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Summary

In a wide range of applications, datasets are generated for which the
number of variables p exceeds the sample size n. Penalised likelihood
methods are widely used to tackle regression problems in these high-
dimensional settings. In this thesis, we carry out an extensive empirical
comparison of the performance of popular penalised regression meth-
ods in high-dimensional settings and propose new methodology that

uses ensemble learning to enhance the performance of these methods.

The relative efficacy of different penalised regression methods in finite-
sample settings remains incompletely understood. Through a large-
scale simulation study, consisting of more than 1,800 data-generating
scenarios, we systematically consider the influence of various factors
(for example, sample size and sparsity) on method performance. We
focus on three related goals — prediction, variable selection and vari-
able ranking — and consider six widely used methods. The results
are supported by a semi-synthetic data example. Our empirical results
complement existing theory and provide a resource to compare perfor-

mance across a range of settings and metrics.

We then propose a new ensemble learning approach for improving the
performance of penalised regression methods, called STructural RAN-
Domised Selection (STRANDS). The approach, that builds and im-
proves upon the Random Lasso method, consists of two steps. In both
steps, we reduce dimensionality by repeated subsampling of variables.
We apply a penalised regression method to each subsampled dataset

and average the results. In the first step, subsampling is informed by

il



variable correlation structure, and in the second step, by variable im-
portance measures from the first step. STRANDS can be used with
any sparse penalised regression approach as the “base learner”. In sim-
ulations, we show that STRANDS typically improves upon its base
learner, and demonstrate that taking account of the correlation struc-
ture in the first step can help to improve the efficiency with which the

model space may be explored.

We propose another ensemble learning method to improve the predic-
tion performance of Ridge Regression in sparse settings. Specifically,
we combine Bayesian Ridge Regression with a probabilistic forward
selection procedure, where inclusion of a variable at each stage is prob-
abilistically determined by a Bayes factor. We compare the prediction
performance of the proposed method to penalised regression methods

using simulated data.
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Chapter 1

Introduction

1.1 Statistical challenges in modern applications of

linear regression

Thanks to the rapid advance of technologies for data acquisition, the complexity
of data has increased in many research areas, including finance, technology and
science. As a result, the number of variables being analysed can be huge, and
can easily surpass the number of available samples. These data pose challenges to
traditional statistical approaches, yet they offer unprecedented opportunities for
us to understand the underlying patterns behind phenomena.

With the advent of high-throughput technology, we are now able to measure
the abundance of large numbers of gene and protein expression profiles, as well
as sequence whole genomes. The enormous amount of information contained in
data generated by these technologies enables us to investigate biological processes
at different stages of protein synthesis. These data significantly facilitate in-depth
studies of biological processes that govern functions performed by cells. For exam-
ple, genome-wide association studies [GWAS, Rudan et al., 2016| link diseases with
genetic variants (often single nucleotide polymorphisms, or SNPs); differential ex-
pression analysis [Costa-Silva et al., 2017| aims to discover significant differences
in gene expression (mMRNA or ¢DNA) of different cells, and find tissue specific
patterns of expression; feature extraction and functional modelling in proteomics

shed light upon mechanism of molecular regulatory processes by detecting poten-



tial protein biomarkers of disease, which will eventually lead to clinical application
[Morris, 2012]; and epigenetic data analysis allows for the discovery of connections
between quantifiable epigenetic marks and traits of interest [Rakyan et al., 2011].
Treatment based on biological information specific to an individual person has the
potential of high efficiency and effectiveness, which is receiving more and more
attention in personalised medicine research. High-throughput data has its unique
challenges, including high dimension, high levels of noise, complex structure such
as multicollinearity, systematic bias, and heterogeneity arising from aggregation
of datasets or from subpopulations which may be unknown. They give rise to the
need of novel statistical methodology and computational approaches.

Study of high-throughput data aims to explain observed variation in a pheno-
type of interest with molecular variants and environmental factors. Regression is a
powerful tool for modelling the relationship between responses and potential fea-
tures, and is widely applied in biomedical studies. Linear regression is arguably the
simplest technique in regression. Besides computational efficiency, linear regres-
sion models have good interpretability because they establish explicit relationship

between the features and the outcome.

1.2 Linear regression model

Assume the data consists of n samples and p variables. Y € R" is a n x 1 response
vector, X is a nxp design matrix of p variables (x4, ..., xp), x; € R* for j =1...p.

The Gaussian linear regression model takes the form

Y = X3 + ¢, (1.1)

where B8 = (81,...,8,)" is a p x 1 vector of coefficients, and € ~ N(0,0%L,) is a
n x 1 vector of error terms, I,, being the identity matrix (denoted as I hereafter
if no confusion can occur). Throughout the thesis we assume that each column of
design matrix X has been standardised to have mean zero and variance one, and
Y is mean-centred. This results in the intercept term being zero and it is therefore
omitted from the model (1.1).



1.2.1 Maximum likelihood estimate

The likelihood function for 3 is given by

L v - xp)T(v - x8)). (1.2)
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1(B]Y, X, %) = c-exp(

where ¢ is a constant independent from @. Maximising the likelihood function
for B by differentiating I(3|Y, X, 0?) with respect to 3 and setting the derivative
to zero, it can be seen that the maximum likelihood estimate (MLE) is obtained
by solving (XTX)B = XTY. If XTX is of full rank, this has the closed-form
solution

B=(X"X)'Xx"Y. (1.3)

The case where X T X is not of full rank is discussed below. Note that, under
the assumption that e follows multivariate normal distribution, the maximum
likelihood estimate is the same as the least squares estimate, which is obtained by

minimising the residual sum of squares (RSS)
RSS(B) =Y — X8, (1.4)

where [|.||2 is the I3 norm.

The MLE is an unbiased estimator for 3, and according to the Gauss—Markov
theorem, it has the smallest variance in all linear unbiased estimators. Linear
models have easily interpretable results, i.e., for one unit increase of a numerical
variable, while holding all other variables fixed, the expected change in the out-
come is the corresponding coefficient estimate. The coefficient estimates therefore
represent the strength of association between response and each variable. They
can be used to predict a previously unseen response given some new data X, e, OF

conduct hypothesis tests to determine the statistical significance of each variable.

1.2.2 Regularisation, sparsity and high-dimensionality

In the case where p > n or variables are linearly dependent, X T X is singular and
the MLE is not uniquely defined. Also matrix inversion will be numerically un-

stable when variables are highly correlated (i.e., close to linearly dependent). The



MLE can have high variance, and can be undesirable with respect to prediction ac-
curacy and interpretation in these settings. Regularisation can be applied in these
cases, which introduces additional information to solve ill-posed problems, and also
avoid over-fitting. It reduces the variance of estimates by sacrificing unbiasedness,
and improve the prediction accuracy. The bias-variance tradeoff is typical in re-
gression problems; a model cannot simultaneously perfectly fit the training data,
and generalise well to previously unseen data. Fewer variables in a model typically
result in smaller variance of coefficient estimates. Regularisation typically specifies
constraints on 3 when optimising the target function, and constraints with certain
properties can lead to sparse representation.

At first glance, when p > n, it seems to be impossible to retrieve 3 from data,
which is analogous to solving an underdetermined equation set where number of
unknowns is larger than number of equations. However, with a sparsity assumption
that only a few entries in 3 are non-zero, it is feasible to estimate the coefficients. In
biological studies as well as other high-dimensional settings, it is usually reasonable
to assume that only a small number of variables are actually associated with the
outcome. Even in studies where many variables are expected to be responsible
for the outcome (e.g. in genetics/genomics where there are a few strong signals
and many weak ones), a standard practice is to focus on a small number of strong
signals, as detecting all the signals is usually not feasible. Sparse representation
not only makes regression results interpretable, but can also make the predictive

model more accurate.

1.2.2.1 Sparse linear regression model

In the sparse linear regression model we assume that only a subset of the p variables
have non-zero coefficients, and we refer to these variables as relevant variables or
signals. Variables with zero coefficients are referred to as irrelevant variables or
non-signals. We define a model to be a specific subset of variables, denoted by
J={j1, gk}, (1 < j1 < ... < jr < p), where each element in J corresponds to
a variable, and v = (v1...7,), where v; = 1 if 5; # 0 and v; = 0 if §; = 0.
Let sp = Z§:1 7; denote the sparsity, Xj denote the design matrix composed
with columns of X that correspond to model J, and By = (5;,,...5;,). Define



w={j:v, =1,1<j <p}, and the true linear model can then be expressed as
Y =X, 06, + €

There are several types of correlation that can be considered. e.g. correlation
among signals, correlation among non-signals, correlation between one signal and
all other variables, or correlation among all variables. In the rest of thesis we will
be explicit about types of correlation when referring to, and whenever we refer
to “correlated variables”, we mean correlated variables in general, irrespective of

whether signal or non-signal.

1.2.2.2 Goals of high-dimensional sparse linear regression

Common goals of sparse linear regression analysis include estimating coefficients to
assess influence of individual variables, recovering sparsity patterns -y (i.e., variable
selection), ranking variables and predicting previously unseen responses. These
goals are related but not identical. For prediction, we are interested in using B
to predict response for a new sample. The specific variables that are included in
the model may not be of direct importance and any set of variables that provides
the same prediction risk may be acceptable. In contrast, for variable selection it is
identifying the true set of relevant variables that is the goal, while we treat variable
ranking as a third goal due to the fact that in many applications, practitioners are
interested in receiving guidance for follow-up studies or data acquisition. Then,

highlighting relevant variables in a suitable order is particularly important.

1.3 Subset selection

In settings where only a small proportion of variables are relevant, or strong mul-
ticollinearity exists, sparse models can help to reduce variance of estimates, and
improve prediction accuracy and model interpretability, as discussed in Section
1.2.2. Subset selection achieves sparsity by evaluating different subsets of variables
for their suitabilities, and finding the “best subset”, where “best” is characterised

statistically.



1.3.1 Best subset selection

Best subset selection is a straightforward approach that finds the subset of size
k giving the smallest RSS for each k = 0,...,p. The optimal choice of k should
then be determined based on the tradeoff between bias and variance, also taking
into account the assumed sparsity level of the underlying model. Since for p vari-
ables the number of candidate models is 2P, best subset selection quickly becomes

infeasible for large p.

1.3.2 Forward and backward stepwise selection

One way to solve the computation issue of best subset selection is to find a path
through some candidate models. Forward stepwise selection, or forward selection
for short, starts with the intercept term, and sequentially adds in the variable that
has the most positive impact on model fit. In contrast, backward stepwise selection,
or backward selection for short, starts with the full model, and sequentially removes
the variable with most negative impact on model fit. Both forward and backward
stepwise selection are greedy algorithms in that they produce a sequence of nested
models, and optimise the model fit at each stage.

Common criteria for assessing relative model fit include Akaike information
criterion (AIC) and Bayesian information criterion (BIC). In the linear regression
model (1.1), AIC and BIC of a model are defined as

A~

AIC = 2k — nlog(l)

. (1.5)
BIC = klog(n) — nlog(l),

where k is the degree of freedom of the model, and [ is maximum value of the like-
lihood function, optimised over 3. AIC and BIC penalise the number of variables
in the model in order to avoid overfitting. When using AIC or BIC as model fit cri-
teria, at each stage of forward/backward stepwise selection, an addition/deletion
of a variable is performed to minimise AIC or BIC score. The procedure stops
when AIC/BIC cannot further decrease.



1.3.3 Forward stagewise regression

Forward stagewise regression has a similar spirit as forward stepwise selection, but
is less greedy. Specifically, let B be the coefficient estimates updated at each step,
and o1 = XB be corresponding estimate of Y. Initialise 1 = 0, and regression

function is built up iteratively. At each step, calculate the vector of association
e=X"(Y - f). (1.6)

where ¢; is proportional to the correlation between x; and the current residual
Y — ji. Both forward selection and forward stagewise regression then proceed in

the direction with greatest current correlation:

J = argmax|¢;]| 7)
[ [+ n-sign(é) - x4,

where 7 is a constant. Forward selection takes n = |¢;|, fully adding the variable
into the model, which can be greedy in the sense that the step could be too
large. Variables correlated with those already selected to be in the model are
likely to never enter the model, or only enter with small coefficients. Forward
stagewise regression is less greedy by taking n to be small. The differences of
forward selection and forward stagewise regression for p = 2 are illustrated in
Figure 1.1. If the step size n is chosen to be very small in stagewise regression, the

procedure can be computationally intensive.

1.3.4 Least angle regression

Least Angle Regression (LARS) [Efron et al., 2004] is a principled and computa-
tionally efficient version of stagewise regression. Similar to stagewise regression,
LARS builds 1t = X8 at each step, and initialises 3 = (B1, B2y .-, Bp) = 0. The
procedure starts by finding the variable x;, that is most correlated with Y, and f
proceeds in the direction of this variable until another variable x;, has the same
amount of correlation with residual r =Y — f1 as «;,. LARS then proceeds in the
direction that is equiangular between x;, and x;,, until another variable x;, has

the same amount of correlation with residual r =Y — f1 as ¢;, and x;,. LARS
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Figure 1.1: Illustration of forward selection, stagewise regression and LARS for
p = 2. y, is the projection of Y on space spanned by x1, 2, and fig, ft1, fl2
denote the estimated response at steps 0,1 and 2. The initial response estimate is
fto = 0, and the residual (i.e., ¥,) has higher correlation with x5, so the LARS
algorithm proceeds in direction of x; until g = fi;, which is the point where
the residuals y, — p have the same correlation with x; and x5, and then the
algorithm proceeds along the bisector direction (indicated by wus) until fi, = y,.
In contrast, forward stagewise regression takes small step size such that its path
has staircase shape (purple line), and forward stepwise regression proceeds in x;
direction further than LARS until y,, the projection of Y on to x;. [Figure
reproduced from Efron et al., 2004]

then proceeds in the direction that is equiangular between x;,, x;,, ©;,. This
process continues until all variables are included.

LARS is computationally efficient since it can produce piecewise linear solu-
tion path with p steps. It can also be adapted to provide the solution path for
some other methods such as Lasso (see Section 1.4.2.2), which significantly ac-
celerates the computation. Finally, the LARS estimator tends to assign highly
correlated features with similar coefficient estimates, which is a desirable property.

An illustration of LARS algorithm for p = 2 is shown in Figure 1.1.



1.4 Penalised regression

Conventional variable selection approaches may not be suitable for high-dimensional
data. For instance, best subset selection fails to cope with large number of vari-
ables, since it is extremely variable due to the nature of discreteness, and com-
putation can be prohibitive, because the number of potential sub-models grows
exponentially with dimensionality. Greedy algorithms such as forward and back-
ward selection can be unstable with high variance due to their discontinuous prop-
erty, i.e., a small change in the data can lead to completely different estimates.
Penalised likelihood regression methods achieve variable selection in a continuous
and computationally efficient way, and suffer less variability. Below, we first pro-
vide an introduction to penalised likelihood regression model in general and then

describe some specific methods.

1.4.1 Introduction to penalised regression

Penalised regression methods augment the loss function with a penalty term that
encodes a structural assumption such as sparsity. Specifically, in penalised like-
lihood regression, instead of maximizing the likelihood function {(B3|Y,X), one

maximises the objective function
M(B8) = 1(B]Y.X) — P\(6), (1.8)

where Py (.) is a penalty function that penalises complex models, and A > 0 controls
the degree of penalisation. In linear regression model, it is equivalent to minimising

the objective function using RSS as the loss function:
M'(B) =Y — XBI[5 + PA(8B). (1.9)

Throughout the thesis, we use (1.9) as the objective function for penalised linear
regression. Py(/3) shrinks some coefficient estimates towards zero, and when Py (03)
satisfies certain properties, some of the coefficients are shrunk to exactly zero,
leading to a sparse solution.

Unlike the MLE, the solution for minimizing (1.9) depends on the value of



A. The choice of A can be data-driven, such as minimising information criteria
or through cross-validation. Specifically, when using information criteria, A is
chosen such that optimal information criteria score is achieved. Common criteria
include AIC, BIC and for ultra-high dimensional data, extended BIC (EBIC) [Chen
and Chen, 2008|. Cross-validation is a technique to evaluate how well model
estimates can be generalised to an independent unseen data set. Specifically for
linear regression, in a k-fold cross-validation, the original samples are randomly
partitioned into k subsets of the same size. One subset is treated as validation
data, while the rest of the subsets are treated as training data. The model is fitted
on the training data while prediction accuracy is evaluated using the validation
data to give a score. The process is repeated k times (folds), such that each subset
is used as validation data exactly once. Scores are then averaged across folds to
produce an estimate for out-of-sample prediction accuracy. A that minimises the
cross-validation prediction error is considered optimal for the model to generalise

to an independent dataset.

1.4.2 Penalised regression methods

In this section we introduce several popular penalised regression methods for high-
dimensional data analysis. Below, we will use the following definitions about
variable selection consistency, estimation consistency and prediction consistency.
Let B be an estimate of 3.

Definition B is a consistent estimate if
B—8—0,asn — oo, (1.10)
Definition B is selection consistent if
PHj:B;#0}={j:58,#0}) = 1,as n — oo (1.11)
Definition B is prediction consistent if

IX(8 —B)|2/n — 0,as n — oo (1.12)

10



In order to illustrate the main properties of these methods, we show their
behaviour on a toy example. Specifically, data are generated using model (1.1),
with n = 100, p = 500 and ¢ = 4. The p variables are drawn from multivariate
standard normal distribution, and the first five variables have pairwise correlation
p = 0.9 with each other, and the remaining variables are independent from each
other, and independent from the first five correlated variables. There are 10 rele-
vant variables, i.e., sp = 10. The five correlated variables have coefficients 1, and
the first five independent variables have coefficients 6, while other variables have

coefficients 0. Coefficients can be summarised as follows:

1 for j=1,...,5
6 for j7=6,...,10
0 for 57=11,...,500

By = (1.13)

Penalty level is chosen by 10-fold cross-validation, and for each method we present
the number of selected variables and coefficient estimates for the relevant variables.

The results are shown in Table 1.1.

model ﬁl,...ﬁ5 667'”510
size | (correlated relevant variables) | (independent relevant variables)

Ridge | 500 0.29, 0.37, 0.45, 0.41, 0.41 0.73, 0.62, 0.66, 0.68, 0.52
Lasso | 43 0.00, 0.00, 2.53, 1.72, 0.00 5.24, 541, 4.97, 5.33, 4.43
ENet | 144 | 0.00, 0.59, 1.48, 1.21, 0.92 413, 3.71, 3.77, 3.79, 3.01
SCAD | 8 0.00, 0.00, 0.00, 0.00, 4.30 0.88, 6.44, 5.43, 6.17, 4.87
Adalasso | 20 1.29, 0.00, 0.00, 0.00, 2.62 2.25, 6.89, 4.69, 5.39, 5.71
Dantzig | 41 0.00, 0.00, 2.78, 1.36, 0.00 5.26, 5.26, 4.88, 5.41, 4.80

Table 1.1: Model size and coefficient estimates for different methods in the toy
example. See text for details of data generation. Model size and coefficient esti-
mates of the five correlated relevant variables (8, = 1,7 = 1,...,5) and the five
independent relevant variables (5; = 6,j = 6,...,10) are presented. ENet stands
for Elastic Net, and Adal.asso stands for Adaptive Lasso. « for Elastic Net is
chosen to be 0.1 in this table.

11



1.4.2.1 Ridge Regression

When strong multicollinearity exists, i.e., some variables can be largely approxi-
mated by others linearly, X T X is (nearly) singular, and the MLE is highly variable
or not uniquely defined. Ridge Regression [Hoerl and Kennard, 1970] addresses
this problem by adding an [y penalty, i.e., Py(3) = A||3]]3.

Properties The [, penalty reduces variation of B by introducing bias through
the penalisation of coefficient magnitudes. As X increases, the bias of the coefficient
estimates increases while their variance decreases. It is equivalent to adding A to
the diagonal elements of XX, making it less close to being singular and therefore
improving the stability of the matrix inversion.

With carefully chosen A, the Ridge estimator outperforms the MLE with re-
spect to prediction, especially when variables are highly non-orthogonal [Hoerl and
Kennard, 1970]. The [ penalty results in Ridge Regression having a grouping ef-
fect, such that highly correlated variables tend to have similar coefficient estimates
[Zou and Hastie, 2005]. From Table 1.1 the coeflicient estimates for the five cor-
related relevant variables are similar to each other thanks to the grouping effect.
Ridge Regression is also known to perform well in prediction when many variables
are relevant with small coefficients, but is suboptimal when the underlying model
is sparse [see e.g. Ogutu et al., 2012|. Indeed, from Table 1.1 its coefficient es-
timates of relevant variables are significantly underestimated compared to other
methods.

Since the [, penalty is not singular at the origin, Ridge Regression does not
directly perform variable selection. From Table 1.1 we see that Ridge Regression
is the only method that does not perform variable selection, since all p coeffi-
cients have non-zero estimates. With an appropriate thresholding strategy [e.g.,
Shao and Deng, 2012|, it can be seen as an alternative. Specifically, the authors
proposed a threshold a, = Cn™® for some C' > 0 and 0 < o < 1/2, such that
variables with absolute coefficients larger than a,, are selected to be in the model.
The thresholding enables Ridge Regression to achieve variable selection, and the
authors proved that under certain sparsity assumptions, the thresholded Ridge

Regression achieves consistency of variable selection, estimation and prediction.
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Computation Ridge Regression has an analytical solution 8 = (XTX+AI) 1 XTY .

1.4.2.2 Lasso

The Lasso (least absolute shrinkage and selection operator) estimator |Tibshirani,
1996] takes the form given in (1.9) with an [;-norm penalty: Py(8;) = A|5;|. This
shrinks coefficients towards zero, with some set to exactly zero, and A controls the

amount of shrinkage and degree of sparsity.

Properties The theoretical properties of the Lasso have been well-studied and
are mostly based on asymptotic analysis. We highlight some of the main properties
here.

The design matrix X needs to satisfy the irrepresentable condition for consis-
tent variable selection [Zhao and Yu, 2006]. This condition specifies a restriction
on covariance between variables, such that the total amount of any irrelevant vari-
ables that can be represented by the relevant variables is limited, or in other words,
irrelevant variables are irrepresentable by the relevant ones. More formally, for a
scalar a, let sign(a) denote the sign of a, such that sign(a) = 1 if a > 0, -1 if
a < 0, or 0if a = 0. Additionally, for a vector v, let sign(v) denote the vector of
signs of the elements in v. Then, the strong irrepresentable condition is satisfied
if || ZwewXpnsign(Bu)llee < 1 — 7 for some 7 > 0, and the weak irrepresentable
condition is satisfied if ||SpewXgolsign(Buw)lle < 1. Here, Yo, we = 2 X0, X,
w={ji B A0S < phwt={j:f=01%]<p}and]|is the
infinity norm. The irrepresentable condition does not hold when X is ill-posed
with strong multicollinearity, which is common in high-dimensional data.

Let A, indicate that A is a function of sample size n. Under certain regular-
ity conditions with respect to the design, the following holds: if A\,/n — 0 and
An /n% — o0 for some 0 < ¢ < 1, then the strong irrepresentable condition
implies sign consistency |Zhao and Yu, 2006],

lim P(sign(B) = sign(8)) = 1, (1.14)

n—oo

which is stronger than selection consistency.

Bach [2008] proves that, under some regularity conditions with respect to the
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design, let \,, = % for some A\g > 0, the probability of Lasso detecting all relevant
variables grows to one in exponential rate with respect to n, while the probability
of estimating an incorrect sign pattern converges to a limit in (0,1). Wainwright

[2009] proves that consistent variable selection of Lasso requires

solog(p) = o(n), (1.15)

which establishes the relationship between n,p and s, for variable selection pur-
pose.

Lasso can only select up to n variables, which is not ideal for small n, large sg
problems. Finally, Lasso does not have group selection property, such that it tends
to only select a few variables from a group of highly correlated variables, which
is not ideal when many signals are correlated with each other. From Table 1.1
we see that Lasso only manages to pick up two out of the five strongly correlated
relevant variables, which illustrates the fact that Lasso has difficulty discovering all
the highly correlated relevant variables. When strong multicollinearity breaks the
irrepresentable condition as in this case, Lasso fails to achieve consistent variable
selection.

