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Ubiquitin (Ub)-conjugating enzymes and Ub ligases control
protein degradation and regulate many cellular processes in
eukaryotes. Cellular inhibitor of apoptosis protein-1 (cIAP1) plays
a central role in apoptosis and tumor necrosis factor signaling. It
harbors a C-terminal RING domain that homodimerizes to recruit
E2�Ub (where � denotes a thioester bond) complex to catalyze Ub
transfer. Noncovalent Ub binding to the backside of the E2 Ub-
conjugating enzyme UbcH5 has previously been shown to enhance
RING domain activity, but the molecular basis for this enhance-
ment is unclear. To investigate how dimeric cIAP1 RING activates
E2�Ub for Ub transfer and what role noncovalently bound Ub has
in Ub transfer, here we determined the crystal structure of the
cIAP1 RING dimer bound to both UbcH5B covalently linked to Ub
(UbcH5B–Ub) and a noncovalent Ub to 1.7 Å resolution. The
structure along with biochemical analyses revealed that the cIAP1
RING domain interacts with UbcH5B–Ub and thereby promotes
the formation of a closed UbcH5B–Ub conformation that primes
the thioester bond for Ub transfer. We observed that the noncova-
lent Ub binds to the backside of UbcH5B and abuts UbcH5B’s
�1�1-loop, which, in turn, stabilizes the closed UbcH5B–Ub con-
formation. Our results disclose the mechanism by which cIAP1
RING dimer activates UbcH5B�Ub and indicate that noncovalent
Ub binding further stabilizes the cIAP1-UbcH5B�Ub complex in
the active conformation to stimulate Ub transfer.

Post-translational modification of proteins by ubiquitin
(Ub),2 achieved via the sequential actions of Ub-activating

enzyme (E1), Ub-conjugating enzyme (E2), and Ub-ligase (E3),
governs vast arrays of eukaryotic cellular processes (1, 2). E1
activates and transfers the C terminus of Ub to the E2’s catalytic
cysteine to produce an E2�Ub thioester intermediate (where �
denotes a thioester bond). E3 binds E2�Ub and substrate to
promote Ub transfer from E2 to a nucleophile, which is usually
a lysine side chain. There are three major types of E3s: RING,
HECT, and RING-in-between-RING (RBR) (3, 4). RING E3s
harbor a RING domain that binds and activates E2�Ub to pro-
mote the direct transfer of Ub from E2 to the substrate. In
contrast, HECT E3s contain a catalytic cysteine and catalyze a
two-step Ub transfer reaction in which Ub is initially trans-
ferred from E2 to HECT E3’s catalytic cysteine and then to the
substrate. RBR E3s share common features from both RING
and HECT E3s, where a RING-like domain (RING1) recruits
E2�Ub and transfers Ub to the catalytic cysteine on RING2
prior to transfer to substrate.

Cellular inhibitor of apoptosis protein-1 (cIAP1) is a RING-
type E3 and belongs to the inhibitor of apoptosis (IAP) family of
proteins. The RING-mediated ubiquitin ligase activity of cIAP1
is essential for its function in both cell death and survival path-
ways. In cell death pathways, cIAP1 inhibits apoptosis by
sequestering and ubiquitinating second mitochondria-derived
activator of caspase (SMAC) for degradation by the protea-
some, thereby freeing XIAP to bind and inhibit caspases (5–7).
Moreover, cIAP1 has been shown to target caspases for ubiq-
uitination and degradation by the proteasome (8). In the cell
survival pathway, tumor necrosis factor receptor 1 signaling
complex recruits RIP kinase 1 (RIPK1) and various adaptor pro-
teins, including TRADD, TRAF2, and TRAF5, that lead to the
recruitment of cIAP1 and cIAP2 (9). cIAP1 and cIAP2 ubiquiti-
nate RIPK1 and components within this complex to enable the
recruitment of a linear Ub chain assembly complex that ulti-
mately activates NF-�B signaling (10 –16).

cIAP1 contains three N-terminal baculoviral IAP repeat
domains (BIR1–3), followed by a Ub-associated domain (UBA),
a caspase-recruiting domain (CARD), and a C-terminal RING
domain. Dimerization of its C-terminal RING domain is impor-
tant for E2�Ub recruitment and ligase activity (17, 18). Studies
showed that the N-terminal BIR3-UBA-CARD domain seques-
ters the RING domain in an inactive conformation to prevent
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RING dimerization (19, 20). The addition of SMAC or SMAC
mimetic induces conformational changes that restore activity
by allowing RING dimerization (19, 21). Currently, how RING
dimerization activates cIAP1’s ligase activity, and the structure
of cIAP1 RING domain bound to E2�Ub, are not known. How-
ever, there are several structures of RING E3s bound to E2
covalently linked to Ub (E2–Ub; en dash denotes covalent link-
age) (22–32). Collectively, these structures show that the RING
domain binds and stabilizes E2–Ub in a closed conformation
such that the thioester bond is optimized for Ub transfer (33).
For dimeric RING E3s, such as BIRC7, an IAP family protein,
the C-terminal tails of each subunit of the RING dimer function
to stabilize the closed E2–Ub conformation to enhance ligase
activity (23). It seems likely that cIAP1 RING dimer utilizes a
similar mechanism for activating E2–Ub.

