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Abstract 

MOHAMAD HAZWAN BIN MOHD DAUT 

PICO-GRID: MULTIPLE MULTITYPE ENERGY HARVESTING SYSTEM 

This thesis focuses on the development of a low power energy harvesting system specifically 

targeted for wireless sensor nodes (WSN) and wireless body area network (WBAN) 

applications. The idea for the system is derived from the operation of a micro-grid and therefore 

is termed as a pico-grid and it is capable of simultaneously delivering power from multiple and 

multitype energy harvesters to the load at the same time, through the proposed parallel load 

sharing mechanism achieved by a voltage droop control method. Solar panels and 

thermoelectric generator (TEG) are demonstrated as the main energy harvesters for the system. 

Since the magnitude of the output power of the harvesters is time-varying, the droop gain in 

the droop feedback circuitry should be designed to be dynamic and self-adjusted according to 

this variation. This ensures that the maximum power is capable to be delivered to the load at 

all times. To achieve this, the droop gain is integrated with a light dependent resistor (LDR) 

and thermistor whose resistance varies with the magnitude of the source of energy for the solar 

panel and TEG, respectively. The experimental results demonstrate a successful variation 

droop mechanism and all connected sources are able to share equal load demands between 

them, with a maximum load sharing error of 5 %. The same mechanism is also demonstrated 

to work for maximum power point tracking (MPPT) functionality. This concept can potentially 

be extended to any other types of energy harvester.  

The integration of energy storage elements becomes a necessity in the pico-grid, in order to 

support the intermittent and sporadic nature of the output power for the harvesters. A 

rechargeable battery and supercapacitor are integrated in the system, and each is accurately 

designed to be charged when the loading in the system is low and discharged when the loading 

in the system is high. The dc bus voltage which indicates the magnitude of the loading in the 

system is utilised as the signal for the desired mode of operation. The constructed system 

demonstrates a successful operation of charging and discharging at specific levels of loading 

in the system. 

The system is then integrated and the first wearable prototype of the pico-grid is built and 

tested. A successful operation of the prototype is demonstrated and the load demand is shared 

equally between the source converters and energy storage. Furthermore, the pico-grid is shown 
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to possess an inherent plug-and-play capability for the source and load converters. Few 

recommendations are presented in order to further improve the feasibility and reliability of the 

prototype for real world applications.  

Next, due to the opportunity of working with a new semiconductor compound and accessibility 

to the fabrication facilities, a ZnON thin film diode is fabricated and intended to be 

implemented as a flexible rectifier circuit. The fabrication process can be done at low 

temperature, hence opening up the possibility of depositing the device on a flexible substrate. 

From the temperature dependent I-V measurements, a novel method of extracting important 

parameters such as ideality factor, barrier height, and series resistance of the diode based on a 

curve fitting method is proposed. It is determined that the ideality factor of the fabricated diode 

is high (> 2 at RT), due to the existence of other transport mechanism apart from thermionic 

emission that dominates the conduction process at lower temperature. It is concluded that the 

high series resistance of the fabricated diode (3.8 kΩ at RT) would mainly hinder the 

performance of the diode in a rectifier circuit.   
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Introduction 
 

 

 

1.1 Background and Motivation 

Wearable devices are one of the emerging technological applications with a market share that 

has steadily increased from an estimated $25 billion (USD) in 2015 to $35 billion (USD) in 

2018. It is forecasted to grow further to $150 billion (USD) in 2026 [1]. Immense interest 

particularly in health related devices has flourished and attracted multiple investments and 

resulted in the birth of many start-up companies focusing on this area. Whilst the first 

generation devices mostly serve as a complement to smartphones, the second generation and 

latest trend tends to move towards ‘embrace devices’, which are autonomous devices capable 

of carrying out specific tasks and functionality without the assistance of smartphones and 

capable of communicating with other devices through the emerging concept of ‘Internet-of-

Things’. With the current trend, it is expected that in the future, many wearable devices will be 

worn by a single person, each carrying out a different and specific set of functions, and 

autonomously functioning with or without communications between them, as illustrated in 

Figure 1.1. 