For prediction, Lasso can achieve consistency with respect to prediction loss un-
der almost no assumptions [Chatterjee, 2013]. A should typically be larger for con-
sistent variable selection than for consistent prediction, and the prediction-optimal
A can lead to inclusion of many false positives [Meinshausen and Biithlmann, 2006].
From Table 1.1 we see that Lasso performs variable selection such that only 48
variables have non-zero estimates, although due to cross-validation getting A for

prediction, the model size is overly large.

Computation Lasso optimization can be solved with the generalised gradient
descent approach [Friedman et al., 2010], which is implemented in the glmnet pack-
age. The Lasso problem can also be solved by the LARS algorithm with certain
modification [Efron et al., 2004], for all A € [0, oo] (see Section 1.3.4). Specifically,
in the LARS procedure, while updating fi, whenever a non-zero coefficient hits
zero, the corresponding variable is removed from the selected set of variables and

the equiangular joint direction is updated. LARS can provide computational ef-
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ficiency when the solution is investigated for many values of tuning parameter A
[Tibshirani and Taylor, 2011|. The level of regularization A is usually determined

to minimise cross-validation error in practice.

1.4.2.3 Elastic Net

Elastic Net [Zou and Hastie, 2005] is (1.9) with a convex combination of /; and
Iy penalty Py(8;) = M|B;| + Xof} = A (alB;] + 52 ]2), where A\, Ay > 0 and
a € [0, 1] controls the balance of the two (a=1 and a=0 correspond to Lasso and

Ridge Regression respectively).

Properties The [, penalty guarantees automatic variable selection and continu-
ous shrinkage, while the [ penalty helps select correlated variables (signal or non-
signal) simultaneously thanks to the group selection property, and it also stabilises
the solution path. From Table 1.1 we see that Elastic Net selects more correlated
variables than Lasso, and coefficient estimates for those correlated variables tend
to be reasonably similar in magnitudes due to its group selection property. Its se-
lection and estimation behaviour is in between that of Lasso and Ridge Regression,
due to the compromise of [; and Iy penalty. In the p > n scenario, Elastic Net can
select more than n variables, in contrast to a maximum of n variables for Lasso.
In the toy example when o = 0.1, Elastic Net selects 144 variables, a value larger
than n = 100. Comparison of Elastic Net penalty and [y, s penalties is shown in
Figure 1.2. The shape of the Elastic Net penalty is in between that of the [; and [,
penalties. The edges are strictly convex for both Lasso and Elastic Net penalties,
and singularities at the axes (where the contour hits the axes) guarantee their

sparse solution.

Computation FElastic Net problem can be converted to Lasso problem with

[ X Y
augmented data. Specifically, let X* = (1 4+ A\y) "2 ,and Y* = ,
VI

0
then M (X, 8%) = [|[Y* — X*B*|3+X||8*[1, and B(NEnet)—~—L3* is the naive

elastic net solution. To correct extra bias introduced by double shrinkage of naive
elastic net (Ridge-type shrinkage followed by Lasso-type shrinkage), scaling is nec-

~ ~

essary and elastic net solution is defined as B(Enet)=(1 + A2)3(NEnet). With
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Figure 1.2: Two-dimensional contour plot to compare penalties for Lasso (.. ... ),
Ridge Regression ( —-—) and Elastic Net (___, @ = 0.5) [Figure reproduced from
Zou and Hastie, 2005]

modification of LARS, the above problem can be efficiently solved by the LARS-
EN algorithm [Zou and Hastie, 2005].

1.4.2.4 SCAD

Lasso-type approaches introduce bias for large coefficients, since they equally pe-
nalise each variable. Smoothly Clipped Absolute Deviation (or SCAD) [Fan and
Li, 2001] guarantees the solution to be sparse, continuous, and nearly unbiased for

large coefficients. It uses the following penalty in (1.9):

A\ﬁjb 2 if 18 <A
Py(B) = § —BEZABEY ip 18] € (A a)] (1.16)
o> if 18;] > a

where a > 2 and A > 0.
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Properties SCAD penalty is a non-convex, quadratic spline function by which
small coeflicients are shrunk towards zero with a Lasso penalty, while large coeffi-
cients are not penalised. The resulting estimator is, unlike Lasso, nearly unbiased
for large coefficients. Fan and Li [2001] and Fan et al. [2004] also show that SCAD
enjoys an oracle property (assuming some regularity conditions) — it is simultane-
ously consistent for variable selection and estimation, where the latter is as efficient
(asymptotically) as the ideal case when the true model is known in advance. For
further details on the properties of SCAD, see Fan and Lv [2010] and references
therein.

From Table 1.1 we see that thanks to its adaptive penalty, SCAD penalises
large coefficients (8; = 6 for j = 6,...,10) less than Ridge Regression, Lasso and
Elastic Net such that corresponding estimation is more accurate. Also its model
size is significantly smaller than Lasso and Elastic Net, which is related to its

oracle property for variable selection.

Computation The SCAD problem can be solved by an iterative procedure or
one-step procedure [Fan and Li, 2001], with appropriately chosen initial estimators.
We fix a to be 3.7, and tune A by cross validation, which are recommended by Fan
and Li [2001]. @ = 3.7 minimises Bayes risks from an empirical point of view, but

it can also be tuned via cross-validation.

1.4.2.5 Adaptive Lasso

Adaptive Lasso [Zou, 2006] also aims to adaptively impose penalties on different
coefficients, such that large coefficients are less penalised than small ones. It uses

the following penalty in (1.9)

PA(Bj) = Aw;| By, (1.17)

where w; > 0 is a known weight for variable j.

Properties When w; has the form | 51-|T for some 7 > 0 and f§; is a root-n
J
consistent estimate of 3; (i.e., 8; — B; = O,(n~/?)), adaptive Lasso also enjoys

the oracle property [Zou, 2006]. Coefficients of irrelevant variables are heavily
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penalised since a large penalty will be placed for coefficients with small initial
estimates; similarly, large coefficients tend to be un-penalised. From Table 1.1,
we see that, compared to Lasso, Adaptive Lasso gives a more parsimonious model
with 20 selected variables. It also achieves better estimation of large coefficients

(B; = 6) compared to Lasso and Elastic Net, which equally penalise all variables.

Computation Zou [2006] suggests to use least squares estimates as initial es-
timates, unless strong multicollinearity exists, in which case Ridge estimate is
preferred due to its stability. Lasso estimate is also a common choice for the initial
weights (for example, see Kramer et al. [2009]), since it is root-n consistent [Knight
and Fu, 2000]. We use Lasso estimates as the initial estimates for adaptive Lasso
throughout the thesis. The adaptive Lasso problem can be converted to a standard
Lasso problem, which can then be solved by the LARS algorithm. In particular,
let z} = z—j, then the Lasso problem 8* = argﬁrflaXHY = > xi B + MBI

L j=1...p
J

can be solved to give the adaptive Lasso estimate Bj (AdaLasso) =

1.4.2.6 Dantzig Selector

The Dantzig Selector estimator [Candes and Tao, 2007| takes a different form to
that in (1.1), namely:

B, :argémn{nﬂnl HIXT (Y = XB) [l <A}, (1.18)

Properties The Dantzig Selector and the Lasso are closely connected as dis-
cussed in Bickel et al. [2009], and under certain conditions on X, Lasso and Dantzig
Selector provide the same solution [James et al., 2009; Meinshausen et al., 2007].
From Table 1.1 we see in the toy example, Dantzig Selector and Lasso have similar
model size and similar coefficient estimates for relevant variables.

It is proved that, in noiseless case where Y = X3, if the design matrix X
obeys the uniform uncertainty principle (UUP), Dantzig Selector can achieve exact
recovery with some regularity assumptions on design. Loosely speaking, the UUP
requires that any subset of columns of X with cardinality smaller than sy can be

roughly seen as an orthogonal system. The oracle estimator achieves estimation
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error E||B(oracle) — B[[3 > 3 x >~ min(B?, 0?), and Dantzig Selector can achieve

this ideal estimation error within a factor of O(logp).
Computation The Dantzig Selector problem can be solved with linear program.

1.4.2.7 Other methods

There are numerous other penalised regression methods for high-dimensional data.
For example, the minimax concave penalty (MCP) [Zhang, 2010] also achieves
sparsity, continuity and near unbiasedness for large coefficients like SCAD. It min-
imises maximum concavity of penalised loss function, with restrictions on un-
biasedness and variable selection. There are also penalised regression methods
designed for specific types of data. When variables can be sorted into K groups,
with py the size of group k (k = 1...K), group Lasso [Yuan and Lin, 2006]
uses P\(B) = )\Zle Vil |B®]]2, where B are the coefficients of variables
in group k. Coefficients from each group share the same level of penalty. To
introduce sparsity within a group, Friedman et al. [2010] suggest adding an [;
term into the group Lasso penalty. Fused Lasso [Tibshirani et al., 2005] is desir-
able for problems where variables can be ordered meaningfully. The penalty is
P\(B) = M\ ?:1 18;] + Az §:2 |B; — Bj—1| for some A1, Ay > 0. The [; penalty
on successive differences of coefficients introduces corresponding sparsity, and con-
sequently local constancy of estimation. This is desirable for interpretation in
certain scientific problems. There are also variants of methods aiming to improve
the selection and predictive performance. For example, Zeng and Xie [2012] add
an [ penalty to SCAD to obtain the group selection property, while preserving
unbiasedness, continuity, and sparsity. The authors showed that this approach
stabilises variable selection in multicollinearity settings, with enhanced prediction

accuracy.
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1.5 Bayesian linear regression

1.5.1 Bayesian inference

Bayesian inference is based on Bayes’ theorem, and uses probability distributions
to explicitly quantify the uncertainty in inference. Bayesian methods assume pa-
rameters to be unknown random variables instead of fixed values, and assign prior
distributions to parameters, enabling prior knowledge to be specified. A full prob-
ability model is set up with a joint distribution for observed and unobserved quan-
tities, and a posterior distribution of unobserved quantities of interest is obtained,
conditional on the observed data. Inference is carried out using these posterior
distributions.

Formally, let © be the unknown parameters of interests, and D the observed
data. A prior distribution for ©, p(©) quantifies prior information on the pa-
rameters before observing the data, and p(D|0©) is the likelihood function. The

posterior distribution of © given D is then calculated as

p(D[O)p(O)

pOID) = PP

(1.19)

where p(D) is the marginal likelihood of the observed data, marginalised over ©,

me3@MD@m@ma (1.20)

The distribution of © can have its own parameter(s) 7, called hyperparameter(s),
ie., ® ~ p(O©|r). 7 can be a tuning parameter set by the user or can also be

considered as a random variable and have its own prior.

1.5.2 Bayes factor

The Bayes factor is widely used for Bayesian model comparison. It is the ratio of
the marginal likelihood of two competing models. Unlike classical likelihood ratio
where parameters are maximised under corresponding models, they are integrated
out. The Bayes factor quantifies the relative evidence of the competing models,

and facilitates model selection.
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Formally, in a model selection problem based on the observed data D, where
one needs to choose from two candidate models M; and M,, with parameters O
and O, respectively, the Bayes factor is defined as

DI|My) f@lp(D|@1aM1)p(@l|Ml)d@1

_ B
o p(D|Mz) — [o, p(D]O2, Ma)p(Oa My)dO, (1.21)

where p(M;) and p(Ms) are the prior probabilities of M; and M. The Bayes
factor is the ratio of marginal likelihood of two model specifications, taking into

account the uncertainty in parameters, in contrast to classical likelihood ratio,

1(6,|D, M
R_(1|, 1)

== , (1.22)
l(@27 |Da MQ)

which is the ratio of two likelihood functions, maximised with respect to their
parameters, and O, and O, are MLEs.
When M; and M, are equally likely a priori, the Bayes factor can also be

simplified as BF = g E%;{gg, which is the ratio of posteriors of the two models.
BF > 1 means model M; is more supported by the data than M, while BF < 1
means model Ms is more supported. The Bayes factor does not depend on specific
values of the parameters, and a sparsity prior for © can be incorporated into the
Bayes factor to penalise complex models.

BIC can be used to approximate the Bayes factor [Kass and Raftery, 1995].
Specifically in linear regression, let My and M; be two different models, then with
certain priors on [3’s, the Bayes factor of model M; versus M, can be approximated
as

Ppic(D|My)

BFy~ ————= =
2™ PO L)~ P

ABICy

), (1.23)

where BIC(M;) = —2logl(,3i|D, M;)+k;logn, BZ and k; being the MLE and degree

of freedom of model M;; Ppro(M;) = exp(—2S2); and ABICy, = BIC(M,) —
BIC(M,) [Wagenmakers, 2007].
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1.5.3 Bayesian linear model

In a Bayesian linear regression model, 3 and o2 in (1.1) are treated as unknown
random variables, and inferences are made based on the posterior distribution of
B and o? given the data. Let © = (3, 0?) and p(©) denote the prior distribution

over ©. Then the posterior distribution over O is

p(Y|X,0)p(©)
p(YIX) 7

P(OX,Y) = (1.24)
where

p(Y|X,0) = N(X83, o). (1.25)

Since the posterior is a density instead of a point estimate, the level of associated
uncertainty can be quantified using, for example, credible intervals.

In order to calculate the posterior probability, one must calculate p(Y|X) =
[ p(Y|X,©0)p(©)dO, which is not available in closed form in general. If that is
the case, numerical approaches are required to evaluate the integral, which can be
computationally intensive. The exception is when the prior is conjugate, which
means that the prior and posterior of © have the same parametric form. Conjugate
priors result in a closed-form solution for the integral and provide computation
efficiency. Specifying the prior distribution for © is a challenging task, and a
poor choice of prior distribution can lead to inaccurate posterior distribution, and
consequently inferior model performance, especially when the sample size is small.

In Bayesian linear regression, a common conjugate prior for © is called the
normal inverse gamma (NIG) distribution. It assumes 3|o? follows a multivariate
normal distribution, and o2 follows an inverse-gamma distribution. Formally, the

joint distribution of B3 and o2 is

p(B,0%) = p(Blo*)p(o?) = N(B|p,0*V)IG(0*|a, b), (1.26)

where p, V,a > 0,0 > 0 are hyperparameters, and the inverse-gamma distribution
IG(0?|a,b) has the form

IG(0%a,b) = (02)’(““)63:])(—0—), (1.27)
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where T'(.) is the Gamma function. Due to conjugacy, applying Bayes’ theorem
(1.24), the joint posterior of (3, 0?) is also a NIG distribution,

p(B,0°|Y,X) = NIG(pu*, V*, a*, b*), (1.28)

where

p = (VI XTX) NV ip+XTY)
V= (VI XTX)™!

a=a+n/2 (1.29)

* 1 — * *\ — *
br=b+ S0V IR YTY = (u)T (V) ),

0% or B can be integrated out from the joint distribution to obtain marginal dis-
tribution of the other. A point estimate of parameters can be obtained by sum-
marising the distribution, and the distribution explicitly reveals the uncertainty of

the parameters.

1.5.4 Bayesian Ridge Regression

Ridge Regression can deal with p > n scenarios, and is computationally efficient
due to its closed-form solution. Ridge Regression can be formulated in a Bayesian

way. Specifically, the Bayesian representation of Ridge Regression is as follows:
p(Y[X,B,0%) = N(XB,0°1)

Blo?, A ~ N(o, 0;1) (1.30)

o ~ IG(a,b),

where A > 0 is a tuning parameter controlling the degree of shrinkage. Note that
this prior specification of 0% and 3 is the NIG prior (1.26) for linear model with
p=0and V = %I. Applying Bayes’s theorem (1.24) and integrating out o2, the

posterior marginal distribution of B follows a multivariate Student t-distribution
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[Denison et al., 2002]

b+ LYY — 3 (I + XTX) 4
P(BIX,Y) = MV Stausn(B, 2 B (A +X"X)B)

(XX + A,

a+ 3
(1.31)
where MV St,(u, X) has probability density function
_ Il(v +p)/2] 1 Ty—1 (v+p)/2
p(X) - F(V/z)VP/QWp/2|2|1/2[1+;(X_u) X (X_l'l’)] ) (132)

and p is the dimension of x. The mean 3 = (XTX + AI)*X”Y is identical to
frequentist Ridge Regression estimate in Section 1.4.2.1. The hyperparameters a
and b for the prior on o2 are typically chosen to be non-informative, i.e., a,b are
close to zero, and as in frequentist Ridge Regression, the posterior distribution
of #’s is shrunk towards zero. The marginal distribution of Y also follows a

multivariate Student t-distribution [Denison et al., 2002], i.e.,

b xXxT
I+

p(Y) = / P(Y|B, 02 P(8, 02)dBdo> — MV Stz (0, D (1.33)

1.6 Ensemble learning methods

Ensemble learning aims to improve machine learning methods by combining dif-
ferent models in a strategic way. While ensemble learning requires more compu-
tations than a single model, it can obtain better model performance than any of
the constituent models alone. It is known that diversity among candidate mod-
els in ensemble learning helps yield better results, and many ensemble learning
methods seek to increase such diversity |[Brown et al., 2005]. Some common en-
semble learning methods include bootstrap aggregation [bagging, Breiman, 1996/,
boosting [Freund and Schapire, 1999] and stacking [Wolpert, 1992]. Below we give

details on some ensemble learning methods, and their applications.
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1.6.1 Bootstrap aggregation

Bootstrap aggregation (bagging) is one of the most intuitive ensemble based meth-
ods, where diversity of models (i.e., differences among models) is obtained by
bootstrapping the training data. That is, new training data samples of size n are
randomly drawn with replacement from the full data. For large n, each bootstrap
sample is expected to have ~ 63.2% of the unique samples of the full data, while
the rest are duplicates. Models are then fitted to each bootstrap sample before they
are combined through averaging the output. Each model has a high variance and
low bias, and combining them reduces the variance. According to Breiman [1994,
1996], bagging can improve the instability in procedures such as classification and

regression trees, and variable selection in linear regression.

Bootstrap-enhanced Lasso

An interesting attempt to combine bagging and penalised linear regression is called
Bootstrap-enhanced Lasso, or Bolasso for short [Bach, 2008|, which runs Lasso on
several bootstrap samples of the training data, and the intersect of the selected
variables of bootstraped Lasso are defined as the relevant variables. Under certain
conditions, Bolasso leads to consistent model selection, and in general, Bolasso can
fix the instability of Lasso and correctly retrieve the sparsity pattern when Lasso’s
consistent selection conditions are not satisfied. Bolasso enhances Lasso’s variable

selection performance and is consistent under more general assumptions.

Stability Selection

Bolasso is mainly designed for low-dimensional data, and its properties are proved
under the condition that p is fixed with respect to n. Stability Selection [Mein-
shausen and Bithlmann, 2010] is a very general method combining subsampling and
variable selection methods, with the aim of providing finite sample false positive
error control. Specifically, M random data subsamples of size n < n are generated
by sampling without replacement. 7 is typically chosen to be [n/2] or [0.632n],
which closely resemble the bootstrap. Applying a variable selection procedure,
with regularization parameter A, to these datasets gives a score II A,; indicating the

frequency with which variable j is selected among the M iterations, i.e., a selection
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probability. Let A denote the set of considered values for the regularization pa-
rameter. Then, a set of “stable variables” is obtained by choosing those variables
that have selection probabilities larger than a cutoff value my, € (0,1) for any
AeA

In contrast to the penalised regression methods and Bolasso, Stability Selection
does not require setting of the parameter A, but instead requires the cutoff m,, to
be chosen (Bolasso fixes 7y, to be 1). Meinshausen and Bithlmann [2010] provide
theoretical results showing how 7y, can be chosen to achieve a user-specified upper
bound V on the expected number of false positives E[V], assuming a fixed set of
regularization parameters A. Alternatively, the user can fix my,, and then the
theory shows how A should be chosen to achieve the desired upper bound on E[V].
In this thesis we use the Lasso as the variable selection procedure with Stability

Selection.

1.6.2 Random forest

Decision tree

A decision tree seeks to predict the unseen response based on input variables. It
can be presented by a tree structure consisting of nodes and branches. The decision
tree model is built in a structured way, where the data samples are segmented into
subgroups through a series of decisions, and each internal node corresponds to a
test on an input variable. The model starts with all samples in one node, called
the root node, and the first split is made with one variable, such that samples are
partitioned among its child nodes, according to the decision rule for the variable.
Branches connecting an internal node and its child nodes represent the decision
rule outcomes. Then child nodes follow similar procedure to further segment the
data recursively, until leaf nodes are reached where further splits are not possible
or will not improve the model fit. At each split, the model fit is evaluated by
homogeneity in class labels/observed responses of resulting child nodes, and one
chooses the split that increases such homogeneity. A leaf node represents a class
label /observed response or a distribution of the class labels/observed responses.
Greedy approach is typically applied for construction of a decision tree. The

most significant variable is chosen to be the root node, and more significant vari-
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Figure 1.3: An illustration of decision tree

ables are closer to the root node. The significance of a variable can be calculated
using information theory criteria (for example, a measure of node impurity de-
crease). Prediction of class label for new data is made based on the paths of
decisions from the root node to leaf nodes.

Figure 1.3 illustrates the structure of a decision tree. ™, £® and x® are
binary variables taking values zero and one, and they are ranked by their signifi-
cance. The node at top is the root node, and represents a test on ™ being zero
or one. A split is made to represent two different outcomes of this test. Depending
on the test result, one tests the next variable (x(® or £®)) and further split the
data, reaching the leaf nodes at bottom representing the observed responses. At
each split, the goal is to increase the homogeneity in responses among child nodes.

Classification trees and regression trees are two common types of decision tree,
where predicted outcome is categorical for classification trees and continuous for

regression trees.

Random forest

Random forests [Breiman, 2001| are an ensemble learning method designed for
classification and regression, among other tasks. The idea is to construct a series
of decision trees, and the output is an average of the individual decision trees. The

random forest method is known to correct the overfitting problem of the ordinary
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decision tree method [Hastie et al., 2008|. Each individual tree may be subject to
increased bias in estimation and less interpretability, but the final model in general
improves method performance significantly.

Random forest involves subsampling of samples and variables. B trees are
constructed with B bootstrapped training data, and to further decorrelate the
trees, at each split of an individual decision tree, a sample of m < p randomly
chosen input variables are considered as split candidates. By doing so, variables
have a more uniform chance to be selected, instead of most trees selecting the same
set of strong variables, causing trees to be highly correlated, with high variance.
Note that if we choose m = p, random forest is the same as bagging, and using a

small value of m can be useful when strong multicollinearity exists.

1.6.3 Random Lasso

Random Lasso [Wang et al., 2011| is a variable selection method motivated by
random forest, aiming to solve some of the issues of Lasso. Specifically, Lasso
does not have group selection property under strong multicollinearity, especially
when coefficients of correlated variables have different magnitudes or signs [Wang
et al., 2011]; Lasso has a limit on the number of selected variables, which could be
undesirable when a large number of variables are relevant.

Random Lasso consists of two steps and can be summarised as follows:

Step 1. Calculate importance measure

la. For by =1,...B, do:
(i) Draw a bootstrap sample by sampling with replacement from full data

(ii) Randomly select ¢; variables from the bootstrapped samples and apply Lasso
to these variables to obtain coefficient estimates Bj(bl) ,j =1...p. Coefficients
for those not among the ¢; variables are set to be zero

5 (b1)
Zlﬁ:lﬁj ! |
B

1b. The importance measure of z; is calculated as [; = | ,7=1...p
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Step 2. Select variables

2a. For by =1,... B, do:

(i) Draw a bootstrap sample by sampling with replacement from full data

(ii) Randomly select ¢y variables from the bootstrapped samples, with selection
probability of x; proportional to its importance measure I;. Apply Lasso to

)

5 (b
these variables to obtain coefficient estimates ﬁj( *j=1...p. Coefficients

for those not in ¢y variables are set to be zero

2b. The final estimator is Bj = . Wang et al. [2011] suggest to set

the threshold on magnitudes of coefficient estimates to be 1/n, such that those

5 (b2)
252:1 Bj :
B

variables with |3,| < 1/n are removed from the model.