cIAP1 has been shown to function with the UbcH5 family of
E2s to catalyze substrate ubiquitination (34, 35). This family of
E2s has a noncovalent Ub binding site on its backside. This
backside Ub-UbcH5 interaction is important for processivity
of poly-Ub chain formation (25, 36 –39). Our recent struc-
tural study on the monomeric RING E3 RNF38 showed that
backside-bound Ub (UbB) stimulates RNF38-catalyzed Ub
transfer by restricting the flexibility of UbcH5B’s �1 and
�1�1-loop to stabilize the closed active RNF38 RING-
UbcH5B–Ub complex, thereby enhancing the rate of cataly-
sis (25). It remains unclear whether this mechanism is con-
served for dimeric RING E3s.

To better understand how dimeric cIAP1 RING domain
(cIAP1R) activates E2�Ub for Ub transfer and how UbB could
influence this process, we present a crystal structure of cIAP1R
bound to UbcH5B–Ub and UbB. Structural and biochemical
analyses showed that cIAP1R forms multiple contacts with
UbcH5B–Ub to stabilize it in a closed conformation. Notably,
the C-terminal tail of cIAP1R functions in trans to stabilize
the closed UbcH5B–Ub conformation, thereby explaining the
importance of RING domain dimerization, and consistent with

prior examples of dimeric RING E3s. Last, UbB restrains
UbcH5B’s �1�1-loop conformation to stabilize contacts with
donor Ub (i.e. Ub conjugated to UbcH5B; hereafter UbD). This
interaction augments stabilization of the closed UbcH5B–Ub
conformation, thereby enhancing Ub transfer. Our results
revealaconservedUbB-stimulatorymechanismforbothmono-
meric and dimeric RING E3s in mediating UbcH5B�Ub
transfer.

Results

UbB stimulates cIAP1R-mediated Ub transfer

Previously, we showed that the addition of Ub�GG (lacking
the C-terminal diglycine motif) can serve as UbB and bind to
UbcH5B’s backside to stimulate UbcH5B�Ub discharge cata-
lyzed by the monomeric RING E3 RNF38 and dimeric RING
E3 XIAP. To assess whether UbB can exert similar effects on
cIAP1R-catalyzed Ub transfer, we performed single-turnover
lysine discharge assays using WT and S22R UbcH5B. S22R sub-
stitution abrogates the UbB-UbcH5B interaction and was
therefore used as a control (25, 36). UbcH5B variants were pre-
charged with equimolar concentrations of 32P-Ub and then
chased by the addition of cIAP1R alone and in the presence of
Ub�GG, which cannot be charged by E1 but can still bind to the
backside of UbcH5B WT. The addition of 300 �M Ub�GG
stimulated the discharge of UbcH5B�Ub but had no effect on
UbcH5B S22R�Ub (Fig. 1A), indicating that UbB stimulates
cIAP1R-catalyzed Ub transfer.

Synergistic binding enhancement between UbB, cIAP1R, and
UbcH5B–Ub

Our prior study showed that UbB stimulates RNF38 and
XIAP-catalyzed Ub transfer by enhancing RING E3 affinity for
UbcH5B–Ub by �5–10-fold (25). To determine whether UbB

functions in a similar manner to stimulate cIAP1R-catalyzed
Ub transfer, we performed surface plasmon resonance (SPR)
experiments to investigate the effects of UbB on cIAP1R’s affin-

Figure 1. UbB stimulates cIAP1R-catalyzed Ub transfer. A, nonreduced autoradiograms of lysine discharge reactions showing the disappearance of UbcH5B
variant�32P-Ub over time in the presence and absence of Ub�GG (300 �M) catalyzed by cIAP1R. B, nonreduced SDS-PAGE showing the cIAP1R-mediated
discharge of fluorescently labeled UbcH5B�Ub to L-lysine over time in the presence of Ub�GG (20 �M) or UbcH5B S22R,F62A,P95D–Ub (20 �M) visualized with
a LI-COR Odyssey scanner (top) followed by staining with InstantBlue (bottom). *, fluorescently labeled Ub.
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ity for UbcH5B–Ub. We generated stable UbcH5B–Ub com-
plex by mutating UbcH5B’s catalytic cysteine (Cys85) to lysine,
thereby forming a stable amide linkage that mimics the thioes-
ter linkage (22). UbcH5B C85K and UbcH5B S22R C85K cova-
lently linked to Ub (hereafter referred to as UbcH5B–Ub and
UbcH5BS22R–Ub, respectively) were generated to assess the
effect of backside binding. cIAP1R exhibited weak binding
affinity for UbcH5B alone, but displayed �270-fold higher
binding affinity for UbcH5B–Ub (Table 1 and Fig. S1), sug-
gesting that UbD contributes to RING domain binding, con-
sistent with previous observations with other RING E3s (23,
25). The addition of excess Ub�GG (0.6 mM; Kd for UbB-
UbcH5B is �280 �M (25)) further enhanced cIAP1R’s affin-
ity for UbcH5B–Ub by �4-fold (Table 1 and Fig. S1). In
contrast, the addition of excess Ub�GG had no effect on
cIAP1R’s affinity for UbcH5BS22R–Ub, suggesting that
UbB-UbcH5B interaction enhances cIAP1R’s affinity for
UbcH5B–Ub.

