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Abstract10

11

1. Fast and accurate estimates of wildlife abundance are an essential component of efforts to conserve ecosystems in12

the face of rapid environmental change. A widely used method for estimating species abundance involves flying13

aerial transects, taking photographs, counting animals within the images, then inferring total population size based14

on a statistical estimate of species density in the region. The intermediate task of manually counting the aerial15

images is highly labour intensive and is often the limiting step in making a population estimate.16

2. Here we assess the use of two novel approaches to perform this task by deploying both citizen scientists and deep17

learning to count aerial images of the 2015 survey of wildebeest (Connochaetes taurinus) in Serengeti National18

Park, Tanzania.19

3. Through the use of the online platform Zooniverse, we collected multiple non-expert counts by citizen scientists20

and used three different aggregation methods to obtain a single count for the survey images. We also counted the21

images by developing a bespoke deep learning method via the use of a convolutional neural network. The results22

of both approaches were then compared.23

4. After filtering of the citizen science counts, both approaches provided highly accurate total estimates. The deep24

learning method was far faster and appears to be a more reliable and predictable approach, however we note that25

citizen science volunteers played an important role when creating training data for the algorithm. Notably, our26

results show that accurate, species-specific, automated counting of aerial wildlife images is now possible.27
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Second-language abstract28

1. Namna bora na ya haraka ya kuidadi wanyamapori ni jambo la msingi kwenye jitihada za uhifadhi na ikolojia29

hasa wakati huu wa mabadiliko ya tabia nchi. Mojawapo ya njia ambayo hutumika kuidadi wanyamapori ni kupiga30

picha za angani kwa kutumia ndege ndogo, kisha kuhesabu wanyamapori walioko kwenye picha hizo, na baadaye31

kukokotoa idadi kutokana na ukubwa wa eneo husika. Kazi ambayo huwa ni inachukua muda mrefu ni kuhesabu32

wanyamapori kwenye picha, ambayo huchelewesha ukokotoaji wa idadi ya wanyamapori.33

2. Katika utafiti huu, tumetumia njia mbili za kuhesabu idadi ya wanyamapori kwenye picha anga zilizochukuliwa34

mwaka 2015 katika Hifadhi ya Taifa ya Serengeti nchini Tanzania. Njia hizo ni kuhesabu kwa kutumia watalaam wa35

kujitolea kwenye mtandao wa kijamii na nyingine ni kwa kutumia mfumo wa maalum wa kompyuta wa kung’amua36

maumbo ya vitu.37

3. Kwa kutumia mtandao wa kijamii wa “Zooniverse” tuliweza kufanya majumuisho ya idadi ya nyumbu walio-38

hesabiwa na wataalamu mbalimbali wa kujitolea wa kijamii kutoka kwenye picha husika. Kwa upande mwingine,39

tuliweza kuhesabu nyumbu wote kwenye picha husika kwa kutumia mfumo wa maalum wa kompyuta. Baadae, ma-40

tokeo ya njia zote mbili yalilinganishwa.41

4. Baada ya kulinganisha makossa ya wazi kwenye njia ya kuhesabu kwa kutumia ya watu wa kujitolea kwenye42

mtandao wa kijamii, matokeo ya ukadiriaji wa idadi ya nyumbu kwa njia zote yalikuwa sawia. Hata hivyo, njia ya43

mfumo wa kompyuta ilionesha kutoa matokeo kwa haraka na ya kuaminika. Aidha, tafiti inaonesha wataalamu wa44

kujitolea wa kijamii ni wa muhimu katika kuandaa takwimu za kuufunza mfumo wa kompyuta uliotumika. Kwa45

ujumla, matokeo ya utafiti wetu yameonesha uwezekano wa kuhesabu na kutambua nyumbu kwenye picha kwa kutu-46

mia mfumo wa kompyuta.47

1. Introduction48

Estimating the abundance of animal species is essential for ecologists, conservationists, and wildlife managers49

worldwide. Measuring population abundance enables the early detection of population declines (caused by disease,50

over-harvesting, or changing patterns of land-use), or population increases and expansions; therefore it is a precursor51

for adaptive management and conservation strategies (Walters, 1986). Repeated measurements of population abun-52

dance also provide insight into the key factors that regulate natural populations (Turchin, 1999), a means to determine53

their vital rates (Mduma et al., 1999), and are an essential requirement for validating theoretical models of species54

interactions.55

The challenge of detecting and responding to changes in animal abundance is especially acute in the case of56

migratory species (Harris et al., 2009; Singh and Milner-Gulland, 2011). Estimating population sizes of migratory57
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(a) (b)