Sampling of variables in Step la and 2a breaks down the correlation structure,
such that highly correlated variables are selected in different candidate models.
In penalised linear regression choosing the right amount of penalisation is notori-
ously difficult, especially for high-dimensional data, and there may not be a single
penalty level that can perfectly recover the sparsity pattern [Meinshausen and
Biihlmann, 2010]. Random Lasso applies Lasso on different candidate models,
with different penalty levels; the results are summarised across candidate models,
with more stable parameter estimation. The number of selected variables is no
longer limited by n. ¢ and ¢» are tuning parameters, and Wang et al. [2011]
suggest using cross-validation to find optimal ¢; and ¢o, by repeated application

of Random Lasso, which can be time-consuming.

1.7 Performance metrics

Prediction. To assess predictive performance we introduce two metrics. In Chap-
ters 2 and 3, predictive performance is compared across different scenarios. In any
simulation scenario, we generate a test data of size n;., and compare the pre-

dicted response y with the observed response of test data using root mean squared
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error (RMSE), calculated as

RMSE = Hytest - @H2/\/ Ttest s (134)

where y = Xtest,é, Viest and Xiest are the test responses and design matrix re-
spectively, and B are the coefficient estimates obtained using the training data.
This metric implicitly involves the impact of error terms, which is important when
comparing among datasets with different noise levels. In Chapter 4 and 5, predic-
tive performance is evaluated within each scenario, and we use mean squared error
(MSE) as defined in Tibshirani [1996], i.e., MSE:(B — ,B)TV(B — 3), where V is
the population covariance matrix of X. This metric excludes the influence of error

terms, such that the contrast of prediction performance is clearer among methods.

Variable selection. For assessment of variable selection, we use true positive
rate (TPR) and positive predictive value (PPV)
TP TP

where TP, FP, and FN are the number of true positives, false positives, and false
negatives respectively, with respect to the true underlying model ~v. We further
define false positive rate (FPR) as

FP

where TN is the number of true negatives.

Variable ranking. For ranking, we assess performance using the partial area
under the receiver operating characteristic curve (pAUC). A receiver operating
characteristic (ROC) curve shows the performance of binary classification as the
discrimination threshold varies. Specifically, after ranking p variables from the
most important to the least important, take the top k& important variables and
calculate FPR and TPR. The ROC curve is TPR values plotted against FPR val-
ues as k varies from 1 to p. The area under the ROC curve (AUC) quantifies how
well the variables are ranked, and larger AUC indicates better ranking. pAUC is
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the (rescaled) AUC score with the restriction on FPR to be smaller than certain
threshold. Both AUC and pAUC are between 0 and 1. We use pAUC to evalu-
ate ranking in Chapter 2 and 3, since for high-dimensional data we are typically

interested in those high-ranked variables.

1.8 Thesis overview

The thesis is organised as follows. In Chapter 2 we present a large-scale com-
parison of high-dimensional regression methods, where we systematically consider
the influence of various factors on several widely-used methods. In Chapter 3, we
extend the simulations in Chapter 2 to investigate some further questions with re-
spect to model assumptions and parameter tuning. In Chapter 4 we propose a novel
variable selection method called STructural RANDomised Selection (STRANDS),
which follows the spirit of random Lasso. It uses repeated subsampling of vari-
ables to reduce dimensionality before variable selection, and takes into account
the correlation structure of the data. In Chapter 5 we propose another method
combining Bayesian Ridge Regression and forward selection, to improve the pre-
diction performance of Ridge Regression in sparse settings. Finally, in Chapter 6
we summarise and discuss the main conclusions, and point out potential directions

for further study.
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Chapter 2

Systematic comparison of penalised

linear regression methods

In this Chapter we present a large-scale simulation study systematically comparing
six popular penalised regression methods in high-dimensional settings. We assess
their comparative performance with respect to ranking, prediction and variable
selection, using data with various characteristics. In Chapter 3 we extend this
comparison study to explore additional topics with respect to model assumptions

and parameter specifications.

2.1 Introduction

In a wide range of applications it is now routine to encounter regression problems
where the number of variables p exceeds the sample size n, often greatly. Even
in the simple case of linear models with independent Gaussian noise, estimation
is nontrivial and requires specific assumptions. A common and often appropriate
assumption is that of sparsity, where only a subset of the variables have non-zero
coefficients, with the number sq of such relevant variables usually assumed much
smaller than p.

Penalised methods augment the regression log-likelihood with a penalty term
that encodes a structural assumption such as sparsity (see Section 1.4 for details).

Recent years have seen much progress in theory and methodology for penalised
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regression (see Bithlmann and van de Geer, 2011, for a lucid account). However,
while the theoretical developments have been remarkable and insightful, they can-
not go quite as far as telling the user which method to use in a given finite-sample
setting. Even with finite-sample theories, deducing relative performance between
multiple methods is challenging. Meanwhile, rapid methodological progress has
meant a wide range of plausible approaches to choose between.

In this chapter we aim to fill this gap via a systematic empirical comparison of a
number of penalised regression methods, which could guide users towards selecting
methods for specific applications. We consider six popular methods (Lasso, Elas-
tic Net, Ridge Regression, SCAD, Dantzig Selector and Stability Selection) and
1,863 data-generating scenarios. It is obvious that large departures from modeling
assumptions can produce poor results. Here our intention is not so much to look
at robustness to such departures, but rather to look at variation in performance
even in the favourable case where assumptions broadly hold. In this way we limit
the scope of our simulation study, and focus only on properties of the methods,
rather than their model assumptions.

In the simulations, we vary a number of factors in a relatively fine-grained
manner within an essentially full factorial design (i.e. all combinations of factors).
In addition to the main simulations, we also compare methods using semi-synthetic
data (real variables but simulated responses) to study the generalisability of our
findings.

Our main findings are: (i) we find substantial variation in performance between
methods with no unambiguous winner across scenarios (i.e details of the data-
generating set-up matter) and this is despite the fact that we focus on a relatively
narrow class of models broadly favourable to the methods employed, (ii) relative
performance depends on the specific goals, (iii) Lasso is relatively stable in the
sense that it performs competitively in many of the scenarios considered here, and
(iv) an [y penalty is beneficial only in extreme correlation scenarios. In addition,
we find evidence of an interesting “phase transition™like behavior for SCAD, where
it goes from being the best performing method to the worst as scenario difficulty
increases. Our results and code also provide a resource, allowing users to compare
the methods considered here against each other across many scenarios and also to

extend the study with other (existing or novel) methods.
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A number of previous papers have examined the empirical performance of pe-
nalised regression methods. Meinshausen and Biithlmann [2010] consider large p
problems from a selection perspective. Bithlmann and Mandozzi [2014] is a more
comprehensive study using 8 semi-synthetic datasets and 128 scenarios. They
evaluate screening (i.e., how well a selected set of variables contains the relevant
ones) and ranking properties in high-dimensional settings. In contrast to previous
work, our design is more complete and systematic. We use finer grids on factors
including n, p, sp and signal-to-noise ratio (SNR) so that our results cover a wider
range of designs, allowing us to more fully investigate the trends in relative per-
formance. We also consider several multicollinearity parameters, so we can better
understand this practically important factor. Furthermore, we evaluate all three
of prediction, selection and ranking, using specific performance metrics for each.
To limit scope we do not consider Bayesian methods here but note that there have
been some interesting empirical comparisons of frequentist and Bayesian meth-
ods [including Bondell and Reich, 2012; Celeux et al., 2012|. To the best of our
knowledge, the present work is more comprehensive in terms of data-generating
scenarios and metrics than previous work.

The remainder of the Chapter is organised as follows. In Section 2.2, we de-
scribe our simulation strategy, including the data-generating factors considered.
We also give details of how the methods are implemented and the performance
metrics used. Section 2.3 presents the results from our main simulation study.
Results from semi-synthetic data, based on a cancer study, appear in Section 2.4.

We conclude with a discussion in Section 2.5.

2.2 Methods

In this section we use model (1.1), Y = X3+ ¢, to generate high dimensional data
(n < p), and compare relative performance of Lasso, Elastic Net, Ridge Regression,
SCAD, Dantzig Selector and Stability Selection. Details of these methods can be

found in Section 1.4.
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2.2.1 Simulation set-ups

We set B to have sy non-zero entries (all set to 3) with o then set to obtain a desired
SNR, defined here as SNR = \/ B'XTX3/(no?). We acknowledge that having

homogeneous coefficients is unrealistic for real life applications; the purpose of our

design is to limit the scope of simulations. We consider heterogeneous coefficients
in Section 3.2.

We consider the following three designs:
e Independence design. All p variables are i.i.d. standard normal.

e Pairwise correlation design. The p variables are partitioned into B
blocks, each of size p? = p/B. All variables are standard normal but with
correlation between any pair of variables within the same block set to p.
Variables in different blocks are independent of each other. The number of
relevant variables within a block is s¥ for the first so/s¥ blocks, with the

remaining blocks containing no relevant variables.

e Toeplitz correlation design. As for pairwise correlation, but with vari-
ables x;, and x;, within the same block having correlation 0.95/1772. We
only consider two relevant variables per block, s& = 2,with their positions,
j1 and jb, within a block chosen such that |j; — j5| = 7, to give a correlation
of 0.957 ~ 0.7.

We consider the effects of n,p, so, SNR, p, p?, s¥ and correlation design in a
systematic way via 1,863 simulation scenarios, each corresponding to a different
configuration. The values considered for each factor are shown in Table 2.1 and
we cover all combinations of the factors with the following exceptions: for Toeplitz
correlation design, we consider only p? = 100 with two signals per block (s = 2);
and for correlation designs we exclude some combinations of s¥ and B = p/p?
which violate the necessary constraint s§ > so/B (see Table 2.2).

The parameter range is chosen such that we are able to gain insights with
reasonable computational times. Specifically, there should be enough scenarios
where differences of method performance can be observed; when scenario is either

too ’easy’ or too ’difficult’, methods tend to have similar performance. We are
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aware that the parameter range can be unrealistic for many studies. For example,
n can be much larger than values considered here in GWAS studies, and p can be
tens of thousands or even millions for many omics assays. The goal is not to mimic
the realistic scenarios, but rather to depict the trend of method performance with
respect to different parameters, which allows extrapolation for parameters out of

the range considered.

Factors Values considered
Sample size, n 100, 200, 300
Independence and Dimensionality, p 500, 1000, 2000, 4000
correlation designs Sparsity, sg 10, 20, 40
Signal-to-noise ratio, SNR 1,2, 4
Pairwise correlation within a block, p 0.5, 0.7, 0.9
Correlation designs Toeplitz correlation within a block 0.95171 72| for Xj,, Xj, in same block
only Block size, p? 10, 100
Number of signals per block, s 1,2, 5

Table 2.1: Factors varied in the simulation study and values considered. Note that
for the correlation design, the sZ signals per block applies to the first sy/sZ blocks
only.

2.2.2 Method implementations

Tuning parameters are set to reflect the way methods would typically be used
by practitioners. For Lasso, Elastic Net, Ridge Regression, SCAD and Dantzig
Selector, A is set via 10-fold cross-validation. Following Biithlmann and Mandozzi
[2014], we implement two versions of Elastic Net with o = 0.3 and o = 0.6, referred
to as heavy Elastic Net (HENet) and light Elastic Net (LENet) respectively (i.e.,
HENet has higher weight of I, penalty than LENet). For SCAD, we set a = 3.7, as
recommended by Fan and Li [2001]. For Stability Selection, we set the number of
iterations to M=100 with subsample size 7 = |0.632n] and selection probability
cutoff 7y, = 0.6 (the R package defaults; see below). We do not place any explicit
control on the expected number of false positives E[V] (i.e. we consider the full
range of regularization parameters A). We avoid explicit false positive control as
there will be no choice of upper bound that is optimal for all simulation settings
considered. However, we assess sensitivity to the above choices in Section 3.1.

We use available R packages to implement the methods: glmnet for Lasso,
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Pairwise  Toeplitz

oW

10
500 100 5 20
40

10
1000 100 10 20
40

10
2000 100 20 20
40

10
4000 100 40 20
40

* 10 * *

N AR RN N
RSN N N R L
NES R AR S AN R NN
LI RN N N N NN N N R N

Table 2.2: Combinations of p, pP, sy and s explored in the correlation designs. v/
indicates that the combination is included and X indicates that the combination
is not included. For p® = 10, * denotes all combinations of p and sy. Note that
for the correlation design, the sZ signals per block applies to the first sy/sZ blocks
only.

Elastic Net and Ridge Regression [Friedman et al., 2010]; ncvreg for SCAD [Bre-
heny and Huang, 2011]; flare for Dantzig Selector [Li et al., 2015]; and c060 for
Stability Selection [Sill et al., 2014]. Variables are standardised and the response
vector is centred. We run all methods on all simulation settings with the exception
of Dantzig; for correlation designs, Dantzig is run only for p = 500 and p = 1000
due to its computational demands under multicollinearity for large p. For each
simulation setting, we show results averaged across 64 simulated datasets (sim-
ulations are paralleled on 16 cores of each node in high performance computing

cluster, and each core runs four simulations).
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2.2.3 Performance metrics

We use metrics described in Section 1.7 to assess performance of a method. Specif-
ically, we use pAUC to assess ranking and restrict to a maximum of 50 false posi-
tives (FPR = pf—go). The pAUC calculation requires a score under which to rank
variables j. For Ridge Regression, we rank by s; = |(8cy);| (8eo denotes coefficient
estimate based on cross-validation) and for Stability Selection by s; = maxyea I Aj-
For the other methods (Lasso, Elastic Net, SCAD and Dantzig Selector), we could
use |(Bw)j| as for Ridge, but due to sparsity this would involve ranking many
variables with (Bm,)j = 0. We instead consider the set of estimated active sets
{Sy : A € A} where A is the set of candidate regularization parameters. We
consider a variable to be more important the longer it remains in Sy as A in-
creases and more sparsity is induced. This motivates defining ranking scores as:
s; =max{\ € A:j e Syforall A\ < \A e A}ors; =0if j ¢ Sy, , where
Amin = min{\ € A}. Although ranking with A is not how the methods are de-
signed, the reasoning behind this approach is that a variable is more likely to be
important if it can survive under a higher level of penalty.

We use RMSE (1.34) to assess prediction with a test data of nys = 500 samples.
Stability Selection focuses on variable selection and we therefore do not include it
in assessment of predictive performance.

We use TPR and PPV (1.35) to assess variable selection. Ridge Regression does
not perform variable selection per se and is therefore excluded from the evaluation

of variable selection.

2.3 Results using synthetic data

Due to the large number of simulation regimes, we focus below mainly on the key
patterns. All performance data and plotting code are made available on GitHub,

allowing specific scenarios to be investigated further.
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Figure 2.1: Ranking (A), prediction (B) and selection (C,D) performance versus
the rescaled sample size r = n/(soplog(p — so)) for independence design scenarios
with SNR=2. Line colour indicates method. Note that Stability Selection and
Ridge Regression are not included in the assessment of prediction and selection
performance respectively.
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2.3.1 Independence design
2.3.1.1 Approximate guide to simulation setting difficulty

Recall that consistent variable selection for Lasso requires solog(p) = o(n) (see Sec-
tion 1.4.2.2). This property motivates the rescaled sample size r = n/(sqlog(p —
so))[see Wainwright, 2009]. Figure 2.1 shows the performance metrics versus the
quantity r, for the independence design with SNR=2. Large (small) values of r can
be interpreted as large (small) sample size relative to dimensionality and sparsity.
We observe a clear overall trend of better pAUC (Fig. 2.1A) and TPR (Fig. 2.1C)
for all methods as r increases, with performance leveling off for larger values of
r. The trend is similar for RMSE as r increases, although with more local varia-
tion in performance (Fig. 2.1B). The behavior of PPV is method-dependent and
the overall trend is non-monotonic as r increases (Fig. 2.1D). Performance with
varying r was qualitatively similar for other SNR values and we also observed an
expected trend of deteriorating performance with decreasing SNR (see Figs. 2.A1
and 2.A2 in Appendix 2.A for SNR=1 and SNR=4 respectively). Therefore, al-
though the motivation for r lies in asymptotic theory for variable selection, r and
SNR together serve as a useful approximate guide to the difficulty of each simula-
tion scenario for all three tasks (selection, ranking and prediction). We make use

of this characterization below.

2.3.1.2 Key observations

We first present an overview of the results before discussing the individual per-
formance metrics in more detail below. Figures 2.2, 2.3 and 2.4 show ranking,
selection and prediction performance respectively for a subset of independence
design scenarios, while Figures 2.A4 and 2.A5 plot the performance of pairs of
methods against each other across all scenarios.

Key observations for the independence design are:

I1 No overall winner; large differences. For all metrics, there is no one method
that consistently performs best across all or the majority of the independence
design scenarios. Moreover, relative differences in method performance can

be large in some scenarios. For example, in Figure 2.2B, for p=4, 000, there
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Figure 2.2: Ranking performance (pAUC) versus p for a subset of independence
design scenarios. Each panel represents a different combination of n, sqg and SNR.
Line colour indicates method. Note that Dantzig Selector has similar performance
to Lasso and is not shown; LENet is also not shown here, nor in subsequent figures,
as its performance is invariably between that of Lasso and HENet.
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is a percentage relative decrease in pAUC of 52% between the methods with
the highest and lowest scores (SCAD and Ridge Regression respectively).
Across all 108 independence design scenarios, the median percentage relative
decrease is 25% for pAUC, 15% for RMSE, 30% for TPR and 70% for PPV.

12 SCAD transition. The performance of SCAD relative to other methods varies
substantially across scenarios. SCAD can offer the best performance in “eas-
ier” scenarios, but does not retain this advantage as scenario difficulty in-
creases. In particular, for ranking, SCAD undergoes a transition from best
to worst performing method (see e.g. black line in Fig. 2.2F). A similar

transition is also seen for prediction (see below).

13 Stability Selection typically best for PPV, trade-off between PPV and TPR.
For selection, Stability Selection and SCAD typically outperform other meth-
ods in terms of PPV, with large gains in some scenarios and with Stability
Selection offering the best performance except in “easy” scenarios. However,
Stability Selection and SCAD often suffer from an inferior TPR (see, for ex-
ample, circle symbols in Fig. 2.3B). In general, there is a trade-off between
TPR and PPV. The reason for this trade-off is that higher TPR is typically

associated with larger model, which includes more irrelevant variables.

14 Lasso performs well. Under the independence design Lasso is competitive in
the majority of scenarios for all metrics except PPV. SCAD can outperform
Lasso in “easy” scenarios, but Lasso can be considered as a “safe” option

because its relative performance across scenarios is less variable than for

SCAD.

We will see below that these key observations largely continue to hold in the
correlation designs.

As expected, there is no benefit of using an [l penalty under the independence
design; mostly Lasso outperforms or is competitive with Elastic Net, which itself
outperforms or is competitive with Ridge (see red, green and yellow lines in Fig. 2.1
and see also Figs. 2.A4 and 2.A5). An exception is for the selection metric TPR
(see below). We completely exclude LENet from our presentation below due to its

performance being invariably between that of Lasso and HENet.
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The Dantzig Selector mostly performed similarly to Lasso (Figs. 2.A4 and
2.A5), in line with theory [e.g. Efron et al., 2007; Meinshausen et al., 2007]. How-
ever, Dantzig Selector is more computationally expensive than Lasso [Meinshausen
et al., 2007]. For example, when (n, p, s9) = (100, 500, 10) and SNR=1, Dantzig Se-
lector takes around 1,500 seconds to compute the whole solution path, while Lasso
takes less than one second. In the interest of brevity, we only include Dantzig
Selector below when its performance differs to Lasso.

SNR=4 SNR=1
s0=10 s0=40 s0=10 s0=40

Figure 2.3: Selection performance for a subset of independence design scenarios
with n = 200. Each panel represents a different combination of sq and SNR, and
plots PPV against TPR for three values of p. Line colour indicates method and
symbols indicate the value of p. Results for n = 100 and n = 300 are shown in
Figure 2.A3.

2.3.1.3 Results by performance metric

Ranking. Ranking performance deteriorates for all methods as SNR or r de-
creases, but SCAD retains its good performance for longest and achieves the best
performance in some “easier” scenarios (e.g. Fig. 2.2B, black line). However,
SCAD transitions from best- to worst-performing method with an unfavourable
change in n, p, so or SNR (see Fig. 2.2F for such a transition with increasing p; see
also Key Observation 12). The reason for this transition may be due to SCAD’s
oracle property, such that in ‘easier’ scenarios it achieves accurate coefficient es-

timation and variable selection; however, the model assumptions are sensitive to
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data properties, so its performance is more negatively affected than other methods
in ’harder’ scenarios. HENet and Ridge Regression fail to outperform Lasso in any
scenario. Moreover, for some intermediate values of r, an [y penalty can even be
detrimental for ranking with the worst performance provided by Ridge Regression
(see e.g. yellow lines in Fig. 2.2B and I). Stability Selection has a very similar
performance to Lasso (Fig. 2.A4). Thus, Lasso is competitive across all scenarios,

except for those “easier” scenarios where SCAD performs best.

Prediction. Relative performance for prediction is broadly similar to that for
ranking (contrast Fig. 2.2 with Fig. 2.4). In this sparse, independence setting we
see again that an [y penalty offers no benefits, with Ridge performing substantially
worse than all other methods in many scenarios. SCAD again shows transition
behavior as difficulty increases, but it is never worse than Ridge, not even in

“harder” scenarios.

Selection. All methods achieve optimal TPR when r and SNR are sufficiently
large, but can at the same time have substantial differences in terms of PPV
(see e.g. Fig. 2.3A; range of PPVs~0.1-0.8). SCAD offers the best PPV in
these “easier” scenarios, while Stability Selection typically outperforms Lasso and
HENet. Note that the inferior performance of Stability Selection relative to SCAD
in the “easiest” scenarios could at least in part be due to the lack of false positive
control in the implementation used here.

In scenarios where TPR is sub-optimal (small-to-moderate values of  or small
SNR), the relative performance of two methods typically follows the rule: if method
A has a higher TPR than method B, then method A will have a lower PPV (see
e.g. triangles in Fig. 2.3B). For the majority of these scenarios, Stability Selection
has the highest PPV and lowest TPR, and SCAD performs similar to or better
than Lasso and HENet in terms of PPV, but similar or worse in terms of TPR
(see e.g. Figures 2.3B-D and 2.A5; performance differences are greater for larger
SNR).

Across the majority of scenarios, Lasso has small gains in PPV (of at most 0.1)
over HENet and Dantzig Selector has PPV similar to or slightly worse than Lasso
(see e.g. red, green and blue lines in Fig. 2.3B). Again, the converse relationships
are true for TPR. Lasso, HENet and Dantzig fail to obtain PPV higher than 0.4
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across all scenarios, contrasting with a maximum PPV greater than 0.8 for SCAD

or Stability Selection. However, they are competitive in terms of TPR.

2.3.2 Pairwise correlation design

2.3.2.1 Key observations

We again provide an overview of results and then discuss in more detail below.

Comparison with the independence design for fixed correlation designs.

For simplicity, we initially focus on two pairwise correlation designs and compare

performance with the independence design for varying r and SNR. Both designs

have two signals per block (s#=2) and intra-block pairwise correlation of p=0.7,
but one has block size p®=10 and the other, p?=100. Figures 2.5 and 2.6 show
the impact of correlation on method performance, relative to the independence
design, for all values of r (i.e. p, so and n) and SNR=2 (see Figs. 2.A6-2.A9
for SNR=1 and SNR=4). Figures 2.7, 2.8 and 2.9 show the relative performance

of methods in the two pairwise correlation designs for ranking, prediction and

selection respectively (see also Figures 2.A10-2.A13).