We showed previously that UbB binds UbcH5B–Ub with a Kd
of �280 �M, but, in the presence of the monomeric RING E3
RNF38, the Kd improved by 20-fold (Kd of 14 �M), revealing a
synergistic effect in RNF38-UbcH5B–Ub and UbB-UbcH5B
binding (25). Similar to our prior observation, we found that Ub
displayed a Kd of 13 �M for UbcH5B–Ub in the presence of
cIAP1R (Table 1 and Fig. S1), suggesting that this binding syn-
ergy is conserved.

To verify the improved UbB-UbcH5B interaction in the pres-
ence of cIAP1R, we performed single-turnover lysine discharge
assays using 20 �M Ub�GG, which is just above the Kd of 13 �M,
and showed that it was sufficient to stimulate cIAP1R-catalyzed
Ub transfer (Fig. 1B). Furthermore, we showed that UbcH5B
S22R,F62A,P95D–Ub, a stable isopeptide conjugate that can-
not bind RING E3 or UbB but can serve as the UbB source
(25), also stimulated cIAP1R-catalyzed Ub transfer at 20 �M

(Fig. 1B).

Overall structure of cIAP1R-UbcH5B–Ub-UbB complex

To gain insight into how UbB enhances cIAP1R-mediated
UbcH5B�Ub transfer, we crystallized and determined the
structure of cIAP1R bound to UbcH5B–Ub and UbB. The
cIAP1R-UbcH5B–Ub-UbB complex crystals belong to space
group C21 with one copy of cIAP1R-UbcH5B–Ub-UbB com-
plex in the asymmetric unit. The structure was refined to a
resolution of 1.7 Å (Table 2). Because cIAP1 exists as a biolog-
ical homodimer via the RING domain (6, 18, 40), we used crys-
tallographic symmetry to generate the structure of dimeric
cIAP1R-UbcH5B–Ub-UbB complex (Fig. 2). The structure

shows that cIAP1R dimerizes via the RING domain, the C-ter-
minal tail, and a helix that precedes the RING domain similar to
other IAP family RING E3s, such as cIAP2, XIAP, and BIRC7
(17, 23, 41). cIAP1R’s RING domain binds both UbcH5B and
UbD and stabilizes the UbcH5B–Ub complex in a closed con-
formation. Additionally, the C-terminal tail of the second sub-
unit in the cIAP1R dimer packs against UbD in trans to stabilize
the closed UbcH5B–Ub conformation. These features are sim-
ilar to those observed in other structures of dimeric RING
E3-E2–Ub complexes, such as BIRC7, RNF4, and MDM2-
MDMX (22, 23, 30). In our structure, UbB binds to the backside
of UbcH5B centering on the Ser22 surface, as reported previ-
ously (25, 36).

Interactions important for the closed UbcH5B–Ub
conformation

Because this is the first structure of cIAP1R bound to E2–Ub,
we investigated how cIAP1R stabilizes the closed UbcH5B–Ub
conformation to promote Ub transfer. The closed UbcH5B–Ub
conformation is stabilized by multiple contacts involving 1)
cIAP1R-UbcH5B, 2) cIAP1R-UbD, 3) cIAP1R tail-UbD, and 4)
UbD-UbcH5B interactions.

The cIAP1R-UbcH5B interaction closely resembled that
observed in the structure of cIAP2R-UbcH5B complex (17),
which was expected because cIAP1R and cIAP2R share �90%
sequence identity. The interaction primarily involves cIAP1R’s
Met575 and the hydrophobic core surrounding Val573 contact-
ing UbcH5B’s �1-helix and L1 and L2 loops (Fig. 3A). Despite
having nearly identical RING domain sequences, the cIAP1R-
UbcH5B portion of the structure and the cIAP2R-UbcH5B
structure only superpose with a root mean square deviation
(RMSD) of �1.0 Å for all C� atoms. When superimposition was
performed using only the RING domain (RMSD of 0.62 Å for
C� atoms), the oblong shape of UbcH5B tilts �8°, suggesting