The nature of wearable devices which should be small, light, and compact would limit the 

battery size, and as a result, many of these devices are designed to have a very low power 

consumption to prevent the need of frequent recharging or battery replacement (typically from 

nW to mW). Moreover, most wearable devices are related to monitoring (body temperature, 
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glucose level, blood pressure etc.) or manually activated functionality (GPS, running timer 

etc.), which means that these devices mostly spend their time in ‘sleeping’ or ‘standby’ mode, 

which consume a very low quiescent power.  In this aspect, there is an opportunity to power 

up these devices directly from the energy harvested from the human body. In recent years, the 

concept of energy harvesting has sparked an interest throughout the industry, and the number 

of publications related to this field has increased dramatically. Ever since its first proposal in a 

scientific publication by Starner in 1996 [2], the concept of harvesting energy from the human 

body is becoming more realistic now than it was 20 years ago as there has been an increase in 

the introduction of the energy harvesters or transducers that are capable of offering good 

efficiency, supported by the decreasing power consumption of most electrical and electronic 

devices. The interest to integrate energy harvesting mechanism into wearable devices arises 

due to few advantages. These include the reduction of system cost, less impact to the 

environment, less maintenance, and the possibility to further scale down the devices.   

 
Figure 1.1: Wearables on a person in the future. Image taken from RoweBots [3]. 

The human body is an abundant energy generator, however with a low mechanical efficiency 

of around 15 -30 % which results in a lot of energy available to be harvested via various 

mechanisms. To put this into perspective, the daily amount of energy used by a human body is 

approximately 10 MJ (equivalent to 800 typical AA batteries or 0.2 kg of body fat), and based 
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on the metabolic efficiency alone, a significant amount of energy is released into the 

surroundings, mainly in the form of heat [4]. There are two main types of mechanism to harvest 

this energy; thermoelectric and through motion and vibration. Another possibility is to harvest 

energy from the surroundings through wearable harvesters or transducers, such as the concept 

of wearable solar panel and wearable electromagnetic wave rectenna.  

Thermal energy from the human body can be harvested to produce electrical energy by means 

of thermoelectric devices. These devices contain thermoelectric material which can generate 

electrical voltage from temperature differences (Seebeck effect). Since the human body is 

continuously regulated to be at 36 °C, a significant amount of heat (up to 100 W [5]) is released 

to the surroundings. By placing thermoelectric generators on the human body, energy can be 

harvested from the difference between the body temperature and the surrounding temperature. 

The amount of harvested energy mainly depends on the magnitude of temperature difference 

and the surface area of the thermoelectric generator. Using this method, typically around few 

µW to mW can be harvested from a single thermoelectric generator placed on the human body. 

Three main transducers are used to harvest energy from the motion and vibration of the human 

body. These are piezoelectric transducer (utilises piezoelectric material which can generate 

voltage when it vibrates), electromagnetic induction (utilises magnetic material to generate 

voltage from motion based on Faraday’s law), and electrostatic transducer (varying capacitance 

under constant charge or constant voltage condition). Unlike thermal energy, motion and 

vibration energy is not continuously available to be harvested except when the human body is 

in motion. Generally, the amount that can be harvested from this method is in the µW range. 

Apart from harvesting energy directly from the human body, it can also be used as a transducer 

to harvest energy from the surroundings. This is the case for electromagnetic wave (EM), in 

which the human body can act as an antenna to pick up this signal. Human tissues have a very 

high dielectric constant and can be easily coupled with a low frequency EM wave. This will 

then generate electricity in the human body, due to its conductive property. However, the 

amount of energy that can be harvested from this method is very low (approximately 50 µW 

from [6]). Finally, by placing a wearable solar panel on human body, a significant amount of 

energy can be harvested from the surrounding illumination. For example, an integrated jacket 

with 16 solar panels has been demonstrated capable of generating 0.5 W of power during sunny 

day [7]. The method of harvesting energy from the human body and surrounding is presented 

in Figure 1.2.  
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Figure 1.2: Mechanism to harvest energy from the human body and surroundings to generate 

power for wearable devices. Images taken from their respective publications in [7]–[14]. 
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Wearable devices will require a steady dc supply voltage in order to operate reliably. In order 

to power up wearable devices from the energy harvested from the human body, a power 

converter is needed as the front-end interface (rectifier or DC-DC converter). This power 

converter needs to be a low power converter. Furthermore, energy buffer/storage is also needed 

in order the support the intermittent nature of the energy harvester. The full system of wearable 

devices with energy powered from the human body would comprise all of these elements; 

energy harvester, power converter, energy storage, and wearables as shown in Figure 1.3. 

 

Figure 1.3: System architecture of a wearables with its own energy harvester and energy 

storage.  