We have the following key observations:

C1

C2

Effect of correlation is method- and scenario-specific. Broadly speaking, cor-
related variables have a negative effect on performance, but in some scenarios
there are clear positive effects. Benefits from correlation typically occur when
r is small and are more salient for ranking and selection when block size is
small (pP=10; contrast Figures 2.5A and C with Figures 2.6A and C), or
for prediction when block size is large (p?=100, contrast Figure 2.5B with
Figure 2.6B). SCAD tends to be the most negatively affected by correlation,
while Ridge Regression and Elastic Net can, in some scenarios, be the least
negatively affected or most positively affected (see e.g. black and yellow
symbols in Fig. 2.6B).

Benefits of lo reqularization in some “hard” correlated scenarios. In line with
theory, we find that an [, penalty confers small gains in ranking and pre-

diction over Lasso in some correlated scenarios, resulting in Ridge or HENet
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Figure 2.5: Influence of correlation on ranking (A), prediction (B) and selection
(C,D) performance, relative to the independence design. Performance in the inde-
pendence design is plotted against performance in the pairwise correlation design
with p = 0.7,sF = 2 and p® = 10. Each point corresponds to a method (indi-
cated by colour) and a single (n,p, so) triplet (the resulting value of the rescaled
sample size r is indicated by symbol). Points further from the diagonal represent
a stronger influence of correlation. Results shown are for SNR=2 (see Figs. 2.A6

and 2.A7 for SNR=1 and SNR=4).
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Figure 2.7: Ranking performance (pAUC) versus p for the pairwise correlation
designs with p = 0.7, s¥ = 2 and either p? = 10 (top two rows) or p? = 100
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and p®. Line colour indicates method. Note that some data points are missing
when p® = 100 and s, = 40 because the corresponding scenarios violate the
necessary constraint s& > so/B (see Table 2.2), and Dantzig performance is only
available for p = 500 and p = 1000 due to computational constraints.
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Figure 2.9: Selection performance for the pairwise correlation designs with p = 0.7,
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performing the best. We typically observe these gains in “harder” scenarios

with small » or SNR (see e.g. yellow, green and red lines in Figure 2.7G).

Key Observations I1-14 (“No overall winner”, “SCAD transition”, “Stability Se-
lection best for PPV” and “Lasso performs well”) from the independence design
also still hold in these two correlation designs, with relative performance between

methods remaining broadly the same.

Influence of correlation design parameters. We now turn our attention to the
influence of the pairwise correlation design parameters p? (block size), s (number
of signals per block) and p (intra-block pairwise correlation). To aid presentation
of results, we fix (n,p, so)=(300,4000,40) or (300,1000,10) which give r=0.91
(“hard”) or 4.35 (“easy”) respectively. Ranking performance is presented in Figure
2.10 and analogous results for prediction can be found in Figure 2.11. Selection
performance is shown in Figure 2.12.

Key observations are:

C3 Influence of correlation parameters can be positive or negative. For ranking
and selection, the influence of correlation p and number of signals per block
s¥ depends on scenario difficulty. In “easy” scenarios (with sufficiently large r
or SNR), performance typically declines with increasing p or s¥ (see e.g. Figs.
2.100, 2.10P, 2.120 and 2.12P) . However, in “harder” scenarios (with small
r or SNR), performance can improve with increasing p or s, particularly
for HENet and Ridge Regression when block size p? is small (see e.g. Figs.
2.10E, 2.10F, 2.12E and 2.12F; see also Key Observation C1). An increase
in block size p? typically has a negative effect or little effect on ranking
and selection performance. Predictive performance generally worsens (or
remains relatively stable) with an increasing number of signals per block s
(for example, contrast Fig. 2.11E with Fig. 2.11F), while the influence of
increasing correlation p has a strong dependence on block size p? and s¥
(see below for details). An increase in p? typically has a positive effect or

little effect on prediction.

C4 Benefits of ly reqularization depend on correlation parameters. The gains in

ranking performance from an [l penalty over Lasso in some “hard” scenarios
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(see Key Observation C2) can be substantial, particularly when block size
p? is small, and correlation strength p and number of signals per block sf
are large (e.g. Fig. 2.10F). Similar benefits of an Iy penalty are observed
for selection with the TPR metric, which is in line with Elastic Net enjoying
the grouping effect property for highly correlated variables (e.g. Fig. 2.12F).
For prediction, advantages of an Iy penalty observed in certain scenarios are

very small (see below for details).

C5 Stability Selection is competitive for ranking and selection (PPV). Stability
Selection is competitive for ranking across the majority of scenarios and
performs best for some large SNR scenarios (see Figs. 2.10C and 2.10D). As
in the independence design, it also typically performs best in terms of PPV
(Key Observation 13; Fig. 2.12A-D).

C6 Lasso remains competitive in many correlated scenarios. Lasso remains com-
petitive across many of the correlations designs for all metrics except PPV.
Ridge Regression or HENet can offer substantive gains over Lasso for rank-
ing and selection (TPR), particularly for small blocks that contain highly
correlated variables, several of which are signals (see Key Observation C4).
No such gains are observed for prediction. SCAD continues to perform best
in a small number of scenarios that are “easy” (large r or SNR) and have

weak correlation (small p and s5).

Key observations I1 (“No overall winner)”, 12 (“SCAD transition”) and 13 (“Sta-
bility Selection best for PPV”) from the independence design still hold across the
correlation designs and Key Observation C6 is an updated version of Key Obser-
vation 14 (“Lasso performs well”).

The reason why correlation can have positive effect on method performance
may be that effects of positively correlated variables are in the same direction, and
exaggerate one another, so their collective effect is stronger than when variables

are independent from each other.
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Figure 2.10: Ranking performance (pAUC) versus p for a subset of pairwise corre-
lation designs. Each row represents a different combination of p, sy and SNR, while
each column represents a different combination of p? and sf. All results shown are
for n = 300. The top two rows have (n,p, so) = (300,4000,40), giving r = 0.91,
and the bottom two rows have (n,p, so) = (300,1000,10), giving r = 4.35. For
comparison, results for the corresponding independence design scenarios are also
shown (p = 0; these data points are identical across the panels in each row). Line
colour indicates method.
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2.3.2.2 Results by performance metric

Ranking. We saw in Key Observations C1 and C3 above that there is a method-
and scenario-specific influence of correlation (also see explanation in Section 2.3.2.1).
The most salient benefits from correlation are seen for HENet and Ridge in “hard”
scenarios with small SNR or r when block size p® is small and blocks consist of
highly correlated variables of which several are active (i.e. large p and sf). For
example, when SNR=1, » = 0.91, p? = 10 and s = 5 (Fig. 2.10F), all meth-
ods benefit from correlation, but HENet and Ridge have the largest improvements
over the independence design. The gains from Ridge can be substantial with an
increase in pAUC of 0.39 when p = 0.9. Note that improvements over the indepen-
dence design are not typically monotonically increasing with p; the largest gains
are often seen for moderate correlation strength (Figs. 2.10B and 2.10F).

This positive influence of correlation in “hard” scenarios with small, highly
correlated blocks containing several signals gives rise to an improved ranking per-
formance from an Iy penalty over Lasso (Key Observations C2 and C4). Taking
the same example as above (Fig. 2.10F), Ridge substantially outperforms all other
methods when p = 0.9, with an improvement in pAUC of 0.25 over the second best
method, HENet. HENet itself also improves over Lasso with a difference in pAUC
of 0.14. So the magnitude of the gains over Lasso is linked to the strength of the
lo penalty. Substantial improvements from an ls penalty over Lasso are not seen
in the corresponding larger block size scenario (p? = 100 with s = 5, SNR=1
and r = 0.91; Figure 2.10H), suggesting that the proportion of signals per block is
important (see also Section 3.3).

SCAD again displays its characteristic transition behavior with increasing r or
SNR (see e.g. Fig. 2.7), but due to it typically being the most negatively affected
by correlation (Key Observation C1), the number of scenarios where SCAD per-
forms best is reduced. SCAD’s sensitivity to correlation also results in a transition
with increasing p or s§ when SNR = 4; SCAD can perform best in scenarios with
weak correlation and only one signal per block, but performs worst when correla-
tion is strong and there are many signals per block (see e.g. black lines in Figs.
2.10A and 2.10B).

Stability Selection is competitive across the majority of correlation design sce-
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narios and can perform the best in some SNR = 4 scenarios (see e.g. brown lines
in Figs. 2.10C and 2.10D; see also Key Observation C5). The exceptions where
it is not competitive are the scenarios described above where Ridge or SCAD are
the best performers. It is also worth noting that Lasso can have modest gains over

Dantzig Selector, in particular for larger s (Fig. 2.10N).

Prediction. The impact of increasing correlation strength p on predictive perfor-
mance depends on block size pP and number of signals per block sP. The most
salient improvements as p increases are observed for large p? and small s&, while
the most notable declines occur for small p? and larger s&. The reason why predic-
tion performance favors larger p? and smaller s may be that in those scenarios,
variables tend to have similar predictive power, and predictive performance is less
sensitive to the variables selected.

For example, in Figure 2.11C where p? = 100 and s§ = 1 in a large SNR, small
r scenario, Ridge has a 57% reduction in RMSE relative to the independence design
when p = 0.9. On the other hand, in Figure 2.11B where we have instead p® = 10
and sf = 5, Ridge has a 56% increase in RMSE. In general, Ridge is affected
the most as correlation parameters change. This influence of p, taken together
with possible positive effects of increasing p? and negative effects of increasing s¥
(Key Observation C3), means that correlation design scenarios with large, highly
correlated blocks with signals spread across many blocks (i.e. large p? and p,
small s¥) are most favourable for prediction. These favourable correlation design
scenarios have a large number of variables that are associated with the response
(and so are, in a sense, non-sparse due to the correlation, even though each block is
sparse in terms of number of signals) and Ridge, which has a non-sparse solution,
typically benefits the most (as seen by contrasting the yellow lines in Figs. 2.11B
and 2.11C).

Ridge does not substantively outperform the other methods for prediction in
any of the scenarios considered here, even the favourable correlation design sce-
narios described above that benefit Ridge the most. In such scenarios, Ridge can
marginally outperform other methods when r is very small (Key Observation C1),
but performance remains poor. For example, for the most “difficult” scenario in
Figure 2.8P (where n = 100, p = 4000, s = 40,SNR = 1,p? = 100,p = 0.7 and
s& = 2), RMSE=33.05 and 30.87 for Lasso and Ridge respectively. Note that this
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contrasts with ranking, where Ridge performed best for small p? and large s&.
SCAD again shows transition behavior, offering modest gains over other meth-

ods when r and SNR are large, and p and sf are small (i.e. in “easy”, weakly cor-

related scenarios), but becoming worse than Lasso, HENet and sometimes Ridge

as scenario difficulty increases or correlation becomes stronger.

Selection. Results in the majority of the correlation designs mirror those seen
in the independence design (see Key Observation 13). Stability Selection typically
offers the largest PPV, outperforming SCAD, which in turn outperforms Lasso,
which itself has small gains over HENet. Due to the trade-off between PPV and
TPR, the opposite relation generally holds for TPR. As before, a notable exception
is that SCAD can have the best PPV in “easy” scenarios with large r and this occurs
across most correlation designs, as seen for (n,p,sq) = (300,1000,10) in Figure
2.12I-L.

Stability Selection and SCAD can be sensitive to correlation. For example, in
the small r, large SNR scenario with large block size shown in Figure 2.12C and D,
the substantial improvements in PPV provided by Stability Selection and SCAD in
the independence design (see square symbols) are mostly or, in the case of SCAD,
completely lost under stronger correlation (p = 0.9; see “+” symbols). SCAD
also loses competitiveness in terms of TPR. Despite this sensitivity to correlation,
Stability Selection still typically performs best except in “easy” scenarios.

Lasso is typically reasonably competitive in terms of TPR, but as outlined in
Key Observations C1-C4 and similar to ranking, an [, penalty gives substantial
improvements in TPR over Lasso in “hard” scenarios with small, highly correlated
blocks and a large proportion of signals per block. For example, in Figure 2.12F
where SNR=1, r = 0.91, p? = 10 and s = 5, HENet has a TPR of 0.56 when
p = 0.9 (green “+” symbol) compared with 0.31 for Lasso (red “+” symbol). At
the same time, PPV remains competitive at 0.22 for HENet and 0.23 for Lasso.

Note that Dantzig Selector, in the scenarios where results are available (p =
1000), can perform slightly worse than Lasso in terms of TPR and PPV (see e.g.
blue and red lines in Figure 2.12P).
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Figure 2.12: Selection performance for a subset of pairwise correlation design
scenarios. Each panel plots PPV against TPR for four values of p, including p = 0
(independence design). Line colour indicates method and symbols indicate the
value of p. Each row represents a different combination of p, sy and SNR, while
each column represents a different combination of p? and sf. All results shown are
for n = 300. The top two rows have (n,p, so) = (300, 4000, 40), giving r = 0.91,
and the bottom two rows have (n, p, sg) = (300, 1000, 10), giving r = 4.35.
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and SNR=4).
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2.3.3 Toeplitz correlation design

We now consider method performance in the Toeplitz correlation design with block
size pP=100 and number of signals per block s¥=2 where the two signals are
correlated with pa0.7 (see Section 2.2.1). Figure 2.13 compares performance in the
Toeplitz design against that in the corresponding pairwise correlation design (p =
0.7) for SNR = 2 and all possible combinations of n, p and sy (see Figs. 2.A14 and
2.A15 for SNR=1 and SNR=4 respectively). Performance is typically similar for
the two designs or worse in the Toeplitz design. For prediction, Ridge Regression
is most negatively affected by Toeplitz correlation, while SCAD is most affected
for the other metrics.

On the one hand, the pairwise correlation design could be considered more dif-
ficult than the Toeplitz design because the average correlation between signals and
non-signals (within a block) is higher for pairwise than for Toeplitz (0.7 vs. 0.19).
However, on the other hand, the Toeplitz design could be considered more difficult
because there are several non-signals that are more strongly correlated with the
signals than the signals are with each other; for the pairwise correlation design
all signals and non-signals within a block are correlated with equal strength. The
generally poorer performance observed for the Toeplitz design therefore suggests
that having strongly correlated signals and non-signals is more detrimental than
a higher average correlation.

Relative performance of methods in the Toeplitz design is generally consis-
tent with that seen for the corresponding pairwise correlation design (contrast
Figs. 2.A16 and 2.A17 with Figs. 2.A12 and 2.A13). For ranking, the impact of an
Iy penalty (relative to Lasso) is larger under the Toeplitz design; Ridge performs
particularly well when SNR=1, but poorly when SNR=4 (see Fig. 2.A16).

2.4 Results using semi-synthetic data

To complement the purely simulated data above, we considered an example using
real variables from The Cancer Genome Atlas (TCGA) study. We used gene ex-
pression data from TCGA ovarian cancer samples [TCGA, 2011], and specifically,
we used the dataset provided in the Supplementary Appendix of Tucker et al.
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[2014]'. The dataset contained 594 samples and expression levels for 22,277 genes.
The samples were a mixture of primary tumor (569), recurrent tumor (17) and
normal tissue (8). We randomly subsampled the samples and genes to obtain a
n X p design matrix X = [xq,...,Xp|. A response vector y was then obtained using
the linear model (1.1). Those samples not included in X were used as test data.
Design matrix columns for both training and test data were centred and scaled to
have zero mean and unit variance, and responses were centred.

Signals are allocated among the p variables to give either low or high corre-
lation scenarios, using an approach similar to Biithlmann and Mandozzi [2014].
Specifically, for the low correlation scenarios, sg signals were randomly allocated
among Xi,...,Xp and for the high correlation scenarios, we used the following
procedure that mimics the main simulation set-up by forming correlated blocks:
(i) form a block of p? variables consisting of a randomly chosen variable X and the
pP — 1 variables that are most correlated with x; (ii) allocate s signals to this
block by designating x and the s§ — 1 variables that are most correlated to it as
signals; (iii) repeat steps (i) and (ii), but remove from consideration any variables
already allocated to a block, and continue repeating until all sy signals have been
allocated.

We set n = 100, p = 1000, so = 10 or 20 (giving r = 1.45 or 0.72 respectively),
SNR = 1,2, 4 or 8, and for the high correlation scenarios, p? = 10 and s¥ = 5. We
generated 100 semi-synthetic datasets for each of the 16 scenarios. We applied the
penalised regression methods to each scenario, but excluded the Dantzig Selector
because the main simulations provided little evidence to prefer Dantzig over Lasso
and Dantzig is computationally intensive. For Stability Selection, for ranking,
there is no explicit false positive control and the full range of tuning parameters is
considered when calculating selection probabilities. For selection, we chose V = 10,
T = 0.6, and subsample size 7 = [0.632n .

Ranking, prediction and selection performance are shown in Figure 2.14. Re-
sults are largely consistent with those from the main simulations; we highlight a
few observations here. SCAD performs well in “easy” scenarios with large r and
SNR, and weak correlation, but is less competitive otherwise (Key Observations 12
and C1; e.g., compare the solid black lines in Figs. 2.14A and 2.14E). An [, penalty

!The dataset is available at .http://bioinformatics.mdanderson.org/Supplements/ResidualDisease.
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is useful for ranking when data is noisy or strong multicollinearity exists (Key Ob-
servation C4; e.g., compare yellow and red solid lines at SNR=1 and SNR=8 in
Fig. 2.14E). SCAD and Stability Section are conservative and tend to have good
false positive control but less power (Key Observation I3; see black and brown
lines in Figs. 2.14C, D, G and H). Except for PPV, Lasso is overall competitive
(Key Observations 14 and C6).
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Figure 2.14: TCGA ovarian cancer expression data analysis. Ranking, prediction
and selection performance (columns; left to right) versus SNR for sp = 10 (r =
1.45; solid lines) and so = 20 (r = 0.73; dashed lines) in a low correlation setting
(top row) and high correlation setting (bottom row). Line colour indicates method
and results are averages over 100 semi-synthetic datasets for each scenario (see text
for full details of semi-synthetic data generation).
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2.5 Discussion

Our results complement theory by shedding light on the finite-sample relative per-
formance of methods. Many of our results do align with available theory. For
instance, SCAD is known to have nearly unbiased estimates for coefficients that
are large (relative to noise), explaining why it tends to have better selection per-
formance in “easy” scenarios. On the other hand, the Lasso and Elastic Net are
biased, so good prediction requires more irrelevant variables to compensate. How-
ever, some conditions of theoretical results (asymptotic or finite-sample) can be
hard to verify in practice, and the results do not directly provide insight into the
performance of a method relative to others, making it difficult to pick a suitable
method in any given finite-sample setting. Our results suggest that there is no
one method which clearly dominates others in all scenarios, even in the relatively
narrow set of possibilities considered here (e.g. we did not consider heavy tailed
noise, non-sparsity, non-block-type covariance etc.). Relative performance depends
on many factors, and also on the specific metric(s) of interest.

Nevertheless, with the above caveats, we can highlight some general observa-
tions. For data generated from sparse linear models: Lasso is relatively stable and
outperforms Elastic Net and Ridge in the mild correlation designs; Elastic Net and
Ridge only outperform Lasso in the most challenging, correlated design scenarios
we considered here; SCAD is double-edged, dominating in “easier” scenarios but
deteriorating rapidly when conditions become difficult; Stability Selection is good
for false positive control and ranking; and Dantzig is usually similar or worse than
Lasso. Ridge does particularly badly in many scenarios, but it is worth pointing
out that most scenarios in this chapter were pro-Lasso (and unfriendly to Ridge)
in the sense of being highly sparse, and with low overall correlation (across all
variables). In many areas such as biomedicine, signals can be rather weak, and r
can also be small. In such difficult settings, Ridge should perhaps receive more
attention due to its robustness. SNR considered in this study is higher than in
many scientific areas, which is a limitation, and is worth further investigation.

Finding the best level of penalty is especially challenging in high-dimensional
data, and given different goals, the optimal penalty may vary. In line with known

results, we saw that standard cross-validation often yielded overly large models for
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Lasso, Elastic Net and the Dantzig Selector. An interesting alternative is proposed
in Lim and Yu [2016], where cross-validation is based on an estimation stability
metric. Compared to traditional cross-validation, this approach significantly re-
duces the false positive rate while slightly sacrificing the true positive rate, and
achieves similar prediction performance but higher accuracy in parameter esti-
mation. Stability is important in variable selection, in the sense that important
variables should be selected even if small perturbations are added to data. This
is desirable in biomarker detection such that researchers can be fairly confident
on identified biomarkers before further biological investigation. Kirk et al. [2013]
consider the balance between robustness and predictive performance in logistic
regression problem, and conclude that combining the assessment of stability and
predictive performance can help increase power while controlling false positives.
In other words, a good choice of penalty level should take into account different
performance goals and strike a balance.

Due to the comprehensive nature of our simulation study, we focus on summa-
rizing the predominant trends and relationships across the scenarios. There will
always be some scenarios which are exceptions to these summaries, but this in
itself motivates the need for extensive simulation studies. If a simulation study
has limited scope then the derived conclusions may not generalise beyond the few
scenarios considered. So while such studies may be useful in exploring and under-
standing the properties of a method, they may have limited practical implications
for an end-user. In contrast, a large-scale simulation study, such as the one pre-
sented here, offers some insight as to which method may be the most appropriate,
depending on the properties of the data. Compared to Biihlmann and Mandozzi
[2014], we see that the finer grid of simulation settings explored in our comparison
study provides new insights, since we are able to elicit trends in performance as
the properties of the data change.

A practical question of such large-scale comparison studies is how to present the
results. On the one hand, high-level summaries extract general trends with respect
to relative performance of different methods. However, they may be susceptible to
exceptions and may not cover scenarios encountered in practice, so the conclusions
are of less practical use. On the other hand, if too much detail is provided in the

exposition, core information will get swamped in exceptions and specifics, and
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conclusions can also be misleading, or hard to generalise to other scenarios. Thus
striking a balance between the two is crucial for presenting the results, and in
this chapter, observations are summarised to the degree that most typical types
of scenarios are covered. We sacrifice certain details and exceptions such that
conclusions can offer a guidance in practice, but we also keep those details and
exceptions in mind when the comparative performance deviates significantly from
expectation, in which case we investigate further to find out the driven factor,

which is useful to fully understand the properties of different methods.