Table 1
Kd values for interactions between cIAP1R, UbcH5B, UbcH5B–Ub vari-
ants, and Ub

Immobilized
protein Analyte Kd

�M

GST-cIAP1R UbcH5B 223 � 4
GST-cIAP1R UbcH5B–Ub 0.83 � 0.05
GST-cIAP1R UbcH5B–Ub � 0.6 mM Ub�GG 0.22 � 0.01
GST-cIAP1R UbcH5BS22R–Ub 0.90 � 0.01
GST-cIAP1R UbcH5BS22R–Ub � 0.6 mM Ub�GG 0.99 � 0.05
GST-Ub UbcH5B–Ub � excess cIAP1R 13 � 2

Table 2
Data collection and refinement statistics

Data collection cIAP1R-UbcH5B–Ub-UbB complex
Space group C 1 2 1
Cell dimensions

a, b, c (Å) 79.19, 53.60, 78.54
�, �, � (degrees) 90, 107.57, 90

Resolution (Å) 23.52–1.70 (1.74–1.70)
Rmerge 0.063 (0.539)a

I/� 13.8 (2.0)
Completeness (%) 98.8 (94.7)
Redundancy 3.3 (2.7)

Refinement
Resolution (Å) 23.52–1.70
No. of reflections 34,206
Rwork/Rfree 0.170/0.197
No. of atoms

Protein 2794
Ions 2
Water 222

B factor
Protein 26.2
Ion 18.2
Water 33.0

RMSDs
Bond length (Å) 0.007
Bond angles (degrees) 0.922

Ramachandran
Mostly favored (%) 97.8
Outliers (%) 0

a Values in parenthesis are for the highest-resolution shell.
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subtle differences in UbcH5B-RING domain contacts (Fig. 3B).
Similar E2 shifts were also observed in the structures of TRAF6
(from human)-Ubc13 and TRAF6 (from Danio rerio)-
Ubc13–Ub complexes (31, 42). It is unclear whether this E2
movement results from formation of the closed E2–Ub confor-
mation or is due to crystal packing. Nonetheless, the primary
RING-E2 interaction is maintained.

Our structure shows that cIAP1R’s C-terminal tail, RING
domain, and UbcH5B stabilize the closed UbD conformation.
cIAP1R’s C-terminal tail interactions involve Arg614 and Phe616

from the other cIAP1R protomer in the dimer. Arg614 forms a
hydrogen bond with the carbonyl oxygen of UbD’s Asp32, and
Phe616 packs against UbD’s Gly35 surface (Fig. 4A). This trans
tail packing arrangement is similar to those observed in the
structures of BIRC7, RNF4, and MDM2-MDMX bound to
UbcH5–Ub (22, 23, 30). These RING E3s all contain a Phe or
Tyr corresponding to Phe616 on cIAP1R that disrupted ligase
activity when substituted with histidine or alanine. Likewise,
substitution on the corresponding Phe in cIAP2 also disrupted
activity (17, 23). To determine the importance of this residue,
we mutated cIAP1R’s Phe616 to His and performed lysine dis-
charge assays to assess the effect on Ub transfer. cIAP1R F616H
was defective in discharging UbcH5B�Ub (Fig. 4B), consis-
tent with an earlier study showing that deletion of cIAP1’s
C-terminal residues abrogates activity (20). Thus, the trans

tail-UbD interaction explains the importance of RING
domain dimerization.

The cIAP1R-UbD interactions primarily involve His588,
Ile604, and Cys605 from cIAP1R’s RING domain contacting Leu8

Figure 2. Crystal structure of cIAP1R-UbcH5B–Ub-UbB complex. Shown is a cartoon representation of homodimeric cIAP1R-UbcH5B–Ub-UbB complex
generated from crystallographic symmetry. The top and bottom panels are related by 90° rotation about the x axis. The two protomers of cIAP1R are colored
green and orange. UbcH5B is shown in light blue, UbD in yellow, and UbB in wheat. Zn2� ions are shown as gray spheres. UbcH5B–Ub linkage is shown in red and
is indicated by arrows. cIAP1R’s C-terminal tails are indicated by arrows.

Figure 3. cIAP1R-UbcH5B interactions. A, close-up view of cIAP1R-UbcH5B
interactions. UbcH5B’s �1, L1, and L2 loops are indicated. All coloring is the
same as in Fig. 2. B, superimposition of cIAP1R portion of structure in
cIAP1R-UbcH5B–Ub-UbB complex with cIAP2R portion of structure in cIAP2R-
UbcH5B complex (PDB entry 3EB6). cIAP1R and cIAP2R are colored in green.
UbcH5B from cIAP1R-UbcH5B–Ub-UbB and cIAP2R-UbcH5B complexes are
colored in light blue and cyan, respectively.