(c)

Figure 1: The Serengeti wildebeest census. (a) Map of the region showing the approximate distribution of the herds (shaded) and the transects
flown during the 2015 census. (b) Wildebeest population estimates over time. Shaded region indicates the standard error of the estimate. Since the
1970s estimates have been made using the Jolly II method (Jolly, 1969) with data collected using vertical aerial photography and manual image
counts. Images from a census conducted in 2018 are currently being manually processed. Infrequent counts with large errors highlight the need for
new approaches. (c) An example section of a 2015 survey image showing a group of wildebeest.
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species is a vital, but logistically challenging task. Localized environmental disturbances in large geographic areas are58

often hard to detect, while the fact that migrations span national and regional borders, means implementing protection59

strategies typically involves substantial time to coordinate (Lovejoy et al., 1987; Wilcove and Wikelski, 2008).60

The Serengeti National Park in Tanzania is known for the iconic migration of approximately 1.3 million blue61

wildebeest (Connochaetes taurinus) and 250,000 common zebra (Equus quagga). This is the largest terrestrial mi-62

gration of animals on Earth (Thirgood et al., 2004) and their annual movement alters every biological process in63

the ecosystem, from soil nutrient cycles, to the diversity of insects, birds and carnivores, to the balance of trees and64

grass (Estes, 2014; Holdo et al., 2011b; McNaughton, 1985; Subalusky et al., 2017), as well as providing vital ecosys-65

tem services to human communities around the park (Sinclair et al., 2015). Without the annual migratory cycle there66

would be fundamental changes in the ecology of the region and much of its biodiversity would decline (Dobson et al.,67

2010; Holdo et al., 2011a). The long-term population trend of the wildebeest (see Fig. 1) is closely tied to levels of68

poaching, disease, climate change, and human perturbations. Therefore, estimating wildebeest abundance is perhaps69

the most important metric of the ecosystem’s health (Estes, 2014).70

The standard approach to counting the wildebeest population is to fly transects over the herds in March, April71

or May (Campbell and Borner, 1995; Norton-Griffiths, 1973) while the bulk of the wildebeest are on the short grass72

plains in the south-east of Serengeti and the Ngorongoro conservation area, before the migration moves into the73

woodland areas of the western Serengeti. As with many aggregated species, instead of performing in air counts, nadir74

georeferenced aerial photographs are taken of the survey area at fixed intervals from an aircraft flown as close as75

possible to a constant speed. The next stage of the process is then to identify and count all wildebeest within each76

image. This process of manually counting each image is a labour-intensive process that typically takes three or four77

skilled counters approximately 3-6 weeks (Torney et al., 2016). Automating this aspect of the survey would have78

two major advantages. Firstly, it would remove a bottleneck in running the survey. Beyond the actual counting time,79

there is often a considerable delay in scheduling the counting process as it involves multiple wildlife professionals80

to undertake. Secondly, removing this time-consuming job would relieve a significant burden on the organizations81

involved, freeing conservation professionals to focus on other tasks. Two novel methods can potentially replace82

the use of manual counts by experts, the deployment of citizen scientists and the use of automated object detection83

algorithms. In this work we deploy both approaches and evaluate the performance and merits of each.84

1.1. Citizen science and the wisdom of crowds85

It has long been noted that multiple non-expert individuals can be as accurate as a single expert for certain tasks if86

their estimates are appropriately aggregated (Condorcet, 1976; Galton, 1907). This phenomenon represents collective87

intelligence in its purest form, or as it’s commonly known ‘the wisdom of crowds’ (Surowiecki, 2005) and in effect88
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means that as more individuals estimate some quantity of interest, then an appropriate aggregate quantity (Kao et al.,89