Code and data availability

All analysis was performed in R [R Core Team, 2017|. Scripts for generating the
main simulation synthetic data sets, applying the regression methods, assessing
performance and plotting results are available at https://github.com/fw307/
high_dimensional_regression_comparison, together with performance metric

data from the main simulation.
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2.A  Appendix: Additional figures for Chapter 2
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Figure 2.A1: Ranking (A), prediction (B) and selection (C,D) performance versus
the rescaled sample size r = n/(soplog(p — sp)) for independence design scenarios.
As Figure 2.1, but with SNR=1 (instead of SNR=2).
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Figure 2.A2: Ranking (A), prediction (B) and selection (C,D) performance versus
the rescaled sample size r = n/(sglog(p — so)) for independence design scenarios.
As Figure 2.1, but with SNR=4 (instead of SNR=2).
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Figure 2.A4: A comparison of method performance in independence design scenar-
ios: ranking and prediction. The upper and lower triangular parts of the plot show
prediction (RMSE) and ranking (pAUC) performance respectively. Each panel
plots the ranking or prediction performance of one method versus the ranking or
prediction performance of another method. Row and column labels indicate which
method is plotted on the y-axis and z-axis respectively. Each data point within a
panel corresponds to an independence design scenario with colour indicating SNR
and symbol representing the value of the rescaled sample size r (categorised). Note
that prediction performance is not assessed for Stability Selection.
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Figure 2.A5: A comparison of method performance in independence design sce-
narios: selection. The upper and lower triangular parts of the plot show PPV and
TPR selection metrics respectively. Each panel plots PPV or TPR of one method
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panel corresponds to an independence design scenario with colour indicating SNR
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Figure 2.A6: Influence of correlation on ranking (A), prediction (B) and selection
(C,D) performance, relative to the independence design. As Figure 2.5, but with
SNR=1 (instead of SNR=2). Performance in the independence design is plotted
against performance in the pairwise correlation design with p = 0.7, s§ = 2 and
pP = 10. Each point corresponds to a method (indicated by colour) and a single
(n,p, so) triplet (the resulting value of the rescaled sample size r is indicated by
symbol).
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Figure 2.A7: Influence of correlation on ranking (A), prediction (B) and selection
(C,D) performance, relative to the independence design. As Figure 2.5, but with
SNR=4 (instead of SNR=2). Performance in the independence design is plotted
against performance in the pairwise correlation design with p = 0.7, s§ = 2 and
pP = 10. Each point corresponds to a method (indicated by colour) and a single
(n,p, so) triplet (the resulting value of the rescaled sample size r is indicated by
symbol).
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Figure 2.A8: Influence of correlation on ranking (A), prediction (B) and selection
(C,D) performance, relative to the independence design. As Figure 2.6, but with
SNR=1 (instead of SNR=2). Performance in the independence design is plotted
against performance in the pairwise correlation design with p = 0.7, s§ = 2 and
pP = 100. Each point corresponds to a method (indicated by colour) and a single
(n,p, so) triplet (the resulting value of the rescaled sample size r is indicated by
symbol).
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Figure 2.A9: Influence of correlation on ranking (A), prediction (B) and selection
(C,D) performance, relative to the independence design. As Figure 2.6, but with
SNR=4 (instead of SNR=2). Performance in the independence design is plotted
against performance in the pairwise correlation design with p = 0.7, s§ = 2 and
pP = 100. Each point corresponds to a method (indicated by colour) and a single
(n,p, so) triplet (the resulting value of the rescaled sample size r is indicated by
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Figure 2.A10: A comparison of method performance for the pairwise correlation
design scenarios with p = 0.7, s¥ = 2 and p? = 10: ranking and prediction. The
upper and lower triangular parts of the plot show prediction (RMSE) and ranking
(pAUC) performance respectively. Each panel plots the ranking or prediction per-
formance of one method versus the ranking or prediction performance of another
method. Row and column labels indicate which method is plotted on the y-axis
and z-axis respectively. Each data point within a panel corresponds to a correla-
tion design scenario (with p = 0.7, sF = 2,p? = 10) with colour indicating SNR
and symbol representing the value of the rescaled sample size r (categorised). Note
that prediction performance is not assessed for Stability Selection, and LENet and
Dantzig are not shown.
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Chapter 3

Systematic comparison: additional

investigations

In this chapter we extend the main simulations from Chapter 2 to explore ad-
ditional model assumptions and parameter specifications. Section 3.1 explores
sensitivity of Stability Selection to its tuning parameters. Section 3.2 investigates
the ability of methods to detect weak signals when coefficients are heterogeneous.
Section 3.3 makes detailed comparison between Lasso, Elastic Net and Ridge Re-
gression in correlation design. Section 3.4 compares prediction performance when
underlying model is not sparse, and Section 3.5 aims to find out the influence of
non-Gaussian error on relative performance. Datasets are generated using linear
model Y = X3 + €, and different designs are simulated as described in Section

2.2.1. All results in this section are averaged across 100 replicates.

3.1 Stability Selection tuning parameters

Stability Selection has several tuning parameters: the subsample size 1, an upper
bound V for E[V] (the expected number of false positives), and either a threshold
Tene 0N the selection probabilities or a set of regularization parameters to consider A
(see Section 1.6.1). Making appropriate choices for these parameters is non-trivial.
Here, we explore the effects of varying n, V and 7, on selection performance.
We simulated data (as described in Section 2.2.1) with SNR=2, n=200, p=1000
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Figure 3.1: Stability Selection tuning parameter sensitivity. TPR (top two rows)
and PPV (bottom two rows) versus the subsample proportion « for two values of
the threshold probability . (rows) and five values of V, the upper bound for the
expected number of false positives (indicated by line type within each panel). Each
column corresponds to a different simulation scenario: the independence design
with n = 200,p = 1000, SNR=2 and sy = 10 (first column) or sy = 20 (third
column) or the corresponding pairwise correlation design scenarios with p?=10,
s¥ =2 and p = 0.7 (second and fourth columns). The panels corresponding to
Ty = 0.6 each contain a black cross that shows the performance observed in
the main simulations where v = 0.632, 7, = 0.6 and there was no explicit false
positive control V.
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and sp=10 or 20 (giving r = 2.90 or 1.45 respectively) for the independence de-
sign, and the pairwise correlation design with p?=10, s = 2 and p = 0.7. We
applied Stability Selection with all possible combinations of the following tuning
parameter values: V € {1,5,10,15,20}, mp, € {0.6,0.9} and 7 = |ny| where
v € {0.4,0.5,0.6,0.7} is the subsample proportion.

Results are shown in Figure 3.1. In general, as V or v increase, or . decreases,
the number of selected variables increases, resulting in higher TPR, but lower
PPV. An exception is for so = 20, where, for the most conservative choices of the
parameters (y = 0.4,V = 1 and 7y, = 0.9), in addition to a very poor TPR,
PPV is low on average and very unstable across iterations (see Fig. 3.1G, H, O
and P). Here, selection is too stringent and the majority of signals are missed. An
increase in V and v, and decrease in 7y, leads to substantial improvements in
both TPR and PPV. When the underlying model size is smaller (so = 10), the
most conservative parameter choices are again suboptimal in terms of performance,
but the same is also true for the least conservative choices (v = 0.7,V = 20 and
T = 0.6; Fig. 3.11 and J). However, in the scenarios considered here, being too
stringent seems to have a more deleterious effect on performance than being too
lenient.

Results from the main simulations, where we set 7 = [0.632n], my,. = 0.6
and had no explicit false positive control V (i.e. the full range of regularization
parameters A was considered; see Section 2.2.2), are indicated by crosses in panels
A-D and I-L of Figure 3.1. Performance in the main simulations is typically similar
to that of the largest V considered here (V = 20), but with better TPR and worse
PPV (except for sy = 10 where TPR is already optimal and so there is only a
decrease in PPV).

3.2 Homogeneous coefficients

In Chapter 2, all non-zero coefficients were assigned the same value (8 = 3).
Here, we consider detection of signals with heterogeneous coefficients for three
methods: Lasso, HENet and SCAD. We simulated data (for the independence
design) as described in Section 2.2.1, except instead of sy active variables all having
coefficient 3, half of them had coefficient 5’ and the other half had coefficient
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Figure 3.2: Influence of heterogeneous regression coefficients on selection perfor-
mance. TPR (solid lines) and PPV (dotted lines) are plotted against the coefficient
scaling factor cg for the independence design with (n,p, so) = (300,4000, 40) and
SNR=2 (A) or SNR=4 (B). In the data-generating linear model, half of the signals
have coefficient ' and the other half have coefficient ¢/’ (see text for details).
Note that cg = 1 gives the main simulation set-up with homogeneous coefficients.
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cgf’ where ¢z € [0,1]. We chose 8" = /18/(1 + ¢3%) such that with fixed SNR,
E(0?) remains the same as in the homogeneous 3’s case. Note that ¢z = 1 gives
the main simulation set-up with homogeneous coefficents. Informed by the main
simulations, we set n = 300, so = 40, p = 4000 and SNR=2 or 4, guaranteeing
that when non-zero coefficients all take the same value, we are in a relatively “easy”
scenario where the majority of the signals can be detected.

Figure 3.2 shows the effect of heterogeneous coefficients on selection for cg €
{0.1,0.2,...,1}. As ¢z decreases, signals with smaller coefficients are less likely to
be detected, resulting in a decrease in TPR. All methods fail to detect the very
weak signals when c3=0.1 (i.e. only the stronger 50% of the signals are detected
giving TPR~0.5). Consistent with the main simulations, SCAD has better false
positive control (higher PPV) than Lasso and Elastic Net when SNR is large, and
this is especially the case when cg is near 0.1 or 1 (contrast black dotted line with
red and green dotted lines in Fig. 3.2B). The “U” shape of the SCAD PPV curve
here is due to the fact that bias is largest when cs is moderate, which leads to
selection of more variables to compensate (SCAD is known to be nearly unbiased
for strong signals; for large cg all signals are relatively strong, while for small cg
the so/2 weaker signals have such a small influence that the underlying model
is well-approximated by a model with sy/2 strong signals and no weak signals).
In contrast, Lasso and Elastic Net are biased estimators, so their PPV are not
as affected. SCAD also seems to have higher power to detect the weaker signals
when SNR is large and ¢z is moderate (see solid lines in Fig. 3.2B). However, as
observed in the main simulations, SCAD is more sensitive to SNR and so is less
competitive in “harder” scenarios (SNR=2; Figure 3.2A). Relative performance of
Lasso and Elastic Net is consistent with the homogeneous coefficient case (cz = 1).
Note that in the independence design scenario with SNR=4 considered here, Lasso
has slightly higher TPR than HENet, but in the majority of independence design

scenarios the opposite relationship is observed (see Fig. 2.A5).

3.3 [, penalty in correlation design

In Chapter 2 we saw that an [, penalty does not offer advantages unless in ex-

treme scenarios where strong multicollinearity exists, i.e., many relevant variables
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are strongly correlated with each other. The benefit of an [, penalty was mainly
observed for true positive rate and ranking. In this section we perform a more
detailed simulation study on how block size p? and number of relevant variables
per block s# influence the relative performance of Lasso, Elastic Net and Ridge
Regression. We simulate data for pairwise correlation design as described in Sec-
tion 2.2.1, and fix n = 300, p = 4000, sy = 40, SNR=1, and p = 0.9. We vary p” to
be 10, 50 or 100, and vary s to be 1, 5, 10 or 40. Figure 3.3 shows ranking, pre-
diction and selection performance of Lasso, LENet, HENet and Ridge Regression.
The relative performance of Lasso, Elastic Net and Ridge Regression depends on
the relative magnitude of p? and sf. For pAUC and TPR, I, penalty seems to
bring more significant benefit when s /p? is larger. Fixing p?, larger sf boosts
ranking of Ridge Regression more than Elastic Net, and has the smallest positive
impact on Lasso (Fig. 3.3 A, B, C). Similar argument is true for TPR between
Elastic Net and Lasso (Fig. 3.3 G, H, I). On the other hand, when sf is fixed,
the larger p? is, the smaller benefit of Iy penalty on pAUC and TPR is observed
(compare performance metrics of fixed s& across Fig. 3.3 A, B, C and Fig. 3.3 G,
H, I). RMSE and PPV are similar among methods, and consistent with previous
conclusions, Ridge Regression is typically less competitive for prediction, especially
when s /p? is large (Fig. 3.3 D, E, F).

3.4 Ridge-favourable settings

In Chapter 2 we saw that Ridge Regression is in general less competitive than
sparse penalised regression methods when only a small proportion of variables are
relevant. In this section we investigate the relative prediction performance in more
pro-ridge scenarios, where sq is large, possibly greater than n. This type of data
is common in biological studies. For example, a typical microarray study may
have 10s of samples but potentially more genes associated with the response. We
simulate data for independence and pairwise correlation designs as described in
Section 2.2.1, and fix n = 100,p = 2000 and SNR=4. For correlation design,
we fix block size p? = 10, number of signals per block s§ = 1 and intra-block
pairwise correlation p = 0.9. We vary sy to be 10, 20, 50, 100, 150 and 200, and
evaluate prediction performance of Lasso, LENet, HENet, Ridge Regression and
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SCAD in these scenarios. Figure 3.4 shows RMSE of methods with various sg.
For both designs, when sq is small (so = 10,20), Ridge Regression has the worst
prediction performance. However, as sy increases, RMSE of all methods increases,
but Ridge Regression is the least negatively affected. When sq is large enough,
it achieves the best prediction performance among all methods, especially when
sg > n, where methods such as Lasso will always be overly sparse. The advantage
of Ridge Regression for prediction with large sy is more obvious in the pairwise
correlation design. From results of systematic comparison study in Chapter 2 we
see that Ridge Regression is also more robust in highly noisy or strongly correlated
data. In practice, especially in certain fields of genetic studies, large sg, high noise
level and multicollinearity are common, where Ridge Regression should be given

more credit.
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3.5 Non-Gaussian error

In Chapter 2 we simulated data according to Model (1.1) where all model assump-
tions are satisfied. In practice some of the model assumptions can be violated.
Non-Gaussian error is common in practice. Non-Gaussian errors occur if data con-
tains outlying observations, or if heterogeneity exists when dataset is aggregated
from (unknown) subpopulations. Since many physical processes are a summation
of smaller processes which share the same distribution for random error, accord-
ing to central limit theorem, the overall errors will follow Gaussian distribution;
However, there are also processes where the errors are not sum of many smaller,
identically distributed contributions, and in those cases, the errors can be non-
Gaussian. We extend our comparison of methods to non-Gaussian error models to
evaluate their robustness against this model assumption violation. We revisited a
low correlation scenario from the TCGA ovarian cancer data analysis (Section 2.4)
from Chapter 2, but with a non-Gaussian error distribution. We choose low cor-
relation scenario with n = 100, p = 1000 and sy = 10. Instead of Gaussian error
where € ~ N(0,0%I), 95% of error terms drawn from N(0,0?) and the other 5%
drawn from N(0, (r0)?), with o set such that SNR=4, and 7 € {1,...,10}. In
other words, the error terms are drawn from a mixture normal distribution, and
the larger 7 is, the further error terms deviate from normal distribution, where
heavy-tailed errors are more influential (7 = 1 is the standard Gaussian error sce-
nario). Figure 3.5 shows method performance for all metrics. Performance of all
methods deteriorates as non-normality increases. SCAD is the most affected and
mirrors its previous behavior, with a transition in performance from best to worst
as non-normality increases for ranking and prediction. Relative performance of

other methods remains consistent as non-normality increases.

3.6 Discussion

In this chapter we perform further investigations based on the main simulations,
to address some questions not covered in Chapter 2. Specifically, we consider the
sensitivity of Stability Selection’s selection performance against its tuning param-

eters, and the relative performance of methods when the set-up of linear model is
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lection (C,D) performance is plotted against 7. Line colour indicates method.

different from the main simulation study.

Choices of tuning parameters can be crucial. For Stability Selection, Zou [2010]
points out that there is no established lower bound for the expected number of
true positives, and the tuning parameters my,, and V have significant influences

on the true positive rate. They also found in their simulation study that the
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number of false positives is usually smaller than the specified V. This suggests
that less stringent V can help improve signal detection without sacrificing false
positive control too much, thus providing a better balance between the two. This
is reflected in our results.

Besides penalty level, some methods have additional tuning parameters, such
as « in Elastic Net and a in SCAD. They can be tuned together with the penalty
level, through e.g. cross-validation, although the multiple-dimensional tuning can
be even less stable. However, how to jointly find the optimal choice of multiple
tuning parameters is an interesting yet challenging task in practice.

We explicitly defined the true model in terms of exact sparsity (i.e. some
coefficients being precisely zero). Although this is the best studied case, in practice
such a notion of sparsity may not be realistic and a more reasonable assumption
may be that there are a few strong signals, several moderate signals and even
more weak signals, but the majority of variables are irrelevant with small, but
sometimes non-zero coefficients. In this case, since it may not be possible to find
all relevant variables, a good method might be expected to detect all strong and
moderate signals while removing the weaker ones. In this vein, Zhang and Huang
[2008] consider the problem where weak signals exist outside the ideal model, such
that their total signal strength is below a certain level. The authors prove that
the Lasso estimate has model size of the correct order, and the selection bias is
controlled by the weak signal coefficients and a threshold bias.

In order to make the scope of study manageable, we varied factors in a system-
atic way so that the relative performance of methods can be easily explained by
the features of data. We focused on understanding the variability of performance
in a broadly favourable setting. Extending this systematic empirical approach to
(the huge range of) less favourable settings, spanning many kinds of model mis-
specification, could be illuminating, but experimental design would be non-trivial.
For example, model can be misspecified in practice, such that measurement error
is added to the variables; some relevant variables are not included in the data;
variables of higher order or interactions among variables may be missed from the
model; a small set of relevant variables may have non-linear relationship with the
response. In these cases, it is of interest to see how robust different methods are

against the misspecification. For example, Bithlmann and van de Geer [2015] con-
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sider high-dimensional inference when model is misspecified. They adapt Lasso to
improve its robustness against model misspecification, by hypothesis testing and

constructing confidence interval for each coefficient.
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Chapter 4
Structural randomised selection

In this chapter we propose an ensemble learning methods to improve the perfor-
mance of penalised linear regression methods. The method is called STructural
RANDomised Selection (STRANDS), which can be combined with sparse regres-

sion methods to improve their selection and prediction performance.

4.1 Introduction

The past decades have witnessed the rapid growth of high-dimensional data, such
as data from high-throughput technologies and social networks. As previously
seen in Chapter 2, high dimensionality and complex correlation structure pose
challenges to existing penalised regression methods. In practice, in such settings
there is typically no definitive evidence for a single optimal model and evidence
is distributed among different candidate models. Ensemble learning (see Section
1.6) is a powerful tool in this situation, where each candidate model serves as a
weak learner, and combining them in a strategic way yields a stronger model than
each individual model. Ensemble learning methods, such as bagging, can also help
decrease the variance of prediction and stabilise the results.

Reducing the dimensionality of data before applying variable selection is a
practical way to enhance regression method performance as well as computational
efficiency. Popular dimension reduction techniques include principle component

analysis [Van Der Maaten et al., 2009] and singular value decomposition [Wang
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and Zhu, 2017]. Another approach to reduce dimensionality is through screen-
ing, where irrelevant variables are eliminated according to their relationship with
the response. For example, sure independence screening [Fan and Lv, 2008] is a
straightforward screening approach, where only variables with large univariate re-
gression coefficients are retained in the model before applying a variable selection
method.

In Section 1.6.3 we introduced the Random Lasso method [Wang et al., 2011];
this can be viewed as both an ensemble learning approach and a screening method.
Recall that the Random Lasso consists of two steps. The first step repeatedly
selects ¢, variables randomly from p variables and applies Lasso, and then uses
the results to compute an importance measure for each variable; the second step
then repeatedly screens out variables based on the importance measures (leaving
¢ variables), and applies Lasso. Final coefficient estimates are then computed.
So the first step explores the relationship between each variable and the response,
and the second step aims to eliminate variables with no or weak association with
the response, based on results of the first step, prior to applying Lasso. The
random Lasso approach also bears some resemblance to the random forest ensemble
learning method (see Section 1.6) in that in both steps, Lasso is run multiple
times on bootstrapped data with only a subset of the p variables, and results are
averaged. See Section 1.6.3 for full details of the Random Lasso algorithm.

Random Lasso manages to solve some issues of Lasso, namely, it can simulta-
neously select highly correlated variables even if they have coefficients of different
signs, and the number of selected variables is not limited by sample size. In spite

of the nice properties, it has several potential drawbacks:

1. since the search for optimal combination of ¢; and ¢ is achieved by grid
search, the method is rather time consuming, particularly for high-dimensional
data;

2. fixing ¢; may not be the best way to fully explore the candidate models in
Step 1;

3. the threshold 1/n on coefficient estimates is somewhat arbitrary since mag-

nitudes of coefficients do not depend on sample size;
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4. each bootstrapped sample loses partial information of the original data.

5. the approach does not take account of correlation structure among variables
during data splitting; it is known that understanding the correlation struc-
ture before regression could help better distinguish relevant variables among

correlated irrelevant ones (see e.g. Bithlmann et al. [2013]).

In this section we propose a new modelling strategy, STructural RANDomised
Selection (STRANDS), in a similar spirit as Random Lasso. The method takes
account of correlation structure of the data, to explore the model space in a struc-
tured way. The method has fewer tuning parameters than Random Lasso, and so
is more computationally efficient. It uses full sample information, and its selection
rule is based on selection probabilities rather than sample size.

The remainder of the section is organised as follows. In Section 4.2 we de-
scribe and motivate the proposed method. In Section 4.3 we show results compar-
ing STRANDS with Random Lasso and other popular Lasso variants using both
low-dimensional and high-dimensional datasets. In Section 4.4 we investigate the
effects of different components of STRANDS on method performance. In Section

4.5 we show results using real data. We conclude with a discussion in Section 4.6.

4.2 Method

STRANDS consists of three steps. It first captures the correlation structure of
data. Then it randomly selects variables informed by the correlation structure,
before performing regression on those variables. With the information from this
model exploration step, the third step aims to randomly remove irrelevant variables
while retaining the relevant ones, before performing regression again. The results
are averaged across candidate models and the final thresholding rule is based on
selection probabilities. STRANDS can be combined with any sparse regression
method. We refer to this method as the “ base learner ”. Each step is explained
in more detail below and illustrated in Figures 4.1 and 4.2.

In Step 0, correlation structure is determined. We first apply the sparse regres-

sion base learner to the complete data. Then for each of the selected variables, we
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Algorithm Correlation clustering algorithm

Input: n by p design matrix X, response vector Y, sparse regression base learner
algorithm A and correlation threshold py > 0

Output: An independent group of variables Gy and K correlated groups of
variables G5 ... Gk

Initialise & = 1; correlated variables set G = (); remaining variables set R =

{x1...%p}

Run base learner algorithm A on the whole data.
Let the set of selected variables be S
for x € S do

if x € G then
next
end if
Gy ={z}; py =1
while py; > pg do
Find the variable x,. € R\ G}, that has the highest median absolute
correlation with elements of Gy,
Set pys to be the associated median absolute correlated value
if ppr > po then
Gk = Gk U {wT}
end if
end while
if |G| > 2 then
k=k+1
R =R\ Gy
end if
end for
Go=R,K=k—-1
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Algorithm STructural RANDomised Selection (STRANDS)

Input: n by p design matrix X, response vector Y, sparse regression base learner
algorithm A, correlation threshold py > 0, number of iterations B and threshold
probability 7,

Output: coefficient estimate (5;) and selection probability (#;) of each variable,
and a set of selected variables w

Step 0: Apply correlation clustering algorithm, resulting in one independent
group (Gp) and K groups of correlated variables (G; ... Gk)

Step 1: Calculate importance measure
la
for by =1,...,B do
(i)
for k=0,...,K do
Sample without replacement from Gy, to obtain G}, C G, where |G} |
is uniformly drawn from {0,1,...,|Gg|}
end for

. K
/
St — kl IOGk.
(ii) Apply base learner algorithm A to (S (b1) Y), tuned on the whole range

of penalty levels (as per default choice of A).
Forx; € S (61) " denote the resulting coefficient estimate by ﬂj(.bl).

For z; ¢ S(®v) set B](-bl) =0

end for
1b
for j=1,...,pdo
B
mj= Y 1{x; € S®V} (number of times x; is chosen)
bi=1
> 1) )
aj = = (mean |£;])
50
> 13, 20)
0, =2"—— (probability of being selected)
J
end for

100



Step 2: Select variables
2a
for b, =1,...,B do

(i) Randomly select § = [E 6] ([-] denotes the ceiling function) of the p

variables, with selection probablhty of x; proportional to a;0;, j =1,...,p.
Denote the set of selected variables by S2).
(ii) Apply base learner algorithm A to (S (b2),Y), tuned on the set of optimal
penalty levels obtained from Step 0 and 1.
For ¢; € §(2) denote the resulting coefficient estimate by ﬂA](.bz)
For xz; ¢ S®2) et Bj(bz) =0
end for
2b
for j=1,...,pdo
) bQZI 6(b2)
B = B
élz<sg"2>¢o>
T =
end for 7
Let 5 = Z[( > Tinr)

A

Select Varlables with the top §p largest coefficient estimates Bj or the top 3g
largest selection probabilities 7;, denote the set of selected variables by w
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Step 0 Step 1

sanple
G variables p(bl)
1 base learner algorithm
(by)
™
(lustering n X(bﬂ
sample B4
variable
D / Importance measures
N ¢ ; (absolute coefficient)
! X 2 y | 0 (selection probability)
FLp
sample
G variables repeated for b=1, B
0

Figure 4.1: An illustration of Step 0 and Step 1 in STRANDS

Step 2

Importance
measures from Step 1 ) . [Zef] )
o sample variables base learrer algorithm B; (coefficient estimate]
j — E—— b I A[bz) |~ . -
) n X ysampled with 1 x(b) p 7T_J(select|onprobab|l|ty)
i=1p probability =1,.p
m proportional to a;
threshold ;.
Y A~
selected set

repeatedforb,=1,...B

Figure 4.2: An illustration of Step 2 in STRANDS

form a correlated group by iteratively adding in the variable that is most corre-

lated with existing group members. Specifically, for each variable not in the group,
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we calculate the median absolute correlation between the variable and the groups
members. Then we add in the variable that has the highest correlation. The proce-
dure stops when the largest median absolute correlation is below a threshold. Any
variables that do not belong to any of these correlated groups form an “ indepen-
dent group ” (note that this means that variables in the independent group are not
correlated with any of the correlated groups, but does not necessarily mean that
variables in the independent group are uncorrelated with each other). As a result,
the p variables are divided into K groups of correlated variables (G1,Gs...Gk),
and an independent group Gy (see Figure 4.1). These groups are used in the next
step to inform sampling of variables.