Activation of UbcH5B�Ub by cIAP1 and non-covalent ubiquitin
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and Ile36 patches of UbD. Crucially, cIAP1R’s Arg606 forms
hydrogen bonds with the carbonyl oxygen of Arg72 and the side
chain of Gln40 from UbD and the carbonyl oxygen of Gln92 from
UbcH5B (Fig. 4A). This Arg606 is commonly known as the
“linchpin Arg” (33), and its interaction network is conserved in
several structures of RING E3-E2–Ub complexes (22–30). To
assess the importance of this interaction in cIAP1R, we
generated Ub I36A and cIAP1R R606A and tested their
effects in UbcH5B�Ub discharge assays. Although charging
of UbcH5B�Ub I36A was incomplete, as observed previously
(23, 25), in the presence of cIAP1R, UbcH5B�Ub I36A dis-
charged slower than the WT UbcH5B�Ub (Fig. 4C). Similarly,
cIAP1R R606A was defective in discharging UbcH5B�Ub
(Fig. 4B).

The UbD-UbcH5B interaction involves UbD’s Ile44 patch
contacting the Ser108 region in UbcH5B’s �2-helix (Fig. 5A).
Additional interactions are also observed between Lys48 and
Arg42 of UbD and UbcH5B’s Asp42, Lys101, Leu104, and Asp112

(Fig. 5A). To investigate the importance of these interactions,
we performed UbcH5B�Ub discharge assays using Ub I44A
and UbcH5B S108R. In both cases, cIAP1R-mediated Ub trans-
fer was impaired (Fig. 5B).

The C-terminal tail of UbD is extended and lies along
UbcH5B’s active site cleft (Fig. 5C). The C-terminal tail of UbD

is stabilized by hydrophobic interactions between UbcH5B’s
Ile88 and UbD’s Leu73 and numerous hydrogen bonds involving
UbcH5B’s Asn77, Asp87, and Asn114 and UbD’s C-terminal tail.
To validate the importance of these interactions, we generated
Ub L73D and UbcH5B I88A and assessed their effects in
UbcH5B�Ub discharge assays. UbcH5B loaded with Ub L73D
and UbcH5B I88A charged with WT Ub were defective in dis-

charge catalyzed by cIAP1R (Fig. 5B). Collectively, our data
showed that cIAP1R initiates multiple contacts to stabilize
UbcH5B–Ub in the closed conformation to promote Ub trans-
fer similar to other RING E3s (22–32).

Figure 4. cIAP1R-UbD interactions. A, cartoon representation of the catalytic competent cIAP1R dimer bound to UbcH5B–Ub (left) and close-up view of
cIAP1R-UbD interactions (right). All coloring is the same as in Fig. 2. Hydrogen bonds are shown as dotted lines. B, nonreduced SDS-PAGE of lysine
discharge reactions showing the disappearance of UbcH5B�Ub band over time catalyzed by cIAP1R variants. C, nonreduced SDS-PAGE of lysine
discharge reactions showing the disappearance of UbcH5B�Ub variant bands over time catalyzed by cIAP1R. *, contaminating band from other reaction
components.

Figure 5. UbD-UbcH5B interactions. A, close-up view of UbD-UbcH5B inter-
actions. B, nonreduced SDS-PAGE of lysine discharge reactions showing the
disappearance of UbcH5B variant�Ub or UbcH5B�Ub variant band over
time catalyzed by cIAP1R. C, close-up view of UbD’s C-terminal tail interactions.
All coloring in A and B is the same as in Fig. 2. Hydrogen bonds are shown as
dotted lines in A and C.
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UbB-stimulatory mechanism in dimeric cIAP1R-mediated Ub
transfer

UbB binds UbcH5B via the Ile44 hydrophobic patch of UbB

and UbcH5B’s �1–3 surface surrounding Ser22 (Fig. 6A). This
binding mode resembles other available structures of UbcH5
family E2s bound to UbB (25, 36, 39, 43). In our structure, UbB

does not contact cIAP1R or UbD (Fig. 2). In addition to
UbcH5B’s Ser22 surface, UbB also contacts UbcH5B’s �1�1-
loop, which in turn packs against UbD (Fig. 6, A and B). Here,
UbB’s Lys6 and His68 form hydrogen bonds with carbonyl oxy-
gens of UbcH5B’s Pro17 and Pro18, respectively, and Leu8 packs
against UbcH5B’s Gln20, thereby placing Gln20 within hydro-
gen-bonding distance of the backbone amide of UbD’s Gly47

(Fig. 6B). To test the importance of Gln20, we used UbcH5B
Q20A to perform cIAP1R-mediated UbcH5B�Ub discharge
assays. The discharge of UbcH5B Q20A�Ub in the presence
and absence of excess of Ub�GG remained similar, suggesting
that Gln20 plays an important role in UbB-mediated stimulation
of Ub transfer (Fig. 6C).