2018) derived from these estimates will converge on the true value.90

The wisdom of crowds is the basis for many attempts to harness the collective power of citizen scientists. The91

key idea is that through online platforms, such as zooniverse (Simpson et al., 2014), scientists can outsource tasks92

to non-experts and by aggregating multiple responses obtain usable, reliable data. Citizen science has been used in93

multiple domains from protein folding (Dill and MacCallum, 2012) to astronomy (Lintott et al., 2008), and appears to94

be growing as a tool for ecologists and conservationists (Ellwood et al., 2017; Swanson et al., 2016), where it has the95

major advantage of not only performing scientific analysis of data but also engaging the public with wildlife conser-96

vation (Forrester et al., 2017). However, despite the growth in the use and awareness of citizen science approaches,97

there is still some skepticism about the reliability of unpaid and often anonymous volunteers (see (Kosmala et al.,98

2016; Sauermann and Franzoni, 2015) for a review and discussion of these issues and potential mitigation strategies).99

1.2. Automated computer vision100

Another potential approach to replacing dedicated professional counters is to use machine learning algorithms.101

Computer vision and machine learning are increasingly becoming essential components of the ecologist’s tool-102

box (Bruijning et al., 2018; Christin et al., 2018; Dell et al., 2014; Mac Aodha et al., 2018; Valletta et al., 2017;103

Weinstein, 2018) and have been applied previously to the task of counting aerial images of animals (Bajzak and Piatt,104

1990; Chabot et al., 2018; Laliberte and Ripple, 2003; McNeill et al., 2011; Rey et al., 2017; Xue et al., 2017; Yang105

et al., 2014) including the Serengeti wildebeest population (Torney et al., 2016).106

While attempts to automate the classification and/or localisation of objects within images have been on-going107

for decades, recently a combination of advances in machine learning, increased parallel computing power provided108

by graphical processing units (GPUs), and accessibility of image training datasets, such as the COCO dataset (Lin109

et al., 2014), have led to rapid improvements in the performance of multilayer deep convolutional neural networks110

(DCNNs). These multilayer neural networks are a form of deep learning and are distinct to traditional machine111

learning approaches to computer vision in that no hand-crafted features are required, instead the convolutional layers112

extract relevant features directly from the training data. For image classification tasks, DCNNs achieved accuracy113

levels that match the ability of humans a number of years ago (Szegedy et al., 2015). Computationally efficient object114

detection is a more difficult task as it effectively involves multiple classifications of different regions within an image.115

Recently, a number of specialized object detection networks have been developed that either use a two stage process116

of proposing regions then classifying them (Girshick, 2015; Ren et al., 2015), or a single pass through the network117

to predict object classes and their coordinates (Liu et al., 2016; Redmon et al., 2016; Redmon and Farhadi, 2017). In118

this work we evaluate the performance of the single-pass DCNN architecture proposed in (Redmon et al., 2016) and119
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(a) (b)

Figure 2: Error rates for the different methods calculated against the assumed true number of wildebeest per image as determined by the expert
counter. (a) Root mean squared error calculated over 1000 test images counted using the different methods. For comparison we include results
from (Torney et al., 2016), where handcrafted rotation invariant features were extracted and classified with a decision tree. It should be noted that
the image resolution was lower in 2009 (4288x2848) and therefore a greater error should be expected. (b) The total percentage under or over count
for 1000 survey images for the zooniverse data (aggregated using 3 different methods) and the deep learning algorithm.

iteratively refined in (Redmon and Farhadi, 2017, 2018), named YOLO which stands for you only look once, referring120

to the fact only a single pass through the network is required.121

2. Methods122

2.1. Aerial surveys123

The 2015 Serengeti wildebeest count was conducted between the 23rd April and 2nd May over the eastern and124

southern plains of Serengeti National Park, Ngorongoro Conservation Area, Loliondo Game Controlled Area, and125

Maswa Game Reserve. A Cessna C182 aircraft was used to conduct the survey, with photographs taken using a126

NIKON D800 through a 35mm Nikor Lens. The camera was mounted in a port in the floor of the aircraft and images127

were manually triggered at the start of each transect to be collected automatically every 10 seconds.128

Reconnaissance flights over several days prior to the count identified the distribution of the migratory herd and129

from these flights the herd distribution was mapped, and a survey frame identified. When the distribution was optimal,130