In Step 1, variables are sampled from each group independently. This helps
better explore the model space, as shown in Section 4.4.1. After repeatedly ap-
plying the sparse base learner to sampled variables, an average coefficient measure
a; and a selection probability #; are obtained for each variable (see Figure 4.1).
They are two importance measures quantifying the association between a variable
and the response.

In Step 2, sampling of variables is informed by importance measures from Step
1. In particular, the selection probability of x; is proportional to «;0;. The rea-
son for taking both measures into account rather than just using one of them is
that both selection probability and magnitude of coefficient estimate indicate the
importance of a variable, and one of the measures can be large, while the other
is small. The sparse base learner is then applied to the sampled variables. Vari-
able sampling and sparse regression are repeated multiple times before calculating
average coefficient estimate Bj and selection probability 7;. Variables with large
selection probabilities or coefficient estimates are declared as relevant (see Figure
4.2). Similar as Random Lasso, since correlated variables are separated and can
be selected from different candidate models, STRANDS also has group selection
property, where strongly correlated variables tend to be selected simultaneously.

In Step 1 and 2, when sampling variables, instead of tuning the number of sam-
pled variables as in Random Lasso, they are chosen automatically in STRANDS:
in Step 1 a random number of variables are drawn from each of the K + 1 groups
that result from the clustering algorithm, and in Step 2 the number of selected

variables is the sum of selection probabilities from Step 1, which is the expected
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model size based on evidence from model space exploration. The estimate is infor-
mative and robust. Selection probability of a strong signal in Step 1 will be close
to one; selection probabilities among correlated variables in Step 1 may randomly
distribute, but their sum is a robust estimate of total number of signals among
the correlated variables. The automatic choices of parameters make STRANDS
much more computationally efficient than Random Lasso. Unlike Random Lasso,
STRANDS does not use bootstrapped samples, and take advantage of more sam-
ple information during model exploration and analysis. We propose a thresholding
rule not dependent on sample size n (Random Lasso uses a threshold 1/n), but
based on selection probabilities, e.g., variables selected in more than a fraction
of sub-models in Step 2 are declared as important; we also keep variables with
largest coefficient estimates. Since the selection probabilities of signals tend to be
pushed towards 1, while the non-signals towards 0, a threshold of 7, = 0.5 is
reasonable, and it seems to work well in practice. In general we recommend B to
be a fairly large value (e.g. B > 200) for effective exploration of model space and
stable results.

Note that in Step 1, we use the grid of tuning parameters provided by the
R packages by default, to find the best penalty level for each sub-model (by e.g.
cross-validation). However, in Step 2, using a grid that ignores the existence of
previous steps may not be appropriate. Specifically, Zhu and Yang [2014] prove
that, after screening, one should apply the penalty level optimal for the full data
on the survived variables, in order to achieve unbiased estimation. In other words,
if we treat the survived variables after screening as if they are given in the first
place, the survived variables tend to prefer smaller level of penalty, such that
bias can occur. This is a systematic overestimation of effects that are ascertained
by screening. Coefficient estimates of survived variables are not shrunk as much
as they should be towards zero, if the same samples are used for post-screening
analysis. Motivated by this argument, the grid of tuning parameters for datasets
in Step 2 is chosen to be the union of all optimal penalty levels tuned based on full
data in Step 0 and all datasets in Step 1. The purpose is to mitigate the screening

bias, but as we will see in the results, this bias does not altogether disappear.
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4.3 Results

4.3.1 Low-to-moderate-dimensional settings

In this section we perform several simulation studies to demonstrate the proposed
method and compare to popular variants of Lasso. Data are generated using Model
(1.1): Y = X3 + €. For all simulation settings, each variable follows a standard
normal distribution, but the correlation structure may vary. ¢ ~ N(0,0?) for
1 =1,...,n. Variables are standardised to have mean zero and variance one, and

responses are centred.

Example 4.1 and Example 4.2 were used in the Lasso paper [Tibshirani, 1996],
where correlation structures follow the Toeplitz design. Example 4.3 was used in
the Random Lasso paper [Wang et al., 2011|, where coefficients of highly corre-
lated variables have different signs. We have p > n in Examples 4.4 and 4.5, one
with orthogonal variables and the other with pairwise correlation structure. The

details of the six examples are as follows:

Example 4.1. There are p = 8 variables, and the pairwise correlation between vari-
ables x; and z;is 0.5 7! 4, j = 1...8. The true coefficients are 8 = (3, 1.5,0,0,2, 0,0, 0),
oc=3,SNR ~ 1.5.

Example 4.2. The model is the same as in Example 4.1, except 3; = 0.85 for
j=1...8. i.e., a non-sparse model. SNR ~ 1.25.

Example 4.3. There are p = 40 variables. The first 10 variables are relevant vari-
ables, and the correlation between each pair of them is 0.9. The rest 30 variables
are independent from each other and independent from the 10 relevant variables.
Relevant variables have coefficients 3, 3, 3, 3, 3, -2, -2, -2, -2, -2. ¢ = 3. SNR ~
1.78.

Example 4.4. There are p = 300 variables. All variables are i.i.d. drawn from

N(0,I). 10 relevant variables are randomly allocated among p variables, which
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have coefficients 3, 3, 3, 3, 3, 4, 4,4, 4, 4. 0 = 3, SNR =~ 3.65.

Example 4.5. Same as in Example 4.4, but the first 100 variables are 10 blocks of
10 pairwise correlated variables with correlation p = 0.7, with one relevant vari-
able in each block; the ten blocks are independent from each other. The rest 200
variables are independent from each other, and independent from the 10 blocks of

correlated variables, with no relevant variables. SNR~ 3.65.

We compare Lasso, Elastic net (ENet, a = 0.5), Adaptive Lasso (AdaLasso,
Lasso estimates as initial weights) with Random Lasso (RLasso), STRANDS-
Lasso (STRD-Lasso) and STRANDS-Adaptive Lasso (STRD-Adalasso). In other
words, we consider two base learners for STRANDS. Hereafter when referring to
STRANDS, we mean both STRANDS-Lasso and STRANDS-AdaLasso. We use
B = 300, correlation threshold py = 0.5, my,, = 0.5 for STRANDS, and for Ran-
dom Lasso, we use B = 300 and search a grid of 0, 0.2p, 0.4p, 0.6p, 0.8p and p to
find the optimal ¢; and ¢o. For all methods penalty level A is chosen by fivefold
cross-validation (note that for Step 2 of STRANDS the range of penalty levels is
constrained). It is worth mentioning that Wang et al. [2011] propose to tune ¢
and ¢o using validation data, while in our implementation tuning parameters are
determined by cross validation.

To assess selection performance, we use the number of true positives (TP),
number of false positives (FP), PPV = %. To assess prediction performance,
we use mean squared error, defined as MSE:(B — B)TV(B — ), where V is
the population covariance matrix of X (see Section 1.7 for more details). For
STRANDS and RLasso, we use the final selected model after thresholding to as-
sess their selection and prediction performance. Results are shown in Tables 4.1
~ 4.5 and are averages across 100 replicates, with bootstrap standard errors in

parentheses. We highlight the method with best performance in bold in each row.

Selection STRD-Lasso has better false positive control than Lasso/ENet in all
cases, and always has similar or better true positive rate than Lasso. When p > n
(Tables 4.4, 4.5), it also achieves similar true positive rate as ENet. In contrast,

RLasso in general has good true positive rates, but with poor false positive control.
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n Lasso ENet AdalLasso RLasso STRD-Lasso | STRD-AdaLasso
#FP | 2.28(0.15) | 2.58 (0.16) | 1.16 (0.11) | 2.97 (0.12) | 1.95 (0.12) 0.99 (0.1)
o0 |_#TP | 2.73 (0.05) | 2.8(0.05) | 2.39 (0.07) | 2.87 (0.04) | 2.7 (0.05) 2.4 (0.07)
PPV | 0.6 (0.02) | 0.57 (0.018) | 0.73 (0.021) | 0.51 (0.014) | 0.62 (0.019) | 0.75 (0.022)
MSE | 4.45 (0.35) | 4.40 (0.35) | 4.49 (0.34) | 4.16 (0.23) | 3.64 (0.25) 3.95 (0.26)
#FP | 2.17 (0.16) | 2.72 (0.14) | 1.05 (0.12) | 3.05 (0.13) | 2.02 (0.13) 0.64 (0.08)
50 | #1P 3 (0) 3 (0) 2.92 (0.03) 3 (0) 3 (0) 2.96 (0.02)
PPV | 0.64 (0.019) | 0.56 (0.015) | 0.8 (0.02) | 0.52 (0.014) | 0.64 (0.018) | 0.86 (0.016)
MSE | 1.7 (0.09) | 1.40 (0.09) | 1.2 (0.12) | 1.32 (0.09) | 1.18 (0.08) 1.09 (0.08)
Table 4.1: Example 4.1 results: p = 8,50 = 3,0 = 3, p(x;,x;) = 0.5l 3 =
(3, 1.5,0,0,2,0,0, 0).
n Lasso ENet AdaLasso RLasso STRD-Lasso | STRD-AdaLasso
20 #TP | 5.39 (0.18) 5.84 (0.16) 4.06 (0.15) | 5.85 (0.13) 5.43 (0.14) 3.95 (0.13)
MSE | 4.95 (0.32) 4.55 (0.31) 5.53 (0.3) 4.80 (0.19) 4.17 (0.23) 5.09 (0.28)
50 #TP | 7.44 (0.07) | 7.54 (0.06) | 6.09 (0.12) 7.39 (0.07) 7.44 (0.07) 5.89 (0.11)
MSE | 1.41 (0.07) | 1.32 (0.06) | 2.02 (0.10) 2.13 (0.09) 1.38 (0.06) 2.04 (0.09)
Table 4.2: Example 4.2 results: Same as Table 4.1, 8; = 0.85 Vj.
n Lasso ENet AdaLasso RLasso STRD-Lasso | STRD-AdaLasso
ZFP | 4.22 (0.49) | 5.42 (0.54) | 2.68 (0.33) | 12.91 (0.36) | 3.9 (0.27) 2.54 (0.2)
so | #TP | 324 (0.11) | 487 (0.1) | 251 (0.) | 6.6 (0.17) | 6.82 (0.19) 427 (0.18)
PPV | 0.59 (0.028) | 0.57 (0.023) | 0.65 (0.030) | 0.35 (0.008) | 0.66 (0.019) | 0.67 (0.021)
MSE | 6.32 (0.19) | 6.36 (0.25) | 7.22 (0.23) | 6.16 (0.16) | 5.22 (0.20) 6.17 (0.19)
ZFP | 10.71 (1.08) | 10.68 (1.01) | 5.29 (0.48) | 16.23 (0.33) | 5.34 (0.41) 2.75 (0.24)
100 | #TP [ 5.96 (0.27) | 6.4(0.23) | 5.16 (0.28) | 9.32(0.08) | 9.61 (0.08) 8.47 (0.13)
PPV | 0.53 (0.026) | 0.53 (0.026) | 0.62 (0.025) | 0.37 (0.004) | 0.69 (0.017) | 0.79 (0.014)
MSE | 4.92 (0.11) | 4.89 (0.097) | 4.81 (0.15) | 3.18 (0.12) | 2.21 (0.10) 247 (0.13)

Table 4.3: Example 4.3 results: p = 40,9 = 10,0 = 3. One block of 10 pairwise
correlated variables (correlation p = 0.9), all of which are signals, with coefficients
3,3,3,3,3,-2,-2, -2, -2, -2. The other 30 variables are independent from each
other, and independent from the 10 correlated variables, all of which are noise
variables.
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n Lasso ENet AdaLasso RLasso STRD-Lasso | STRD-AdalLasso
ZFP | 18.88 (1.28) | 25.05 (1.43) | 10.36 (0.61) | 19.28 (0.67) | 15.08 (0.6) 8.36 (0.4)
so | #TP | 698(027) | 7.54(0.25) | 6.44 (0.28) | 7.62 (0.15) | 7.64 (0.18) 7.09 (0.21)
PPV | 0.34 (0.019) 0.28 (0.017) 0.42 (0.017) 0.3 (0.010) 0.36 (0.012) 0.48 (0.016)
MSE | 72.39 (3.25) | 74.96 (2.67) | 69.13 (3.80) | 67.53 (2.43) | 61.91 (3.00) 60.34 (3.0)
ZFP | 3892 (1.4) | 50.79 (1.55) | 16.42 (0.67) | 47.62 (0.72) | 23.71 (0.57) | 10.12 (0.36)
100 |_ZTP 10 (0) 10 (0) 10 (0) 10 (0) 10 (0) 10 (0)
PPV | 0.22 (0.0062) 0.18 (0.0046) | 0.41 (O. 13) | 0.18 (0.0023) 0.31 (0.0055) 0.52 (0.011)
MSE | 8.11 (0.33) | 11.32 (0.43) | 4.87 (0.25) | 3.65 (0.17) | 7.39 (0.31) 372 (0.12)
Table 4.4: Example 4.4 results: p = 300,590 = 10,0 = 3. Variables are i.i.d.
drawn from N (0, I). 10 signals are randomly allocated among p variables, with
coefficients 3, 3, 3, 3, 3, 4, 4, 4, 4, 4.
n Lasso ENet AdaLasso RLasso STRD-Lasso | STRD-AdaLasso
ZFP | 29.42 (1.17) | 38.6 (1.01) | 15.86 (0.52) | 26.8 (0.73) | 23.49 (0.55) | 12.64 (0.39)
so | ZTP [ 66(0.20) | 7.33 (0.17) | 58(0.22) | 6.45 (0.17) | 7.32 (0.17) 6.34 (0.19)
PPV | 0.19 (0.0066) | 0.17 (0.0046) | 0.27 (0.009) | 0.2 (0.0067) | 0.24 (0.0063) | 0.34 (0.012)
MSE | 60.32 (2.20) | 58.90 (1.74) | 60.47 (2.44) | 64.86 (1.95) | 51.18 (1.72) | 54.21 (2.26)
ZFP | 415 (1.41) | 56.94 (1.42) | 18.09 (0.62) | 43.62 (0.99) | 35.13 (0.61) 13.41 (0.5)
Loo |_ZTP [ 9:99 (0.01) [ 9.98 (0.01) | 9.97 (0.02) | 9.98 (0.01) | 9.98 (0.01) 9.96 (0.02)
PPV | 0.21 (0.005) | 0.16 (0.003) | 0.38 (0.01) | 0.19 (0.004) | 0.23 (0.003) 0.45 (0.01)
MSE | 9.67 (0.44) | 13.49 (0.54) | 5.00 (0.31) | 5.26 (0.44) | 9.94 (0.42) 5.85 (0.39)

Table 4.5: Example 4.5 results: p = 300, sy = 10,0 = 3, 10 blocks of 10 pairwise
correlated variables (correlation p = 0.7), each having one signal. The other 200
variables are independent from each other, and independent from the 10 blocks of
correlated variables, all of which are noise variables. Signals have coefficients 3, 3,

3,3,3,4,4,4,4, 4.

108




It selects more false positives than STRD-Lasso in all cases. Example 4.3 is the
motivating setting for Random Lasso where coefficients of highly correlated vari-
ables have different signs. Thanks to group selection property, both STRD-Lasso
and RLasso succeed in detecting significantly more correlated relevant variables
than other methods, but STRD-Lasso has much better false positive control and
higher power than Random Lasso.

When p > n and variables are orthogonal to each other (Table 4.4), the advan-
tage of false positive control of STRD-Lasso compared to Lasso, ENet and RLasso
is more obvious than in the block correlation design (Table 4.5). One possible
reason is that in Example 4.5, only one out of 10 correlated variables is relevant
in each block, but STRANDS tends to simultaneously select multiple correlated
variables, which introduces false positives.

Comparative performance of AdaLasso and STRD-AdaLasso is broadly similar
to that of Lasso and STRD-Lasso. Adalasso typically has good false positive
control, and such advantage is obvious when p > n ( Tables 4.4 and 4.5). STRD-
Adalasso typically improves AdalLasso on power and false positive control, and
this is especially true in Example 4.3 where relevant variables with different signs

are highly correlated.

Prediction STRANDS achieves similar or better MSEs than its base learner in
all cases. For the smaller sample sizes (n = 20 for Examples 4.1, 4.2 and n = 50 for
Examples 4.3-4.5), STRD-Lasso’s prediction accuracy is notably better than other
methods. In “easier” settings where sample size is larger (n = 50 for Examples
4.1, 4.2 and n = 100 for Examples 4.3-4.5), its advantage in prediction is typically
less, and can be outperformed by RLasso and Adalasso when p > n (Examples
4.4 and 4.5).

Example 4.2 is the motivating setup for Elastic Net where the underlying model
is not sparse, yet STRD-Lasso manages to achieve comparable prediction error to
Elastic Net. Similar to RLasso, STRD-Lasso is favourable when relevant variables
with different signs are highly correlated (Example 4.3). Here, its prediction error is
significantly better than Lasso, ENet, and also RLasso (for example, when n = 100,
MSEs of STRD-Lasso and RLasso are 2.21 and 3.18 respectively). The predictive

performance of Random Lasso is more variable, and seems to be competitive when
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p > n and n is large (see n = 100 for Examples 4.4, 4.5).

Comparative performance of AdaLasso and STRD-AdalLasso is broadly similar
to that of Lasso and STRD-Lasso. Adalasso has inferior performance compared
to Lasso and ENet when strong multicollinearity exists (see e.g. Example 4.3), and
is competitive for larger n. STRD-AdalLasso achieves similar or better predictive
performance compared to Adal.asso in all cases, and the improvement is the most
significant in Example 4.3 (when n = 100, the MSEs of Adalasso and STRD-
Adalasso are 4.81 and 2.47 respectively).

Null model

false positive control and bias control. Specifically, we generate data where 300

We further compare method performance in a null model, to assess

variables and a response are i.i.d. drawn from N(0,I), so there is no linear rela-
tionship between response and any variables. The results are summarised in Table
4.6.

n Lasso ENet AdalLasso RLasso STRD-Lasso | STRD-AdaLasso

o | #FP | 453(08) 6.3 (1.07) 2.99 (0.51) | 20.92 (0.4) | 5.91 (0.5) 441 (0.31)
MSE | 0.034 (0.007) | 0.031 (0.006) | 0.131 (0.018) | 0.285 (0.01) | 0.216 (0.013) 0.253 (0.013)

100 #FP 3.07 (0.63) 3.41 (0.68) 2.08 (0.48) | 38.76 (0.61) 4.73 (0.47) 3.49 (0.39)
MSE | 0.011 (0.002) | 0.009 (0.002) | 0.059 (0.012) | 0.28 (0.01) 0.11 (0.01) 0.13 (0.011)

Table 4.6: Example 4.6 results: p = 300, all variables and response are i.i.d. drawn
from N(0,I)

Since the screening in STRANDS introduces bias, its has poorer false positive
control than its base learner, and prediction error is also inflated, but less severe
than RLasso. Since the thresholding rule 1/n is somewhat arbitrary, the false
positive control of RLasso is rather poor in this case. AdaLasso has the best false
positive control, but its prediction is less competitive than Lasso and ENet, since
the AdaLasso estimate is biased further away from its initial weights, the Lasso

estimate.

4.3.2 High-dimensional settings

In this section we apply STRANDS and its competitors to some high-dimensional

datasets, to evaluate their comparative performance.
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Datasets are generated as in Section 2.2.1. Recall that sy is the total num-
ber of relevant variables, p is the correlation among correlated variables in a
block, p? is the block size, 369 is the number of relevant variables in a block,
and r = n/(solog(p — s¢)) is a measure of scenario difficulty. We consider the

following scenarios with different designs and features:

Example 4.7: Independence design, n = 200, p = 500, so = 20, SNR=1, r = 1.62.
Example 4.8: Pairwise correlation design, n = 100,p = 500,s, = 20, SNR=4,
p=0.9p%=10,sF =5 r=0381.

Example 4.9: Pairwise correlation design, n = 300,p = 1000, sg = 20, SNR=2,
p=0.7,p% =100,sF =2, r =2.18.

Example 4.10: As Example 4.9, but with Toeplitz correlation design as described
in Section 2.2.1.

In Example 4.7 the challenge is high noise level. In Example 4.8 strong mul-
ticollinearity exists with small r, and from the comparison study in Chapter 2 we
see that large p and s, and small p? and r tend to favour I, penalty, particularly
for selection. In Examples 4.9 and 4.10 p® is large, and the challenge is to find the
relevant variables among many correlated irrelevant ones. The only difference is in
the correlation structure (pairwise versus Toeplitz). Parameters are tuned or set
as before, and we report #TP, #FP, PPV and MSE of each method. The results

are summarised in Tables 4.7 — 4.10.

Selection Across high-dimensional settings, RLasso’s true positive rate is among
the best, but it has the worst false positive control. This is mainly because the
thresholding rule 1/n can be too lenient when n is large. In Examples 4.7 and 4.8,
STRD-Lasso has better false positive control than Lasso and ENet, with similar
or better true positive rates. In Example 4.8 where multiple correlated variables
are relevant, consistent with findings in systematic comparison study in Chapter
2, ENet has significant gain in TPR over Lasso, and STRD-Lasso also manages
to improve upon the true positive rate of Lasso. In Example 4.9 and 4.10, large
pP makes it very difficult to distinguish between correlated variables. Lasso and

ENet select many false positives, and STRD-Lasso has similar or slightly worse
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performance than Lasso with respect to true positive and false positive. The
tendency of simultaneously selecting correlated variables may be the reason why
STRD-Lasso selects slightly more variables than Lasso in the pairwise correlation
design.

Comparative performance of AdaLasso and STRD-AdalLasso is broadly similar
to that of Lasso and STRD-Lasso. AdaLasso typically has good false positive
control but less competitive true positive rates. STRD-AdaLasso has similar true
positve rates as AdalLasso, and improves false positive control of AdaLasso except
in Example 4.9.

Overall, we see that STRANDS has less benefit in high-dimensional settings
with large correlated blocks and few signals, compared to low-to-moderate dimen-

sional settings.

Prediction Lasso and ENet have similar predictive performance except in Ex-
ample 4.8, where relevant variables are strongly correlated, and ENet outperforms
Lasso. As expected, both RLasso and STRD-Lasso improves Lasso’s prediction ac-
curacy in Example 4.8, and STRD-Lasso has marginally the best performance. In
other three examples, STRD-Lasso has similar or slightly worse predictive perfor-
mance than Lasso, and the comparative performance of STRD-Lasso and RLasso
varies. RLasso is noticeably worse than STRD-Lasso in the independence design
(Example 4.7, MSE for STRD-Lasso and RLasso are 115.36 and 122.79). In mod-
erate pairwise correlation design (Example 4.9), they have similar performance,
while in Toeplitz design RLasso achieves the best prediction accuracy among all
methods (Example 4.10).

