View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Open Research Online

iversity

The Open

Un

Open Research Online

The Open University's repository of research publications
and other research outputs

Improving Requirements-Test Alignment by Prescribing
Practices that Mitigate Communication Gaps

Journal ltem

How to cite:

Bjarnason, Elizabeth; Sharp, Helen and Regnell, Bjorn (2019). Improving Requirements-Test Alignment by
Prescribing Practices that Mitigate Communication Gaps. Empirical Software Engineering, 24(4) pp. 2364-2409.

For guidance on citations see FAQs!

(© 2019 The Authors
Version: Version of Record

Link(s) to article on publisher's website:
http://dx.doi.org/doi:10.1007 /s10664-019-09698-6

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online's data |policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

https://core.ac.uk/display/187114375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1007/s10664-019-09698-6
http://oro.open.ac.uk/policies.html

Empirical Software Engineering (2019) 24:2364-2409
https://doi.org/10.1007/510664-019-09698-6

®

Improving requirements-test alignment by prescribing | check for
practices that mitigate communication gaps updates

Elizabeth Bjarnason’ @ - Helen Sharp? - Bjorn Regnell’

Published online: 29 March 2019
© The Author(s) 2019

Abstract

The communication of requirements within software development is vital for project success.
Requirements engineering and testing are two processes that when aligned can enable the
discovery of issues and misunderstandings earlier, rather than later, and avoid costly and time-
consuming rework and delays. There are a number of practices that support requirements-test
alignment. However, each organisation and project is different and there is no one-fits-all set of
practices. The software process improvement method called Gap Finder is designed to increase
requirements-test alignment. The method contains two parts: an assessment part and a
prescriptive part. It detects potential communication gaps between people and between
artefacts (the assessment part), and identifies practices for mitigating these gaps (the prescrip-
tive part). This paper presents the design and formative evaluation of the prescriptive part; an
evaluation of the assessment part was published previously. The Gap Finder method was
constructed using a design science research approach and is built on the Theory of Distances
for Software Engineering, which in turn is grounded in empirical evidence from five case
companies. The formative evaluation was performed through a case study in which Gap Finder
was applied to an on-going development project. A qualitative and mixed-method approach
was taken in the evaluation, including ethnographically-informed observations. The results
show that Gap Finder can detect relevant communication gaps and seven of the nine prescribed
practices were deemed practically relevant for mitigating these gaps. The project team found
the method to be useful and supported joint reflection and improvement of their requirements
communication. Our findings demonstrate that an empirically-based theory can be used to
improve software development practices and provide a foundation for further research on
factors that affect requirements communication.

Keywords Empirical software engineering - Software process improvement - Communication -
Requirements engineering - Testing - Software engineering theory

Communicated by: Daniel Berry

P4 Elizabeth Bjarnason
Elizabeth.bjarnason@cs.Ith.se

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09698-6&domain=pdf
http://orcid.org/0000-0001-9070-0008
mailto:Elizabeth.bjarnason@cs.lth.se

Empirical Software Engineering (2019) 24:2364-2409 2365

1 Introduction

Requirements engineering (RE) and testing are two important software engineering processes.
They support project success when aligned towards common goals and with well-functioning
communication channels between teams and individuals (Bjarnason et al. 2013, Damian et al.
2005, Kukkanen et al. 2009, Martin and Melnik 2008, Post et al. 2009, Sabaliauskaite et al. 2010,
Unterkalmsteiner et al. 2014, Uusitalo et al. 2008). In addition, when software artefacts provide
the main route for requirements communication, the structure and quality of these artefacts affect
the alignment of requirements engineering and testing within a project (Bjarnason et al. 2013).

Software testing requires a clear understanding of the expected behaviour in order to validate
that we are ‘building the right product’ (Boehm 1981) and to verify that we are ‘building the
product right’ (Boehm 1981). This understanding can be provided by RE activities and a clear
communication of the requirements (Damian et al. 2005, Damian and Chisan 2006, Bjarnason
et al. 2011). However, when the requirements are unclear and ambiguous this can lead to an
increased frequency of test failures (Ferguson and Lami 2006). Furthermore, weak alignment of
the RE activities and roles with those of software testing may lead to serious implications both for
development projects and for the resulting software products. Examples of this include increased
development lead time, delayed deliveries, and problems with software functionality and quality
(Damian et al. 2005, Damian and Chisan 2006, Uusitalo et al. 2008, Bjarnason et al. 2013).

Defining a generic process that will support the necessary alignment between RE and testing
is non-trivial. Apart from the fact that each organisation and project is different and has different
targets, how a process is applied depends on how individual engineers function together, i.e.
how they communicate. While there is a plethora of methods, frameworks and practices for
improving software processes, including CMMI, SPICE etc., methods and techniques for
assessing and improving communication within software development are scarce.

We propose a method called Gap Finder for assessing and identifying suitable improvements
to the alignment of requirements and testing within a software development project. Our previous
empirical research of requirements and test alignment (Bjarnason et al. 2013, 2016) provided the
basis on which we designed the Gap Finder method. The method provides a structured and
theory-based approach to assessing and mitigating communication gaps. Our method measures
distances between people and between artefacts, e.g. geographical, cognitive and semantic
distances, pinpoints specific distances, or gaps that may negatively affect the requirements
communication, and supports identifying relevant practices for mitigating these gaps. For
example, the practice of cross-artefact reviews of requirements and test specifications can bridge
cognitive distances between the involved roles due to differences in knowledge and insight, and
reduce semantic distances between the reviewed specifications, due to differences in meaning.

The empirically grounded theory of distances in software engineering (Bjarnason et al.
2016) was used to design the Gap Finder method by applying a design-science approach
(Hevner et al. 2004). In line with this approach, we have evaluated Gap Finder through a case
study in which the method was applied to an ongoing IT development project. In this paper,
we present the Gap Finder method and report on its formative evaluation. In particular, this
paper reports on the following two (previously unpublished) research questions. For the
problem of aligning requirements and testing activities:

RQ1 How relevant do practitioners/participants find the practices identified by the Gap
Finder?

RQ2 How can the Gap Finder be improved to be more useful to an organisation?

@ Springer

2366 Empirical Software Engineering (2019) 24:2364-2409

The Gap Finder has two main parts: an assessment part and a prescriptive part. The main and
novel contribution of this paper is the overall design of the Gap Finder and an evaluation of the
prescriptive part of the method (primarily described in Sections 4.1.3, 6.1.2, 6.2.4, 6.2.6, 6.2.7,
7.2, 7.3, 7.4 and Section 8), see Fig. 4. The evaluation of the assessment part and related
measurements (see Fig. 1) are published in (Bjarnason and Sharp 2015), and summarised in
this paper (primarily in Sections 4.1.2, 4.2, 4.3, and 7.1) to provide a comprehensive
description of the Gap Finder method.

The rest of this paper is structured as follows: Section 2 outlines the theory underpinning the
Gap Finder, while Section 3 describes related work. In Section 4, the Gap Finder is presented. The
case in which the method was evaluated is presented in Section 5, while our research approach
including our evaluation method is described in Section 6. The results of the evaluation are
reported in Section 7, and discussed in Section 8, in which we also answer the research questions.
Finally, we conclude by summarising and describing future work in Section 9.

2 The Theory of Distances

The Gap Finder method supports the application of the previously published Theory of
Distances in software engineering that was inductively generated from a systematic literature
study and grounded in empirical data from five industrial case companies (Bjarnason et al.
2016). According to this theory, distances between actors, artefacts and activities affect the
amount of effort required to coordinate software development. For example, when there is a
cognitive distance (or difference) within the team regarding the amount of knowledge of the
system under development, additional effort is required to ensure that the requirements are
uniformly understood within the project team. Furthermore, software development practices
(intended to support development) can mitigate distances, and thus affect the alignment of
development efforts. For example, cross-role collaboration in which roles from different disciplines
work together on an activity can mitigate cognitive distance by increasing the amount of direct
communication.

The theory of distances defines a set of distances, a set of practices, and a model for how
practices affect distances. This model is called the Gap Model. The theory is defined to be of
interest for software development organisations and projects in general, while the scope of its
validity is limited to the case characteristics of the empirical evidence on which the theory is

1. Planning Il. Measurements ||I. Prescription IV. Workshop
- Plan application of Gap Finder ||- Measure distances” || - Identify gaps” - Validate gaps”
- Prepare measurement - Compile RET profile” || - Prescribe practices || - validate practice
instruments” suitability
A
\ ' \ I \ Prescribed , Prescribed

Measurement RET Profile”

instruments”
Gap Model™

Process Implementation

practices

practice (agreed)

- Implement practices

Fig. 1 An overview of the Gap Finder method, its four steps and main output namely measurement instruments,
a RET profile and a set of prescribed practices. The parts marked * are also described in Bjarason and Sharp
2015, in which iRE profile corresponds to RET profile. The Gap Model (marked **, see the Appendix) is part of
the Theory of Distances (Bjarmason 2016) and describes how software engineering practices affect distances

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2367

based, namely RE-Test alignment for small to medium-sized software development
organisations.

The Gap Finder method was designed as a SPI (software process improvement) method for
assessing distances and improving the alignment between RE and testing by utilising the knowl-
edge contained in the Gap Model concerning how each practice affects distances. Each of the
underpinning building blocks used in the design of the Gap Finder method are described below.

2.1 Types of Distance

A distance is ‘a difference in position or level between entities’, i.e. actors, artefacts or activities
within software development (Bjarnason et al. 2016). A distance requires effort to traverse in
order to perform a software development task and can negatively affect the communication of
requirements (Bjarnason and Sharp 2015). The theory of distances defines eight types of distance
between people, between artefacts and between activities. The distances between people are:

* D1 Geographical. The physical distance between the positions of actor’s workplaces. For
example, a physical distance between a product owner and the testers often has a negative
effect on the frequency and ease of communication of requirements. A geographical
distance can cause delays and misunderstandings in the communication with distant team
members.

* D2 Organisational. The distance between actors’ placement within an organisational
structure, e.g. level within a hierarchy of units and departments. For example, when stake-
holders and project members are from different parts of an organisation they may have
different objectives and priorities. Organisational distances can cause difficulties and delays
in decision making, e.g. concerning conflicting views on which requirements to support.

* D3 Psychological. The subjective level of effort perceived to be required by one actor to
communicate with another actor. For example, a tester may be reluctant to ask for
clarification of requirements if they believe it takes a lot of effort to communicate with
the relevant person. Psychological distances can cause conflicts and difficulties in agree-
ing, e.g. when discussing requirements details.

* D4 Cognitive. The difference in levels of cognition between actors, i.e. knowledge,
competence and understanding. For example, differences in domain knowledge
between a product owner and the development team can lead to differences in understanding
of a requirements change. Cognitive distances can also cause both misunderstandings and
missed communication.

The artefact-related distances are:

* DS Adherence. The level of similarity between the contents of an artefact and the actual
situation. For example, there may be a difference between the produced software and the
specified requirements. Adherence distances indicate conflicting understandings of
requirements.

* D6 Semantic. The level of similarity in meaning between two related artefacts. For
example, there is a semantic distance between a requirements specification and test cases
when there is a difference in meaning between these two artefacts, which is the case when
there is not full test coverage of the requirements. A semantic distance can also indicate
conflicting understandings of requirements and failure to keep the artefact updated.

@ Springer

2368 Empirical Software Engineering (2019) 24:2364-2409

* D7 Navigational. The difference in position of related parts of different artefacts
required to navigate from one to the other. For example, activities like impact
analysis, test coverage etc. require more effort to perform correctly for test cases
that are not linked to requirements through traces or similar document structures,
i.e. when there is a long navigational distance.

Finally, the activity-related distance is:

* D8 Temporal. The difference in time when related activities are performed, e.g. between
producing and consuming information. For example, a short time such as a few
weeks between defining, verifying and validating a user story and its acceptance
criteria, i.e. requirements enables a product owner to catch and adjust requirements
misunderstandings early on.

2.2 Practices for RE and Test Alignment

The theory of distances includes eight categories of practices (abstracted practices AP1-8)
covering more than 40 industrial practices for improved RE-Test alignment. The eight main
categories of practices are

* AP1 Cross-role collaboration. The involvement of roles from different disciplines in
performing a software engineering activity. For example, involving testers in reviewing
requirements.

* AP2 Separate testers. The separation of the testers from the roles implementing the
software they are to verify to ensure that the verification activities are performed
independently.

* AP3 Documentation. Documentation of requirements, test case and information related to
these.

* AP4 Aligning document structures and tracing. The practice of aligning document
structures and tracing related entities.

* AP5 Cross-artefact reviews. The practice of cross-checking related artefacts against each
other.

* AP6 Incremental software engineering. The practice of performing software engineer
activities incremental, i.e. by iteratively working on a smaller scope and during a
shorter time frame at a time.

* AP7 Automated testing. Automating one or more of the activities of test planning,
design, execution and analysis.

* APS8 Use of alignment metrics. The use of alignment metrics, e.g. by the project manager,
in monitoring and controlling the progress of a project and the quality of the delivered software.

2.3 The Gap Model
The Gap Model (see the Appendix) pulls together the distances and the practices in a matrix
that describes how practices affect one or more distances. For example, applying the practice

AP1 Cross-role collaboration can mitigate an organisational distance (D2) between the

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2369

involved collaborators by connecting roles from different organisations. This practice can also
decrease adherence distance (D5) between an agreed and documented set of requirements by
identifying inconsistencies at a review and by updating the requirements documentation
accordingly. This theoretical model was derived from empirical data of industrial challenges
and practices for requirements-test alignment (Bjarnason et al. 2013). The Gap Model including
the full set of identified connections between practices and distances is shown in the Appendix.

The current version of the Gap Model is limited to describing the impact of a practice on a
distance type as increasing, decreasing or bridging, i.e. mitigating the negative effect of the
distance without changing the distance. For example, AP5 Cross-artefact reviews can bridge
organisational distance by bringing together roles from different, i.e. organisationally distant,
units to share and discuss perspectives thus mitigating the negative effects of this distance
without decreasing the distance itself. However, the model does not provide information about
the relative weight of impact of the practices on the different distances or how various
distances affect each other. For example, how geographical distance affects psychological
distance. Further research is required to explore the impact of practice in more detail, and
potential relationships and correlations between distances.

3 Related Work

The aim of our research is to improve the alignment of requirements engineering and testing by
providing knowledge and methods for improving software processes and practices.

3.1 Aligning Requirements Engineering and Testing (RET)

Even though the alignment of RE and testing is a significant challenge within software development
(Bjarnason et al. 2013) there is a limited amount of research into the combined area of requirements-
test alignment, rather most research tends to focus on one area, i.e. on RE or on testing (Barmi et al.
2011). Of the research published in the area of requirements-test alignment Barmi et al. (2011) found
that most studies were on model-based testing in which test cases are generated from formal models
of requirements. Barmi et al. also identified a need for research into traceability and empirical studies
into alignment challenges and practices. Only three empirical studies specifically focusing on
requierments-test alignment were found. Of these, two originate from one research group (namely
Kukkanen et al. 2009 and Uusitalo et al. 2008), and the third one is from our previous requirements-
test alignment study (Sabaliauskaite et al. 2010, Bjarnason et al. 2013).

