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Abstract—The increasing interest in distributed energy
generation from renewable sources is enabling traditional energy
consumers to become active energy producers. They can be
formed into virtual clusters for easier management and to
reduce costs; the virtual clusters are usually referred to as
virtual microgrids (VMG). The VMGs are coordinated by
energy trading agents (ETA), a communication hardware or
software, which coordinates a population of prosumers of a
certain size. We examine the case when prosumers communicate
within VMGs via low-power wide area network (LP-WAN)
technologies, such as LoRaWAN, whose spreading factor (SF)
property affects the coverage distance and, consequently, the size
of the served population of prosumers. The SF property enables
the transformation of VMGs into dynamic schemes (i.e. varying
number of prosumers are seen per trading period). Based on this
formulation, we propose two energy trading cost models: one for
the energy and one for the LoRaWAN communication system.
Results show that the optimal techniques prescribed in this study
can reduce energy trading cost by 52% and energy consumption
for the LoRaWAN system by up to 45%. Lastly, we formulate a
closed form relationship to demonstrate that bit energy decays
with increasing distance for varying SF values.

Index Terms—CQO- emission, communication, distributed
energy trading, LoRaWAN, LP-WAN, peer to peer, smart grid,
virtual cluster, virtual microgrids (VMG).

I. INTRODUCTION

Low-power wide area network (LP-WAN) technologies
are playing key roles in energy management within the
telecommunication industry due to its tripartite capabilities
of coverage, energy efficiency and scalability [1], [2]. They
also have significant potential to impact other areas of national
critical infrastructure in the emerging Internet of things (IoT),
Industry 4.0, smart agriculture and smart energy city [3]. In
smart energy city framework, the energy distribution networks
of smart grids are devolved into smaller manageable clusters
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of diverse energy producers and consumers who are also
physically connected to the main distribution network. The
smaller clusters of energy prosumers (i.e. energy producers
who also consume energy) are equipped with energy trading
agents (ETA) for coordinating trading messaging services
among the prosumers. Thus the energy distribution networks
are equipped with communication systems which we will be
discussing as ETAs to coordinate information exchange among
energy producers and energy consumers.

In this study, we veer our interest towards the use of a
sample LP-WAN technology, such as the long range wide
area network (LoRaWAN), to serve as the ETA. Our interest
in LoRaWAN has been motivated by its popularity and
its scalability property based on the number of available
prosumers and the coverage area while expending low amount
of energy. The major determinant of the coverage size of
the LoRaWAN technology is the spreading factor (SF) which
swaps between energy performance and coverage [1], [4].
In this present study, we will show that the variation in
coverage is useful in deploying virtual prosumer clusters so
as to optimize the energy performance of the battery-based
LP-WAN such as the LoRaWAN. We will show also that
the variation in the coverage size of the LoRaWAN affects
not just the battery-life of the LoRaWAN device (e.g. in
cell-zooming [5]) but also the energy trading costs incurred
by the consumers in the smart grid.

LoRaWAN can derive its energy from renewable resources
and the backhaul can operate wirelessly as the front-end [2]. It
also employs adaptive data rate scheme to optimize lifetime of
end-node batteries and network capacity. These characteristics
are useful in peer to peer (P2P) energy trading [6], [7].
We exploit the communication capability to enable P2P
energy trading. For example, end-nodes communicate with
nearby LoRaWAN gateway by employing a single-hop and
a bi-directional (half-duplex) LoRaWAN protocol [2]. In this
study, the number of P2P energy trading prosumers covered
by ETA (i.e. LoORaWAN) within the single communication hop
will be referred to as virtual microgrid (VMG) [8], [9]. The
VMG, in other words, are the number of energy prosumers that
can be served in a single communication hop by a LoRaWAN
gateway. Since the coverage size depends on the node density
and the SF of the LoRaWAN, the number of prosumers served



in a given trading interval is not constant. This phenomenon
therefore warrants a modification to the VMG framework
described in [8] to incorporate a dynamic VMG.

