancreas and actively contribute to pancreatic
acinar cell necrosis by disruption of the plasmalemma in a charge-
and dose-dependent manner. Strategies to detect sharp rises of
circulating nucleosomes and detoxify histones may prove effective
in detecting and/or preventing severe AP.
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