From this, a major problem could potentially arise and subsequently an opportunity presents 

itself. In the future, it is forecasted that a human body would have a lot of wearable devices, 

and if each system were to be integrated with an individual dedicated energy harvester, then 

there would be multiple harvesters and multiple energy storage on a human body, which is an 

inefficient approach. Moreover, some energy harvesters are needed to be placed on a specific 

location on the human body for maximum efficiency but wearable devices may be worn on 

other parts of the body. There exist an opportunity for the harvesters and storage system for all 

of the wearable devices to be tied together to a single unit, reducing the size and weight of the 

whole system. If we can imagine that a human body is like a big city with multiple localised 

power plants (energy harvester and storage), multiple residential houses and industrial areas 

which consume power (wearable devices), and a big overhead cable connecting them together 

(conductive fibre through clothing), then we can imagine that the whole system can be 

modelled as the electricity grid system. From this, the concept of pico-grid, which is a low 

power grid system designed specifically to harvest energy from human body and distribute this 

energy to power up wearable devices is proposed, designed, and discussed.    
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1.2 Aim and Objectives 

The main aim of this PhD project is to demonstrate a working prototype of a multiple energy 

harvesters system designed to power up multiple low power loads through a single link system. 

The introduction of the system itself which is named as a pico-grid, since it is possibly the 

smallest possible scale of the grid system, is the main contribution of this PhD. The main focus 

of the PhD is therefore to design an integrated system of these multiple sub-systems, and to 

ensure a seamless operation of the integrated system. 

In order to achieve the main aim, the objectives that need to be completed include: 

• Define the operation modes and parameters of the proposed pico-grid system, such as system 

architecture, power flow control, and voltage range. 

• Design each sub-system independently within the set operation in order to ensure that each 

system can work independently before integrating them together.  

• Determine and design an efficient load sharing mechanism among connected energy 

harvesters. In the system, the power consumed by all of the wearables will be jointly 

provided by multiple harvesters at the same time and therefore, a load sharing mechanism 

is needed to achieve this.  

• Determine and design energy buffer and storage charging and discharging mechanism in the 

pico-grid. Energy storage is a requisite in the system and acts not only as buffer or storage 

for the harvested energy, but also as a back-up power supply in the case when energy is 

unavailable from the harvesters. In that sense, this sub-system serves either as a load or 

power source, depending on the power level in the system bus.  

• Design a cut-off mechanism and load shedding operation in order to ensure the safety and 

reliability of the pico-grid system. 

• Demonstrate the integration of each sub-system and a final working prototype of the pico-

grid system. The performance of the system will be analysed to ensure it meets the 

specifications set for the application requirements. 

It should be noted that the pico-grid system is a system that comprises many sub-systems, and 

whilst each sub-system can potentially be further optimised to suit the overall operation of the 

integrated system, the main focus of this PhD project however is not to design and optimise 

each system but rather focus on introducing the system itself and to demonstrate an approach 

of systematic integration of each sub-system in order to achieve a working pico-grid prototype. 
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1.3 Pico-grid 

One of the most important innovations that has driven industrial and technological revolutions 

and enabled the development of a modernised world is the grid system. This system has enabled 

power to be delivered to any remote area from far away sources. Grid system is an autonomous 

interconnected system comprised of multiple energy sources and multiple loads connected via 

overhead cables (national grid). 

The concept of a grid can be scaled down and applied exclusively on human body to power up 

wearable devices as shown in Figure 1.4, and is called ‘pico-grid’. In this, a system of energy 

harvesters and multiple wearable devices are connected through a single bus, where the power 

flow takes place.  

Since most wearable devices require a dc supply voltage, and since some energy harvesters 

generate dc voltage, the link which connects all of the elements together is proposed to be 

operated in dc. Plus, energy storage such as rechargeable battery and supercapacitor are also in 

dc, therefore by using a dc link bus, the need for any rectifier or inverter is eliminated and thus 

increases the efficiency of the system. This is unlike the typical grid system, which is mostly 

operated in ac. However, there is an emerging concept of a dc micro-grid, which is a small 

scale localised grid system connected to the main grid system and capable of providing and 

generating power on their own. 

The pico-grid is proposed to be operated at 2.2 V, since this voltage is an intermediate level 

between a typical li-ion rechargeable battery (3.7 to 4.2 V) and the expected voltage produced 

by the energy harvesters (in the range from few mV to 1.5 V). Furthermore, most wearable 

devices require a dc supply voltage in the 5 V vicinity, which makes 2.2 V a good choice for 

the bus voltage. The voltage cannot be too low or too high from this range as the DC-DC 

converter would be pushed to the limit in order to provide a higher step-up or step-down ratio, 

which in turn would generate high losses and reduce the efficiency of the entire system. 