The potential of the LP-WAN in P2P energy trading system
architecture inspires us to propose and optimize a new energy
trading cost model for energy consumers. The cost model
holistically encompasses renewable and non-renewable energy
resources that caters for the growing interests in distributed
energy generation. In distributed energy generation, passive
energy consumers become active energy producers for the gain
they could derive from their participation. Unlike the many
existing related works in the literature exploring opportunities
for trading cost optimization such as [8], [10], [11], our model
is derived to follow the nonlinear energy trading cost function
that is strictly convex in nature. This is particularly exciting
because nonlinear energy trading cost models are adopted
in practical systems [12]. In order to minimize the energy
trading cost, we then formulate and solve the optimization
problem of the energy cost model in a distributed fashion as
the energy consumption of each consumer is decoupled. In
other words, the energy consumption of one consumer does
not affect the other prosumer’s consumption state. The results
obtained for varying number of prosumers demonstrates up to
52% improvement in the cost paid by the consumer.

Further details of the proposed system model are presented
in Section II. Afterwards, the energy consumption of the
LP-WAN ETA due to the trading operation and further
components of the LP-WAN are described in Section III. The
simulation results realized from the model are discussed in
Section IV with the conclusion following.

II. SYSTEM MODEL

Consider a dynamic VMG scenario where the prosumers
cooperate to trade energy. All prosumers within the service
area of an ETA have the capability to produce as well as
consume energy. The ETA in this study is considered to
be enabled by LoRaWAN. We further assume that all the
prosumers are physically connected to an energy distribution
network and therefore are allowed to trade among themselves.
Let P = {Py, Ps,..., Py} denote the set of N prosumers
in a VMG, and N' = {1,2,...,N} denotes the set of
indices corresponding to prosumers in P, where index i
corresponds to prosumer F;. We expect that prosumers are able
to generate energy in the P2P trading from different energy
generation resources and are able to contribute/participate
to/in the P2P trading. This makes it important to consider a
holistic energy trading cost model involving both renewable
and non-renewable energy resources. In general, the prosumer
P; generates a total of E,’ ) (t) amounts of energy and requires
to consume e;;(t) amount of energy to drive the compulsory
loads during the ¢-th trading interval. It follows that, as the
producer, it has a total of ngg)(t) — e (t)) excess amount
of energy; note that this amount can also be negative, in which
case prosumer 7 needs to buy energy to compensate for the
local energy shortage. Furthermore, we will let the amount of
energy sold by prosumer F; to prosumer P; at trading interval

t be x;;(t). The payoff received by ¢ from j due to the z;;(t)
amount of energy sold will be denoted as ¢;; (x;;(t)). During
each trading interval, the number of energy prosumers N is
constant; this is useful to enable an effective modelling of the
system.

Based on the SF, the ETA (i.e. LoORaWAN) determines the
population size of a VMG based on the amount of energy
declared by the prosumer for sale. In that instance, let the
price function be (i # j)

pij(z) = ajx +by; Vi,jeN,VE=1,---,T 1

where x is the amount of energy sold by prosumer P; to
prosumer Pj, a;; > 0 and b;; > 0 are constants and T is
the trading period. The cost function can then be expressed as

cij(x) =py(a) - Vt=1,---,T,
= aiij +bjjx Vi,jeN,i#j. )

In other words, if the amount of energy x flows from prosumer
seller P; to the prosumer buyer P; (i — j), then money c¢;;(z)
is paid by prosumer buyer P; to prosumer seller P;. Note that,
in most cases, the price function ¢;; will be the same for all
neighbors P;; of prosumer P; (i.e., ¢;; = ¢;, Vi # ). However,
to keep the model general, we leave the index j. In practical
scenarios, the need for the price difference between different
buyers might, for example, arise in cases where trading occurs
between prosumers located in different countries, in which
case, e.g., different energy policies or different tax levels might
cause the difference in the final energy price (and thus energy
cost).