Previously, we have determined the structures of a mono-
meric RING E3, RNF38, bound to UbcH5B–Ub alone and in
complex with UbB (25). These structures showed that in the
absence of UbB, UbcH5B’s �1�1-loop adopts various confor-
mations that are not optimal for interaction with UbD. The
presence of UbB locks UbcH5B’s �1�1-loop into a conforma-
tion that helps optimize UbD for transfer (Fig. 6, D and E) (25).
Superimposition of the structures of cIAP1R-UbcH5B–Ub-
UbB and RNF38-UbcH5B–Ub-UbB complexes by overlaying
the UbcH5B structure reveals that UbB in cIAP1R-UbcH5B–
Ub-UbB rotates by �10° and shifts by �1.5– 4 Å in different
regions across UbB (Fig. 6F). Whereas the UbB Ile44 and
UbcH5B Ser22 interacting interface is largely maintained, UbB’s
�1�2-loop packs more closely to UbcH5B’s �1�1-loop in
cIAP1R-UbcH5B–Ub-UbB (Fig. 6F). In this manner, UbB’s Lys6

moves closer to UbcH5B’s �1�1-loop and forms an additional
hydrogen bond with UbcH5B’s Asp16 located at the C terminus
of �1; this interaction was not observed in RNF38-UbcH5B–
Ub-UbB (Fig. 6, B and D). To test the importance of the UbB

Lys6-UbcH5B Asp16 interaction in UbB-mediated stimula-
tion of Ub transfer, we generated UbcH5B D16A and Ub K6A
and performed cIAP1R-mediated UbcH5B�Ub discharge
assays. The discharge of UbcH5B D16A�Ub remained sim-
ilar in the presence or absence of excess of Ub�GG (Fig. 6C),
suggesting that UbcH5B’s Asp16 plays a role in UbB-medi-
ated stimulation of Ub transfer. Correspondingly, the addi-
tion of excess Ub K6A to precharged UbcH5B�Ub was
slower than WT Ub in stimulating cIAP1R-mediated
UbcH5B�Ub discharge (Fig. 6G). Thus, the additional con-
tact between UbB Lys6 and UbcH5B Asp16 contributes to
UbB-mediated stimulation of Ub transfer. Despite this slight
difference, the conformation of UbcH5B’s �1�1-loop is
nearly identical in both structures, which further supports
our proposed UbB-stimulatory mechanism, whereby UbB

binding reorganizes UbcH5B’s �1�1-loop to help stabilize
UbD in a conformation primed for transfer.

Discussion

The structure of cIAP1R-UbcH5B–Ub-UbB reported here
provides insight into the UbB-stimulatory mechanism of
dimeric RING E3-catalyzed Ub transfer. The cIAP1 RING
domain forms a homodimer and utilizes a general mecha-
nism that is shared by other RING E3s to stabilize
UbcH5B–Ub in a closed conformation to activate the thio-
ester bond for catalysis (3). UbB functions by reorganizing
UbcH5B’s �1�1-loop conformation to reinforce UbD in the
closed conformation, thereby enhancing Ub transfer in a
manner consistent with our prior study with the monomeric
RING E3 RNF38 (25). Our current work demonstrates that
the UbB-stimulatory mechanism is conserved in both mono-
meric and dimeric RING E3-catalyzed reactions with the
UbcH5 family of E2s.

The closed E2�Ub conformation has been shown to be
important for Ub transfer, and the role of the RING domain is
to promote the transition to this conformation to enhance the
rate of Ub transfer (22, 23, 33, 44, 45). In addition to the estab-
lished contacts between RING-E2, RING-UbD, and UbD-E2,
several RING E3s have evolved different mechanisms to facili-
tate this process (3). For cIAP1, the RING dimer arrangement
enables cIAP1R to utilize the C-terminal tail of the other
dimeric cIAP1R protomer to stabilize UbD. This mechanism is
observed in several dimeric RING E3s containing a Phe or Tyr
residue in their C-terminal tail, such as BIRC7, RNF4, and
MDM2-MDMX (22, 23, 30).

Noncovalent Ub binding to the backside of UbcH5 family E2
has been shown to increase the processivity of Ub transfer (25,
36 –39). Mechanistically, we have recently shown that UbB