10.3 hours of photographic sampling flights were flown along east-west transects on 30 April and 2 May covering a131

straight-line distance of 2040 km.132

During the count, flight target altitude along transects was 700ft (213m) above the ground. This was an optimal133

height to both maximise image resolution but not startle the wildebeest into running from the sound of the aircraft134

engine. Ground speed was maintained as closely as possible to 100 knots (185 km/h). A total of 1584 georeferenced135

images were taken with a resolution of 7360x4912 pixels.136
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2.2. Zooniverse image counts137

The citizen science approach was facilitated by development of a wildebeest counting website using the zooniverse138

platform (Simpson et al., 2014). Images were first filtered to remove those that were known to definitely not contain139

any wildebeest. This step was taken to reduce the number of images that needed to be uploaded and, more importantly,140

reduce the number of empty images that citizen counters needed to process.141

Following initial trials on the website in August 2015 it was determined that volunteers would struggle to count142

entire aerial images due to their large size and high resolution. Our solution was to split each aerial image into 12143

equal-sized tiles. The images were uploaded to the Serengeti Wildebeest Count project on the zooniverse platform,144

which included an information page, a Field Guide to help with the identification of wildebeest and other animals,145

and the actual display of images where users could click on the images to indicate where they thought a wildebeest146

was present. The pixel locations of each click were then recorded.147

A total of 9,870 images were counted by 2,212 volunteers between the 10th of May and 31st of May 2017. Anyone148

could visit the website and count wildebeest, and each image was counted by 15 different volunteers. Once an image149

was counted 15 times it was retired and the overall project progress was displayed on a statistics bar on the home page.150

Once all images were retired the classification data was downloaded. The data included the number of wildebeest151

counted by each user, their username (unregistered users were given a random username) and the pixel location of152

each of their identifications. Prior to analysis, any count data made using early versions of the counting interface or153

collected by either developers or citizen scientists during testing of the interface functionality was removed.154

2.3. Implementation of object detection algorithm155

To automate the image counts we implemented the YOLOv3 (Redmon and Farhadi, 2018) object detector us-156

ing the open source deep learning packages Keras (Chollet et al., 2015) and TensorFlow (Abadi et al., 2016). The157

implementation of the algorithm followed three main steps.158

Firstly, we generated a training dataset by selecting 500 of the survey images at random to be used exclusively for159

training. Images were tiled into 864x864 sub-images and then passed though a version of the YOLO DCNN using160

pre-trained weights from the COCO dataset provided by (Redmon and Farhadi, 2018). This process created a list of161

the locations of potential objects in each image. As a first pass these results were filtered by discarding any object162

detections that did not correspond to an identification from the zooniverse data. After this initial filter, the bounding163

boxes were manually checked and corrected for each of the 20,000 training images (500 full size images were each164

divided into 40 864x864 training images).165

With this training set, we next made several minor modifications to the YOLOv3 architecture. YOLOv3 employs166

9 predefined object shapes, termed anchor boxes, as initial estimates for object bounding box heights and widths. As167
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there was less variation in our target objects, we reduced the number of anchor boxes used from 9 to 3, and replaced168

the dimensions of the 3 anchor boxes to match the training dataset. We next removed all but the final scale boxes169

(YOLOv3 is a multiscale detector whereas for our application objects are only present at a single scale). Finally, we170

modified the training loss function to suppress false positives and account for the large amounts of empty space in the171

training images. We achieved this by increasing the weighting (from 0.5 to 2) given to the no-object component of172

the multipart loss function described in Redmon et al. (2016). For training we used transfer learning, again using the173

pre-trained general purpose YOLO object detector as a starting point with initial weights created by training on the174

COCO dataset (Redmon and Farhadi, 2018). During training we first froze all but the final 7 layers of the network175

and trained for 25 epochs, using the Adam optimiser and a learning rate of 10−4. We then unfroze all layers, reduced176

the learning rate to 10−6, and trained for a further 20 epochs. In total training took 34 hours on a NVIDIA Quadro177

GP100 GPU. Other parameters of the algorithm, the detection threshold and bounding box overlap (non-maximum178

suppression) threshold, were selected based on minimising the difference between the automated count of the training179

images and the expert count. All code is available from https://github.com/ctorney/deepWildCount180

For the final stage we counted 1000 survey images selected at random, but excluding the 500 training images.181