Adal.asso’s predictive performance is among the worst in all settings. This is
probably because the initial weights obtained by Lasso are not accurate due to
high noise level or strong multicollinearity. STRD-Adalasso has similar or bet-
ter performance than Adalasso, and the improvements are significant in data
with high noise level (Example 4.7, MSE for Adalasso and STRD-Adal.asso are
149.57 and 128.91) or strong multicollinearity (Example 4.8, MSE for AdaLasso
and STRD-AdaLasso are 32.38 and 27.34). However, even with the improvements,
STRD-Adal.asso still does not outperform other methods in those settings.

Similar to selection performance, we see that the benefit of STRANDS in high-
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dimensional settings is not as clear as in low-to-moderate dimensional settings.

Lasso ENet AdalLasso RLasso STRD-Lasso | STRD-AdalLasso
#FP | 37.36 (2.32) 4412 (2.62) | 31.31 (2.04) | 120.23 (1.72) | 30.27 (1.33) | 25.42 (1.07)
#TP | 14.69 (0.38) 15.2 (0.37) 14.11 (0.49) 18.16 (0.14) | 14.73 (0.31) 14.36 (0.29)
PPV | 0.32 (0.015) 0.29 (0.013) 0.37 (0.022) 0.13 (0.0019) | 0.34 (0.0095) | 0.38 (0.011)
MSE | 111.24 (2.64) | 112.43 (2.40) | 149.57 (4.01) | 122.79 (2.85) | 115.36 (2.89) | 128.91 (3.4)

Table 4.7: Example 4.7: Independence design, n = 200, p = 500, s = 20, SNR=1.

Lasso ENet AdalLasso RLasso STRD-Lasso | STRD-AdaLasso
#FP | 20.12 (1.03) | 24.56 (1.03) | 11.34 (0.65) | 37.19 (1.09) 15.72 (0.6) 6.62 (0.37)
#TP | 15.58 (0.22) | 17.75 (0.19) | 12.23 (0.22) | 18.25 (0.14) | 16.08 (0.22) 12.17 (0.23)
PPV | 0.46 (0.015) | 0.44 (0.011) | 0.54 (0.016) | 0.34 (0.0076) | 0.52 (0.012) 0.66 (0.014)
MSE | 28.80 (1.02) | 25.30 (0.88) | 32.38 (1.49) | 24.87 (0.84) 24.31 (1.04) | 27.34 (0.94)

Table 4.8: Example 4.8: Pairwise correlation design, n = 100,p = 500, sy =

SNR=4, p = 0.9, p” =10, sF = 5.

20,

Lasso ENet AdalLasso RLasso STRD-Lasso | STRD-AdalLasso
#FP | 73.58 (1.49) | 84.53 (1.74) | 36.2 (1.53) 129 (3.59) 79.81 (1.23) | 39.56 (0.96)
#TP | 18 (0.16) 18.23 (0.14) | 16.27 (0.23) 18.64 (0.1) | 17.91 (0.15) | 16.3 (0.24)
PPV | 0.2 (0.0034) | 0.18 (0.003) | 0.33 (0.0097) | 0.13 (0.0034) | 0.19 (0.003) | 0.3 (0.0071)
MSE | 33.14 (0.76) | 33.94 (0.73) | 38.02 (1.25) 33.98 (0.86) 34.79 (0.74) | 39.35 (1.07)

Table 4.9: Example 4.9: Pairwise correlation design, n = 300, p = 1000, sy = 20,
SNR=2, p = 0.7,p? = 100, s§ = 2.

Lasso ENet AdalLasso RLasso STRD-Lasso | STRD-Adalasso
#FP | 5859 (1.16) | 75.44 (1.42) | 33.06 (1.4) | 93.16 (2.48) | 58.73 (1.06) | 28.81 (0.82)
#TP | 15.36 (0.22) 16.97 (0.22) | 12.7 (0.24) 16.92 (0.23) 15.3 (0.24) 12.88 (0.24)
PPV | 0.21 (0.0041) | 0.19 (0.0032) | 0.29 (0.0082) | 0.16 (0.0033) | 0.21 (0.0039) | 0.32 (0.0089)
MSE | 23.54 (0.53) 23.57 (0.51) 26.66 (1.07) 21.73 (0.55) | 24.55 (0.73) 25.75 (0.75)

Table 4.10: Example 4.10: As Example 4.9, but with Toeplitz correlation design
as described in Section 2.2.1.

The reason STRANDS is less competitive in high dimensional settings may

be that a) the model space is huge, and sub-models in Step 1 may not properly

represent the model space, such that the importance measures obtained from Step

1 is not as accurate as in low dimensional settings; b) the screening bias is more

severe as only a small proportion of variables are retained after screening.
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4.4 Further analysis of STRANDS

4.4.1 Structural subsampling

To illustrate the advantage of clustering based on correlation, we present the results
of two alternative implementations of STRANDS: a) Random Clustering (RC),
where the number of clusters K + 1 and cluster sizes |Gyl ...|Gk| are the same
as in STRANDS, but variables are randomly assigned to each cluster, and b) No
Clustering (NC), where all variables are treated as one group. We compare these
implementations with the original STRANDS approach (with clustering based

on correlation) and with Random Lasso, for Examples 4.3 and 4.5, which have

pairwise correlation structures. Results are shown in Tables 4.11 and 4.12.

n STRD-Lasso | STRD-Lasso (RC) | STRD-Lasso (NC) RLasso
ZFP | 3.9 (0.27) 439 (0.32) 132 (0.33) 12.91 (0.36)

~o | #TP | 6.82 (0.19) 17 (0.17) 189 (0.15) 6.6 (0.17)
PPV | 0.66 (0.019) 0.53 (0.019) 0.58 (0.02) 0.35 (0.008)
MSE | 5.22 (0.20) 6.68 (0.19) 6.62 (0.20) 6.16 (0.16)
ZFP | 5.34 (0.41) 6.34 (0.45) 7.03 (0.52) 16.23 (0.33)

Lo0 | #TP | _9.61 (0.08) 8.77 (0.13) 8.86 (0.14) 9.32 (0.08)
PPV | 0.69 (0.017) 0.63 (0.017) 0.62 (0.017) 0.37 (0.004)
MSE | 2.21 (0.10) 3.18 (0.13) 3.29 (0.14) 3.18 (0.12)

Table 4.11: Performance of STRANDS with random clustering (RC) and no clus-
tering (NC) for Example 4.3. Results of RLasso and STRD-Lasso are the same as
in Table 4.3.

For data with clear correlation structure, the clustering step of STRANDS can
significantly improve its performance. In Example 4.3, RC and NC both lead
to much worse TP, FP |, PPV and MSE (Table 4.11), and in Example 4.5 they
lead to more FP and inferior MSE, and similar TP, although the deterioration in
performance is not as striking.

The purpose of clustering is to explore more efficiently the model space, rather
This is illustrated in

Figure 4.3, using the pairwise correlation structure of Example 4.3. The data has

than only exploring models with certain characteristics.

one correlated group of size 10, and one independent group of size 30. Without

clustering step, we sample variables from the set of all variables, and the ratio of
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n STRD-Lasso | STRD-Lasso (RC) | STRD-Lasso (NC) RLasso
ZFP | 23.49 (0.55) | 28.05 (0.59) 7.5 (0.59) 26.8 (0.73)

-0 | #TP [ 732(0.17) 7.39 (0.16) 7.35 (0.17) 6.45 (0.17)
PPV | 0.24 (0.0063) | 0.21 (0.006) 0.22 (0.006) 0.2 (0.0067)
MSE | 51.18 (1.72) 52.38 (1.74) 52.60 (1.8) 64.86 (1.95)
ZFP | 35.13 (0.61) 41.06 (0.74) 40.1 (0.67) 43.62 (0.99)

Lo | ZTP [ 998 (001) 9.99 (0.01) 9.99 (0.01) 9.08 (0.01)
PPV | 0.23 (0.003) 0.2 (0.003) 0.2 (0.003) 0.19 (0.004)
MSE | 9.94 (0.42) 10.57 (0.43) 10.58 (0.46) 5.26 (0.44)

Table 4.12: Performance of STRANDS with random clustering (RC) and no clus-
tering (NC) for Example 4.5. Results of RLasso and STRD-Lasso are the same as
in Table 4.5.

numbers of sampled variables from the two groups will be close to the ratio of
the corresponding group sizes, i.e., 1:3 in this case. So we are likely to focus on
a small regime of model space. With clustering, we sample at random from each
group independently, and all combinations of variables from different groups are
equally likely, so the exploration in Step 1 of STRANDS is more comprehensive

and effective.

4.4.2 Two-step variable sampling

In Step 1 STRANDS samples in a uniform way from each group of variables
obtained in the clustering step, and applies the base learner algorithm to the
random subsets of variables. Although the averaged results on random subset
of variables do not provide accurate coefficient estimates since candidate models
can be mis-specified, they offer guidance on relative importance of variables and
underlying sparsity of the true model. Step 2 exploits the relative importance
by random sampling, such that variables with larger importance scores from Step
1 are more likely to be sampled. Thus relevant variables are more likely to be
included in candidate models while irrelevant one are more likely to be excluded.
Step 2 evaluates joint effect of relevant variables by applying the base learner
algorithm, and calculates importance scores, which are more accurate than those
in Step 1. This is illustrated in Figure 4.4. We use Example 4.3 with clear

correlation structure, and Lasso as the base learner for STRANDS, to show how
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Figure 4.3: Influence of the clustering step (Step 0 of STRANDS), on the sampling
of variables (Step la (i)) for Example 4.3, where there are two groups. Let G be
the group of 30 independent variables and G; be the group of 10 highly correlated
variables. Left panel shows the result without clustering step (i.e., all variables
are treated as one group) and right panel shows the result with clustering step.
Sampling of variables is repeated 1000 times, and each time corresponds to a
combination of gy (number of variable sampled from Gy, y axis) and g; (number of
variables sampled from G, x axis). Darker colour indicates that the combination
of gy and ¢g; appears more frequently than others.
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the importance scores change between Step 1 and Step 2. Left panel shows the
comparison of selection probabilities of Step 1 and Step 2, and right panel shows the
comparison of (absolute) coefficient estimates. We see that selection probabilities
for relevant variables are boosted after importance score-guided sampling in Step
2, and selection probabilities for irrelevant variables are typically down-weighted.
Similarly, coefficient estimates of relevant variables are also improved after Step 2.
This justifies the necessity of Step 2 of STRANDS.

probability coefficient
o
— T o
oo
= <~
©
= @
o o
o o
2 2
(7] wn
<
S T N
[gN]
=2 —
o
= S
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 (o] 1 2 3 4 5
Stepl Stepl

= Relevant variables == |rrelevant variables

Figure 4.4: Comparison of importance scores in Step 1 and 2 of STRD-Lasso for
Example 4.3, as in Table 4.3, n = 100. Simulation is repeated 100 times, and
each dot corresponds to a score (probability or absolute coefficient) of a variable
in one simulation. Left panel shows the comparison of selection probabilities of
Step 1 (#;) and Step 2 (7;), and right panel shows the comparison of (absolute)
coefficient estimates of Step 1 (a;) and Step 2 (|3;|). Relevant variables and
irrelevant variables are presented by blue and red dots respectively.
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4.5 Application to real data

In this section we analyse three real data examples by using STRANDS and other
variants of Lasso. All variables are standardised to have mean zero and variance
one. We first run all methods on the full dataset to get model sizes, and then
compare their predictive performance as follows: random split the dataset into a
training dataset (Xirain, Yérain) With 90% of samples and a test dataset of the
other 10% of samples (Xiest, Yiest); models are fitted on the training data and

the coefficient estimates B are used to predict the response of the test data,
Prediction Error = || Yiest — XtestB|5/Mtest- (4.1)

We applied Lasso, Elastic Net (aw = 0.5), Adaptive Lasso, Random Lasso, STRANDS-
Lasso, and STRANDS-Adaptive Lasso to fit linear regression models. Parameters
and tuning strategies are the same as in simulation study. Data splitting is re-
peated 100 times, and mean prediction errors across the 100 times are reported,
with bootstrap standard errors in parentheses. We also report the computation
time of every method for running on the full data. In all examples STRANDS-
Lasso takes significantly less computation time than Random Lasso (STRANDS-

Lasso is 3-4 times faster than Random Lasso).

4.5.1 Gene expression and aging

The first dataset is from Lu et al. [2004]. The study aims to discover the rela-
tionship between aging and gene expression levels in human frontal cortex. The
response is ages of n = 30 patients (ranging from 26 to 106 years), and explana-
tory variables are expression levels of 12,625 genes measured by microarray. Linear
model is built to find those genes that can predict the age of a patient. Gene ex-
pression values are log-transformed, and they filter out genes based on local false
non-discovery rates. After preprocessing, p = 403 variables are retained as candi-
date variables. This dataset has previously been analysed in Zuber and Strimmer
[2011], and is available in R package care. As in Zuber and Strimmer [2011], the
response is standardised.

The results of aging data analysis are summarised in Table 4.13. We see that
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STRANDS-Lasso achieves the smallest mean prediction error, followed by Elastic
Net and Lasso. Prediction errors of Adaptive Lasso and Random Lasso are less
satisfactory, perhaps because they both have overly sparse models and missed
more signals. For Random Lasso, this could be due to the fact that sample size
of training data n = 27 is small, so that the coefficient estimate threshold 1/n
is too restrictive and the resulting model is too conservative. On the other hand,
STRANDS-Lasso and STRANDS-Adaptive Lasso have similar model sizes as their

base learners, with improved prediction errors respectively.

Lasso ENet AdaLasso | RLasso | STRD-Lasso | STRD-AdalLasso
Model Size | 23 29 9 13 21 10
Prediction | 0.344 0.313 0.465 0.563 0.291 0.429
Error (0.028) | (0.024) | (0.042) (0.036) | (0.019) (0.031)
Time (s) | <1 <1 <1 205.33 | 53.24 102.15

Table 4.13: Real data analysis : age data, n = 30,p = 403

4.5.2 Gene expression and Bardet-Biedl syndrome

Next we consider the dataset of mammalian eye tissue, reported in Scheetz et al.
[2006]. Tissue harvesting is applied for 120 male rats’ eyes, followed by microarray
analysis. Expression levels of over 28,000 genes are measured. It is known that
TRIM32 gene is the cause of Bardet-Biedl syndrome [Chiang et al., 2006], and
linear regression is applied to find genes most related to TRIM32. It is believed
that only a small number of genes are associated with TRIM32, and after pre-
processing, the resulting dataset consists of 200 variables, which is available in R
package flare.

The results of eye data analysis are summarised in Table 4.14. STRANDS-
Lasso again achieves the smallest mean prediction error, followed by Elastic Net
and Lasso. Adaptive Lasso is overly sparse and worst for prediction purpose, while
Random Lasso does not do well for prediction either, and selects less variables than
Lasso. Unlike in age data, STRANDS-Lasso selects more variables than Lasso,
similar to Elastic Net. This could be due to the fact that strong multicollinearity

exists in eye data, where the mean absolute pairwise correlation among the 200
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variables is 0.606. Group selection property of STRANDS leads to larger model,
with more accurately estimated coefficients. STRANDS-Adaptive Lasso also sig-

nificantly improves the prediction performance over Adaptive Lasso, with larger

model.
Lasso | ENet | AdaLasso | RLasso | STRD-Lasso | STRD-AdaLasso
Model Size | 26 31 3 18 33 10
Prediction 9.23 9.01 14.08 12.05 8.76 9.59
Error (x1073) | (0.63) | (0.60) | (1.66) (1.07) | (0.48) (0.72)
Time (s) <1 <1 <1 221.55 67.31 121.34

Table 4.14: Real data analysis : eye data, n = 120, p = 200

4.5.3 Plasma proteome analysis

Finally we compare STRANDS and its competitors in an analysis of plasma pro-
teome data from Kirk et al. [2011]. Human T lymphotropic virus Type 1 (HTLV-
1) is one of the main causes of certain chronic inflammatory diseases, which are
commonly referred to as HTLV-1-associated myelopathy /tropic spastic parapare-
sis (HAM). It is also responsible for adult T cell leukaemia/lymphoma. The study
uses surface-enhanced laser desorption mass spectrometry technique to analyse the
plasma proteome of 65 HTLV-1-infected patients, who either have HAM disease
or are asymptomatic HTLV-1 carriers (AC). The dataset contains log intensities
of 49 protein peaks (represented by m/z value in kDa), and the responses are
log proviral load and disease status of patients (either HAM or AC). Kirk et al.
[2011] and Kirk et al. [2013] used binary disease status as the response and built
logistic regression model to find the peaks that most significantly contribute to
the discrimination of disease outcomes. We use log proviral load as the response
and build linear regression model to find the associations between log proviral load
and protein peaks. Since proviral load and disease outcome are closely related, our
analysis can be regarded as a continuous relaxation of the binary problem.

The results of plasma proteome analysis are summarised in Table 4.15. Predic-
tion errors are similar across all methods. Adaptive Lasso has the worst predictive

performance, and Random Lasso and STRANDS-Adaptive Lasso are marginally
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the best. Random Lasso has the largest model size, followed by Elastic Net and
Lasso. STRANDS again improve over its base learners, and the improvement is
marginal for Lasso, but significant for adaptive Lasso. STRANDS also provides
sparser results than its base learners in this example.

For selection, STRANDS-Lasso selects the following peaks: 6.83, 10.8, 11.7,
12.2, 15.7, 17.2, 17.5 and 25.4 kDa; Lasso selects one more peak, 59.5 kDa. We
find that peaks selected by linear regression and logistic regression (see below) co-
incide to some degree. Kirk et al. [2013| apply seven different selection strategies
using sparse logistic regression models, and selected protein peaks 10.8, 11.7, 11.9,
13.3, 14.6 17.3, 17.5 and 25.1 kDa. Kirk et al. [2011] applied univariate analysis
and logistic regression with Lasso penalty, and selected peaks 11.7, 11.9, and 13.3
kDa. In both studies the authors claimed that 11.7 and 13.3 kDa peaks have
the strongest signal, and contribute significantly to predicting patient disease sta-
tus. Both liner regression and logistic regression select 10.8, 11.7, and 17.5 peaks,
and the new peaks selected by linear regression are also interesting and could be

investigated further.

Lasso ENet AdaLasso | RLasso | STRD-Lasso | STRD-AdalLasso
Model Size | 9 12 6 15 8 5
Prediction | 0.573 0.568 0.634 0.557 0.566 0.554
Error (0.028) | (0.028) | (0.033) (0.03) (0.032) (0.028)
Time (s) | <1 <1 <1 264.14 | 69.19 101.45

Table 4.15: Real data analysis : plasma proteome data, n = 65,p = 49

4.6 Conclusions and discussion

In this section we proposed a new variable selection strategy structural randomised
selection (STRANDS), in line with Random Lasso. The method inherits some
properties from Random Lasso and alleviates some issues of [; penalised regression.
Particularly, both STRANDS and Random Lasso encourage strongly correlated
variables to be selected simultaneously, and the model size is no longer limited by
the sample size. STRANDS takes into account the correlation structure to more

effectively explore the model space. Compared to Random Lasso, STRANDS’
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implementation is more automatic such that less parameters need to be tuned,
so the method is computationally less intensive. STRANDS is also easy to be
parallelised. Without bootstrap step, STRANDS uses full sample information in
all candidate models. Both simulation study and real data study compared the
performance of STRANDS with popular regularised regression methods. We found
that STRANDS typically improves the performance of its base learner in low-to-
moderate dimensional settings, especially when strong multicollinearity exists; in
high-dimensional settings the benefit of STRANDS is less clear. Although in this
chapter the baseline learners used with STRANDS were Lasso and Adaptive Lasso,
STRANDS can also be combined with other sparse regression methods to improve
their performance.

Park et al. [2015] proposed recursive random Lasso to improve Random Lasso’s
computational efficiency and variable selection performance. Specifically, instead
of repeatedly applying Lasso to obtain importance measurements, recursive ran-
dom Lasso calculates importance measures recursively in the modelling process,
such that importance measures are recalculated at each iteration using the regres-
sion results from the previous iterations, and in each iteration Lasso is applied
after variable sampling based on the current important measures. The authors
also proposed a parametric test for variable selection. They show that recursive
random Lasso has similar selection and prediction performance to Random Lasso
in high-dimensional settings, with much more efficient computation. It would be
interesting to explore if using recursive approach in STRANDS improves compu-
tational efficiency while also retaining STRANDS’ good performance.

Both Random Lasso and STRANDS can be interpreted as randomised screen-
ing methods. As a pioneering work, Fan and Lv [2008] proposed to use univariate
regression coefficients to reduce the dimension of data from ultra-high to man-
ageable in high-dimension linear regression. Specifically, their sure independence
screening (SIS) approach first screens the data to have only a number of variables
with largest univariate regression coefficients, and subsequent analysis is then per-
formed on the sub-data. The method is very straightforward and is proved to
have sure screening property in an asymptotic framework, i.e., the probability of
screened sub-data containing all relevant variables converges to one as the sample

size approaches infinity. They also propose an iterative sure independence screen-
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ing (ISIS) method to enhance the finite sample performance. However, there are
two critical issues with this method. Firstly, the univariate regression coefficient
can be highly unstable to represent the actual importance of a variable, especially
in high-dimensional data with complicated correlation structure. Secondly, there
is no justification on how to choose the degree of screening, i.e., how many vari-
ables should be retained in the sub-data. In Random Lasso, instead of univariate
regression, the importance measure is calculated by [; penalisation method on ran-
dom combination of variables, which captures the multivariate effects and sparsity
pattern of data; instead of arbitrary screening degree, Random Lasso tunes the
number of screened variables in a data-driven way, although the procedure can be
computationally intensive. STRANDS addresses these two issues in an adaptive
and data-driven way. As in Random Lasso, we explore variable importance by
repeatedly applying penalised regression on random subsets of variables in Step 1,
to take into account the multivariate effects instead of univariate effects as in SIS.
Multivariate effects are more reliable when dimensionality is high and correlation
structure is complex. The degree of screening is automatically obtained based on
selection probabilities from Step 1, which is computationally efficient and more
accurate.

One critical problem associated with screening-related approaches is screening
bias, i.e., if screening and subsequent variable selection are based on the same data,
irrelevant variables surviving the screening become overly promising. This problem
has been pointed out by several authors, see e.g. Fan and Lv [2008] and discussion
therein. Zhu and Yang [2014] prove that naive variable selection on variables
surviving screening procedure is problematic, and can lead to significant bias on
both variable selection and prediction. In other words, the surviving variables
after screening step should not be treated as if they are given in the first place.
Instead, they suggest to avoid screening bias by data-splitting, where data is split
into two halves, and variable screening is performed on one half, while variable
selection on the surviving variables is performed on the other half. They claim
that data splitting can significantly reduce the screening bias in variable selection
and prediction, although selection consistency is not guaranteed for fixed design.
It is because the fact that consistency conditions hold for the full data does not

imply that the same conditions hold for a subset of samples. Even if certain data-
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splitting can satisfy the required conditions, finding the correct split is difficult in
practice.

We address the screening bias in a different way. Unlike Random Lasso, we
obtain a model size estimate § from Step 1, which gives guidance on sparsity of
the underlying model. Sampling in Step 2 is thus performed in an informed way,
with the goal that only relevant variables are likely to survive the screening, and
false positives are controlled by 5. Sampling procedures in Step 2 of STRANDS
and Random Lasso acknowledge the fact that estimation in Step 1 is subject to
uncertainty of data, so the importance measures of variables should be respected
in a stochastic way. This further mitigates the screening bias, and is in contrast
to SIS where the ranking of variable importance is exactly followed.

Both data-splitting and bootstrap fail to take advantage of full sample infor-
mation. Although from results of systematic comparison study in Chapter 2 we
observe that subsampling of samples can potentially improve method performance
when n is large, the loss of information can cause loss of power and prediction
accuracy when n is small relative to sy and p, which is common in biomedical

studies. Specifically, recall that consistent variable selection requires

solog(p) = o(n), (4.2)

while data-splitting and bootstrapping essentially reduce the active sample size,
which may break the consistency condition.