The system architecture of the pico-grid is shown in Figure 1.5. There are two main operations, 

determined by the control system, and defined by the amount of available power and load 

demand: 

• Condition 1 – power produced by energy harvesters is the same or higher than the load 

demand, in this case, the excess available power is used to charge the storage system. 
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• Condition 2 – power produced by energy harvesters is lower than the load demand, in this 

case, the storage system will discharge to support the load demand. If the demand is still not 

met, then load shedding process will start based on the priority of the loads. 

Finally, since pico-grid is used to supply power for wearable devices, the plug-and-play 

functionality is one of the required features in the system. The pico-grid will be designed to 

enable plug-and-play functionality not just for the wearable devices, but also for the energy 

harvesters. 

 

Figure 1.4: The final prototype proposed for the pico-grid system on human body. 

 
Figure 1.5: System architecture for pico-grid system. 
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1.4 Thesis Outline 

The contents of this thesis encompass the design, construction, testing, and evaluation of each 

sub-system related to the pico-grid system. After each sub-system has been designed and tested 

to ensure individual successful operation, all sub-systems are integrated together to form the 

full working system prototype, which is then tested and evaluated. 

Chapter 2 provides an overview and overall design for the control system for the harvester 

converters to ensure successful parallel load sharing operation. The theory for load sharing is 

presented and discussed at the beginning of the chapter, and then the control design based on 

the proposed droop mechanism is presented, simulated, and discussed. Solar panel and 

thermoelectric generator (TEG) are selected to be the main energy harvesters. As the nature of 

the output power for these harvesters is time-varying, the droop mechanism needs to be 

designed to follow the variation of this power, to ensure maximum power is capable to be 

delivered to the load. Finally, the construction of multiple source converters for these harvesters 

with the proposed self-adjusted droop control system is presented and the performance is 

evaluated. 

Chapter 3 presents the power flow operation for the power converters for the storage system 

which serves as the backbone for the pico-grid operation. A supercapacitor and rechargeable 

battery are selected as the main energy storage element. The mode select circuit to control the 

power flow for charging and discharging mechanism is presented and tested. Several important 

operations such as start-up operation are presented and evaluated. The proposed mechanism 

for load shedding is also presented and discussed. Experiments and tests are carried out to test 

the feasibility of the proposed mechanism and the performance is presented and discussed. 

Chapter 4 which is the most important chapter presents the integration steps of the whole sub-

systems and discusses and evaluates the performance of the entire system. The first wearable 

prototype is built from the integrated system and the performance is evaluated. Few 

recommendations for improving the first prototype in order to be implemented in real world 

applications are outlined by the end of the chapter. 

Chapter 5 presents an additional side project during the PhD involving fabrication and electrical 

characterisation of ZnON thin film diode in MIS structure which could potentially be deposited 

on a flexible substrate. This diode is initially intended to be implemented as a rectifier circuit 
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for energy harvesting applications. The results for the fabrication and subsequent temperature 

dependent I-V and C-V characterisations are presented and discussed. 

Finally, the conclusions and future work are presented in Chapter 6.
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Chapter 2: Parallel Load Sharing – Theory and Demonstration 

 

Parallel Load Sharing – Theory and 

Demonstration 
 

 

2.1 Foreword 

In this chapter, the concept of simultaneously extracting energy from multiple harvesters is 

proposed, discussed, simulated, and demonstrated. This operation of load sharing among 

harvesters is a very important feature of the pico-grid system (multiple sources multiple loads), 

which differentiates it from the typical single source single load or single source multiple loads 

systems. The control method to achieve a seamless load sharing operation is presented and 

discussed. This method which relies on the concept of voltage droop regulation is further 

improved by integrating a self-adjusted feature to ensure that the variation of input power is 

considered. Finally, a multiple sources multiple loads system is built from commercial-off-the-

shelf (COTS) components and the functionality of the load sharing concept is demonstrated. 