Our study (Bjarnason et al. 2013) identified all of the alignment practices reported by
Uusitalo et al. (2008) with the exception of the practice of linking testers to requirements
owners and the practice of including internal testing requirements in the project scope. Their
study also reports that linking people is equally important to linking artefacts (Uusitalo et al.
2008). Similarly, Kukkanen et al. (2009) report that requirements-test alignment is supported by
connecting processes and people, and by applying good practices, and advocate assigning
specific roles for requirements management and for test management, that are responsible for
coordinating between the two areas (Kukkanen 2009). The importance of connecting people is
confirmed by our requirements-test alignment study that concludes that communication is one
ofthe major challenges in achieving good alignment (Bjarnason et al. 2013). In this context, it is
interesting to note that Gotel and Finkelstein (1994) express that a particular concern in
improving requirements traceability is the need to facilitate informal communication with those

@ Springer

2370 Empirical Software Engineering (2019) 24:2364-2409

responsible for specifying and detailing requirements, i.e. that interactions plays a key role in
enabling requirements-test alignment.

3.2 Software Process Improvement (SPI)

The field of software process improvement (Humphrey 1989, 1997, Basili and Rombach 1988) is
rooted in the perspective that ‘the software process is the set of tools, methods, and practices we
use to produce a software product’ (Humphrey 1989, p.3.) The process, including its practices, is
then an important instrument in developing and maintaining quality software products in an
efficient, reliable and repeatable way. Improving the practices applied in a development project
can thus improve the efficiency and effectiveness of the software engineering efforts.

There is a wide range of SPI frameworks, or methods, which in general share the same main
steps of first evaluating the current process, and then identifying, implementing and evaluating
suitable process improvements. These frameworks may be categorised into two main ap-
proaches: inductive and prescriptive (Briand et al. 1995). Inductive (or bottom-up) frame-
works, such as QIP (Basili 1985) and Lean Six Sigma (George 2002), take their stance in the
organisational situation and context of the organisation when identifying potential improve-
ments. In contrast, prescriptive (or top-down) frameworks, such as CMM/CMMI (Chrissis
et al. 2007), People CMM (Curtis et al. 2002) and SPICE, i.e. ISO/IEC 15504 (ISO/IEC 2004-
2011), mainly base their improvement suggestions on a wide set of best practices.

Retrospective reflection is another example of an inductive approach to SPI. At retrospec-
tive meetings, project members identify problems and potential improvements to their prac-
tices by considering and analysing past events and experiences (Collier et al. 1996, Derby and
Larsen 2006, Drury et al. 2011). By providing a time line of project events in these meetings, a
project team can gain a joint understanding of the overall project and connections between
roles and activities throughout the life cycle (Bjarnason et al. 2014), which is beneficial for
improving project collaboration and communication.

3.3 SPI Methods for Requirements-Test Alignment

There are SPI methods that address RE (Lavallée and Robillard 2012) and testing (Afzal et al.
2016) separately, but very few explicitly consider the alignment between these two areas. Gap
Finder is one exception to this, and REST-bench another. REST-bench was designed by
Unterkalmsteiner et al. (2014) to assess and improve requirement-test alignment by modelling
the information flow between requirements and testing for a specific project using an artefact map
that is elicited individually from requirements and testing roles. This approach enables
uncovering inconsistencies and incongruences in viewpoints between requirements and
testing roles. These roles then discuss and resolve these misalignments at a common
workshop. When applying REST-bench on a one-year project at Ericsson AB, a
number of misunderstandings were uncovered and subsequently resolved at the work-
shop, which also resulted in identifying bottlenecks and sub optimisations in the
requirements-test interaction (Unterkalmsteiner et al. 2014).

The current version of CMMI (Chrissis et al. 2007) includes process areas for RE, for
validation and verification, and describes intended connections between these process areas and
includes alignment practices such as traceability and cross-review of requirements against project
plans and other work products, e.g. design and test artefacts, managing requirements changes.
These practices have been identified as supporting requirement-test alignment (Bjarnason 2013,

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2371

Uusitalo et al. 2008) and applying them as part of a CMMI effort would thus be expected to lead
to an improvement. Similarly improving the quality of the requirements through SPI has been
found to improve the overall quality of the software product (Kandt 2009; Bjarnason et al. 2013).
However, Harter et al. (2012) found that there was a significant decrease in the rate of severe
defects at higher CMM levels, but that this effect was not present for projects with a high degree
of requirements ambiguity.

We are not aware of any empirical research studies on the impact of CMMI on requirement-
test alignment. However, there are some studies that report on the correlation between the RE
and the testing processes. Damian and Chisan (2006) found that simultaneously improving
these processes can lead to pay-offs in improved test coverage and risk management, and in
reduced requirements creep, overscoping and waste, resulting in increased productivity and
product quality (Damian 2006).

3.4 Theory-Based SPI Methods

We find few SPI approaches that are based explicitly on theories, as the Gap Finder is. One
exception is the team radar instrument initially proposed by Brede Moe et al. (2009). The team
radar is based on an empirically-based theory of team-work challenges and aims to improve agile
software development projects. This instrument can be used to qualitatively assess factors defined
by the theory as influencing team work. Similarly to the Gap Finder these factors are measured and
rated through qualitative data collection, and then presented to the development team as a visual
radar diagram. Improvements are then identified by jointly reflecting on these underlying factors.
The instrument was found useful to practitioners in identifying improvements and the five factors
(from the underlying theory) were confirmed as relevant to team work in agile development.

The team radar instrument (Brede Moe et al. 2009) was further improved by Angermo Ringstad
et al. (2011) through strengthening the diagnosis step and by applying action planning. The
diagnosis phase of the method was expanded to also include observations, in addition to inter-
views, of the assessed team’s daily work. The rating of the underlying factors for team work was
based on a structured analysis of all the gathered data, i.e. interview transcripts and field notes from
the observations. An action plan to address the issues found was then specified at a meeting in
which the ratings were presented to the team who were invited to discuss the presented picture and
areas to improve on. The defined actions were based on the underlying theoretical framework of
factors affecting team work in agile development. This improved version of the team radar was
found to support project teams by illuminating issues not previously discussed within the team.
This contributed to providing a view of the situation by highlighting underlying factors and causes,
rather than merely pointing out experienced problems.

4 The Gap Finder Method

The Gap Finder enables the assessment of a development project and the identification of
relevant practices for improving requirements-test alignment. It consists of two parts: an
assessment part based on a set of measurement instruments for assessing distances within a
development project; and a prescriptive part that supports identifies improvement practices
utilizing the Gap Model (Bjarnason et al. 2013), see Section 2.3. The measurement instrument
enables the development of a RET profile of the current level of requirements-test alignment
for the project under study. The Gap Model is then used to pinpoint improvement practices that

@ Springer

2372 Empirical Software Engineering (2019) 24:2364-2409

can bridge or decrease the troublesome distances identified through the RET profile. These
practices are identified by comparing the distances found in the obtained RET profile with the
Gap Model, extracting practices known to mitigate the identified distances and constructing a
suitable set of improvement practices for the development project. The outcomes, i.e. the RET
profile and the identified improvement practices, are presented to the assessed project team at a
workshop with the dual purpose of validating the output of the method and agreeing which
improvement practices to implement.

The main steps for applying Gap Finder are described in Section 4.1. The measurement
instruments are presented in Section 4.2 and the resulting RET profile is described in
Section 4.3; these are also described in (Bjarnason and Sharp 2015). Guidelines for applying
the Gap Finder are available on-line (Bjarnason 2013).

4.1 The Four Main Steps

Gap Finder involves four main steps: I) planning for assessment, IT) measurement of distances
within project, III) prescription of improvement practices and IV) workshop to validate
outcome. The agreed practices are then implemented and the project is re-assessed by iterating
the steps. An overview of these steps is shown in Fig. 1.

4.1.1 Step I: Planning

The scope, extent and timeframe of the assessment are planned in agreement with the
host organisation in which the Gap Finder is to be applied. In addition, the measure-
ment instruments of the Gap Finder need to be prepared for the assessment. Both of
these activities require insight into the processes and practices of the organisation. The
method could be applied by someone with this insight, e.g. a process engineer but if
performed, e.g. by a researcher, initial investigations are needed to obtain this
knowledge. In particular, knowledge of roles and artefacts involved in the require-
ments and testing processes is needed.

The planning includes identifying which part of the organization to assess and
which roles and individuals to include. For example, one team or sub-set of roles
could be selected for assessment. The people and relevant artefacts to include in the
assessment can then be identified and agreed.

The measurement instruments may need adapting to the processes and terminology
specific to the assessed organization. The instruments thus need to be reviewed and
possibly revised to refer to case-specific terminology, e.g. names of specific roles,
artefacts etc. This will reduce misunderstandings and support a more consistent
measuring and understanding of the assessed factors.

The output of the planning step is the measurement instruments of the Gap Finder adapted
to the specific case, and an agreed plan for the assessment.

4.1.2 Step lI: Distance Measurements

Gap Finder’s measurement instruments consist of three questionnaires: profile, communication
and artefact questionnaires. The profile and communication questionnaires contain questions
concerning the project members, while the artefact questionnaire investigates distances between

the requirements and test specification. The instruments are further described in Section 4.2

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2373

The questionnaires are administered to the roles involved in the requirements and testing
activities. The first time Gap Finder is applied to an organisation, it is recommended to use
interviews for the surveys. This will allow the participant to ask for clarifications, which can
enable a uniform understanding of the questions and of the scales used to answer them. In
addition, the interviewer can ask follow-up questions and thereby obtain a richer picture of
potential issues and reasons for them. This is particularly important when the interviewer is not
intimately acquainted with the project.

The results of the distance measurements are collated into a RET profile for the assessed project
(see Section 4.3). This profile is then used in the prescriptive step and presented at the workshop.

4.1.3 Step llI: Prescription

In this step, the RET profile is analysed to identify gaps. When long distances and potentially
troublesome gaps are diagnosed, improvements are prescribed based on the underlying theory.
In particular, the Gap Model (see Table 5 in the Appendix) is consulted to identify software
development practices that can mitigate the identified gaps. This set of practices is then further
refined and a final set is identified, adapted to the assessed organisation.

The analysis is supported by any additional knowledge about the case, e.g. contextual
factors such as project size, development model, specific practices applied. For example, if a
large organisational distance is seen in the RET profile, the Gap Model suggests 3 categories of
abstracted practices for mitigating this organisational distance, containing in total 34 individual
practices. This large set can be whittled down to a more manageable number by a combination
of matching the sets proposed by Gap Model for each identified gap and considering the
suitability including cost of each practice for the assessed development organisation. The aim
is to identify a small set of practices that can mitigate all the identified gaps and that are a good
match for the organisation at hand.

4.1.4 Step IV: Workshop

The RET profile and the set of prescribed improvement practices are presented to the project
team at a workshop. For each type of distance, the relevant parts of the RET profile including
the gaps are shown and the suggested improvement practices are presented. The project
members are encouraged to share their observations of potential issues caused by the identified
gaps and if and how the suggested practices may mitigate them. This allows for a validation of
both the gaps and the practices identified through applying Gap Finder. Furthermore, it
includes the project members in the decisions regarding which improvements to implement
thereby increasing the probability of successfully implementing the new practices.

4.1.5 Implement Practices and Iterate

After the agreed practices have been implemented, the situation is re-assessed by iterating the
steps. A new assessment plan is made (step I), the distances are re-measured (step II) and
another prescription (step III) is derived. In this analysis, the original and the new RET profiles
are compared to assess if the previous gaps have been reduced and/or whether the effects of
them have been minimised by the implemented practices. Additional or different improvement
practices may be uncovered through analysis of the new RET profile. These are then reviewed
and discussed with the project team at another workshop (step IV). At this session a decision is

@ Springer

2374 Empirical Software Engineering (2019) 24:2364-2409

made as to whether or not the SPI effort is completed, and if not the Gap Finder process is
iterated again.

4.2 Measurement Instruments

The measurement instruments used for assessing a project contain 18 measurements
(see Table 1) that cover eight types of distance. These measurements are applied to
artefacts and people involved in the requirements and testing activities. While some
distances are straightforward to assess, others are estimated through questionnaires
with self-rating questions. For example, geographical distance (D1) is assessed by
measuring the physical distance to walk between desks, while psychological distance
(D3) is measured through a questionnaire asking each team member to rate the
distance between themselves and each other member of the team.

Most of the questions have Likert scales with five options for the respondent to choose
between. For example, for psychological distance (D3, M3.1) the respondents were asked to
rate how hard it was to communicate with colleague n by noting 1-5 for Not hard (1), Some
effort required (2), Medium effort (3), Much effort (4), Extremely hard (5). Similarly, for the
knowledge aspects of cognitive distance (M4.1-M4.3) the respondents were asked to grade their
own competence using Benner’s (1982) five levels of experience, i.e. Novice (1), Advanced
beginner (2), Competent (3), Proficient (4) and Expert (5). The cognitive distance between two
people was then measured by calculating the difference between their levels of competence.

The distance types are complex and can contain several aspects. For five of the distance
types we have defined one measurement per aspect and, thus, several measurements per
distance type. For example, for cognitive distance (D4) five aspects are measured: one aspect
of prioritisation of quality aspects for the system, and three aspects of different types of
knowledge: domain; technical skill; organisation; and process.

For the artefact questionnaire, the aspects of abstraction (M5.2.3, M6.3) and coverage
(M5.1.2, M5.2.2, M6.2) are directional, i.e. the abstraction level of artefact A may be higher or
lower than artefact B. For these questions the following scale was used: Much more, Somewhat
more, The same, Somewhat less, Much less, and Can't say.

The aspect of priority for cognitive distance (M4.4) was assessed with a question on the relative
priority of the quality characteristics specified in ISO/IEC 9126-1. The respondent was asked to
distribute 30 resources over the six quality characteristics. The distance (of M4.4) between two
people was then assessed by calculating the Cartesian distance between their responses.

The distance for the measured aspects can be calculated in various ways either individually
per measurement or combined to a total distance for the whole project. For example, the
average value for one aspect of distance between each pair of team members can be
considered, or the distance between the minimum and the maximum value. The total for a
distance type consisting of multiple aspects can be obtained by calculating the Cartesian
distance between the multi-dimensional data points for each aspect and participant.