Counting the test images took 2 hours using the same GPU as for the training.182

2.4. Expert count183

The full set of images was counted, from January 28 to February 29 2018, by a single expert counter (DJL) using184

Adobe CS6 as a viewing program operating on a Windows 10 operating system. Each JPEG was initially open in ‘Fit’185

mode before enlarging to 50% or greater and counted using a left to right, top to bottom scanning pattern. Counting186

was conducting by clicking on and marking each wildebeest. The number of animals in each image were counted187

twice — first as running tally during marking and secondly as a recount of the marks within the image. While there188

remains the potential for bias in the expert count, we take this count to be the gold standard. Hence our results are189

a comparison between the two novel methods employed and a count by a single experienced expert, which could in190

principle deviate from the unknown true count.191

3. Results192

We compared the accuracy of the methods by calculating the deviation of each method from the single expert193

count which we assume to be the true number of wildebeest in each image. For both the citizen science count and the194

YOLO count we assess the accuracy across 1000 sample survey images. For the citizen science data this means that195

empty images that were not uploaded to zooniverse are included when assessing accuracy. In effect by comparing196
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(a) (b)

Figure 3: Cumulative image counts. (a) Mean, median and filtered mean for the zooniverse count data compared to the expert count. The shaded
region indicates the cumulative count that would be recorded if the highest or lowest counts for each tile of each image were used. (b) The YOLO
count compared with the expert count.

the methods in this way we are assuming that completely empty images will be processed by citizen scientists with197

perfect accuracy.198

To aggregate the zooniverse data we adopted three approaches. We took the mean of the 15 counts, the median of199

the 15 counts, or removed the 5 lowest counts for each tile and took the mean of the remaining 10. For the last metric,200

the filtered mean, we determined which outliers to remove by minimizing the root mean squared (RMS) error on the201

test dataset, i.e. we removed 5 outliers in total but taking different numbers of highest or lowest counts, compared each202

combination to the expert counts and found that the optimal filtering was to remove the 5 lowest counts. We stress203

that the optimal filtering was determined on the same images used to assess the method hence there is no division of204

train and test images.205

The per image error rates and total counts from the 1000 images are shown in Table 1 and Figure 2. From these206

results we see that all methods result in low per image error rate. However, while the average zooniverse counts and207

the deep learning algorithm have similar RMS errors, there is a clear discrepancy when examining the total counts208

summed over all 1000 images. The zooniverse volunteers showed a systematic tendency to undercount the images,209

hence there was approximately an 11% and 9% undercount for the total dataset for both the mean and the median. The210

YOLO algorithm did not show any systematic bias and although on average miscounted 1.7 wildebeest per image,211

its total was highly accurate, recording 20, 631 wildebeest when the expert counted 20, 489. Only the filtered mean,212

which averaged over the highest 10 volunteer counts, is comparable to the YOLO count in this respect.213

We countered the systematic bias observed in the zooniverse data by filtering the lowest 5 estimates and taking214

the mean of the remaining 10 to obtain a highly accurate count. In Fig. 3 we show the cumulative counts across the215
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Method
Mean abs.

error
RMS
error

Percent
overcount

Mean zooniverse 2.8 8.11 -11.44%
Median zooniverse 1.83 5.85 -8.85%
Filtered zooniverse 1.58 4.05 0.55%
YOLO 1.70 5.94 0.69%

Table 1: Summary of key comparison statistics. Error rates are calculated across 1000 survey images containing 19,802 wildebeest (zooniverse)
and 20,489 wildebeest (YOLO).

1000 images for the aggregated zooniverse data and the highest and lowest counts for each image. From this figure216

it is clear that the expert count is not at the centre of the distribution of zooniverse counters. Instead a more accurate217

estimate is obtained by taking the mean of the 10 highest counts. It should be noted that both the mean and the median218

display this systematic bias, therefore it is not simply due to the mean being a less robust estimator (Galton, 1907) but219

instead reveals a tendency for all zooniverse counters, on average, to undercount. Whether this bias is persistent or220

predictable can only be revealed by repeated citizen science counts of the survey and comparison to expert counts.221

4. Discussion222

From our results we see that both citizen science and deep learning methods are capable of producing highly223

accurate image counts. Counting the wildebeest within the survey images is a difficult and time-consuming task.224

