# Conscious Processing and Cortico-cortical Functional Connectivity in Golf Putting

Germano Gallicchio,<sup>a</sup> Andrew Cooke,<sup>b</sup> and Christopher Ring<sup>a</sup>

<sup>a</sup> School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, UK

<sup>b</sup> School of Sport, Health & Exercise Sciences, Bangor University, UK

#### Introduction

The *Theory of Reinvestment:*<sup>[1]</sup>

Automated motor processes are disrupted when task-relevant declarative knowledge is used to consciously control movements.

left temporal frontal EEG: High alpha (10-12 Hz) (verbal/analytic) (pre-motor)

Functional connectivity:

- Lower in expert (vs. novice) marksmen.<sup>[2]</sup>
- Higher in novice golfers with high (vs. low) propensity for conscious processing of movement.<sup>[3]</sup>

#### Hypotheses:

• Left temporal to frontal connectivity:

- **Participants:** Handicap Experience yrs. Μ M 1.50 11.25 - Experts (N = 10)no formal 1.85 - *Novices* (N = 10) handicap

#### Design:

- Between subjects Group (expert, novice)
- Within subjects

### **UNIVERSITY**OF BIRMINGHAM

## **Task:** Golf putting 120 putts 2.AU

**Methods** 

#### **Measures**:

- Conscious Processing Putting Reinvestment scale 1 = low reinvestment 5 = high reinvestment

- Functional Connectivity Inter Site Phase Clustering  $ISPC(f) = \left| n^{-1} \sum_{t=1}^{n} e^{i \Delta \theta(t,f)} \right|$ 

0 = no functional



experts < novices

experts < novices holed < missed

Outcome (holed, missed) Epoch (-4 to -3s, -3 to -2s, -2 to -1s, -1 to 0s, 0 to +1s)



#### Results

| Group:                                                                                | Expert      | Novice      |                  |     |                   |  |  |  |
|---------------------------------------------------------------------------------------|-------------|-------------|------------------|-----|-------------------|--|--|--|
|                                                                                       | M (SD)      | M (SD)      | <i>F</i> (1, 18) | p   | $\eta_{\rho}^{2}$ |  |  |  |
| T7-Fz ISPC                                                                            | 0.39 (0.04) | 0.48 (0.04) | 3.89             | .06 | .178              |  |  |  |
| T8-Fz ISPC                                                                            | 0.48 (0.05) | 0.51 (0.05) | 0.15             | .70 | .01               |  |  |  |
| Consc. Proc.                                                                          | 2.80 (0.93) | 3.50 (0.77) | 3.55             | .07 | .165              |  |  |  |
| Table 1. Mean (standard deviation) of the left temporal (T7) / right temporal (T8) to |             |             |                  |     |                   |  |  |  |
| frontal (Fz) high alpha (10-12 Hz) Inter Site Phase Clustering (ISPC) and Conscious   |             |             |                  |     |                   |  |  |  |
| Processing in experts and novices. Results of repeated-measure ANOVAs are reported.   |             |             |                  |     |                   |  |  |  |

| Outcome:   | Holed<br><i>M (SD)</i> | Missed<br><i>M (SD)</i> | <i>F</i> (1, 18) | р   | ${\eta_{p}}^{2}$ |
|------------|------------------------|-------------------------|------------------|-----|------------------|
| T7-Fz ISPC | 0.40 (0.04)            | 0.46 (0.05)             | 5.71             | .03 | .241             |
| T8-Fz ISPC | 0.48 (0.05)            | 0.51 (0.06)             | 2.07             | .17 | .103             |

**Table 2.** Mean (standard deviation) of the left temporal (T7) / right temporal (T8) to frontal (Fz) high alpha (10-12 Hz) Inter Site Phase Clustering (ISPC) in holed and missed putts. Results of repeated-measure ANOVAs are reported.



Hz) Inter Site Phase Clustering (ISPC) as a function of Epoch and Group (panel A) and Outcome (panel B). Vertical bars represent SE of the means.

**Figure 2.** Left temporal (T7) / right temporal (T8) to all channels high-alpha (10-12 Hz) Inter Site Phase Clustering (ISPC) as a function of Epoch and Group (panel A) and Outcome (panel B).



#### Discussion

#### **Future directions:**

- Implicit motor learning



Diminished communication left temporal frontal (verbal/analytic) (pre-motor)

Indirect support to the *Theory of Reinvestment*.<sup>[1]</sup>

A motor skill can be learned implicitly (i.e., with reduced movement-relevant declarative knowledge being generated).<sup>[1]</sup>

Implicit learners display lower communication between left temporal and frontal areas and perform better compared to explicit learners.<sup>[3]</sup>

- Neurofeedback

Individuals can be trained to alter selective features of their cortical activity during the acquisition of a motor skill.<sup>[4]</sup>

Training individuals to reduce the communication between their left temporal and frontal cortical areas during motor learning could prevent the formation of movement-related declarative knowledge, promote implicit motor learning, and expedite the novice-expert transition.

#### References

[1] Masters, R. S. W., & Maxwell, J. P. (2008). The theory of reinvestment. International Review of Sport and Exercise Psychology, 1, 160-183.

functional connectivity)

[2] Deeny, S. P., Hillman, C. H., Janelle, C. M., & Hatfield, B. D. (2003). Cortico-cortical communication and superior performance in skilled marksmen: an EEG coherence analysis. Journal of Sport and Exercise Psychology, 25, 188-204.

[3] Zhu, F. F., Poolton, J. M., Wilson, M. R., Maxwell, J. P., & Masters, R. S. W. (2011). Neural co-activation as a yardstick of implicit motor learning and the propensity for conscious control of movement. Biological Psychology, 87, 66-73.

[4] Ring, C., Cooke, A., Kavussanu, M., McIntyre, D.B., & Masters, R.S.W. (2015). Investigating the efficacy of neurofeedback training for expediting expertise and excellence in sport. Psychology of Sport & Exercise, 16, 118-127.

Verbal/analytic interference Errors in movement performance \_\_\_\_\_ with movement preparation and execution (i.e., higher left temporal to frontal (i.e., missed putts)