4.3 The RET Profile

We pose that a project’s current level of requirement-test alignment can be assessed by
considering its RET profile,' i.e. distances between RE and testing roles and activities. The

! Previously called iRE profile in Bjarnason et al. 2016

@ Springer

2375

Empirical Software Engineering (2019) 24:2364-2409

—0JO 9SueI1 oY) UIYJIM PISI[BULIOU DI SON[EA JUSWAINSeaw [[y Teadde Lot yorym ur sarreuuonsonb oy pue (8-1() doueIsip 1od (SIA- [JA) SIUSWAINSEIW dY} JO JSISUOD SJUSWINISUL Y],

JUSWIDINSBAW 10J Jutod BJep QU0 AJUO SAJEOIpUl 4. "9due)SIp [euonesiuesio pue [edydei3oas 1oy 1deoxa ‘|

I AJLIOA 0) 3SBD 159) B

uonIulyop Jsed 1591, — siboy el Apys 9sed ur papnjour JoN Suruiop pue judwannbar e Surkjoads ueomoq dwm Jo YPIuT SIN
SOIJLIOA ST Jey)}
s)boy] 01 ose0 1597, Ld Apmjs oseo U1 papn[our Jo0N (spuawarnbax ot 0} 35BS 153) B WOIJ 91ETIARU 0) SYII[O JO ToqUINN TLN
I SOIJLIOA JBY)
oS80 189, 03 1boy Ld Apmys aseo ur papnjour JoN SOSED 159) U} 0} JUSWIANNDAI B WOy djeSiALU 0) SYII[O JO JoqUINN I'LIN
sjoejoUE
uonoensqy 959 159 SA $1boy 19 210Ul 1BYMIWOS Sunsey pue sjuowaImbel U99MIOq [9AJ] UOTIOBISQR UT SOUIFI 9N
oSerA0)) 059 159) SA §1boy 19 210Ul JBYMAWIOS s)oejolIe Surso) pue sjudtaNnNbar ueamdq 95110409 Jo 90150 TN
Aurepung Ssed 159 SA)by 19 dues oy A[ysnoy sjoejope unss) pue spudwaINbar UedMIOq SuruedW Ul OOUII 19N
sjuowannbax
UonIENsSqQy sibar pojuswnoop sa PRIty :z'sa 001 190 0S50 PoaISE SA PAJUSWNOOP UGOMID] [9AS] UOTIORIISQE UI SOUIFI CTSIN
93e10A0) sjbar pajuewnoop sa paaIdy :7'sq 000 00°0 000 sjuowaINbar pedIde SA POJUSWINOOD USIMIDQ AFLIIA0D JO 91T TSN
Ayreqrung spbar payuswnoop sa paaIdy :z'sd 000 000 000 sjuowaInbar pasISe SA PIIUSWNOOP USOMIAQ SUTURIW UT SOURII I'TSIN
o8eroa0) sibar peaiSe sa pamate 'S 000 000 000 1morAeyaq 1onpoid pasiSe pue [emor UeaMIq SFLIOA0D UT U TI'SIN
Auepurg sybar peaiSe sa pareAljo(1S ST0 L0 000 moraeyaq jonpoid paaiSe pue [enjoe 1onpoid uoom1dq USSP I'T'SIN
arreuuonsan() Joejouy
sonLoLd ya y1Io 80°0 €00 1onpoxd punore uonesnLoLd ur SoULIII VYN
sassaooid
uonesiuesIo pue ssad01] IZel 96°0 €0 90°0 Surpnjour uonesiuesio pue 30s{oxd Jo o3popmous| Ul SOOULIIPIJ CYIN
JuowuSIfe Junsd) pue syudwAINbax
[ID[S [earuyoa], d 050 €0 L1°0 Sunoojje seare [EOIUT00) UIIM 00uoduod Ul SIOUAIFI TYIN
oSpojmouy] urewo(q el 08°0 €0 000 urewop woisAs Jo oSpajmouyy s,o[doad u0am1q 2oULIDPI I'¥IN
QIreuuonsang) a[joid
[euonooNp-1g ca 09°0 S€0 070 odoad 0m} U2MIOq JEOTUNUIUOD 0} HOLJO PIAIIIIO] TEN
[euonoaxp-run) ca 00'1 SE0 020 uosIod IOYIOU. YPIM AJEOTUNIIOD 0} MO PIAIId] I'SIN
QITRUUONSINC) UONLITUNIIIO))
uonesiuesIo duI| Ul Jiun SWOH wa L 97 0 (sdoss) ojdoad omy usamjaq som jeuonesiuesio ourf ur yed jo y3uo] N
[eo1sAY g a (443 L9L 81 (seour) $sop U2MIAQ IUEISIP [EIISATJ N
QIreuuonsang) a[joid
10dsy oueIsI(] XBJAl oSe1oAy urn JUSWIDINSBIA

100(01d 9sBO 9} J0J PaUIR)qO SYNSAI Sy} PUB SJUSWINISUI JUSWAINSEIW Jopul] den oy jo swpnQ | ajqeL

pringer

Qs

2376 Empirical Software Engineering (2019) 24:2364-2409

RET profile is produced by collating the measurements for each distance. For example, the
cognitive and psychological distances between the roles responsible for requirements and
testing are included in the RET profile.

The range and average value for each type of distance can be presented as part of the
project’s RET profile. For measurements with the same scale, or scales that can be normalised,
the various aspects and distances can be visualised together in a radar diagram, see example in
Fig. 2. In order to avoid the limitations of this type of visualisation, the ordering of the axes
needs to be considered and kept consistent, in particularly when comparing diagrams over
time. Furthermore, the relative difference between the different distance types should be
considered when analysing these diagrams rather than the total area made up of all data
points. The RET profile is used as input to the prescription step (step I1I) and to the workshop
(step IV). When analysing the RET profile individual distances between project members and
roles may need to be considered to identify distances that need addressing. Similarly upon re-
assessing a project, the two versions of the RET profile can be compared to assess the effect of
the implemented practices.

5 Case Description

A development project within The Open University’s IT unit provided the case for this study.
The Open University is UK’s largest academic institution with more than 240,000 students
from all over the world. The IT unit is responsible for the day-to-day management of the
university’s information systems and in-house development of some systems. The studied
project is part of a programme developing a system for student administration and curriculum
management to meet the new requirements posed by evolving curriculum needs, changed fees
and funding regulations, and subsequent changes to internal business processes. An overview
of the case is provided in Table 2.

The Scrum development method is applied at team and intra-team levels. Each develop-
ment team consists of a product owner, a requirements analyst, a tester, a number of developers
and a scrum master. In addition, there is a project manager responsible for the project to which
the team delivers. The product owner represents the business and is responsible for the scope
including signing off on acceptance of project deliveries. The requirements analyst is respon-
sible for eliciting and defining the requirements in close collaboration with the product owner

Domain knowledge

Min

Process and organisation: /4|" Technical skill:
EIARN —m-Average

Team external AN A h \\ /| Scope management

== Max

Semantic & Cognitive
Process and organisation:
— . i
Team internal Technical skill:

Requirements Engineering .

»/ /Adherence:

\/ Agreedvs
documented

Adherence: /
Delivered vs*

agreed .
Technical skill: Technical skill: requirements

Design & Development Testing

Fig. 2 Examples of radar diagrams used in the Gap Finder workshop to provide a visual overview of the multiple
distances measured for the case project. The left-hand diagram shows aspects of cognition; the level for each
member (coloured lines) and the average value (dashed line). The right-hand diagram shows the normalised min,
max and average values for several distances within the whole project team

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2377

Table 2 Characteristics of the studied case at Open University’s IT department

Type of case Academic education provider

people in software development unit Approx. 150 for IT development (300 for whole IT unit)

people in project Approx. 20

Distributed No

Domain / system type IT: Educational programme management including student services
Source of requirements In-house

Main quality focus Maintainability
Certification No

Process model Scrum

Duration of project 2-3 years

requirements in project Approx. 800 user stories
test cases in project Approx. 1300 test cases
Product lines No

Open source No

and the development team. The scrum master, project manager, developers and testers all take
an active part in discussing, and thereby defining, the requirements. Finally, the tester within
the team is responsible for verifying that the produced software corresponds to the require-
ments. The team members of the studied development team are characterised in Table 3.

The project scope is described in definition documents and in agile epics by senior
requirements analysts and allocated to one of the four planned system releases. For each
release, the requirements analyst for the intended development team details the epics into user
stories and acceptance criteria and places these in the team’s backlog. Development is
performed in 2-week sprints (iterations) and prior to each sprint the user stories in the backlog
are prioritised by the product owner and requirements analyst. The user stories with the highest
priority are then presented to the development team who estimate them. A set of stories are
agreed on for that sprint according to priority and team capacity.

The epics, user stories and acceptance test cases are stored in a central require-
ments repository with traceability links. The test scripts are stored in another repos-
itory and linked to the relevant user story. These test scripts can then be viewed from
the requirements repository.

Once the development team has delivered accepted functionality, the system is tested as a
whole both from a user perspective and from a system integration perspective. This testing is
performed by team-external testers and by representatives from the business unit. Any issues
found in this testing is initially analysed by the tester in the development team before further

Table 3 Roles and length of experience for the members of the studied development team

Roles Length of Length of experience Length of Total length
experience with case experience in of work
in team (months) organisation (years) current role (years) — experience (years)

Product owner 10 16 8 26
Requirements analyst 0 24 24 28
Tester 3 0.25 10 26
4 developers 8,9,9,0 4,1,6,0 6,5,22,10 7,6,22,10
Scrum master 10 17 1 26
Project manager 3 0.25 18 25

@ Springer

2378 Empirical Software Engineering (2019) 24:2364-2409

decisions and actions are taken to either reject or agree to address the issue. The team tester and
the team-external testers are assigned from the same department.

6 Research Method

The Gap Finder method was designed through a design science research approach
(Hevner et al. 2004) and formatively evaluated using a case study method (Runeson
et al. 2012). The formative evaluation of the Gap Finder method aimed to seek in-
depth feedback that could guide further design and improvement of the Gap Finder
and thereby ensure that the method is usable and useful (Rogers et al. 2011). Due to
this being a formative evaluation, the Gap Finder and the case study were iteratively
designed throughout the study. The design science components, i.e. environment,
design science research, and knowledge base, are outlined in Figs. 3, and 4 contains
an overview of our research method.

We performed this research in three main stages, namely design, evaluation and
data analysis using a combination of empirical research methods. Apart from the
methods included in the Gap Finder method (i.e. questionnaires and workshop, see
Section 4), observations, a survey and interviews were also performed. An
ethnographically-informed approach (Robinson et al. 2007) was taken in the observa-
tions to ensure that relevant data was collected with the Gap Finder and that it was
understood in-line with the team members’ perceptions of the situation. Figure 4
provides an overview of our research method and highlights the main novel parts of
the research presented in this paper.

The design of the Gap Finder, study design, data collection and analysis were
mainly performed by Bjarnason, and reviewed and validated by Sharp. In addition,
Sharp provided support in the contact with the case organisation, participated in one
initial interview and in the workshop where the outcome of the Gap Finder was
presented to the development team, and conducted the post-study interviews. The
workshop was held as a focus group session.

6.1 Design

This stage included the design of the Gap Finder and of the case study through which it was
evaluated. Both of these activities require insight into the case organization to be used for the
evaluation. In particular, knowledge of the roles, artefacts and practices of the live develop-
ment project for which Gap Finder was to be applied was needed.

Environment Design Science Research Knowledge Base
Case: IT development project at -) Applied Theory of Distances
Open University, UK Need RET alignment - Design of Gap Fmde.r _ 8 Distances
Project duration: 2-3 years - Evaluation of Gap Finder - Gap Model
Project team: 20 software engineers through case study {Distances x RET Practices}
Development method: Scrum Revised
Project size (approximate): Addressed by

800 user stories, 1300 test cases applying Gap Finder

Fig. 3 An overview of how a design science research approach (Hevner 2004) was applied in designing and
evaluating the Gap Finder method for a case environment based on the Theory of Distances for Software
Engineering (Bjarnason 2016)

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2379

Theory of Distances
- 8kinds of distances

- Gap Model
{distances x RET practices}
Design J/ Evaluation
---------------------------- | Pmm e m e m e e,
- Validation Data Analysis
1. Planning*
Obtain case Data collection ’ I1l. Prescription® ‘ ’ Survey of practices* Data
knowledge Design of Focus Group comparison
Il. Measurements

. i icest
Interviews prescribed practices

.

Design & plan Post-stud

: case stud oststudy

4 - Gap Finder usefulness* interviews®
Observations

--------------- | e o i i Sy

Case study plan | | Measurement RET Profile Prescribed
and design instruments « measured distances practices*
« visualised distances

! :
! '
! '
! '
! 1
! '
! Findert |1
1 Interviews Gap Finde E
i !
! H
! '
! I
! '
; E

1
'

'

'

'

'

'

i

I

|| * physical measures IV. Workshop .

]| *Surveys * RET profile Reporting
i

'

I

I

'

'

'

L

Fig. 4 An overview of the performed design science research including the main intermediate artefacts and data.
Parts directly related to applying the Gap Finder method are marked with grey; light grey for activities and dark
grey for artefacts and data. # denotes the main novel contributions of this paper relative (Bjarnason and Sharp
2015), namely the overall design of Gap Finder, and evaluation of the prescriptive parts of the method

6.1.1 Obtaining Knowledge of Case

Initial knowledge of the case was obtained through document studies, a semi-
structured interview, demonstrations, and observations of the development team prior
to applying the Gap Finder. One of the authors had an existing relationship with the
studied organisation and some initial documentation and contacts. The organisation
provided further project documentation upon request and the first author studied these.
These documents included information about project organisation, i.e. roles and
names, the applied development processes, and examples of artefacts. In order to
obtain further insight into development artefacts, the artefacts used for testing were
demonstrated to us, and the first author was granted access to the systems used for
development to study additional examples of requirements, test cases, defect and test
reports.

We designed an interview instrument that is available on-line (Bjarnason 2013) to obtain
further knowledge about the roles, artefacts and activities used for RE and testing. Two
managers within the IT development unit agreed to participate in this initial open semi-
structured interview. The managers shared their view of current challenges and good practices
and supplied a number of pointers to information and people.

Finally, an initial observation of the development team was performed. One researcher
was present in the team area for a consecutive period of three days at the end of one
sprint, including review and planning meetings for the next sprint. The researcher
observed team members, what they were working with, and their rapport with each
other. The researcher did not interact or disturb the project members, but merely
observed how, with whom and about what they interacted. This allowed the researcher
to gain familiarity with the team and with their day-to-day work. This insight enabled
detailed design of the measurement instruments and of the research method. Further-
more, this initial observation established a relationship between the development team
and the researcher that facilitated further data collection.

@ Springer

2380 Empirical Software Engineering (2019) 24:2364-2409

6.1.2 Design and Evolution of the Gap Finder

An iterative approach was taken to design the Gap Finder as a method to be applied in practice. The
initial version of the Gap Finder was designed using the existing knowledge base, in particular the
theory of distances (Bjarnason et al. 2016). Knowledge of the case environment was used to evolve
the subsequent version of the method. Further refinements were identified through discussion in the
research team and as new insight was gained from applying it to the case. For example, later parts of
the method such as constructing the RET profile, prescribing improvements and the workshop were
designed as the application of the method to the case progressed.

The Gap Finder method evolved through a combination of generic design based on the theory
of distances and designing for the specific case. For example, generic distance measurements were
designed for each of the distance types defined by the theory, and then detailed and realised
through the aspects and roles believed to be relevant for the case, e.g. product owner, requirements
analyst, and development team tester. The aim was to design a practical method for the case
environment, while keeping the design generic enough to be applicable also to other software
development organisations and projects by aligning it with the underlying theory and related work.

The final step, i.e. the workshop step IV was designed as a focus group (Robson 2002)
involving all team members of the assessed project since involvement is a known vital factor in
effectively implementing SPI changes (Dyba 2000). The intention of this design decision is to
inform team members of factors underlying the targeted issues and to obtain a consensus and
commitment to a set of improvement practices.

6.1.3 Case Study Design and Planning

Gap Finder was applied at the sprint iteration level for one development team. This allowed an
evaluation of the method covering a full set of development activities including requirements
detailing, design, development and testing within a feasible time frame and with a clearly
delimited set of requirements. Data was collected through interviews, observations and a final
survey to assess the suitability of the prescribed improvements.

An explorative research approach was taken in the design of the case study meaning that the
initial study design evolved and was adapted over time as new insights were gained. Similarly,
even though the different parts of the case study are described here as separate and sequential
activities, an iterative approach was applied throughout the study, so the study design was
continuously re-visited. For example, when it became apparent that the applicability of certain
practices had not been commented on during the Gap Finder workshop, a survey of the
suggested practices was designed to complement that data.