2.2 Background and Theory 

2.2.1 The Need for Multiple Multitype Energy Harvesters  

Recently, the concept of WBAN has surfaced and attracted significant attention throughout the 

wearables industry [15]. In this system, a network of wirelessly interconnected sensors on 

human body work together to sense and monitor certain parameters of the body, which are 

mostly health-related, and send the signals to the processing centre, normally to a mobile 

phone, to alert the user on any fore coming health issues. This concept is very similar to the 



Chapter 2  Parallel Load Sharing 

12 

 

WSN, in which a network of multiple sensors works autonomously and send signals to the 

central processor. These concepts are all related to the emerging concept of Internet-of-Things 

(IoT), in which multiple sensors, devices, appliances, and almost any product, are wirelessly 

connected and capable of exchanging data, sending instructions and commands, enabling 

wireless integration of almost every aspect of electronics devices. For WBAN and WSN, since 

most of the networks comprise sensors, therefore the power consumption of each node is very 

low. Traditionally, this is powered by a rechargeable battery. However, major drawbacks 

associated with a rechargeable battery such as a frequent charging requirement, performance 

degradation over time, operation sensitivity over a specific temperature range, and eventually 

the need for a replacement have made the integration of energy harvesting mechanism into 

these systems a more logical and realistic approach. Furthermore, multiple researchers have 

introduced efficient energy harvesters that can harvest and scavenge enough energy to sustain 

the operation of these wireless nodes. Multiple standalone sensor node systems powered by a 

single energy harvester have been introduced in the publications [16]–[19]. However, the 

intermittent and sporadic nature of the power output of most energy harvesters means that 

integration of energy storage is still a requisite requirement in these systems. This means that 

the nature of the harvester itself defeats the purpose of having the harvester in the system to 

replace the rechargeable battery. To counter this particular issue, the use of multiple and 

multitype energy harvesters in the system is introduced. Multiple harvesters with different 

energy harvesting or scavenging mechanisms (hence multitype) are needed to ensure a higher 

opportunity for a continuous supply of power, hence capable of sustaining the operation of 

these systems.  

To reduce the overall footprints of the multiple energy harvesters, a single cell comprising 

multiple and multitype harvesters has been proposed. For example, recently Guo et al. [20] 

have introduced a hybrid triboelectric-electromagnetic generator capable of harvesting 

mechanical energy from harsh environments. The weakness with their generator is the 

harvesting mechanism solely relies on surrounding mechanical energy, and when this one type 

of energy is unavailable, then the amount of harvested power depletes to zero. A better solution 

to this type of hybrid energy harvester is a generator that can harvest multiple surrounding 

energy at once, such as the one demonstrated by Wu et al. [21], which is capable of harvesting 

mechanical, solar, and chemical energy at the same time. Other examples are demonstrated by 

Zheng et al. [22] and Lee et al. [23]. However, these papers do not outline another challenging 
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aspect associated with multiple and multitype harvesting system, which is how to extract and 

deliver the energy from all of these sources simultaneously to the target load.  

 

Figure 2.1: (a) shows a multiple multitype energy harvesting system proposed by Lemey et 

al. [24]. The red oval shows the OR-ing diode configuration. (b) shows the actual depictions 

of the system on the human body. Images taken from [24]. 

Multiple methods have been proposed in the literature in relation to the power flow 

management and connectivity between multiple and multitype energy harvesters in a single 

system. The most common method of connecting two or more energy sources is through the 

power OR-ing method, in which every source is connected in parallel to a common link through 

a passive diode or a transistor in diode configuration. This diode serves to prevent each 

harvester to be perceived as a load by other harvesters, thereby preventing the power to flow 

to the harvester. Although this method ensures that the power is always delivered to the load if 

at least one of the sources is generating power, it suffers from energy wastage if two or more 

sources are generating power, since only the source with the highest voltage will be connected 

to the load. If the sources are energy harvesters, then the energy harvested by only one harvester 

with the highest voltage will be delivered to the load, regardless of the availability of another 

harvester with a higher power. For example, Lemey et al. [24] have demonstrated a system in 

which the large area around the antenna integrated in smart fabric interactive textile (SFIT) for 

WBAN is utilised for a multiple energy harvesting system. In their system, they used TEGs 

and solar panels with OR-ing diodes connected between them to supply COTS chip MAX 

17710 to deliver regulated power to the load and charging battery at the same time. The main 

issue with their system is the OR-ing diodes which prevent the power to be extracted from both 

harvesters at the same time. However, this work is probably the closest concept to a pico-grid 

system, in which multiple harvesters are integrated together on human body in a single system 
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as shown in Figure 2.1. The same direct connection with the OR-ing mechanism is also 

presented by Tan et al. [25], Romani et al. [26], and Carli et al. [27] as shown in Figure 2.2.  

 

Figure 2.2: Multiple multitype energy harvesting systems using OR-ing method reported in 

publications; (a) from [25], (b) from [26], (c) from [27]. Red ovals show the OR-ing 

configuration. 