When collecting the census images there are multiple trade-offs between aircraft height, flight speed, and camera225

parameters (ISO, exposure etc.) that have to be balanced, with the result that image quality is often inconsistent.226

While wildebeest are often clear and unambiguous (see Fig 1c), in many cases a subjective judgment has to be made227

based on the balance of probabilities, i.e. what other animals are in the vicinity, or what landscape features are present.228

In this context we should not expect perfect agreement between our methods but estimates within 1% of the total can229

be considered as highly accurate.230

For the citizen science counts we observe a systematic bias in the errors the counters made. These results sug-231

gest that for a volunteer scientist the probability to miss a wildebeest is greater than the probability of incorrectly232

identifying another object or animal as a wildebeest. This is in line with prior expectations; given some guidance on233

identifying wildebeest (as was available on the zooniverse project page), false positives should be minimal. However234

eliminating false negatives requires substantial focus, and it’s likely that concentration will wane over time, or volun-235

teers will become distracted. Highly populated images have to be meticulously annotated while, equally, seemingly236

empty images have to be carefully scanned.237

We found that it was possible to correct for this bias by removing the lowest 5 estimates. While this gives highly238

accurate total counts and low per image error rates, there is no guarantee that the approach is transferable and how to239
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appropriately filter the data may be affected by the wording of the guidelines, the image resolution and sizes used, or240

the set of volunteers that participate in the project. Other more sophisticated approaches to processing citizen science241

data have been proposed (Swanson et al., 2016), however given the range of counts provided by the volunteers and242

the large errors we observe in the baseline metrics (∼11% and ∼9% undercount for the mean and median respectively)243

there will need to be a rigorous process of validation before a citizen science count could be used as the sole basis for244

a population estimate. Note, that if we simply took the minimum or maximum count per image the total count could245

have been either half or almost double the true count. While suppression of these types of outliers is fundamentally246

part of the ethos of citizen science, this does illustrate the broad range of responses from volunteers.247

Considering the deep learning algorithm, we find that with minor modification and bespoke training, the object248

detection network proposed by Redmon and Farhadi (2018) is able to rapidly count 1000 images and come up with a249

total that is within 1% of an expert count. As other authors have shown, DCNNs are able to process wildlife images250

for classification tasks (Chen et al., 2014; Norouzzadeh et al., 2018; Villa et al., 2017) and also detect and localise251

animals (Maire et al., 2015; Schneider et al., 2018). YOLO has the advantage of being a single-pass object detector252

that is fast and accurate. The 1000 images can be processed in under 2 hours, meaning every future census could be253

counted within 24 hours. Hence a process that currently takes 3 to 6 weeks, involving 3-4 wildlife professionals and254

countless cups of tea, can potentially be replaced with an automated system that runs overnight.255

Image classification using pretrained DCNNs with state-of-the-art architectures (He et al., 2016; Simonyan and256

Zisserman, 2014) can be achieved with a few lines of code using open source libraries such as Keras (Chollet et al.,257

2015), while object detection algorithms are increasingly being integrated into libraries such as TensorFlow (Abadi258

et al., 2016). Currently the greatest challenge for implementing these algorithms for bespoke applications is obtaining259

sufficiently large training datasets. In this regard citizen scientists have a clear role to play. While we have shown that260

the trained algorithm achieves high accuracy levels, it should be noted that the algorithm employed the crowd-sourced261

data to create the training sets. Hence, both methods should be viewed as complementary approaches with citizen262

science data forming the foundation for automated algorithms (Rey et al., 2017).263

Our results show that deep learning algorithms are now at a state where they can legitimately replace manual264

counters and remove a large burden from conservation organisations. The further great advantage of automated265

image processing is that it will allow us to leverage emerging image collection technologies, such as unmanned aerial266

vehicles, satellite platforms, or fixed camera traps; coupling these advances in image collection tools with automated267

processing will greatly increase the accuracy of population estimates. As we move towards fully automated wildlife268

counts, it only remains to ensure the availability of sufficient training data that is representative of all potential survey269

images. This can be achieved by combining state-of-the-art deep learning methods with validated crowd-sourced270
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training data.271

An automated wildebeest image count will not only be a significant benefit for monitoring this specific population272

but provides a transferable methodology that can be deployed for any population monitoring that currently includes273

manual image counts.274
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