6.2 Evaluation: Data Collection and Validation

We evaluated Gap Finder through a case study in which the Gap Finder method was applied to
an ongoing software development project. Evaluation-specific data collection was performed
through semi-structured interviews that were held in connection with measuring the distances
(Gap Finder: Step II) and by observing the team for the time period during which Gap Finder
was applied. In addition, the workshop (Gap Finder: Step IV) was held as a focus group and
extended to also validate the method, and a survey was included to assess the prescribed
improvements. This additional data allowed the researchers to evaluate the Gap Finder includ-
ing the measurements and the set of prescribed practices.

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2381

6.2.1 Gap Finder Step I: Planning

Before applying the Gap Finder, the assessments needs to be planned and the
measurement instruments prepared. The information obtained about the case organisa-
tion and project (see Section 5) was utilised for this. In particular, this included
knowledge gained about which roles and artefacts were involved in the requirements
and test activities, and how the requirements and test cases were managed in the
requirements repository. Based on this insight the researchers decided to exclude the
measurements for navigational (D7) and temporal distance (D8) from the evaluation
study. Since tracing was applied between requirements and test cases the navigational
distance would always have resulted in the value 1, which would not show any gaps
for this dimension. Temporal distance was excluded from the evaluation due to the
practical difficulties in measuring this for the case organisation where face-to-face
communication was the main source of requirements information rather than artefacts.
The measurement instrument used for the evaluation (with some terms replaced for
confidentiality and anonymity reasons) is on-line (Bjarnason 2013).

Since the requirements were defined through team discussions in this agile project,
all roles represented in the development team were involved in requirements activities.
However, the product owner, requirements analyst, tester and developers were the
primary roles involved, while the scrum master and project manager were primarily
involved in requirements discussions at a more general level. The measurement
instrument was prepared accordingly. Namely, the measurements were adapted to
cover all of the primary roles and their corresponding technical skills of scope
management, requirements engineering, testing, design and development. In addition,
all roles were asked to participate in the profile and communication questionnaires,
while the artefact questionnaire was limited to the product owner, requirements analyst
and tester.

Similarly, the measurement instrument was designed to cover the specific artefacts and
activities used for requirements and testing in the case organisation. In addition, generic
terminology was replaced with specific terms used within the organisation, e.g. ‘documented
requirements’ was replaced with “user stories’.

6.2.2 Gap Finder Step II: Distance Measurements

The distances within the development team and between their requirements and testing
artefacts were assessed using the measurement instruments prepared in step 1. The majority
of the people-related distances were assessed through the profile questionnaire, which covered
each role within the team. In addition, psychological distance between each pair of team
members was assessed through the communication questionnaire, which was taken by all team
members. The artefact-related distances were measured at the end of the second sprint by
administering the artefact questionnaire to the product owner, requirements analyst and the
tester. These distances were assessed for the specific requirements and test cases related to the
functionality delivered in that sprint. For each questionnaire, the targeted respondents were free
to choose whether or not to participate.

The measurement questionnaires were administered as semi-structured interviews to ensure
uniform understanding of the questions and to enable collecting richer data for evaluation purposes.
These interviews took around 15-30 minutes each and were audio recorded and transcribed.

@ Springer

2382 Empirical Software Engineering (2019) 24:2364-2409

6.2.3 Observations

In parallel to applying the method, additional data relevant to project communication and
distances was gathered through ethnographically-informed observations. These entailed seek-
ing to understand the team’s work practices apart from the researcher’s assumptions about
software development (Robinson et al. 2007) and enabled the researchers to gain a rich insight
into the day-to-day work practices and interactions of the project members. Collecting this
additional data had the dual purpose of enabling triangulation and of providing insight into
issues that the team experienced, and strategies applied to mitigate them.

The observations were as unobtrusive as possible and questions were only asked to
seek clarification of terminology or actions, and never to participate in team discus-
sions. The set of distances provided a ‘protocol’ for the observer in taking particular
note of interactions taking place in the team area. Extensive field notes were made
during the observations including the nature of interactions, status of ongoing work
and information shared during meetings, and individual activities.

6.2.4 Gap Finder Step lll: Prescription

Gaps were identified by analysing the obtained measurements and identifying practices for
mitigating these through the Gap Model. The measurements were then collated into a RET
profile for the assessed project team.

The gaps were identified by analysing the measured data from a number of different
perspectives. A qualitative approach was taken in analysing the quantitative measurement
data. In future, when reference data from other cases becomes available a quantitative aspect
could be added to this analysis. However, contextual factors always need to be considered
since these may influence if a distance is ‘good’ or ‘bad’. For example, for a case with
extensive requirements documentation the distance between artefacts is likely to be more
critical than for a case relying heavily on face-to-face communication of requirements.

The analysis of the distances entailed calculating the distance per measured aspect between
each team member and the total distance for each type of distance. In addition, for each
distance measurement the average and range of obtained values were calculated and analysed.
For the measurements using Likert scales, the median values were calculated and compared to
the mean values. As they were very close, the means were used in order to present uniform
types of value. Since the further analysis of these values was qualitative, we judge that this
choice did not affect the following Gap Finder steps. The distance between pairs of people was
also calculated to identify potentially large gaps between specific roles and individuals. From
this, a set of gaps to mitigate was identified.

Corresponding improvement practices were identified and prescribed as described in
Section 4.1.3. An initial set of abstracted practices were pinpointed based on the Gap Model
for the identified distance types. Specific practices were identified by considering additional
data and insight into the case, thereby customising the theoretically-derived practices for the
specific case. For example, the largest geographical distance within the team was due to the
product owner being seated in a different building from the rest of the team. The Gap Model
states that geographical distance can be decreased through the practice of cross-role collabo-
ration (AP1). This abstracted practice was then refined into the more specific practice of
increasing the product owner’s physical presence to developers and testers by providing a
guest desk for this person. Furthermore, since several practices affect the same distance types

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2383

the set of improvement practices was designed to provide a good coverage while avoiding
conflicting practices.

6.2.5 Gap Finder Step IV: Workshop & Focus Group

A Gap Finder workshop was held, as a focus group, at the beginning of the second development
iteration with the development team to present the RET profile obtained so far and the prescribed
improvement practices. The main intention of the focus group was to gauge the practitioners’
views on the suitability of the suggested practices. Furthermore, the relevance and validity of the
presented distances and gaps was also assessed at the focus group (reported in Bjarnason and
Sharp 2015). The whole team was invited to the session and six of nine team members attended.
The content of the focus group was later covered with the three absent team members by
individual semi-structured interviews. The focus group session and the interviews were audio-
recorded.

The focus group began with an introduction to the Gap Finder and the concept of distances
within software development. An overview of the full set of measured distances was then
given before presenting and discussing the findings for each type of distance. First the obtained
measurements were presented and an open question asked if and how this may have an impact
on their work. The practices prescribed by the Gap Finder were then presented, and the team
asked to comment on whether the practices may mitigate the distances and improve alignment,
and if they were suitable to adopt.

After having discussed each type of distance, the participants were asked to reflect
individually on issues related to the presented distances and practices for mitigating these.
These reflections were written on post-it notes and then shared and discussed within the group.

At the end of the focus group the participants were asked if and in which way the Gap
Finder process and outcomes were useful, including how they had experienced the workshop.

The audio recordings were transcribed and summarised. This summary was then distributed
to all the team members who were asked to provide feedback if anything was incorrectly
described or if they had additional reflections.

6.2.6 Survey of Prescribed Practices

The relevance of the practices prescribed by Gap Finder was further validated through a survey
after the second development iteration was completed. The survey was sent by e-mail to one of
the managers within the IT development unit, the product owner, the scrum master and the
tester from the assessed team. For each prescribed practice the respondents were asked to
indicate if it was planned to be implemented and what effect it might have. The survey
template is available on-line, see Bjarnason 2013.

6.2.7 Post-study Interviews

We performed interviews five years after the main study to investigate if there is any evidence
of the practices suggested by the Gap Finder method having been introduced within the team
or remaining within the Department currently. The original study team had been disbanded two
years after the study was conducted. Sharp held two semi-structured post-study interviews.
One with the lead product owner of the studied development team who still works within the
organisation, and one with a researcher who recently performed a study of the same IT

@ Springer

2384 Empirical Software Engineering (2019) 24:2364-2409

department and is, thus familiar with current work practices. We focused these interviews on
the suggested improvements practices, in particular the ones initially planned for implemen-
tation, see Table 4. The respondents’ viewpoints were captured in writing and confirmed by
the interviewees.

6.3 Evaluation: Data Analysis

After completing the evaluation, the complete set of data gathered from applying the method
and from the additional validation activities was analysed. The transcripts were coded by the
first author and data from the different sources was analysed together for each distance, for
each prescribed practice (RQ1) and for improvements (RQ2). The outcome of this analysis
was discussed extensively with the second author. We thus analysed, compared and triangu-
lated the full set of data for each research question.

The data was analysed in two main iterations, one before and one after the focus group
session in which the initial findings were presented. During the initial analysis, the measure-
ments, transcription of the interviews held in connection with the measurement surveys were
stored in a spreadsheet and categorized (or coded) per distance type. For each type of distance,
the relevant data was analysed together and compared against the observations. The aim of this
analysis was to identify troublesome distances (gaps) and issues experienced within the
development team, and potential connections between these. These findings were presented
at the focus group session.

In the second round of data analysis the data on improvement practices were included in the
analysis; from the focus group and the survey on practices. The focus group session and the
interviews held in connection with the survey were transcribed and these transcripts were coded
according to distance type and practice. The full set of data, i.e. measurements, profiling
interviews, focus group, survey on practices, was analysed by considering all data relevant for
each distance type and each improvement practice, thereby providing triangulation and validation
of the outcome of the initial analysis. In addition, the participants’ viewpoints on the Gap Finder
method, the concept of distance and the suggested practices were coded and analysed together
with the researchers’ experience of applying the Gap Finder method. Finally, the data from the
post-study interviews was analysed, compared to, and integrated with the results.

7 Results

The main results consist of the outcomes of applying the Gap Finder, namely the identified gaps
and the prescribed practices, and the findings related to evaluating the method. We now present
these results based on the data captured through observations, interviews, focus group session and
survey.

7.1 Identified Gaps

Several troublesome distances, or gaps, between people were identified through the analysis of
the RET profile, which was obtained based on the interviews held in connection with the
measurement surveys. For the artefact-related distances only shorter (or no) distances were
measured and, thus no artefact-related gaps were identified. The RET profile including the
obtained measurements for each distance is outlined in Table 1.

@ Springer

2385

Empirical Software Engineering (2019) 24:2364-2409

"uonesIueSIO JUSLINO
J10J PUNOJ 90UIPIAS Ou ‘wed) [eursuo ur parddy

uonesiuegio
JUOLIND UI punoj pue wed) [eurduo ur parddy

‘nonisodwod ajo1 ur sofueyd 03 onp wes) JuowdooAdp
[eurSLIo 0] 0s SS9 ‘[oAd] [euonesiuegio je parddy

‘uonesIuesIo

oy ur Judsald UorEIIUNUILIOD SIY) Punoj Apnis JuaLIny) “dAISN[OUI-[[e
pUE JUISISUOD 0IOW dWIedaq donoeld SIy) ‘wes) eurSLIo oy} uf

'sonssI Aue 9A[0SaI 0} J00)

11 se Suo[se Ae)s 0} JUSUIIUILIIOD B PUL BT Wed) Judtdo[oAdp ay) 0}

Ioum(Q) 3onpoid Aq S)sIA Arep parmongs £q paoe[doy] JUSUIIONAUD
100(oxd-nnur 03 onp [eonoesdu Inq ‘wed) [eurSuo Aq pajuswd(dury

9013k 100fo1d
JO 1831 J1 ‘9qAe]

MIU “SON
AJreonewd)sAs
Adde

0] J[qIseayul ‘ON
donoerd

ut J[qIseajul ‘ON

sonoeid Sunsrxo

uoyi3uons ‘sox
suonejuy

doeds ‘ON
Ja13e
judunedop

159 J1 ‘9qABIN

donoead Sunsixd

uoy)3uons
+ MU ‘SOX

MU ‘SOX

syuowarmbar Aypenb uo uopesiuesio
pUB WEed) UNPIM JUWAITe dSearou]

SONSSI QB[JO JUNOWIE Y} dONPAI UL
syuowanmbar Arjenb uo juowudie Ajreg

sjuowaanbar padide jo

o3pomoury 1oy Sursearour £q wed)
1593-Wd)sAs yym JuowuSife oaordury

'SONIIqe U0 Joedull [EIOUSD) "PUNOJ SUON

syuowannbar Jo uonedyLILA pasoiduy
UONEITUNUILIOD

uo joedwWr [BIOUSN) "PUNOY SUON]
syuowaanbar
JO JUOWARITE ‘YOUAS Ul Ik S)OBJIMIR

9se0 159) pue sjuAWIINbaI JeY) dInsuy

S)09Jop JO OU pue S}OI[JFUO0d
sjuowaInbal 9sea1dap ‘uonepifeA pue
UONEIIUNWIIOD sjudwIinbar pasoxduy

uonepIfeA pue
uoneIIUNIIIOd spuawannbar pasoxduy

2Anus0)

aAnugo)

aAnIugo)
[I1S [edtuyosy
ARIUS0))
QoudIaYpE
‘urewiop
:0An1uS0)

[eo130[0YoASd
[euonesiuegio
“QANIUS09

‘OnueWAS

oARIuS09
‘[euonesiuesi0

oAnIuS09
‘reoryderSoan

100foxd 10} Ayuroud
Aypenb uo 093y g4

UoneNdId

ur Aujenb 1apisuo)) 84

uonejor qof /J
Juowdo[oadp
doudpedwo) 94

Funsay
IoUMO 1onpoid Gd
Suness wed)

r Kes [EnpIAIPU] g

sjuowdnnbax

JsureSe pamaIAdI

S9SBD 1S9, €d
jnoygnoyy
29 S[OAJ]

[[E ‘UOTEOIUNUIIIOD

syuowanbay zd

s9p 190D [d

s3urpury Apnys-1sod

pauueld
uonejudwe[duy

JudwugIfe 391 -syudwanbay uo joeduwy

(s)doue)sip
PassaIppy

donoelg

I3[S1BAK QAL} UOTIENYIS
pue ‘0onoeid oy Juswaydwr 03 pauueld wes) J1 JuowuSIE 159)-s)udwAIINbaI UO JordUr ouE)SIp passaIppe Jurpnyour sadnoeid paquosald Jo aourAd[RI UO SSUIPULJ JO MIIAIOAQ { d|qel

pringer

Qs

2386 Empirical Software Engineering (2019) 24:2364-2409

7.1.1 Geographical Gaps (M1)

There was a gap in geographical location between certain team members. While the core team
members, i.e. scrum master, developers and testers, were co-located in one common team area
the product owner, requirements analyst and project manager were located elsewhere. The
project manager had a desk in the same office as the team while the requirements analyst was
located on a different floor in the same building. In addition, the product owner was located in
a separate building approximately 322 metres away.