binding improved RING E3’s affinity for the E2�Ub complex
and that the RING E3-E2�Ub complex displayed higher affin-
ity for UbB using the monomeric RING E3 RNF38 (25). Here we
observed a similar synergistic effect with the dimeric RING E3,
cIAP1. We have shown previously that the Kd for the UbB-
UbcH5B interaction was �280 �M (25). In the presence of the
cIAP1R, UbcH5B–Ub complex is primed into the closed con-
formation, and the Kd for UbB-UbcH5B binding improved to
�13 �M (Table 1). Our structure showed that the closed
UbcH5B–Ub conformation stabilizes UbcH5B’s �1�1-loop,
which in turn forms optimal interaction with UbB and could
explain the drop in Kd. The total cellular Ub concentration is
�20 – 85 �M, depending on cell type. Within this total concen-
tration, Ub presents as a mixture of monoubiquitinated sub-
strates, free Ub, thioester intermediates of ligation machinery,
and poly-Ub chains (46, 47). A previous study (25) and our
current study showed that these forms of Ub can serve as
sources of UbB, and hence the total cellular Ub concentration
could serve as the guide for the availability of UbB. The forma-
tion of cIAP1-UbcH5B�Ub complex lowers the Kd for the UbB-
UbcH5B interaction to a value in which the UbB interaction
would be favorable in cells. We anticipate that noncovalent Ub
binding would have an impact on cIAP1-UbcH5– catalyzed
ubiquitination in cells. In both crystal structures of cIAP1R-
UbcH5B–Ub-UbB and RNF38-UbcH5B–Ub-UbB (25) com-
plexes, UbB alters UbcH5B’s �1�1-loop into a nearly identical
configuration to buttress UbD in the closed conformation. The
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subtle differences in UbB conformations seen in the two struc-
tures could potentially arise from crystal packing. Nonetheless,
the cIAP1R-UbcH5B–Ub-UbB structure presented here pro-
vides a more detailed view of how UbB could make an additional
contact with UbcH5B’s �1 C terminus and �1�1-loop to opti-

mize these elements in stabilizing the closed UbD conforma-
tion. In conclusion, our work shows that UbB serves as an allos-
teric activator of RING E3-E2�Ub complexes and that the
UbB-stimulatory mechanism is conserved for both monomeric
and dimeric RING E3s.
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Experimental procedures

Protein expression and purification

All constructs were expressed in Escherichia coli BL21 (DE3)
Gold (Stratagene). All proteins used are from humans unless
otherwise specified. cIAP1 RING domain (residues 556-C;
cIAP1R) was cloned into pGEX4T1 (GE Healthcare), which
contains an N-terminal GST tag followed by a tobacco etch
virus protease cleavage site. cIAP1R was purified by GSH affin-
ity chromatography, followed by tobacco etch virus cleavage
to release the GST tag. The released GST tag was removed by
GSH affinity chromatography, and the cleaved cIAP1R was
purified by size-exclusion chromatography. Arabidopsis
thaliana Uba1, untagged UbcH5B variants, 32P-Ub, Ub, and
Ub lacking the C-terminal diglycine motif (Ub�GG) were
prepared as described previously (25). Fluorescently labeled
Ub was prepared as described previously (30). UbcH5B–Ub,
UbcH5BS22R–Ub, and UbcH5B S22R,F62A,P95D–Ub were
generated and purified as described previously (25). Protein
concentrations were determined by Bradford assay using
BSA as a standard. Ub concentration was determined by mea-
suring the absorbance at 280 nm and the molar extinction
coefficient calculated from the protein sequence. Proteins
were stored in 25 mM Tris-HCl (pH 7.6), 0.15 M NaCl, and 1
mM DTT at �80 °C.

Crystallization

cIAP1R-UbcH5B–Ub-UbB complex was assembled by mix-
ing cIAP1R (8.5 mg/ml), UbcH5B–Ub (20 mg/ml), and Ub (100
mg/ml) at 1:1:1.2 molar ratio. Crystals were obtained by mixing
protein complex with an equal volume of reservoir solution
containing 0.2 M ammonium fluoride and 15% (w/v) PEG 3350
using sitting drop vapor diffusion at 19 °C. The crystals were
harvested and flash-frozen in 0.2 M ammonium fluoride, 18%
(w/v) PEG 3350, and 20% (v/v) ethylene glycol.

Data collection and processing

Data were collected at beamline I03 at Diamond Light
Source, processed using xia2 pipeline (48), and integrated with
automated XDS (49). Initial phases of cIAP1R-UbcH5B–Ub-
UbB complex were obtained by molecular replacement with
PHASER (50) using UbcH5B and Ub from PDB entry 3ZNI
and cIAP2 RING from PDB entry 3EB6. All models were
built in COOT (51) and refined using PHENIX (52). cIAP1R-
UbcH5B–Ub-UbB complex was refined to a resolution of 1.7
Å. The final model contains one copy of cIAP1R (chain A,
residues 556-C), one copy of UbB (chain B residues 1–74),
one copy of UbcH5B (chain C residues 2–147), and one copy

of UbD (chain D, residues 1–76). All figure models were gen-
erated using PyMOL.