Earlier, we noted that some energy prosumers realize their
energy resources from other sources than renewable energy. In
that case, the cost function described in (2) will be rewritten to
include greenhouse gases emission cost I;;, Vi € N, jeN;,
which can be expressed as [13]

Iij(z) = aj;a® + Bz Vi #j. 3)

where «;; > 0 and §;; > 0 are the constants for penalizing
the level of emission for the energy resources depending of the
source type. In [8], the authors described energy trading cost
incurred by the prosumers as involving the energy transmission
cost function, 7;;, which in this study we shall treat as
following a linear function for simplicity, i.e.,

Tij(l')zeij$ V’iEN,Vtzl,-",T, (@)

where 6;; is the price of transmitting one unit of energy (in
kWh) at trading interval ¢. Putting all the costs together, the
total energy trading cost incurred by all the energy transactions
of prosumer seller P; is:

Ti ({ﬂfij}je/\a) = > ciy@iy) + Ty (i) + 705 (w5)
JEN;
= Z aijay; + bijij, )
JEN;
where &,J = ;5 + Qyj and ZA),J

= bj; + }31)2 + 0;;. It will
also be useful to introduce f;;(x) := d;;

7.’L'2 +b”.L, VL,J S N



Notice that in (5), we have dropped the variable ¢ for notational
convenience and without loss of generality. Practical energy
cost models are nonlinear (e.g. quadratic as in [12]) unlike
the linear model described in [8]. This is the motivation for
developing a nonlinear cost model expressed in (5). When
prosumers may trade renewable energy resources and in that
case, we assume that there are no greenhouse gases (such as
CO3) emission; i.e., we set I;;(x;;) = 0 in (5).

In P2P energy trading environment involving multiple
prosumers in one ETA service area, optimal trading is defined
as to minimize the sum of total costs in (5) over all prosumer
sellers P;. We can define this as an optimization problem P1
of the form

P1: min Ti(x;s
{xij}i,jejw’ie;/— ( J)
subject to: z Tij — z z;; = EY9 —
JEN; JEN;
(62)
J‘ijZO,ViEJ\/,jEM- (6b)

Since the cost function 7;(x;;) is quadratic for each 4, and the
constraints are linear, the problem P1 is a convex optimization
problem that can be solved centrally, for example, by the ETA.
Note that constraint (6a) is necessary for prosumers without
storage facility, which we assume is the case here.

One of the ways of achieving energy cost reduction is in
minimizing energy consumption. In demand response (DR)
scheme, minimizing energy consumption can be achieved by
shifting flexible loads to later periods, such as off-peak periods.
This can be achieved in DR by sending an alert to consumers
to reduce energy consumption to avoid excessive charges.
Recently, there are practical systems that can help energy
consumers achieve this goal automatically [14]. In Germany,
SonnenBatterie is an intelligent energy management system
that is able to control power consumption in households, store
energy, sell excess energy produced to the grid or buy energy
from the grid [14]; an example of central solution.

We can approach the solution to finding the optimal cost
through duality theory, as in [11]. To this end, let A; denote the
Lagrangian multiplier associated with the energy conservation
constraint for the -th user. Let also 7;; > 0 denote the
Lagrange multiplier associated with energy nonnegativity.
Then, the Lagrangian of P1 is given as follows:

(z,\,n) Z Z fij(xij) Z Z 7i§Tij )
1EN JEN; 1EN JEN;
+ Z )\i Z Tij — Tji — El(g) + e |- (8)
ieEN JEN;

Although (8) is convex and the model can be solved
centrally using convex optimization algorithm by the ETA,
unfortunately, each producer’s energy information is private
and thus would constrain the ETA from doing so. Secondly,
this approach could make the energy pricing information stale
thus making the prosumers to lose money/trade. However,

since the P2P prosumers are distributed, we can let the
prosumers solve this problem in a (dual) distributed fashion.
The dual problem of P1 is given as