The team was aware of the negative impact of these gaps and frequently commented on the
lack of proximity to the product owner and the requirements analyst both during the observa-
tions and at the focus group. This distance was experienced as causing time delays in obtaining
requirements information, sometimes resulting in lack of communication or in obtaining this
information via other potentially less reliable sources. The requirements analyst stated that the
geographical gap towards the team reduced the frequency of direct communication and
thereby also the general awareness of requirements within the team. The analyst attempted
to mitigate this, partly through documentation.

7.1.2 Organisational Gaps (M2)

There was an organisational gap between the product owner and the other project members who
belonged to the IT unit. The product owner was from outside of the IT unit at an organisational
distance of 7 steps in total up and down the organisational tree. This was out of necessity since
the role of the product owner is to represent the users, in this case the business owners.

Several team members described during the interviews that this organisational gap causes
delays in decision making, and practical issues with coordinating meeting schedules were
observed. The product owner mentioned that people from the business unit and those from the
IT unit can disagree due to different priorities and perspectives, e.g. on how and which
requirements to implement. In addition, various meetings at the IT department often conflict
with other meetings held within the business unit causing scheduling difficulties for the
product owner.

7.1.3 Psychological Gaps (M3)

Psychological gaps were identified between some project members. Two out nine members
found it Extremely hard to communicate with one specific person, while three people reported
that it required Much effort to communicate with two other project members. This was
surprising since the team was perceived by themselves, within their organisation and by us
as researchers as being well-functioning with good and open internal communication. This
general perception corresponded well to the measured short average psychological distance;
between Not hard and Some effort required to communicate with individual project members.

When shown these measurements at the focus group, the team members could recognize
that this may explain some communication difficulties that had been experienced but not
openly discussed due to their unspecific nature. For example, discussions about requirements
were sometimes very polite rather than being open and frank. In addition, on a couple of
occasions team members were observed to physically indicate reluctance to continue a
discussion with a neighbour by turning away from the other person and focusing their attention
on their screen thereby withdrawing from the conversation.

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2387

7.1.4 Cognitive Gaps (M4)

Within the team, cognitive gaps between team members with different roles and length of
experience were found. Large distances were found for domain knowledge (M4.1) and
knowledge of the local processes and organisation (M4.3) between team members who had
joined the case organisation within the past year versus those who had worked there for several
years. One of the developers pointed out this distance between the very experienced require-
ments analyst and the newer developers and tester during an interview. This developer related
how this gap on several occasions had resulted in failure to identify incorrect software
behaviour, e.g. through testing, due to the requirements analysts not communicating to the
development team what he/she considered to be tacit requirements. These tacit requirements
had thus not been developed or tested, and had not been discovered until later, during user
acceptance testing.

Two surprising gaps were found for the aspect of prioritisation of system quality factors
(M4.4). Firstly between the product owner and the requirements analyst who prioritized
functionality and maintainability differently, and secondly for the tester who prioritised
usability much lower than all other non-development roles.

7.2 Prescribed Practices

Nine practices (P1-P9) were prescribed as improvements based on identified gaps. These
practices were presented and discussed with the development team at the focus group session.
In addition, a survey on the suitability of the prescribed practices was sent to three team members
and one manager within the organisation. The data collected for each of the prescribed practices is
summarised in 0 and presented below together with a description of each practice and the
researchers’ reflections. The development team have indicated that they plan to implement four
of the practices (P1, P2, P5 and P8), while two of them might be implemented (P3 and P9), and
three are judged as infeasible to implement (P4, P6 and P7). In addition, three further improve-
ment practices mentioned at the focus group by the team are reported.

7.2.1 Guest Desk for Product Owner (P1)

Practice Provide a guest desk in the team area for non-co-located team members, in particular
the product owner.

Addressed distance Geographical (D1), cognitive (D4). The practice can bridge the distance
by bringing the product owner physically closer to the team more often and for longer periods
of time. This increased co-location can in turn bridge cognitive distance, in particular for
domain knowledge, between the product owner and the development team.

Team response This practice was immediately picked up by the project team to be imple-
mented. Even though this practice had been considered by the product owner before, it had not
previously been discussed within the team. At the focus group, the scrum master said: ‘Having
the product owner in our office even 1 hour per day would help a lot with communication.’
The product owner expressed that having a guest desk would enable working in between
meetings rather than just waiting or spending time on walking back and forth. One team
member believed that a guest desk would make the product owner feel more welcome and

@ Springer

2388 Empirical Software Engineering (2019) 24:2364-2409

encourage spending more time with the team, thus making this important role more available
to the team. In addition, another team member believed that this could lead to an increased
awareness for the product owner and enable this role to have more insight into the develop-
ment team and the issues they face. However, office space is limited so reserving a desk for
visitors is a challenge. In the meantime, an agreement has been made that the product owner
spends more time in the team area and borrows temporarily available desks.

Reflections Measuring and visualising this known distance pinpointed it as a main cause of
several observed communication difficulties within the project team and triggered the
project team to immediately take action to implement the prescribed practice. Further-
more, the theory-based approach of the Gap Finder was observed to provide the
project with sound arguments for requesting and subsequently obtaining the resources,
i.e. additional office space, required to implement the change.

7.2.2 Requirements Communication at all Levels & Throughout Project Life-Cycle (P2)

Practice Establish additional and strengthen existing communication paths from the team to
roles and functions currently with insufficient requirements information, e.g. for the system
test team, between tester and product owner.

Addressed Distances Organisational (D2) and cognitive (D3). The practice can mitigate
organisational distance by creating short-cuts in situations in which increased require-
ments communication may avoid later misunderstandings, e.g. between product owner
and tester, or between requirements analyst and team-external testers. Requirements
validation can also be improved by bringing together roles with different knowledge
and perspectives. In addition, the practice can affect cognitive distance by bridging it
in the short term, and decreasing it in the long term by sharing knowledge.

Team response At the focus group, a majority of the team members were positive about this
practice and even though the practice was already applied by the team, they stated that it was
desirable to further improve on their communication practices. One of the survey respondents
said that an increase in requirements communication would reduce the number of unpleasant
surprises that surface later on, e.g. issue reports, and contribute to a better understanding of
different viewpoints. This in turn would result in fewer disagreements around requirements.
Similarly, a developer suggested that by involving the user interaction team in requirements
discussions the interaction designers would gain ‘a better appreciation of why we ask for
particular things and why we think they are important’. This would contribute to decreasing
the number of disagreements between team roles has and those at an organisational distance.

The developers commented that it may be possible to have more frequent demon-
strations of on-going requirements work throughout the sprints. However, they be-
lieved that the product owner’s limited availability and physical presence in the team
area would restrict the frequency of this practice.

One focus group participant reflected that the communication between the product
owner and the (current) tester could be increased. A previous tester had been very
interactive with the product owner in showing mock-ups and discussing requirements
details.

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2389

Another participant mentioned that establishing additional communication paths between
the team and roles from other organisational units, e.g. to the system testers, could decrease
disagreements and the number of system-level issues.

Reflections Even though this practice was already applied for the case project, the identifica-
tion of specific gaps, e.g. between the product owner and the tester pinpointed additional
communication paths for improvement. This in turn triggered the focus group participants to
propose more specific practices for improving these paths, e.g. demonstrations.

This practice demonstrates that there are relationships between distances and thus identifies
an area for future research. In this case, we see a correlation between organisational and
cognitive distances, e.g. between product owner and tester. Increased direct communication
between roles from different units bridges the organisational distances and over time reduces
the cognitive distances because there is increased sharing of information. Over time, this
sharing aligns the knowledge of those involved.

7.2.3 Test Cases Reviewed Against Requirements (P3)

Practice Let someone other than the tester, e.g. the requirements analyst, look at the test cases
and consider if they cover and correspond to the requirements in an adequate way.

Addressed Distances Semantic (D6), cognitive (D4), and organisational (D2). This practice
primarily reduces semantic distance between artefacts and cognitive distance between
the roles responsible for those artefacts, and may also bridge organisational distance
between these roles. The semantic distance is reduced by identifying and remedying
the causes of the gaps through the review and subsequent updates. The cognitive
distance between the reviewers can be decreased by the information shared during the
review. Potential organisational distance between the involved roles (which for this
case is not an issue) can be bridged by the communication channel set up by the
review practice.

Team Response There was a mixed response to this practice although focus group partici-
pants confirmed that it can have an impact on requirements-test alignment. One participant
said that having more people look at the test cases would likely result in improving them.
Another said that the practice would increase the sharing of knowledge concerning test
cases. Furthermore, one survey respondent believed that this practice would support the
requirements analysts in writing clearer and better acceptance criteria. Two of the survey
respondents stated that this was a practice to adopt. Another survey respondent was less
definite and said that the practice might be useful. A possible explanation to these
responses could be that the decision on implementing this practice lies with the testing
department, and not with the team itself. However, the tester who belongs to this
department expressed no opinion about this practice.

Reflections The responses to this practice demonstrate the importance of presenting the
prescribed practices to those responsible for the connected process areas. Other roles may
have opinions about them, but ultimately it is the responsible team/unit that needs to assess and
make the decision regarding adopting the practice.

@ Springer

2390 Empirical Software Engineering (2019) 24:2364-2409

7.2.4 Let People Have a Say in Seating Arrangements (P4)

Practice Let personal preferences regarding ease of communication be one factor when
considering team seating.

Addressed Distance Psychological (D3). This practice can bridge distance by allowing
people some control over their communication with others.

Team Response At the focus group, the scrum master indicated that psychological distance
could be one factor among many to consider when deciding on how to locate different team
members. However, in general the response on this practice was that it is hard to accommodate
since office space is limited and opinions vary. This practice triggered another focus group
participant to initiate a discussion on whether seating people next to each other between whom
there is a long psychological distance might decrease the distance, or alternatively decrease the
communication.

Reflections There are multiple aspects to consider in influencing the frequency of communi-
cation between different individuals. Apart from psychological distance, factors such as
cognitive distance and the importance of frequent communication between different roles are
likely to have an impact. However, it is unclear how to balance and optimise these different
factors. Further research is required to provide evidence-based guidelines and
recommendations.

7.2.5 Product Owner Testing (P5)

Practice The product owner or the requirements analyst performs user testing with the
intention of validating that the implemented behaviour and performance aligns with overall
system intentions and user expectations.

Addressed Distance Cognitive (D4), in particular concerning domain knowledge (M4.1), and
adherence (D5). Differences in domain knowledge between the one performing the
product owner testing and the tester in the development team can be bridged by
utilising their additional knowledge of the user requirements and the domain. The
requirements validation supported by this practice can thus decrease the adherence
distance between the agreed requirements and the implemented software behaviour by
identifying and addressing mis-alignment within the development team.

Team response This practice was already applied by the product owner and the requirements
analyst, who at the focus group both indicated that they would consider applying this
practice more often. Similarly, the scrum master stated that it is a practice that the team
will apply more often in the future. The focus group participants agreed that the practice
strengthens requirements-test alignment through validating that the developers and testers
have correctly understood and fulfilled the customer requirements. The practice has
uncovered issues related to missed or misunderstood requirements details and as one
survey respondents said can ‘help to highlight problems with misunderstandings and
wrong assumptions earlier in the process, and help the [requirements] analyst feel closer

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2391

to the working software.” However, technical limitations were also mentioned in that the
product owner cannot access the software for the sprint until after it has been delivered,
thus only allowing the product owner to apply this practice after the team has delivered.
The requirements analyst however was observed to perform this testing during a sprint,
thereby identifying a number of missed requirements.

Reflections The researcher applying the Gap Finder was unaware of the existing use of this
practice prior to the focus group. An upfront inventory of existing practices may further
improve and sharpen the prescription step to identify changes to the current practices including
improvements to how they are implemented.

7.2.6 Continuous Competence Development (P6)

Practice Increase team member’s technical knowledge through personal study, training
courses etc. within specific areas, e.g. testing.

Addressed Distance Cognitive (D4) and, in particular Technical skill (M4.1). Decrease
cognitive distance by increasing the skill level of individual members.

Team Response While there was agreement in principle to this practice, the practice was not
seen as feasible to adopt in a systematic way. One survey respondent expressed that increased
competence in teams and individuals would increase their ability to adapt and deal with
challenging situations and thus indirect influence requirements-test alignment. At the focus
group, one team member commented that the majority of the team members were short-term
contractors and indicated that competence development was mainly considered for permanent
staff.

Reflections Since the effects of this practice are not immediate, it is likely to be more suitable
for organisations with a large percentage of long-term employees and a strategy and
plan for learning and competence development. For example, a competence pro-
gramme with defined categories and levels of competence enables an open and
objective discussion on which level each person is at and what is required for
different roles and position. The existence of a gap in competence for each individual,
but also at the overall level, can then be identified and training programmes be
defined to address these. Furthermore, the decision to implement this practice would
need to be made by the line manager rather than the project organisation.

7.2.7 Job Rotation (P7)

Practice Rotate team members to different roles and responsibilities, e.g. team tester to system
test team, requirements analyst to testing.

Addressed Distance Cognitive regarding aspects technical skill, organisational & process
knowledge. This practice primarily addresses the organisational and process knowledge aspect

of the cognitive distance by increasing a person’s knowledge of a new role. In addition, this

@ Springer

2392 Empirical Software Engineering (2019) 24:2364-2409

person can gain technical skills by performing another job, thus also decreasing the distance
for the technical skill aspect.

Team Response The focus group participants expressed that it would be challenging to apply
this practice even though gains had been observed when it was applied in an ad hoc
fashion. For example, when a team tester had been transferred to the system test team.
One survey respondent stated that the practice would incur additional costs in the
form of a temporary productivity drop and increased training needs. In particular,
several focus group participants mentioned that it would be hard to handle the loss of
competence caused by rotating a team member. Furthermore, as indicated by another
focus group participant, rotating to a different role may not be in-line with personal
preferences. As expressed by one survey respondent, the practice would cause ‘im-
proved general knowledge of different areas, but at a cost of less specific knowledge.’
However, an interviewee described that it was not uncommon for people to be moved
between teams and roles as the need arose. In particular, since most of the require-
ments analysts also have system testing experience it had been discussed within the
organisation to have the analysts take on testing roles.

Reflections This practice is similar to the previous practice, although it concerns practical
competence development (as opposed to gaining theoretical knowledge). Similarly, this
practice is relevant for line managers of development organisations to consider when assessing
competency needs overall, and thus illustrates that requirements-test alignment is not merely a
project-level concern, but also something to consider at the organisational level.

7.2.8 Consider Quality Upfront in Requirements Elicitation (P8)

Practice Consider quality characteristics during the requirements elicitation by identifying
important quality requirements in the early discussions. These are then detailed in the same
way as other requirements.

Addressed distance Cognitive (D4), in particular the priority of quality aspects (M4.4).
Cognitive distance concerning the priority of quality aspects can be decreased or (at least)
bridged by discussing and sharing different perspectives on their relative important.

Team Response Several team members stated that this is a practice that they plan to
adopt since it will help identify quality requirements early on, which can reduce the
number of issues discovered in later activities, e.g. systems integration and production,
and thereby avoid costly and time consuming maintenance. As one survey participant
said: this practice ‘might catch particular issues earlier when they are easier to address.’
However, at the focus group some team members expressed doubt whether quality
aspects could be elicited upfront since there might not be sufficient awareness of the
customers’ expectations for these aspects.

Reflections The mentioned difficulties of defining quality (non-functional) requirements at an
carly stage in the development cycle demonstrate that the prescribed practice poses require-

ments on another cognitive aspect, namely knowledge of the domain and the customer’s

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2393

expectations. This also illustrates the existence of pre-requisites for a practice to be practically
implementable, i.e. certain distances may be required to be short for a practice to be suitable.