In the previous OR-ing configuration, one of the criteria that must be met by the energy 

harvesters in order to ensure successful delivery of power to the load is that the voltage 

produced by the harvesters must exceed the diode turn-on voltage, which is around 0.7 V for 

COTS silicon p-n diode, 0.3 V for COTS Schottky diode, and the threshold voltage of the 

COTS transistor for passive diode configured from a transistor. This means that some high 

power low voltage energy harvesters such as TEG would have difficulty to get its power 

transferred to the load. Furthermore, even for those harvesters that generate enough voltage to 

barely exceed this turn-on voltage, power loss incurred in terms of voltage drop across the 

diode would be enormous, further reducing the magnitude of power delivered to the loads. To 

counter this problem, the voltage of the harvesters is stepped up by the means of a power 

converter before the OR-ing diode as demonstrated by Magno et al. [28]. Another method of 

using a low drop-out (LDO) voltage regulator to replace OR-ing diode, hence increasing the 

overall power transfer efficiency was also demonstrated by Farrarons et al. [29]. However, the 

main issue associated with the power OR-ing method, in which only one harvester will be 



Chapter 2  Parallel Load Sharing 

15 

 

connected to the load regardless of the availability of other harvesters still exists. Moreover, 

the power consumption of the power converter itself must be taken into consideration when 

evaluating the performance of the whole system.  

 

Figure 2.3: Difficulty in OR-ing configuration due to the output voltage mismatch. 

It can be argued that in the OR-ing configuration, if the output of each parallel-connected 

converter is tuned to produce a similar level of voltage, all converters will be able to deliver 

current to the load at all times. However, this is very difficult to achieve and may even lead to 

the collapse of the system due to two main reasons. The first reason is the difficulty to achieve 

a perfectly equal output voltage for all converters with the presence of steady state error in the 

output voltage. This can be further explained in Figure 2.3. In Figure 2.3 (a), assuming both 

converter 1 and 2 are tuned to produce 2.2 V, and if converter 1 outputs 2.22 V and converter 

2 outputs 2.18 V under no load condition due to their steady state error, only converter 1 will 
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be connected to the load. Converter 2 will be connected to the load if the voltage level in 

converter 1 drops to its actual output voltage; 2.18 V due to the internal droop in converter 1. 

However, if the power rating in converter 1 is low and could collapse before the output voltage 

reaches 2.18 V, then it would collapse first even before converter 2 is connected to the load, as 

shown in Figure 2.3 (b). The second reason is the different in power rating between parallel 

connected converters. This is further illustrated in Figure 2.4. In Figure 2.4 (a), assuming that 

two converters are connected in parallel and are able to output a perfectly equal output voltage 

and possess a similar amount of internal droop, if converter 1 has a lower power rating than 

converter 2, then as the magnitude of drawn current increases, it would collapse and the loading 

for converter 2 will tremendously increase due to sudden unavailability of converter 1. If the 

amount of drawn current exceed the power rating of converter 2, then converter 2 will also 

collapse, and the overall operation of the system will collapse.    

 
Figure 2.4: Difficulty in OR-ing configuration due to the different power ratings. 
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To further improve on this energy harvesting issue, a rapid charge/discharge energy storage 

such as a supercapacitor that can capture intermittent power is integrated into the system to 

ensure that all power from the harvesters can be stored first before being transferred to the load, 

still via a direct parallel connection. In this configuration, typically each harvester has its own 

dedicated power converter and supercapacitor, and the voltage of the supercapacitor is used as 

the indication of its storage status and when the energy should be transferred to the load. By 

using this buffer storage system, the energy from all harvesters can be captured at the same 

time, thereby eliminating the problem associated with the direct OR-ing configuration. 

Furthermore, since the load is effectively disconnected from the harvester and power converter 

during the charging process, the power converter can be easily integrated with MPPT function, 

further increasing the efficiency of the energy extraction process. This method was utilised by 

Ambimax [30], which is probably the most cited published work in multiple multitype energy 

harvesting system. Ambimax was built from COTS components and is capable of harvesting 

energy from multiple energy harvesters at the same time by integrating a dedicated 

supercapacitor for each of the harvesters, and when the voltage of the supercapacitor reaches a 

pre-set threshold voltage, then the node from that supercapacitor is short circuited to the load, 

thus enabling the power transfer. Another example is Kang et al. [31] who have demonstrated 

a system with an almost similar mechanism, however in an integrated package. Their proposed 

system is shown in Figure 2.5. The same concept was also demonstrated by Srujana et al. [32] 

and Morais et al. [33]. Although the efficiency of energy extraction is increased by effectively 

harvesting every available energy, the system is incapable of delivering all of the harvested 

energy at the same time to the load, especially when the power demand from the load is higher 

than what each single harvester could produce.  