D1: A 9
AERW%MQ( 1), ©)

where n = |N| and m = 2|UienaNi|, and g(\,n) =
min, L(z, A\,n). For fixed A and 7, g(\,n) is computed

by minimizing the Lagrangian over the primal variables
{zij}. The values 7;(A,7) that minimize the Lagrangian are
obtained as:

T ;j (/\7 77)

= Argmax,, g fij(zij) + (i = Xj — nij)ij-

(10)

The preceding problem is an unconstrained quadratic problem,
and thus has a simple, closed form solution. It can be easily
shown that this solution is given by:

Bij + )‘i - )\j — Nij
24, '

vy (A m) = — 1D
A suitable method of solving problem D1 is by subgradient
method [15]. The distributed solution will further enhance
energy saving opportunity of the LP-WAN ETA. Since the
energy consumptions of different prosumers are decoupled,
one can easily adopt the sub-gradient technique to solve the
problem in distributed manner.

We observed that the network charges (Lagrangian
multiplier) 7;; have much more influence on the energy trading
cost for each prosumer than \;; this can therefore be assigned
centrally, e.g. by the ETA as a penalty, for example, for the age
of the transaction message or for the distance of the producer.

We will consider in next the case, the optimal
communication strategy (the optimal cost and quantity of
energy used) for a finite power scenario of the ETA. We shall
need to find the optimal communication resources needed to
process the energy trading data at a given trading interval, ¢.

III. COVERAGE AND ENERGY PERFORMANCE OF
LORAWAN-ETA

Consider an energy trading area that can be devolved into
M clusters, each having A energy prosumers. There are two
optimalities that should be achieved in deploying the ETAs
within the area: the number of ETAs deployed and coverage.
In this section, we explore major parameters of LoRaWAN
technology that can be used to control VMG size and number
of prosumers. Namely, by changing LoRaWAN physical layer
parameters, we can change the coverage of LoRaWAN cells
(i.e., perform so called "cell zooming") in order to optimize
the average number of prosumers per cell to a desired value.

The problem of optimizing the number of ETAs in a
peer-to-peer trading area has been treated in [8]. In this work,
we explore the energy consumption of the LoORaWAN modules
in each distributed energy resource asset during P2P trade. Let
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Fig. 1: Coverage distance with respect to the transmit power

for varying spreading factors (# = 25° C, W = 125 kHz,
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{ri : Vk € M}, where M is the number of ETAs, be the
coverage distance of the ETA, which for LoRaWAN [16] is

2/p SF
o & n 2 ,Pt
rE = (47Tf> ”’yokaQW Vk e M (12)

where P, is the transmit power of the LoRaWAN system,
(v is the path-loss exponent (2 for free space, 3 for urban
centers and 6 for high rising shadowing), vy is the desired
signal-to-noise ratio (SNR), c is the speed of light in a vacuum,
SF is the spreading factor of LoRaWAN system, £ = 6 dB
is the noise figure, kp is the Boltzmann constant, 6 is the
temperature of the environment and W is the bandwidth of
operation. The energy trading cost model in (5) accounts for
the pay-off received by prosumer i from prosumer {j € N;}
within the coverage distance r; of the LoRaWAN.

Different SF values have different impacts on the energy
performance of the LoORaWAN system. For example, SF = 7
pulls larger amount of data and consumes higher amount of
energy than SF = 11. Conversely, SF = 11 covers wider area
than SF = 7 [1], [4]. The SF is realized from a relationship
between symbol rate (R;) and chirp rate (R.) as loga(R./Rs)
[2]. In fact, the achievable physical data rate of LoRaWAN
resides between 0.3 kbps and 50 kbps, depending on the
combination of the frequency channel, SF, code rate and,
chosen modulation technique [2]. In Fig. 1, we evaluate the
coverage distance of LoORaWAN gateway using (12). We find
that at 20 dBm transmit power, the highest coverage distance
is ~28 km when operated with SF = 12. This result in Fig.
1 agrees with the measurement results realized from testbed
located on water [17]. We find, also, that at lower spreading
factors such as SF = 10 and SF = 7, the coverage diminishes.
However in such cases, the bit energy performance is much
greater than that of SF = 12 [1], [4].
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Fig. 2: Performance evaluation of LoRaWAN bit energy as the
distance increases (¢ = 3,4)