This also illustrates that temporal aspects of the development process influence the
suitability of practices. On one hand, defining quality requirements upfront (P8) may
mitigate cognitive distances by eliciting clear requirements at an early stage thus
reducing misunderstandings and subsequent software errors. On the other hand, end
users may not have the insight required to identify what their requirements are at this
early stage. Thus they would benefit from several shorter cycles between defining and
implementing requirements in order to gradually gain the insight necessary to identify
their actual requirements. This indicates that there are complex relationships between
distances that need to be considered when prescribing practices.

Defining quality requirements are a known challenge for software development
(Berntsson Svensson et al. 2009), in particular for agile development (Ramesh and
Cao 2010), but also for traditional development models. These aspects are often not
explicitly defined as requirements and instead result in issues with the delivered
software. For example, during user testing when the performance or the capacity of
the system are unsatisfactory from a user perspective, i.e. issues that are often costly
to address. New insight may be gained by applying the concept of distances to this
challenge and in particular, how to manage the relationship between cognitive and
temporal distances when balancing the timely definition of requirements against the
maturity required to defined correct and feasible requirements.

7.2.9 Agree on Quality Priority for Project (P9)

Practice Discuss which quality aspects are more or less important for the project and establish
a common view of relevant quality characteristics within the team.

Addressed distance Cognitive (D4), in particular the priority of quality aspects (M4.4).
Agreeing to a set of quality aspects for the project can decrease the priority aspect of cognitive
distance between team members because they will have shared and aligned their various
viewpoints.

Team Response At the focus group, this practice triggered a discussion on how quality is
perceived differently depending on role and responsibility, thereby illustrating the need for
explicitly agreeing on these. The practice was stated by three of the four survey participants as
one to adopt. One of them said that the practice ‘could help us come to a more common
understanding of where we should be focusing our efforts’, i.e. support the alignment of
quality requirements at the project level by defining goal-level requirements for quality.
However, the mandate for deciding to implement this practice lies with the project rather than
with the development team.

Reflections Since this practice mitigates the (known) challenge of quality requirements at the
goal level (a higher abstraction level than for the previous practice related to quality require-
ments, i.e. P8) it can be expected to have an impact also on requirements-test alignment for the
higher levels of testing, e.g. system and user acceptance testing. While some of the temporal
challenges with defining user requirements early on may still apply, we believe it is a more

@ Springer

2394 Empirical Software Engineering (2019) 24:2364-2409

manageable challenge at this higher level since less detailed knowledge is required to prioritize
general quality attributes than to define actual quality requirements.

The response from the project team indicates that the prescribed practices need to be
presented to those responsible for processes affected by the suggested practices. For example,
the decision to introduce a project-wide agreement on priority of quality needs to be made by
management for a project or for the entire IT-department.

7.2.10 Additional Practices Suggested by the Team

In addition to reflecting on the prescribed practices, the focus group participants suggested the
following practices for mitigating the found gaps:

— The scrum master suggested that misunderstandings of requirements caused, e.g. by
organisational distance (D2) could be decreased by improving the acceptance criteria so
that they become more like acceptance test cases. Thus, decreasing the semantic distance
(D6) between the requirements artefacts and the test cases (M6.1). This suggestion
corresponds to the practice of using test cases as requirements specification, covered by
AP4 (Aligning documentation).

— One developer suggested that geographical (D1) and psychological (D3) distance could be
further shortened by re-organising the team area thereby further improving communica-
tion including requirements clarification and detailing. For example, removing dividing
screens and placing desks facing each other rather than back-to-back would further
facilitate visual contact and awareness. Furthermore, this team member mentioned
implementing additional communication practices, e.g. always face the person you are
talking to, listen when others are talking. This suggestion is related to the AP1 practices of
cross-role collaboration.

— One developer suggested that cognitive distance (D4) concerning technical skill (M4.2)
could be decreased by ensuring that all team members are able to access each other’s
artefacts. For example, no other team members currently have any knowledge of the test
cases and cannot access or view them. Similarly, there is a lack of access to other artefacts
produced by previous team members, e.g. requirements documents for previous sprints.
This suggestion is related to the AP1 practices of cross-role collaboration.

7.3 Practitioners’ View on Gap Finder

Throughout the study feedback was gathered from the team members concerning their
experience of the Gap Finder, concerning both its approach and output, and the time and
effort required from them to participate in the assessment. The main feedback was gathered at
the focus group, but also as part of the interviews and through the observations.

At the focus group, the team members expressed that they found the approach of the Gap
Finder useful in discussing issues and in identifying new areas for improvement, and that the
suggested practices were appropriate. Even though several of the suggested practices were not
completely new to the team, e.g. guest desk, product owner testing, presenting and motivating
them in light of the concept of distance provided additional motivation for deciding to
implement them. The fact that the prescriptions were derived in a structured and theory-

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2395

based manner provided a credible and viable argument in obtaining the resources required to
implement some of the practices. For example, based on the suggestion of the Gap Finder to
have a guest desk for the product owner (practice P1), the development team were successful
in acquiring an additional desk for this purpose, something that was otherwise hard to obtain
since free office space in the development area was very limited.

Furthermore, the focus group revealed that the product owner, who usually does not attend
the team retrospectives, was in fact more positive towards adopting some of the practices than
the rest of the team thought. In particular, this was the case for P1 Guest desk for product
owner. In addition, some of the suggested practices were already applied by the product owner
although the team was not aware of this, e.g. P5 Product owner testing.

The development team did not find the assessment particularly costly from their perspec-
tive. Even though they had a high work load they found time for answering the questionnaires,
which could each be done in 10-15 minutes. When asked, the scrum master also expressed that
the team had not perceived any undue cost of participating in the evaluation study. The most
time consuming part from their perspective was the final Gap Finder workshop, which took
just over 60 minutes. The researchers’ experience was that the workshop required longer time
than what was available. To reflect on and discuss all the different distances in a satisfactory
way required the participants to take in a lot of information.

7.4 Evidence of Practices Being Applied After This Study

We explored evidence of the practices being applied by members of the studied team and the
IT department through post-study interviews with the lead product owner from the original
team, and with a researcher recently studying the IT department. There have been many
changes in the IT department during the five years since the Gap Finder was applied, including
that the original team was disbanded 3 years after our study. However the product owner
shared that after the Gap Finder study, communication overall improved and the team’s
velocity increased, and that the team delivered working software that is still in use today.
The product owner explained that since practices were evolving, and teams were consolidating
and becoming increasingly familiar with the code and the requirements, it is not possible to say
exactly what caused these improvements in requirements communication.

For the five practices planned for implementation, our interviewees indicated that these
practices or variants of them were implemented by the studied development team and/or
remain part of current practice today. An overview of the status of the suggested improvement
practices is shown in Table 4.

For practice P1 Guest desk, a hot desk was allocated for use by the product owner, but this
was not an efficient way to work when the development project was only one of many work
tasks. Thus, the multi-project work environment of the product owner made this practice
inefficient. Instead, the product owners would visit the development team for the stand-up
meeting each day and remain to discuss and resolve any issues that had arisen. This practice
persisted until the development team was disbanded.

The product owner stated that practices R2 Requirements communication at all levels and RS
Product owner testing were implemented, and the interviewed researcher described that today
these are part of common practice within the IT department. The product owner described that
increases in communication (P2) led to more reuse of source code and thus the velocity of the
development team was increased. In addition, product owners performed user acceptance testing
(P5) including producing test plans and schedules, and with this approach testing went well and

@ Springer

2396 Empirical Software Engineering (2019) 24:2364-2409

found issues were addressed. The researcher interviewee stated that product owner testing (P5) is
now part of the current development process, although this increases the workload on the product
owners and causes subsequent delays in the affected process step.

The practice P3 Test cases reviewed against requirements, was mentioned by the
interviewed researcher as part of current practice. The product owner described that the
developers had taken on the responsibility for the unit and integration testing when their tester
was no longer assigned to the team, which led to a more efficient process in which the product
owner communicated with the same individuals for both implementation and testing.

Finally, the product owner stated that the practice P8 Consider quality in elicitation had
been implemented as suggested by the Gap Finder. This led to discussing quality issues such as
usability, accuracy and efficiency early on in development. The interviewed researcher had not
observed this practice in the current organisation.

8 Findings and Discussions

Our study provides experience of applying the method and yields a number of new insights
concerning how the Gap Finder method can support a project team in improving their
requirements communication and requirements-test alignment, as well as insight into how
the method itself can be improved. Based on the results presented in Section 7, we can now
answer our two research questions regarding the relevance of the Gap Finder prescriptions and
how the method can be improved. We also discuss the value of the method from the
perspective of the development team, and the validity and limitations of our study.

8.1 Relevance of Prescribed Practices (RQ1)

Our evaluation showed that the majority of the prescribed practices were relevant vis-a-vis the
detected gaps and for the project for which the Gap Finder was applied. The project team
stated that seven of the nine practices prescribed by the Gap Finder could directly improve
their communication by addressing requirements-test alignment for their project. Furthermore,
our study triggered action and one of the prescribed practices in particular, namely Guest desk
for product owner (P1), led to immediate action to implement despite limited free office space
in the IT department. The objective and theory-based approach of measuring distances and
prescribing improvements based on empirical evidence provided the project team with factual
arguments and motivation to request the necessary resources to implement these practices.
However, the cost-benefit balance varies between practices and thus also the feasibility of
implementing them.

At the time of our study, the team planned to implement four of the practices (P1, P2, P5 and
P8). Two practices might be implemented (P3 and P9), while three (P4, P6 and P7) were judged
as infeasible to implement. Two of the prescribed practices (P2 requirements communication
and PS5 product owner testing) were in fact already applied in the project, at least partially. For
product owner testing (P5), not everyone was aware of the use of the practice. All three of these
practices were planned for further and improved implementation. Thus, the team benefited from
including these in the Gap Finder prescription despite them already being applied.

Three of the prescribed practices were generic and less specific than the others, and
concerned cross-role collaboration (P2), seating arrangements (P4) and job rotation (P7). For
cross-role collaboration (P2), specific communication paths to improve, e.g. between product

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2397

owner and tester, were discussed at the Gap Finder workshop based on the identified gaps and
the information in the RET profile. This illustrates how group reflections can identify and
agree on improvements, and thus validates the group reflection element of the Gap Finder.
However, the specificity of the prescribed practices may improve the relevance of the
prescription and is a possible area for improvement of Gap Finder, see Section 8.2.3. More
specific improvement suggestion could provide more value to the project team.

The other two generic practices, team seating (P4) and competence development (P6), were
not included in the improvement plan because they were not expected to impact directly on the
project’s communication. The project team believed that these practices have a general impact
on communication and abilities within the team that can be expected to be seen over time and
thus not limited to a specific project. This could explain the project team’s rejection of them.
Rather, these practices are relevant for line managers to consider when defining an organisa-
tion’s strategy and plan for competence development.

The long-term effects of the Gap Finder are hard to pinpoint decisively due to many
changes within the IT department beyond those incurred by applying our method during the
five years since our study. However, based on the information we have gathered, the practices
were implemented by the team and their performance improved after our study. In addition,
several of the practices appear to be part of current practice in the IT department, namely P2
Requirements communication at all levels and throughout, P3 Test cases reviewed against
requirements, and P5 Product owner testing.

We found evidence that three of the suggested practices (P2, PS and P8) were successfully
implemented in the studied team, while two of the practices (P1 and P3) had been adjusted to
achieve a better fit. Of these, the practice P1 Guest desk was implemented but the product
owner’s additional work responsibilities beyond the development project made it infeasible.
Thus, the multi-project work environment of the product owner role affected the efficiency of
the suggested process. Instead, the product owner mitigated the underlying geographical and
cognitive distances by allocating specific time, around the stand-ups each day, to be physically
present and available to the development team, thereby leading to a closer working relationship
and improved requirements communication. From this, we conclude that factors external to the
project, and thus not investigated, affect the accuracy of the prescription.

The other practice that was adjusted was P3 Test cases reviewed against requirements.
Changes to the team composition, namely shifting the testing responsibility to the developers
resulted in a change in the underlying communication paths, replacing the product owner’s
distance towards a tester by the distance towards the developers. The product owner’s experi-
ence that this is a more efficient process aligns with the shortened and more frequently traversed
distance over this communication path, compared to the one to the tester. We observe that the
concept of distance can be used to explain and support both of the adjustments in practice.

8.2 Improved Usefulness of the Gap Finder (RQ2)

While the development team and several IT-managers expressed that participation in this
formative evaluation of the Gap Finder provided the organisation with value by yielding new
insights and perspectives, we also identified a number of potential improvements to further
enhance the usefulness of the Gap Finder. These improvements can be divided into four areas
namely a) the set of distances to measure, b) the identification of improvement practices, c)
how to support team reflections at the Gap Finder workshop and d) strengthening the software
process improvement aspects of the method. We will first discuss and compare the benefits and

@ Springer

2398 Empirical Software Engineering (2019) 24:2364-2409

the costs of applying the Gap Finder, and then outline suggestions for improving the effec-
tiveness of the Gap Finder method for each of the areas a-d.

8.2.1 Costs versus Benefits

The costs of applying the Gap Finder consist of the work required for a moderator to prepare and
perform the assessment, and that of the development team being assessed. For our case study, the
development team including its Scrum master stated that the time required of them to apply Gap
Finder was modest and did not negatively affect their day-to-day work. This also included the
additional data collection required for the evaluation, i.e. interviews, practice surveys, and
additional focus group questions. The main cost to applying the method lies in the work required
for the moderator to plan and gather the measurements, and to perform the prescription step to
identify communication gaps and improvement practices. To some extent, this time can be
reduced as the method matures and is improved, but will require that a moderator is assigned
to this task. An interesting avenue for future research is how to measure relevant distances more
efficiently, e.g. by instrumenting existing development environments and tool chains.

We found that the main benefits of the Gap Finder method are providing evidence-based
improvement suggestions, novel explanations for communication gaps, and support for
discussing communication issues, both in general and for sensitive issues, in an objective
manner. Firstly, the theory-based approach used to identify practices for improving
requirements communication provided the development team with fact- and evidence-
based arguments for implementing new practices. Some of these had previously been
discussed but not pursued due to a lack of management support prior to being
suggested by the Gap Finder. The practices proposed by the Gap Finder appear to
be largely relevant, although we also identify improvements that may increase the
accuracy and efficiency of the method, see below.

Secondly, the concept of distance provided alternative explanations to previously
discussed communication gaps. For example, at the Gap Finder workshop the team
gained new insight into why disagreements between organisationally distant people
caused difficulties and long lead times to resolve. One mentioned example of this was
when there were disagreements about the scope between the Product Owner and the
rest of the team. Seeing distance as an explanation for the communication gap,
triggered the Product Owner to reflect on the fact that her strategies to manage these
situations was to bridge and shorten the organisational and geographical distance,
through regularly attending meetings at the IT department even though this was not
officially part of her assignment.

Thirdly, the Gap Finder provided the team with a forum for discussing and sharing
viewpoints on communication issues, including sensitive issues. At the focus group,
the team as a whole gained new insights into each other’s preferences and ways of
working. For example, the product owner shared that she occasionally performed end-
user testing, something the developers were previously unaware of. Furthermore, the
distance measures enabled members to discuss communication gaps in an objective
fashion. In particular, the measurement of psychological distance triggered an objec-
tive and constructive discussion at the Gap Finder workshop of previously undis-
cussed communication gaps between team members. These discussions led to
revealing differences of opinion regarding work practices, caused by different previous
experiences and personal preferences.