Some other methods have also been proposed. Dini et al. [34] have proposed a multiple 

multitype energy harvesting system based on a priority based queuing. In this system, a similar 

approach of using dedicated supercapacitor and MPPT was used, however instead of using the 

voltage of the supercapacitor as the connection switching parameter, a set of priority based 

mechanisms are proposed to transfer the power to the load. The pre-set queue places the 

harvester with the highest expected power output on the highest priority and when the circuit 

detects that the supercapacitor associated with this harvester has low power level, the queue 

will move to the second prioritised harvester, and so on. On the other hand, Shi et al. [35] have 

proposed a timely slot queue mechanism, in which each harvester is allocated a specific time 

slot to transfer power to the load. In determining the slot queue selection process, the harvesters 
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with output voltage lower than a pre-set threshold voltage are disabled. Finally, a well-designed 

system with plug-and-play capability was proposed by Weddell et al. [36], utilising a 

multiplexing method to select the power to be delivered to the load. Their complex system 

consists of a microprocessor used to store electronics datasheet of each of the elements in the 

system, and works together with the multiplexer to consistently determine the energy available 

in each node and transfer this energy to the load depending on the demand from the load.  

 

Figure 2.5: Proposed system by Kang et al. [31]. Left shows the circuitry architecture of the 

energy combiner system and the flowchart of the combiner operation is shown on the right. 

 

Figure 2.6: Multiple energy harvesting system utilising priority based queueing method 

proposed by Dini et al. [34] The system architecture is shown on the left and the operation 

flowchart is shown on the right. 

In all of these reported systems, although the issue of harvesting every available energy 

simultaneously has been solved, none are capable of delivering power to the load directly and 
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simultaneously from all energy harvesters at any given time. This will become a major problem 

especially when the system is used to power up heavy load. In that sense, all of the reported 

work serve to improve the redundancy of the power by integrating them together to sustain the 

operation of the system, instead of integrating multiple harvesters to boost the power output 

capability. Apart from a few, most of the systems do not possess plug-and-play functionality 

for the harvesters. Furthermore, for systems that rely on a supercapacitor to store energy, 

between the period in which the supercapacitor is fully charged and the supercapacitor is 

connected to the load, the energy harvested during this period will not be extracted. It will be 

shown in the next section by using the method proposed in this work, all of these issues can be 

solved altogether concurrently.  

2.2.2 Voltage Droop Current Sharing Mechanism 

The proposed pico-grid system would comprise multiple energy harvesters, each equipped with 

a dedicated power converter to regulate the output voltage of the harvesters to meet the input 

requirements of the DC bus. The purpose of integrating multiple sources in this system is to 

improve redundancy, reliability, and loading capacity of the output power. Improvement in 

redundancy and reliability is achieved when a continuous supply of power to the load can be 

sustained via the introduction of multitype harvesters, which has been accomplished via 

multiple methods that have been reported in the literature presented in the previous section. On 

the other hand, improvements in loading capacity involves combining and transferring 

harvested power to the load altogether simultaneously, which has not been reported elsewhere. 

To achieve both of these objectives, a method capable of delivering power simultaneously to 

the load; voltage droop is explored. Voltage droop is defined as an intentional voltage drop of 

the output of a power converter when its output current is increased. As will be shown later, 

the introduction of this ‘virtual impedance’ at the output of a power converter not only would 

enable multiple power converters connected in parallel to simultaneously deliver power to the 

load, but can also be utilised to set each converter to share the same magnitude of current in 

terms of its generation capacity, or per unit (P.U). 

When power converters are connected in parallel, there should be a cross regulation between 

them to enable current sharing. The concept of paralleling multiple power converters has been 

discussed in great details in publications, such as by Huang et al. [37]. In high power systems, 

this can be achieved through master-slave configuration, in which one master power converter 

is set to be operated in voltage controlled mode and the other power converters are set to be 
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operated in current source mode. In this configuration, the voltage is effectively determined by 

the master controller. Furthermore, in a few cases, the communication link between the 

controllers of these converters is required, further complicates the overall system architecture. 

However, in a low power system, this method is not feasible since the configuration consumes 

a significant amount of power. In this case, a simpler control mechanism is required. 

Generally, a DC-DC power converter is designed to output a constant voltage regardless of the 

output current. However, the presence of parasitic resistance between the output node of the 

converter and the input node of the load causes the drop of this voltage as seen by the input 

node. The higher the current drawn from the converter, the higher this voltage drop would be. 