Starting with the sensitivity of the receiver, defined as the
minimum SNR (79) at which it can decode a signal, we can
express the SNR with respect to the SF as 7(SF) = ~,/25F.
By letting v = £} /Ny and combining this results with (12),
then the bit energy can be found as

 NoCP2F

By = —0sTte 1
" koW (13)

where C; = (c¢/4nf)® and Ny is the noise power. Using
(13), we examine the bit energy performance as the coverage
distance increases as shown in Fig. 2. The results show
that the bit energy decreases with increasing distance. This
is significantly worse for low SF values (SF < 12) than
the higher ones; for example, the bit energy performance of
SF = 7 is worse than that of SF = 12.

IV. SIMULATION RESULTS AND DISCUSSION

To demonstrate the improvement achieved in the foregoing
models proposed in this study, we simulate different scenarios
for varying number of energy prosumers in a given trading
area. The design involves VMGs equipped with ETA operated
as LoRaWAN for different SF values; ¢« = 1, b = 0.1,
a =2x1072, 8 = 0.1, 7 = 0.25. This study has only
considered the case of non-renewable energy resources. We
note that SF determines the number of prosumers that can
coexist in one VMG. In Fig. 3, the energy cost performance
shows that the pay-out is determined by the quantity of energy
consumed. Also, we see that as the number of prosumer rises,
the total energy trading cost reduces. Assuming a battery
capacity of 2400 mAh [18], the result of minimizing the energy
consumption subject to the node density captured in a VMG at
trading interval ¢ is shown in Fig. 4. The results show that the
proposed optimization yields better energy performance. This
can potentially provide longer battery life for the gateway in
particular and extend the LoORaWAN network life as a whole.



20 F Sk

#—--500 consumers (opt)
——— 500 consumers (Conv) |
800 consumers (opt) ¥
—6— 800 consumers (Conv) Z
1500 consumers (opt)
—#4—— 1500 consumers (Conv)

Energy trading cost (£)
>

30 40 50 60 70 80 90 100
Energy consumed by energy consumer (kWh)

Fig. 3: Performance evaluation of energy trading costs for
varying number of prosumers in a trading area

—-~%—--500 consumers (opt)
— 500 consumers (Conv) ,
1+ 800 consumers (opt) /A
—6— 800 consumers (Conv) S/
1500 consumers (opt) #
—#— 1500 consumers (Conv)

04 r

Energy trading cost (£)
o
[}

0.2

0 500 1000 1500 2000

Energy consumed by energy consumer (mAh)
Fig. 4: Optimized energy performance cost for bit energy
expended in the energy trading by ETA

V. CONCLUSION

LP-WAN technologies can be applied to distributed systems
that require low energy consumption. Due to its massive
penetration into IoT, smart cities, smart agriculture and smart
energy city, we have selected LoRaWAN on the basis of
its scalability, energy efficiency and coverage to study P2P
energy trading in smart grid. The LoRaWAN gateway enables
dynamic clustering of the energy prosumers consequent on
SF values. Based on the VMGs formed, we proposed a
new energy trading cost model for efficient energy trading
among the prosumers within a neigbourhood area network.
Our technique showed up to 52% reduction in the cost incurred
by the consumers when the cost model is decoupled and solved
in a distributed fashion. Furthermore, we formulated the cost

model for the energy consumed by the LoRaWAN modules
for communication between ETA and the prosumers. With the
proposed nonlinear optimal trading model, we demonstrated
that a possible 45% reduction in communication-related energy
consumption can be achieved. Finally, we showed that SF
values affect the energy consumption and the node density
seen by the ETA (LoRaWAN) at each trading interval.
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