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2399

Finally, the improvements identified for the Gap Finder (see next Section) can reduce the
time and effort required for the method. This includes focusing the set of distances and
improvement practices discussed at the Gap Finder workshop, and referring decisions on
implementing improvement practices to forums with relevant decision mandates.

8.2.2 The Set of Distances

Even though most of the distance measures we used were found to be relevant, some
were less so. In particular, for the cognitive aspects of technical skill and
organisational and process knowledge no evidence of impact on requirements com-
munication was found. Rather, at the focus group the participants described them-
selves as a well-functioning team consisting of members partly due to the range of
competences and degree of seniority among the team members. Furthermore, two
additional aspects were identified as relevant and useful when considering
requirements-test alignment. These are, 1) a cognitive aspect concerning the difference
in knowledge of agreed requirements, e.g. between a development team and the
system testers, and 2) an adherence aspect between the abstraction level of agreed
requirements and the behaviour of the delivered software. Both of these aspects are
candidates for being added to the Gap Finder.

The surveys used to measure distances using self-assessment, e.g. for cognitive
distance, pose a risk of incorrect, or biased measurements. This was observed to be
the case in particular for the artefact distances. When asked to assess distance
between related requirements and test cases the respondents’ initial response was to
state no distance, even for cases in which the test cases verified an agreed but non-
documented change to the requirements. We believe this risk of bias is due to the fact
that the existence of a distance in similarity or coverage between the documented and/
or delivered requirements or test cases correlates to a failure to capture and match the
agreed requirements. The person responsible for ensuring that an artefact has suffi-
cient similarity and coverage might be unable or unwilling to detect a distance. For
this reason, alternative measuring approaches may need to be investigated, especially
for the adherence distance between agreed and documented requirements and the
semantic distance between requirements and test artefacts. For people-related dis-
tances, such as cognitive and psychological distance cost-effective alternatives to
self-assessment are harder to envision, but still remain an interesting avenue for future
research.

Finally, there is potential for improving the efficiency of the Gap Finder method by
investigating which set of distances can facilitate identifying the most significant and
serious communications gaps within a development project, i.e. the communication
issues for which improvements can bring the biggest gains. Identifying such a set
would also reduce the cost of measuring and analysing distances by focusing on the
most cost-effective distances.

8.2.3 Prescribing Improvement Practices
We identify several potential improvements in this area. First, some of the prescribed practices
were in fact already applied, although this had not been caught during the observations or the

interviews. The Gap Finder prescription could be improved by adding a step for identifying

@ Springer

2400 Empirical Software Engineering (2019) 24:2364-2409

existing practices, e.g. through a survey, prior to the analysis. This information can then be
considered during the analysis, but should not exclude the possibility of suggesting existing
but relevant practices. Rather, for these practices, the outcome should be a suggestion to
consider how to further improve on their implementation.

Second, the focus group participants expressed that some of the suggested practices may
rather have an indirect affect on requirements-test alignment, i.e. team seating (P4) and
competence development (P6), and their impact on distance needs to be investigated further.
It may be that these practices need to be tailored further to mitigate specific gaps. For example,
if a gap for a specific competence is found, then this technical area and the involved
individuals should be suggested for competence development. For the practice of team seating
and its associated psychological distance, further insight is needed either from literature studies
or from additional research into the impact of this practice.

A third aspect to consider is how to identify the case-specific improvement practices based
on the abstracted practices derived from the Gap Model. Currently this is done prior to the Gap
Finder workshop. An alternative approach would be to present more high-level and generic
improvement practices and then refine these at the workshop together with the development
project. An additional, future improvement could be to extend the underlying theoretical model
(i.e. the Gap Model) with specific practices suitable for different sets of communication paths,
e.g. between product owner and tester.

In general, increasing the accuracy of the set of prescribed improvement practices
can increase the effectiveness of the Gap Finder method. However, identifying the
overall most effective set of practices is non-trivial, due to relationships and correla-
tions between the practices and the distances. Furthermore, organisational, and per-
sonal characteristics and preferences also affect the effectiveness when implementing a
new practice. For example, the use of a guest desk was not feasible for the product
owner due to other project-external factors that were not considered in the analysis.
For this reason, we believe that insight into the specific organisation, and involvement
of this organisation in the process improvement effort is vital to ensure a good fit of
practices and buy-in for implementing them.

8.2.4 Workshop Set-Up

The Gap Finder workshop enabled the team to jointly reflect on issues and improve-
ment practices. In particular, the concept of distance provided a good metaphor for
supporting the team to discuss known issues from a new perspective, and to address
previously un-discussed issues. However, these discussions could be improved by
focusing on key gaps that are particularly relevant to the assessed case. This would
ensure a more effective use of meeting time while also reducing the set of distances
and measures the participants are required to consider.

The group reflections may become more efficient by further focusing the discussion
and presenting distances grouped by relationships within the project and the combined
set of distances for these. For example, all distances between the tester and the
product owner, or between the development team and the system test team. The
current presentation is organised by type of distance, even though several practices
affect multiple distance types and there are connections between distances. However,
discussing individual relationships might be sensitive even with objective data and is
an aspect to consider here.

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2401

8.2.5 Software Process Improvement Aspects

The main aim of the Gap Finder is to support enhanced requirements-test alignment by
suggesting practices that will improve RE integration with testing activities. This requires
identifying suitable practices and supporting the team in deciding which practices to imple-
ment. For this study, application of the Gap Finder was not iterated, so the agreement about
which practices to implement was gathered over a period of 4-6 weeks - mainly through a
survey. However, it is desirable to reach an agreement that is committed to by the whole team
since participation is a known major factor for successful software process improvement
(Dyba 2005). The risk of failing to implement identified process improvements is implicitly
mitigated by involving the whole project team at the workshop. Involving team members in
reflecting on communication issues and improvements increases the chances of them later
implementing the agreed practices.

In our study, decision making regarding which practices to implement was not included in
the Gap Finder method as such but managed by the team itself after completing the main study.
This delay in process improvement may be reduced by including the decision making step in
the Gap Finder method. One way to gain agreement on which practices to implement could be
to have two sessions of the workshop, i.e. one session similar to the existing one and one
follow-on session for process improvement planning. The main aim of the second session
would be to define and agree an action plan for implementing process improvements. This
would also allow the participants to reflect individually before meeting again to agree on
which improvements to implement.

For this case the decision to adopt two of the suggested practices (P6, P7) lay outside the
team, e.g. with the line manager for the testers. This indicates that the mandate for
implementing each of the prescribed practices needs to be taken into account by the method.
These mandates could be identified at the first workshop session. The full set of stakeholders
including the affected team members could then be invited to the second session focusing on
process improvement planning. This would ensure sufficient mandate to decide on which
practices to implement and agree to an improvement plan, and the decision process regarding
implementing improvements may be more efficient by including this step in the Gap Finder.

8.3 Validity and Limitations

In this section, we discuss the limitations of this work according to guidelines suggested for
design science research (Burstein and Gregor 1999) and for case studies (Runeson et al. 2012).
Steps taken to mitigate these limitations and threats to validity are also mentioned.

8.3.1 Significance

The Gap Finder is a contribution of both practical and theoretical significance. The method
addresses an industrially relevant challenge, namely that of aligning requirements and testing
(Uusitalo et al. 2008, Bjarnason et al. 2013). Our evaluation shows that practitioners find the
method helpful in identifying relevant improvement practices at a reasonable cost.

The theory-based approach taken by Gap Finder to address SPI in the area of requirements-
test alignment is a novel contribution. There is some research on SPI methods for
requirements-test (Kukkanen et al. 2009, Unterkalmsteiner et al. 2013, see Section 3.3) and
on theory-based SPI approaches (Brede Moe et al. 2009, Angermo Ringstad et al. 2011, see

@ Springer

2402 Empirical Software Engineering (2019) 24:2364-2409

Section 3.4). However, we are not aware of any other research on theory-based SPI methods in
general, or for requirements-test in particular.

Finally, the application of the Gap Finder contributes to testing the underlying theory and
thereby provides empirical evidence that validates the theory. In addition, this data can be used
to further develop the theory of distances (Bjarnason et al. 2016).

8.3.2 Internal Validity

The main threat to internal validity of the Gap Finder is the extent of qualitative analysis
currently required to assess gaps and prescribe improvement practices. This risk is partly
mitigated by the use of an underlying theory to guide the set of distances assessed and practices
prescribed. However, further testing of the Gap Finder and development of the theory could
provide more guidance in this analysis. For example, the theoretical model used to prescribe
practices, i.e. the Gap Model, could be extended with parameters regarding the impact on
specific communications paths and influencing contextual factors.

The main threat to internal validity for the evaluation of the Gap Finder is in misunder-
standing or misinterpreting the empirical data. This risk was partly mitigated by collecting data
from multiple sources, i.e. interviews, observations, surveys etc. In addition, all results, both
intermediate and final, were identified by one researcher and reviewed by another.

8.3.3 External Validity

The question of external validity concerns the extent to which the outcome of this study are
applicable and of interest beyond that of the studied case. For this analytical generalisation needs
to be considered and the validity assessed on a case-by-case basis by comparing the specifics of a
separate case alongside the full set of characteristics reported for this case (see Section 5). In
addition, the generalisability is also limited by the scope of validity of the underlying theory and
the external validity of the underlying theoretical model, i.e. the Gap Model.

The scope of validity for the theory of distances and the Gap Model is derived from the
empirical data for the case study of five software development organisations in which these are
grounded (Bjarnason et al. 2016). This scope represents the alignment of requirements and
testing for cases within a range of case characteristics concerning organisation and project size,
i.e. small to medium, project duration within0.5-5 years, process model ranging from tradi-
tional to pure agile), and safety criticality from high to medium degree.

We believe that the Gap Finder can be valid and valuable for cases similar to our case
environment, namely small to medium-sized co-located software development organisations
and projects with a project duration of 0.5-1 years and that apply an agile method. This range
will be further extended over time as the Gap Finder and the underlying theory are tested and
developed further, thereby extending their external validity. This includes knowledge of what
comprises a troublesome gap in a RET profile, as well as more fine-grained rules concerning
contextual factors that impact how a practice affects a distance.

8.3.4 Construct Validity
The main risk to construct validity is that the prescribed improvement practices were evaluated
based on the project members’ beliefs of their suitability rather than directly assessing how

these practices would affect the project’s communication. Our original plan was to implement

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2403

a set of suggested improvements practices and re-assess the distances. However, this direct
assessment was not possible due to changes in the case project. This threat to construct validity
was partly mitigated by evaluating the prescription through a focus group and through a survey
with project members. The post-study interviews also provided some insight into the long-term
effect of the Gap Finder. However, the iterative application and long-term effect of Gap Finder
and subsequent re-measurement of distances remains as future work.

Another potential risk to construct validity concerns the appropriateness of the underlying
theory, specifically in relationship to the external validity of the Gap Model relative the case
used for the evaluation. However, we judge the cases as comparable when considering
requirements-test alignment since the characteristics of the evaluated case (described in
Section 5) fall within the range of case characteristics of the underlying theory that includes
medium sized agile development projects. Furthermore, we have found no data in this study
that conflicts with the underlying theory on which we have based the Gap Finder.

Finally, we provide a transparent and detailed description of our research method in order to
support other researchers in validating our study.

8.3.5 Reliability

There is a risk that researcher biases have influenced the application and evaluation of the Gap
Finder and, thus the reliability of the results of this study. This risk was partly mitigated by
defining the aim of our research and clearly defining research questions to guide it.

The reliability of our research was further increased by including multiple research-
er perspectives on design aspects at several points throughout the study and by
applying triangulation to the collected data. For example, the research design and
the data collection instruments were iteratively reviewed and refined by the re-
searchers. Triangulation of the obtained distance measures was done by also collecting
data on each distance through observations and interviews. Finally, the practices
prescribed by Gap Finder were presented to and discussed with the development team
in order to validate the suitability of each suggested practice.

9 Conclusions and Future Work

Software process improvement aims to improve the productivity of software develop-
ment by identifying suitable improvement practices. We designed the Gap Finder
method to target requirements communication within a development project by im-
proving the alignment of requirements and testing. Our method assesses distances that
can have an effect on requirements-test alignment and provides a prescription of
practices for mitigating these underlying factors. The Gap Finder consists of a
bottom-up SPI assessment (the measurement step), a prescription step in which
case-specific improvement practices are selected based on an empirically based theory
and a retrospective in which the assessment and the proposed improvements are
reflected on and discussed within the project team.

In this paper, we report on the design and evaluation of the Gap Finder method.
We have applied the design-science approach in designing our method based on
existing scientific knowledge and theory, and evaluated it by applying the method
to an ongoing development project. The evaluation shows that the Gap Finder can

@ Springer

2404 Empirical Software Engineering (2019) 24:2364-2409

provide relevant and useful suggestions for improving requirements communication
(RQ1) for small to medium-sized co-located agile development projects. In addition,
the Gap Finder approach was found to also provide evidence-based motivation for
implementing some of the prescribed practices. While all of the practices prescribed
by the Gap Finder can support improved communication, some target long-term and
more general improvements. More precise improvement practices that pinpoint, e.g.
specific communication problems, would provide more immediate value to a devel-
opment project.

The insight gained through the case study enables us to identify several potential
improvements to the Gap Finder method (RQ2) increasing its usefulness to a devel-
opment project. The relevance of the prescribed improvement practices may be
improved. For example, by extending the analysis to also consider existing practices,
or by considering specific communication paths. In addition, further development of
the underlying theory, e.g. with contextual factors and connections between distances,
could also improve the specificity of the Gap Finder prescriptions, and thereby
improve the effectiveness of the method. Furthermore, the Gap Finder workshop in
which the assessment is presented to the project team could be improved by focusing
on the main communication gaps and thereby utilise the time spent more efficiently.
Finally, the method could be further strengthened by adding a step for process
improvement planning, which should include additional decision makers, e.g. respon-
sible line manager.

Future work includes adapting and applying Gap Finder to additional cases within
and beyond the current scope of validity. For example, to projects that rely on
document-based communication, e.g. for phase-based and distributed development
projects. This will require improving and extending the measurements for artefact-
related distances, and researching how tools affect requirements communication and
distances. An interesting avenue to explore, is if it is possible to identify common
patterns in RET profiles between related project types, e.g. projects that apply an agile
development model, or distributed projects. We also plan to continue developing and
refining the underlying theory including the Gap Model to cover additional case
characteristics and to enable better precision in identifying improvement practices.

In conclusion, the current version of the Gap Finder can support agile software
development project teams in improving their requirements communication and sub-
sequently their requirements-test alignment in a novel way. By providing an objective
view of underlying factors, i.e. distances, the method allows practitioners to take a
step back and consider root causes rather than focusing on problems with existing
processes. In addition, the method design and its prescriptive step are based on an
empirically founded theory from a previous multi-case study. The method first as-
sesses the actual case by measuring distances and then compares the found gaps to an
existing theoretical model of best practices. In this way, the method diagnoses
communication gaps of the case at hand and prescribes case-specific practices to
mitigate these.

Acknowledgements We would like to thank the development team members for enabling this study by sharing
their time, thoughts and office space. This work was partly funded by EASE (http:/ease.cs.Ith.se) and by
Ericsson Research.