Lysine discharge assays

UbcH5B variant (15 �M) was charged with equimolar Ub
variant (15 �M), 32P-Ub (15 �M), or fluorescently labeled Ub (15
�M) in a reaction containing 50 mM Tris-HCl, pH 7.6, 50 mM

NaCl, Arabidopsis Uba1 (1 �M), BSA (1 mg/ml), 5 mM MgCl2,
and 5 mM ATP for 15 min at 23 °C as described previously (25).
The charged reaction was stopped by adding 0.01 units/ml
apyrase and 30 mM EDTA for 2 min at 23 °C. The lysine dis-
charge reaction was initiated by adding a mixture containing 50
mM Tris-HCl, pH 7.6, 50 mM NaCl, BSA (1 mg/ml), L-lysine (20
mM), and cIAP1R variant (0.5 �M) in the presence or absence of
Ub�GG (300 �M for Figs. 1A, 4 (B and C), 5B, and 6C; 20 �M for
Fig. 1B) or UbcH5B S22R,F62A,P95D–Ub (20 �M; Fig. 1B). WT
Ub (300 �M) and K6A Ub (300 �M) were used to perform lysine
discharge assays in Fig. 6G. Final concentrations are shown in
parenthesis except for UbcH5B and Ub variants, which were
�5 �M. Reactions were quenched with 2� SDS-loading buffer
at the indicated time points and resolved by SDS-PAGE and
visualized by staining with InstantBlue. Reactions performed
using 32P-Ub were dried and visualized using autoradiography.
Fluorescently labeled UbcH5B�Ub was visualized by a LI-COR
Odyssey scanner, followed by staining with InstantBlue.

SPR

All SPR experiments were performed at 25 °C on a Biacore
T200 system with a CM-5 chip. For cIAP1R-UbcH5B and
cIAP1R-UbcH5B–Ub variant binding experiments, GST-cIAP1R
was coupled to CM-5 chips as described previously (25). UbcH5B
and UbcH5B–Ub variants were serially diluted in running buffer
containing 25 mM Tris-HCl, pH 7.6, 150 mM NaCl, 0.1 mg/ml BSA,
1 mM DTT, and 0.005% (v/v) Tween 20. For experiments with
Ub�GG, UbcH5B–Ub variants were serially diluted in running
buffer containing 0.6 mM Ub�GG. For the UbB-UbcH5B backside
binding experiment, GST-Ub was captured on a CM-5 chip, and
UbcH5B–Ub was mixed with a 2.4-fold molar excess of cIAP1R
(100 �M UbcH5B–Ub and 240 �M cIAP1R) and then serially
diluted in running buffer containing 10 �M cIAP1R to ensure that
all UbcH5B–Ub concentration ranges were saturated with
cIAP1R (cIAP1R binds UbcH5B–Ub with a Kd of �0.83 �M; Table
1). Binding was measured at the indicated concentration ranges as
in Fig. S1. Data reported are the differences in SPR signal between
GST-cIAP1R and GST alone or GST-Ub and GST alone. The data
were analyzed by steady-state affinity analysis using Biacore T200
BIAevaluation software (GE Healthcare) and Scrubber2 (BioLogic
Software).

Figure 6. UbB interactions. A, cartoon representation showing the UbcH5B–UbB portion of the structure from the cIAP1R-UbcH5B–Ub-UbB complex. Ile44 of
UbB and Ser22 of UbcH5B are indicated. B, close-up view of UbB-UbcH5B–UbD binding interface. UbcH5B’s �1�1-loop is indicated by an arrow. Hydrogen bonds
are shown as dotted lines. All coloring in A and B is the same as in Fig. 2. C, nonreduced SDS-PAGE of lysine discharge reactions showing the disappearance of
UbcH5B variant�Ub bands over time in the presence and absence of Ub�GG catalyzed by cIAP1R. *, contaminating band from other reaction components. D,
close-up view of UbB-UbcH5B–UbD binding interface in the structure of RNF38-UbcH5B–Ub-UbB complex (PDB entry 4V3L). UbcH5B is shown in cyan, UbD in
yellow, and UbB in wheat. E, close-up view of UbcH5B’s �1�1-loop in the structure of RNF38-UbcH5B–Ub complex (PDB entry 4V3K). UbcH5B is shown in cyan and
UbD in yellow. D and E are shown in the same orientation as in B. F, comparison of UbB conformations in the structures of cIAP1R-UbcH5B–Ub-UbB and
RNF38-UbcH5B–Ub-UbB complexes (PDB entry 4V3L). Superimposition was performed on all C� atoms of the UbcH5B portion of the structure. Ribbon
representations of the UbcH5B-UbB portion from both structures are shown. UbB’s �1�2 loop is indicated by an arrow. UbcH5B and UbB from cIAP1R-UbcH5B–
Ub-UbB structure are colored as in Fig. 2. UbcH5B and UbB from RNF38-UbcH5B–Ub-UbB structure are colored in cyan and gray, respectively. G, nonreduced
SDS-PAGE of lysine discharge reactions showing the disappearance of the UbcH5B�Ub band over time in the presence of excess WT Ub or Ub K6A catalyzed
by cIAP1R.
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