Although the intuitive values of parameters for STRANDS lead to satisfactory
results, alternative choices of these values and implementations can also be of inter-
est in practice. For learning correlation structure, we apply an iterative procedure
with a correlation threshold (py) 0.5. A hierarchical clustering procedure based
on correlation can be used instead, similar as in Biithlmann et al. [2013]; this can
potentially improve the efficiency of STRANDS in ultra-high dimensional data,
although the number of clusters can be difficult to choose, and the interpretation
of a correlated group may be different. The correlation threshold should adapt to
specific data types and research interest. The general guidance for choosing the
correlation threshold is to appropriately capture the correlation structure of data,

without introducing too many correlation groups (relative to dimension of data);
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otherwise the method could be less stable. s = [ 6;] in Step 2a (i) of STRANDS
?

is an automatic choice for selecting important variables, but finer tuning of s
can also be desirable, e.g., based on external knowledge of data, or appropriate
thresholding on 6,’s to eliminate the influences of likely irrelevant variables. When
sample size is large enough, splitting the data for screening and variable selection
separately can further reduce screening bias, without losing much power. Finally,
depending on the goal of a specific study, the selection probability threshold 7y,
can be either more restrictive to better control false positives, or more relaxed to

increase the chance of capturing signals.
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Chapter 5
Adaptive Ridge forward selection

In this chapter we propose another ensemble learning method, which combines
Ridge Regression and forward selection from a Bayesian perspective, aiming to

improve the prediction performance of Ridge Regression in sparse settings.

5.1 Introduction

From the systematic comparison study in Chapter 2, we observe that Ridge Re-
gression is typically unsatisfactory in sparse settings since it does not perform
variable selection and so too many irrelevant variables are included, negatively
impacting the prediction accuracy. It can therefore be desirable to discover the
underlying sparsity pattern before applying Ridge Regression. Here, we propose an
approach combining Bayesian Ridge Regression (see Section 1.5.4) with a proba-
bilistic forward selection procedure that aims to improve prediction performance of
Bayesian Ridge Regression in sparse settings, while keeping its simple closed-form
computation.

Forward selection (see Section 1.3.2) is a simple variable selection method that
can be used to obtain a sparse model prior to applying Ridge Regression. The pro-
cedure starts with the null model, and at each step, the most relevant candidate
variable is tested based on certain criteria, and is added to the model if a statis-
tically significant improvement is achieved for the model fit. The procedure stops

when no variable can be included according to the criteria. One criterion for model
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fit is BIC (1.5); that is, at each stage of forward selection, the candidate variable
is included in the model only if the BIC score decreases. In a Bayesian framework,
a criterion based on the Bayes factor can be used. The Bayes factor (see Section
1.5.2) of two competing models My and M; is BFy = %, which is the ratio
of the marginal likelihood, evaluating relative model evidence. BFpy; > 1 indicates
that M; is more supported by the data than M.

Forward selection can be unstable in the sense that slight change in data can
lead to large changes in coefficient estimates [Breiman, 1996|, especially when
variables are correlated. At certain stages of forward selection, the BIC scores
for a pair of nested models can be similar or Bayes factor can be close to one,
but a deterministic decision is made on model choice; a small change of data can
lead to opposite conclusion. In other words, traditional forward selection ignores
the uncertainty at each stage, and the corresponding errors accumulate along the
forward selection procedure. With this instability, it is difficult to find the best
model, and prediction accuracy can be severely impaired.

Bayes factor can also be converted to probability to quantify the relative plau-
sibility of candidate models. Let M, and M; be two different models, D the
observed data, and assign prior probabilities of the two models to be P(My) = po
and P(M;) =1 — po, then the posterior probability of Mj is given by

BFy

POMID) = BFy + (1= po)/po’ (51

where BFy = % is the Bayes factor of M versus M; [Casella et al., 2009).

We propose a probabilistic forward selection procedure based on Bayes factors
for Bayesian Ridge Regression. The procedure produces sparse models, which
means that instead of applying Bayesian Ridge Regression to all p variables, it
is applied to the selected variables. Importantly, the probabilistic procedure uses
posterior model probabilities (5.1) to take into account uncertainty in forward
selection as opposed to using hard-threshold decisions (based on e.g. BIC or Bayes
factors) that are deterministic. We average over an ensemble of models produced
by probabilistic forward selection, which is necessary to stabilise the coefficient
estimates, and consequently improve the prediction accuracy.

The remainder of the section is organised as follows. In Section 5.2 we describe

127



and motivate the proposed method. In Section 5.3 we show results comparing
the proposed method with Lasso and Bayesian Ridge Regression using simulated

datasets from Section 4.3.1. We conclude with a discussion in Section 5.4.

5.2 Method

Recall from Section 1.5.4 that the Bayesian Ridge Regression can be presented as

follows:
p(Y|X, B,0%) = N(XB,0°T)

B0\ ~ N(O, 0;1) (5.2)

o ~ IG(a,b),

where A > 0 controls the degree of shrinkage. Point estimates have closed form

solution B = (XTX + AI)"'X"Y, and the marginal distribution of Y follows a

multivariate Student t-distribution,

p(Y|X,\) = /P(Ym,02)P(ﬁ\a2)P(a2)dﬁda2 = MV Sty,(0, S(I + Xi(T)).

(5.3)

We specify the prior for o2 to be non-informative, i.e., a, b are small values; we take

a=>b=0.001. We fix A to be 1/n, which is the expectation of the ¢ default prior”

motivated by the Zellner-Siow prior [Liang et al., 2008], i.e., §(3,2) and §(.,.)

denotes the gamma distribution. Note that 1/n is also the fixed unit information

prior [Kass and Raftery, 1995].

For a pair of nested models M, and M;, Bayes factor BFp, is calculated as

p(Y|X, M07 )‘)

BFy =
o p(Y|X, ]\417/\)7

(5.4)

and p(Y|X, M;, \) is the marginal likelihood of Y given model M;. Our method
combines the idea of forward selection and Bayes factor for Ridge Regression to
obtain sparse solution. At each step of forward selection we compare a pair of

nested models M, and M;, where M; has an additional variable compared to
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M,. We use the posterior model probabilities in (5.1) to make this comparison.

It is natural choice to assign an equal prior probability to the two models, i.e.,
P(My) = P(M;) = 0.5. Then (5.1) becomes

Bl

P(My|X,Y) = ———— 5.5

( 0| ) ) BF01 + 17 ( )

and P(M1|X,Y) = ﬁ

M, with probability P(M;|X,Y). After completion of the probabilistic forward

selection procedure, we have a selected set of variables. We apply Bayesian Ridge

In other words, we include the additional variable in

Regression to this selected set to obtain coefficient estimates. Probabilistic forward
selection and coefficient estimation are repeated to obtain an ensemble of candidate
models, and final coefficients are averaged across candidate models that pass a
quality control step. This step eliminates models that have marginal likelihood
smaller than the null model. Each individual candidate model may miss certain
signals due to stochasticity, but averaging across the ensemble will provide accurate
coefficient estimates.

Forward selection requires an initial ranking of variables to determine the order
they are considered for inclusion in the model, and we simply rank the variables
using absolute coefficient estimates from applying Bayesian Ridge Regression to
all variables.

Pseudocode for the proposed adaptive Ridge forward selection procedure is
provided in Algorithm 3, and the forward selection procedure is illustrated in

Figure 5.1.

5.3 Results

In this section we compare the adaptive Ridge forward selection (referred to as
RF'S hereafter) with Lasso, STRD-Lasso and standard Bayesian Ridge Regression
using three datasets from previous analyses. We compare the methods using Ex-
ample 4.3, 4.4 and 4.5 from Section 4.3. All three examples are sparse settings,
and specifically, in Example 4.3 relevant variables are strongly correlated with co-
efficients of different signs; in Example 4.4 variables are orthogonal to each other;

in Example 4.5 relevant variables are in several moderately correlated blocks. We
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Algorithm 3 Adaptive Ridge forward selection (RFS)

Input: n by p design matrix X = (x; ...Xp) and response vector Y; number of
iterations B

Output: coefficient estimates Bj for each variable

Step 1:

Run Bayesian Ridge Regression on (Y, X) with A = 1/n, and obtain coefficient
estimate 3 = (XX +AI)"' X7Y. Rank variables by their absolute coefficients,
from largest to smallest. Denote the ranked variables as ™, ..., x®) where
coefficient of £ is not smaller than that of *+tY k=1...p—1.

Step 2:
forb=1,....,B do
M=0
for j=1,....,pdo
1. Let current set of selected variables be My = M, and M; = MUz
2. Calculate Bayes factor BFy = % of My and M,
3. Calculate the posterior probability of model M, as
P(M1|X,)Y) = ﬁ. This is also the selection probability of (%)
4. Draw a random number z from Bern(P(M;|X,Y)),
if z=1, M = My, otherwise M = M,
end for

Apply Bayesian Ridge Regression on (M,Y) with A = 1/n, and obtain
estimates B§b) for those ; € M, and BJ(.b) =0if x; ¢ M.
end for

Step 3:

Remove those iterations where the final selected model has smaller marginal

likelihood than the null model

Denote the rest qualified iterations as J, then the final coefficient estimates are
> 8"

ﬁj:bejljl ,jzlp
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wg; (1) z® (2) (3)
z ) 22 23 z 23 x x

Figure 5.1: An illustration of adaptive Ridge forward selection with three vari-
ables. Variables are ranked by their absolute coefficient estimates, and are tested
following the order of x(, x(® and x®). Model is initialised to be @) and includes
selected variables along forward selection procedure. Each internal node represents
a decision on selection of the corresponding variable based on probability. The left
branch represents inclusion of the variable while the right branch represents ex-
clusion. Leaf nodes represent possible resulting models at the end of the forward
selection procedure.
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use B = 300 for RFS and show results for n = 50 and n = 100. We focus on com-
parison of prediction accuracy, and the results are summarised in Tables 5.1, 5.2
and 5.3. We see in all three scenarios RFS has a significant improvement on pre-
diction over standard Bayesian Ridge Regression, especially in high-dimensional
case where only a small proportion of variables are relevant. RFS remains com-
petitive compared to Lasso, especially when strong multicollinearity exists as in
Table 5.1; RFS’s predictive performance is similar to that of STRD-Lasso in most
settings. The proposed approach is tuning-free, and it is also computationally
efficient, since closed-form solution is available at each stage of forward selection.
Specifically, computation time of RFS for n = 50,100 are 3.75s and 4.05s for
Example 4.3, 61.22s and 70.41s for Example 4.4, 78.14s and 81.79s for Example
4.5.

RFS does not perform variable selection per se in the sense that most coefficient
estimates tend to be non-zero. However, one could attempt to discriminate relevant
variables from irrelevant ones based on the magnitudes of coefficient estimates
obtained using RFS. Figure 5.2 shows the distribution of coefficient estimates of
RFS in Example 4.3. We see that there is a clear discrimination of coefficient
estimates between relevant and irrelevant variables. A selection rule could be

developed based on such discrimination.

MSE | Lasso RFS Ridge STRD-Lasso
n=>50 | 6.4 (0.185) | 4.85 (0.14) | 8.48 (0.15) | 5.13 (0.21)
n =100 | 5.08 (0.11) | 3.73 (0.09) | 6.75 (0.08) | 2.32 (0.11)

Table 5.1: Example 4.3: p = 40,pg = 10,0 = 3. One block of 10 pairwise
correlated variables (correlation p = 0.9), all of which are signals, with coefficients
3,3, 3,3, 3, -2,-2, -2, -2, -2. The other 30 variables are independent from each
other, and independent from the 10 correlated variables, all of which are noise
variables. Results are averages across 100 replicates, with bootstrap standard
errors in parentheses.

5.4 Discussion

In this section we proposed a novel probabilistic forward selection method based

on Bayesian Ridge Regression. The method takes into account the uncertainty at
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MSE | Lasso RFS Ridge STRD-Lasso
n=>50 | 61.9 (3.25) | 62.35 (2.21) | 105.89 (0.37) | 62.11 (2.92)
n =100 | 8.33 (0.37) | 7.32 (0.62) | 87.85 (0.45) | 7.36 (0.32)

Table 5.2: Example 4.4: p = 300,py = 10,0 = 3. Variables are i.i.d. drawn from
N (0, I). 10 signals are randomly allocated among p variables, with coefficients 3,
3,3,3, 3,4, 4,4, 4, 4. Results are averages across 100 replicates, with bootstrap
standard errors in parentheses.

MSE | Lasso RFS Ridge STRD-Lasso
n =50 | 59.65 (2.15) | 53.44 (2.0) | 57.81 (0.69) | 51.34 (1.69)
n =100 | 9.71 (0.43) | 10.39 (0.66) | 49.40 (0.32) | 9.83 (0.41)

Table 5.3: Example 4.5: p = 300, py = 10, 0 = 3, 10 blocks of 10 pairwise correlated
variables (p = 0.7), each having one signal. Non-zero coefficients are 3, 3, 3, 3, 3,
4, 4,4, 4, 4. Results are averages across 100 replicates, with bootstrap standard
errors in parentheses.

each stage of forward selection, and uses Bayes factor in the form of probability
to make decisions on model selection in a stochastic way.

The stochastic forward selection procedure can be represented by a rooted
binary tree (see Figure 5.1). Each internal node represents a probabilistic test
on whether a variable should be retained in the model, based on posterior model
probability. Compared to a deterministic decision based on criteria such as BIC,
this probabilistic test takes uncertainty into account at each split. Two branches
from the node represent two possible decisions of the test. The nodes are ordered
by variables’” importance measures defined by Ridge Regression estimates, such
that important variables are tested before less important ones. Each path from
the root node to a leaf node corresponds to a candidate sparse model. We average
coefficient estimates across multiple candidate sparse models to reduce variance.

In a similar spirit as STRANDS, RFS first calculates absolute coefficients as
importance measures of each variable, and variable selection is then guided by
those importance measures. The ranking of variables is important since the earlier
a variable enters the model, the better chance it will be retained. In other words,
RF'S implicitly puts larger weights on variables with larger importance measures.

As seen from previous results, Ridge Regression can have inferior ranking perfor-
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Figure 5.2: Coefficient estimates of RFS in Example 4.3, n = 100,p = 40. Sim-
ulation is repeated 100 times, and each dot corresponds to a coefficient estimate
of a variable (represented by its location on x axis) in one simulation. Relevant
variables and irrelevant variables are represented by blue and red dots respectively.

mance in high-dimensional settings, but since ranking is respected in a stochastic
way rather than deterministic, the ranking issue is alleviated. In each resulting
model after forward selection procedure, relevant variables are likely to be selected,
and with reduced dimensionality, prediction tends to be more accurate.

The prior model probabilities on candidate models at each stage of forward
selection is essential. In general, we need to assign prior distribution to the whole
model space containing 2P candidate models, and the choice of such prior can be
tricky. An standard approach is to make prior assumptions on indicator variables
~=(m...7), defined as y; = 1 if 5; # 0 and v; = 0 if 8; = 0. Such specification

can lead to Beta-Binomial prior on the model space. Specifically, in linear model

134



(1.1), let P(y;=1)=0,j=1...p, then

p(a16) = 6711 — o)

(5.6)
0 ~ Beta(ag,by).

is called the Beta-Binomial prior. This prior does not penalise model complexity
appropriately if ag and by are fixed, and if ay and by are calculated using data, more
justifications are necessary and such estimate can also be inaccurate [Womack
et al., 2015]. In our case, since the comparison at each stage of forward selection
is restricted to a pair of nested models with only one variable different, the choice
of equal prior probabilities on candidate models seems reasonable.

Instead of sampling from the posterior distribution over the model space, adap-
tive Ridge forward selection generates a quasi-posterior sample of models as an
ensemble; using a stochastic greedy search. Our approach has some similarities to
the full Bayesian approach, as they both put higher weights on important vari-
ables, and models with less credibility are down-weighted. However, our approach
does not result in a true posterior, and the advantage is computational efficiency
since it is based on a greedy search.

Leday et al. [2017] propose a similar approach in gene network reconstruction
context. They first rank variables by Ridge Regression coefficient estimates, and
perform forward selection in a similar way. However there are two key differences
compared to our approach. Firstly, they calculate py from data instead of fixing
po = 0.5. Secondly, their prime focus is variable selection and false positive con-
trol. At each stage of forward selection, they set a (pre-specified) threshold on
posterior null probability P(My|X,Y), such that the variable selection is a deter-
ministic procedure. In sparse settings, estimated py can be small, such that we
may sacrifice statistical power for false positive control, which may not be opti-
mal for our prediction purpose. There is a large amount of uncertainty associated
with forward selection, especially in high-dimensional settings, and we deal with
the uncertainty via ensemble learning approach, which can significantly reduce the

variance in estimation.
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Chapter 6

Conclusions and future work

6.1 Summary

Recent years have witnessed the arise of high-dimensional data in various areas.
For example, computer vision uses images to recognise patterns, and each image
contains a huge number of pixels, which can be viewed as variables. Financial data
can also be high-dimensional, especially for time series data. Functional magnetic
resonance imaging (fMRI) data has many more voxels than the number of subjects,
and voxels can be viewed as variables. High-dimensional data is common in modern
biological science, since high-throughput technology enables us to measure a huge
number of features on the molecular level.

Traditional statistical approaches are no longer appropriate for high-dimensional
data. High dimensionality and salient characteristics associated with high-dimensional
data in practice greatly complicate the regression problem. To name a few, spuri-
ous correlations between relevant and irrelevant variables are more likely to exist
by chance, so is incidental endogeneity where variables correlate with the error
terms |Fan et al., 2014]; statistical algorithms tend to be less stable when the
search space is huge, and computation can be demanding. In addition, high noise
level, insufficient sample size and mixture of unknown populations are also common
in certain areas. New challenges have emerged, requiring new statistical thinking
and methodology. Regularisation or dimension reduction is required to get sensible
results, and in this thesis we focussed on penalised regression methods.

In Chapter 2 we compared popular penalised regression methods in a system-
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atic way, varying different features of data, and in Chapter 3 we extended the
comparison to different model assumptions and parameter specifications. Finally
in Chapter 4 and Chapter 5 we proposed two ensemble learning methods, STruc-
tural RANDomised Selection (STRANDS) to improve sparse penalised regression
methods, and adaptive Ridge forward selection to improve the prediction perfor-

mance of Ridge Regression.

6.2 Conclusions

In Chapter 2, we systematically compared different state-of-the-art penalised re-
gression methods in the context of high-dimensional data, in a large number of
data-generating scenarios, with varied characteristics. Many factors can be re-
sponsible for accuracy of results in linear regression, and in this thesis we mainly
focused on the influence of r = n/(solog(p — s9)), SNR and correlation structure.
Although these three factors are not independent from each other, they capture
three different data properties, namely, sufficiency of sample size with respect to
dimensionality and sparsity, strengths of signals in contrast to noise level, and de-
gree of multicollinearity. While each characteristic is not decisive when considered
in isolation, their joint information largely determines the accuracy of the model.
We found that the relative performance between methods depended on all these
factors, and also on the goal of the study. No method was unambiguously domi-
nant across the majority of scenarios. However, we were able to provide insight on
when certain methods should be preferred, which can be useful in practice. In a
nutshell, Lasso was reliable in most scenarios, and increasing [, penalty was ben-
eficial only in extreme correlation designs; Dantzig Selector performed similarly
to Lasso, but was more computationally intensive; Ridge Regression was found
to perform badly in most settings; SCAD and Stability Selection were preferred
in the “easy” settings, but could be too conservative when settings became more
difficult.

Although in our simulation study the underlying model was known in advance,
which is typically not true in practice, one can observe and have reasonable guess
at characteristics of the underlying model, based on domain knowledge of the data.

For example, when analysing some polygenic traits, one may expect more than a
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few relevant variables, i.e., large sg; GWAS study is typically known to be noisy,
i.e., one should expect low SNR. With these information, one can refer to our
conclusions to choose the best method for their research purpose. In Chapter 3
we extended the simulation study to evaluate effects of parameter specification
and model assumptions on relative performance between methods. We found that
in practice where model assumptions can be violated and data can have diverse
characteristics, choosing the best method or tuning parameters requires thorough
consideration. Our results and code can also serve as a resource for users to
compare other penalised regression methods or benchmark new methodology in
scenarios with various characteristics. However, we acknowledge that some data
characteristics are difficult to be extracted without external information, such as
how many correlated variables are actually relevant. This is a limitation of our
study.

In the comparison study we found that correlation can severely affect method
performance, and Ridge Regression typically has poor prediction accuracy in sparse
settings. These aspects motivated us to develop two randomised approaches to
mitigate the defects of penalised regression methods that were brought to light.

In Chapter 4 we proposed STructural RANDomised Selection (STRANDS) to
improve the performance of sparse penalised regression methods, particularly in
data with strong correlation. It can be viewed as a randomised screening method.
It uses multivariate effects to determine the variable importance and degree of
screening, and dimension reduction is achieved in a stochastic way to acknowledge
the uncertainty associated with the estimated quantities. Sampling of variables
encourages correlated variables to be selected simultaneously, and the estimated
degree of screening ensures that the right amount of variables are involved in each
candidate model, such that screening bias is well controlled. Through simulated
and real data, we showed that the proposed method typically improves upon its
base learners in low-to-moderate-dimensional settings, especially for data with
strong multicollinearity. Compared to Random Lasso, our method has better bias
control.

In Chapter 5 we proposed adaptive forward Ridge selection which combines
Bayesian Ridge Regression and forward selection. The approach aims to take into

account the large amount of uncertainty in forward selection by converting Bayes
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factors into probabilities, which guide forward selection in a stochastic way. Our
results showed that having a sparse set of variables can significantly improve the

prediction performance of Ridge Regression.

6.3 Future directions

In the comparison study in Chapter 2, more penalised linear regression meth-
ods could be covered to reveal their practical properties. A comparison between
frequentist and Bayesian methods would also be desirable, although it might be
challenging to make the comparison fair, since Bayesian methods typically have a
number of hyper-parameters to set, which could have a large impact on method
performance. The scope of the comparison could also be extended to see how
relative performance is affected when certain assumptions for the linear model are
violated. For example, in Section 3.5 effect of non-Gaussian noise was investigated.
Throughout the thesis we only focused on linear regression, and it would be inter-
esting to investigate how our conclusions may extend to the non-linear regression
setting. While we expect the conclusions to be largely consistent with those of lin-
ear regression setting, non-linear regression settings have different model assump-
tions and data properties, which require careful consideration. Candes et al. [2018]
is an example of recent work on variable selection in high-dimensional non-linear
models. The authors proposed a general framework to achieve controlled variable
selection (i.e., control the false positive rate), which guarantees valid inference for
finite samples, with arbitrary conditional distribution of the response.

In Step 1 of structural randomised selection and Random Lasso, results across
different models are directly averaged, where these models can be very different
from each other. A more informed way of averaging would be to assign different
weights to results of different models, such that results of more informative models
are given higher weights. In this way, the ensemble learning method would be more
robust against unfortunate selection of poor models by chance.

In adaptive forward Ridge selection, we assign an equal prior belief to any pair
of nested models in the forward selection procedure, and sensitivity analysis is
useful to see how much results will change with perturbation of the prior belief.

Our proposed approach does not result in a fixed selected set of variables. In order
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to achieve sparse representation, one needs to come up with a sensible thresholding

rule on the coefficient estimates.

6.4 Final remark

Data in practice typically has complex characteristics, and a good regression
method should be robust against idiosyncrasies in the data generation process
and be able to efficiently explore the model space. In this thesis, we have shown
the importance of comprehensive empirical evaluation of methods. It would be
beneficial to see more of these studies performed in the future to better under-
stand finite-sample properties of existing methods. We have also found that using
methods within ensemble learning procedures can be helpful to take uncertainty
into account and stabilise method performance. Since ensemble learning can often
result in improved model quality, it will continue to play an important part in

method development and the analysis of complex data.
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