@ Springer

http://ease.cs.lth.se

Empirical Software Engineering (2019) 24:2364-2409

2405

Appendix: The Gap Model

Table 5 shows the Gap Model and the practices that the prescriptions for the reported case are

based on

Table 5 The Gap Model defined in (Bjarnason 2016), see Section 2.3 of this paper, and practices prescribed in

this case study, see Section 7.2

Abstracted (APn) and detailed practices

Prescribed Distances

Geo Org Psy Cog Adh Sem Nav Temp

AP1 Cross-role collaboration

Customer communication at all requirements
levels and phases

Product manager involved in development
project

Use of a customer proxy role

Product manager physically present to
developers and testers

Development team located at customer site

Development-near roles involved in detailing
requirements

Subsystem expert involved in requirements
definition

Collaborative definition of quality requirements

Cross-role requirements review

Small-scale development

Interaction designer in development team

Acceptance test cases defined by customer

Product manager reviews prototypes

Early test involvement in development projects

Early verification start

Competence development

Close cooperation between Test and
Development unit and roles

Process for requirements changes involving
Testing roles

Traces/connections explicitly defined between
people/roles

Job rotation

AP2 Separate testers
User / Customer testing
Independent testing (relative implementation)
Separate testing team for quality requirements

AP3 Documentation
Documentation of requirement decision
rationales
Note current thinking and motivation in test
cases
Tool support for requirements and testing

AP4 Aligning documentation structures and
tracing
Role defined for traceability responsibility
Feature requirements documentation
Feature-based test plan

P2

P1

P8, P9

P4

P6

P7

P5

D B D BD D D D
1 BD D B
BD D

B D BD D D D

@ Springer

2406 Empirical Software Engineering (2019) 24:2364-2409

Table 5 (continued)

Abstracted (APn) and detailed practices Prescribed Distances

Geo Org Psy Cog Adh Sem Nav Temp

Document-level traces

Traces between requirements and test cases

Test cases used as requirements specification

Same abstraction levels for requirements and test
specification

Conceptual tracing

Tool support for tracing between requirements
and test cases

APS5 Cross-artefact reviews B B D D
Requirements review responsibilities defined
Test cases reviewed against requirements P3
Management base launch decision on test
reports
Testers re-use customer feedback
Test-impact analysis

APG6 Incremental software engineering BD D D D
AP7 Automated testing D D
AP8 Use of alignment metrics B D B

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

Afzal W, Alone S, Glocksien K, & Torkar R (2016) Software test process improvement approaches: a systematic
literature review and an industrial case study. J Syst Softw, 111:1-33

Angermo Ringstad M, Dingsoyr T, Brede Moe N (2011) Agile process improvement: diagnosis and planning to
improve teamwork. Proc of 18th European Conf. On systems, software and service process improvement
(EuroSPI’11). Communications in Computer and Information Science 172:167-178

Barmi ZA, Ebrahimi AH, Feldt R (2011) Alignment of requirements specification and testing: a systematic mapping
study. Proc. 4th Int. Conf. On Softw. Testing, verification and validation workshops (ICSTW):476-485

Basili VR (1985) Quantitative evaluation of software methodology. Tech. Report TR-1519, University of
Maryland, College Park, Maryland

Basili VR, Rombach HD (1988) The TAME project: towards improvement-oriented software environments.
IEEE Trans Softw Eng 14(6):758-773

Benner P (1982) From novice to expert. Am J Nurs 82(3):402—407

Berntsson Svensson R, Gorschek T, Regnell B (2009) Quality requirements in practice: an interview study in
requirements engineering for embedded systems. In: In international working conference on requirements
engineering: Foundation for Software Quality. Springer, Berlin Heidelberg, pp 218-232

Bjarnason E (2013) Research material for gap finder evaluation study incl measurement instrument, interview
guide etc. http:/serg.cs.lth.se/research/experiment_packages/GapFinder/Accessed 05 May 2017

Bjamason E, Sharp H (2015) The role of distances in requirements communication: a case study. Requir Eng 2015:1-26

Bjarnason E, Wnuk K, Regnell B (2011) Requirements are slipping through the gaps — a case study on Cause &
Effects of communication gaps in large-scale software development. Proc. of 19th IEEE Int requirements
engineering Conf., pp. 37-46

Bjarnason E, Runeson P, Borg M et al. (2013) Challenges and practices in aligning requirements with verification
and validation: a case study of six companies. Empirical software engineering, 19(6), pp. 18091855

@ Springer

http://serg.cs.lth.se/research/experiment_packages/GapFinder/

Empirical Software Engineering (2019) 24:2364-2409 2407

Bjarnason E, Hess A, Berntsson Svensson R, Regnell B, Doerr J. (2014) Reflecting on evidence-based timelines.
IEEE Softw 31.4 (2014): 3743

Bjarnason E, Smolander K, Engstrdm E, Runeson P (2016) A theory of distances in software engineering. Inf
Softw Technol 70:204-219

Boehm BW (1981) Software engineering economics, Upper Saddle River, —Prentice Hall

Brede Moe N, Dingsoyr T, Royrvik EA (2009) Putting agile teamwork to the test — an preliminary instrument for
empirically assessing and improving agile software development. Proc of XP 2009, LNBIP 31, Springer,
Berlin, Heidelberg, pp 114-123

Briand L, El Emam K, Melo WL (1995) ANSI — An Inductive Method for Software Process Improvement:
Concrete Steps. Proc. of the ESI-ISCN’95: Measurement and Training Based Process Improvement, Sep.
11-12 1995, Vienna, Austria

Burstein F, Gregor S (1999) The systems development or engineering approach to research in information
systems: an action research perspective. Proceedings of the 10th Australasian conference on information
systems. Victoria University of Wellington, New Zealand, 1999

Chrissis MB, Konrad M, Shrum S (2007) CCMI for development, v 1.2. Guidelines for process integration and
product improvement (2nd edition), SEI series in software engineering, Addison-Wesley

Collier B, DeMarco T, Fearey P (1996) A defined process for project postmortem review. IEEE Softw 13(4):65-72

Curtis B, Hefley WE, Miller S (2002) The people capability maturity model: guidelines for improving the
workforce. (ISBN 0-201-60445-0). Addison Wesley Longman, Reading

Damian D, Chisan J (2006) An empirical study of the complex relationship between requirements engineering
processes and other processes that Lead to payoffs in productivity, quality, and risk management. IEEE Trans
Softw Eng 32(7):33-453

Damian D, Chisan J, Vaidyanathasamy L, Pal Y (2005) Requirements engineering and downstream software
development: findings from a case study. Empir Softw Eng 10:255-283

Derby E, Larsen D (2006) Agile retrospectives: making good teams great! Pragmatic Bookshelf, 2006

Drury M, Conboy K, Power K (2011) Decision making in agile development: a focus group study of decisions
and obstacles. Proc. of Agile Conference 2011:39—47. https://doi.org/10.1109/AGILE.2011.27

Dyba T (2000) An instrument for measuring the key factors of success in software process improvement. Empir
Softw Eng 5:357-390

Dyba T (2005) An empirical investigation of the key factors for success in software process improvement. IEEE
Trans Softw Eng 31(5):410-424

Ferguson RW, Lami G (2006) An empirical study on the relationship between defective requirements and test
failures. Proc of 30th annual IEEE/NASA software engineering workshop SEW-30 (SEW'06)

George M (2002) Lean six sigma: combining six sigma quality with lean production speed. McGraw-Hill, New York

Gotel O, Finkelstein A (1994) An analysis of the requirements traceability problem. Proc. First Int Conf.
Requirements Eng., pp. 94-101

Harter DE, Kemerer CF, Slaughter SA (2012) Does software process improvement reduce the severity of defects?
A longitudinal field study. IEEE Trans Softw Eng 38(4):810,827, July-Aug. 2012. https://doi.org/10.1109
/TSE.2011.63

Hevner R, March S, Park J, Ram S (2004) Design science in information systems research. MIS quarterly 28.1:
75-105. https://www.in.thnuemberg.de/professors/holl/personal/hevner_designscience_isres.pdf

Humphrey WS (1989) Managing the software process. Addison-Wesley, SEI Series in Software Engineering

Humphrey W (1997) Managing technical people: innovation, Teamwork, and the Software Process, Addison-Wesley

ISO/IEC (2004-2011) ISO/IEC 15504 Information Technology — Process Assessment, parts 1-10

Kandt RK (2009) Experiences in improving flight software development processes. IEEE Softw 26(3):58-64

Kukkanen J, Vakevainen K, Kauppinen M, Uusitalo E (2009) Applying a systematic approach to link require-
ments and testing: a case study, proc of asia-pacific software engineering conference (APSEC '09):482-488

Lavallée M, Robillard PN (2012) The impacts of software process improvement on developers: a systematic review. Proc
of 34th Int. Conf. On software engineering (ICSE), pp.113—122. https://doi.org/10.1109/ICSE.2012.6227201

Martin R, Melnik G (2008) Tests and requirements, requirements and tests a Mobius strip. IEEE Softw 25(1):54-59

Post H, Sinz C, Merz F, Gorges T, Kropf T (2009) Linking functional requirements and software verification.
Proceedings of 17th IEEE international requirements engineering conference, pp. 295-302

Ramesh B, Cao L (September 2010) Baskerville R (2010) agile requirements engineering practices and
challenges: an empirical study. Inf Syst J 20(5):449-480

Robinson H, Segal J, Sharp H (2007) Ethnographically-informed empirical studies of software practice. Inf
Softw Technol 49:540-551

Robson C (2002) Real world research. 2nd ed. Blackwell Publishing, Hoboken

Rogers Y, Sharp H, Preece J (2011) Interaction design: beyond human - computer interaction, 3rd Edition. Wiley, Hoboken

Runeson P, Host M, Rainer A, Regnell B (2012) Case study research in software engineering — guidelines and
examples. Hoboken, Wiley

@ Springer

https://doi.org/10.1109/AGILE.2011.27
https://doi.org/10.1109/TSE.2011.63
https://doi.org/10.1109/TSE.2011.63
https://www.in.thnuernberg.de/professors/holl/personal/hevner_designscience_isres.pdf
https://doi.org/10.1109/ICSE.2012.6227201

2408 Empirical Software Engineering (2019) 24:2364-2409

Sabaliauskaite G, Loconsole A, Engstrom E, Unterkalmsteiner M, Regnell B, Runeson P, Gorschek T, Feldt R
(2010) Challenges in Aligning Requirements Engineering and Verification in a Large-Scale Industrial
Context Proceedings of REFSQ 2010

Unterkalmsteiner M, Feldt R, Gorschek T (2014) A taxonomy for requirements engineering and software test
alignment. Accepted for publication in ACM Transactions on Software Engineering and Methodology

Uusitalo EJ, Komssi M, Kauppinen M et al. (2008) Linking requirements and testing in practice. 16th IEEE Int
Requirements engineering Conf, NJ, USA, pp. 265-270

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Dr. Elizabeth Bjarnason is a senior lecturer with the Software Engineering Research Group, Lund University,
Sweden. Her main research interests lie within empirical software engineering, in particular requirements
communication, requirements-test alignment and software process improvement. Bjarnason combines a long
experience of software engineering in industry with empirical research in the field in close collaboration with
industry partners. Contact her at elizabeth@cs.lth.se .

Helen Sharp is Professor of Software Engineering at the Open University, UK. Her research investigates
professional software practice with a focus on human and social aspects of software development and she has
been studying agile practice since 2000. Sharp has led multi-disciplinary research projects into software practice

@ Springer

Empirical Software Engineering (2019) 24:2364-2409 2409

with partners in the UK and abroad, and conducts her research exclusively in-situ with software practitioners in
their industrial context. Sharp is joint author of one of the leading HCI textbooks, Interaction Design now in its
Sth edition. She is also on the editorial board for EMSE and JSS, serves on the Advisory Board for /EEE Software
and will chair ICSE’s software practice track in 2019.

Bjorn Regnell is Professor in Software Engineering at the Faculty of Engineering, LTH, Lund University,
Sweden. He has contributed to several software engineering research areas including requirements engineering,
software quality, software product management and empirical research methods in software engineering. Regnell
has been Steering Committee Chair and Program Chair of International Working Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ), Program Chair of International Conference on Software
Business (ICSOB), and a member of the Program Board/Committee of International Requirements Engineering
Conference (RE). He is a member of the Editorial board of the Requirements Engineering Journal. Prof. Regnell
has published more than 80 peer-reviewed articles in journals and conferences. He has edited several special
issues in journals and proceedings and he is co-author of several books including the widely cited “Introduction
to Experimentation in Software Engineering” and “Case Study Research in Software Engineering - Guidelines
and Examples”.

Affiliations

Elizabeth Bjarnason’ « Helen Sharp? - Bjérn Regnell

Helen Sharp
helen.sharp@open.ac.uk

Bjorn Regnell
Bjorn.regnell @cs.lth.se

Department of Computer Science, Lund University, Lund, Sweden

Computing and Communications Department, The Open University, Milton Keynes, UK

@ Springer

	Improving requirements-test alignment by prescribing practices that mitigate communication gaps
	Abstract
	Introduction
	The Theory of Distances
	Types of Distance
	Practices for RE and Test Alignment
	The Gap Model

	Related Work
	Aligning Requirements Engineering and Testing (RET)
	Software Process Improvement (SPI)
	SPI Methods for Requirements-Test Alignment
	Theory-Based SPI Methods

	The Gap Finder Method
	The Four Main Steps
	Step I: Planning
	Step II: Distance Measurements
	Step III: Prescription
	Step IV: Workshop
	Implement Practices and Iterate

	Measurement Instruments
	The RET Profile

	Case Description
	Research Method
	Design
	Obtaining Knowledge of Case
	Design and Evolution of the Gap Finder
	Case Study Design and Planning

	Evaluation: Data Collection and Validation
	Gap Finder Step I: Planning
	Gap Finder Step II: Distance Measurements
	Observations
	Gap Finder Step III: Prescription
	Gap Finder Step IV: Workshop & Focus Group
	Survey of Prescribed Practices
	Post-study Interviews

	Evaluation: Data Analysis

	Results
	Identified Gaps
	Geographical Gaps (M1)
	Organisational Gaps (M2)
	Psychological Gaps (M3)
	Cognitive Gaps (M4)

	Prescribed Practices
	Guest Desk for Product Owner (P1)
	Requirements Communication at all Levels & Throughout Project Life-Cycle (P2)
	Test Cases Reviewed Against Requirements (P3)
	Let People Have a Say in Seating Arrangements (P4)
	Product Owner Testing (P5)
	Continuous Competence Development (P6)
	Job Rotation (P7)
	Consider Quality Upfront in Requirements Elicitation (P8)
	Agree on Quality Priority for Project (P9)
	Additional Practices Suggested by the Team

	Practitioners’ View on Gap Finder
	Evidence of Practices Being Applied After This Study

	Findings and Discussions
	Relevance of Prescribed Practices (RQ1)
	Improved Usefulness of the Gap Finder (RQ2)
	Costs versus Benefits
	The Set of Distances
	Prescribing Improvement Practices
	Workshop Set-Up
	Software Process Improvement Aspects

	Validity and Limitations
	Significance
	Internal Validity
	External Validity
	Construct Validity
	Reliability

	Conclusions and Future Work
	Appendix: The Gap Model
	References