The idea of voltage droop was derived from this phenomenon, in which an intentional voltage 

drop can be integrated in the output of the power converter by the introduction of virtual 

impedance, to shape the V-I loadline of the power converter, as shown in Figure 2.7 (a). This 

virtual impedance can be integrated in the control loop of the power converter, as will be shown 

in the latter section. The original loadline of a typical DC-DC converter is shown as a blue line. 

The voltage collapse region marked as a red dot indicates the collapse of the converter 

operation when the drawn current exceeds its output power capability. By integrating a virtual 

impedance, this loadline can be shaped to the steeper green line, enabling higher current to be 

drawn at lower voltages (same amount of output power).  

 

Figure 2.7: (a) shows the typical loadline of DC-DC converter (in blue) and the modified 

loadline with droop (in green). (b) shows the connection of three power converters with 

different rated power connected in parallel. 

If the maximum expected output powers for multiple converters are known, then each converter 

can be designed to have the same nominal output voltage at no load and at maximum load 
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conditions, as shown in Figure 2.7 (b). When these converters are connected in parallel, each 

converter can supply current simultaneously to the load. Furthermore, current sharing in terms 

of their generation capacity is automatically achieved. For example, if the power demand from 

the connected load causing the operating voltage to droop as shown in Figure 2.7 (b), then each 

converter will supply a different magnitude of current according to their loadline characteristic, 

however their percentage of the loading is equal (70 % or 0.7 P.U in this case).  

2.2.3 P.U Equal Load Sharing and Simulation 

In order to demonstrate an equal load sharing mechanism achieved via the voltage droop 

method, a case study and full simulation is presented in this section. In the simulation 

presented, three energy sources; source 1 with 1 V 0.1 W output, source 2 with 0.8 V 0.5 W 

output, and source 3 with 3 V 0.25 W output are connected to a common bus, each via a 

dedicated power converter. For simplicity, it was assumed that the energy sources produce a 

consistent voltage and are capable of generating maximum power during the whole period of 

simulation. The load comprises a 70 Ω resistor, 1 µF capacitor, and a 40 mA constant current 

sink, all connected in parallel. The nominal voltage of the bus was set at 2.0 V for 50 % loading 

of the system. The droop voltage range of 0.4 V was set from 2.2 V (0 % loading) to 1.8 V (90 

% loading). 

To determine the magnitude of the droop for each converter, the maximum output current of 

each power converter, Imax loading was determined according to the following relation: 

I(max.loading,   90% loading) =
0.9 × Ƞconverter × Pharvester

V(max.loading,   90% loading)
 

Here Ƞconverter is the efficiency of the power converter at maximum loading, Pharvester is the 

maximum output power of the energy harvester, and Vmax loading is the set output voltage of the 

power converter at 90 % loading (1.8 V for this case). The efficiency of each converter was 

assumed to be 90 % for the buck converter and 85 % for the boost converter. The value of 0.9 

represents the set maximum loading of the converter in P.U in order to prevent the converter 

from approaching its full loading, which could possibly collapse the operation of the power 

converter. From this, the magnitude of the required voltage droop, ∆droop was determined 

from the following relation: 

∆Droop =
V(no load,   0% loading) − V(max.loading,   90% loading)

I(max. loading,   90% loading)
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Here Vno load represents the output voltage of the power converter at no load (open circuit) 

condition (2.2 V). From this, the droop regulation and subsequent V-I output loadline of each 

converter was determined and the results are shown in Figure 2.8. As can be observed from the 

figure, power converter 1 which outputs regulated voltage from energy source 1 possesses the 

highest droop due to its lowest power capability, and vice versa. The loadlines for all converters 

in P.U are shown in the inset figure. The loadlines in P.U are regulated to output the same P.U 

output current at a specific bus voltage, indicating that all converters share the loading equally 

between them. 

 

Figure 2.8: V-I loadlines of all power converters and their respective voltage droop. The inset 

figure shows the loadlines of all power converters in P.U. The loadlines shown here represent 

the steady state value of the power converter. 

The simulation layout in Simulink is shown in Figure 2.9. The simulation was run for 5 seconds 

and the readings for the output current for all sources, bus voltage, and load current were 

recorded and are shown in Figure 2.10. 
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Figure 2.9: Simulation layout in Matlab Simulink. 
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Figure 2.10: Results from the simulation. 

The chronology of the simulation and results are discussed as follows: 

1) At t = 0, power converter 1 (for energy source 1) and power converter 2 (for energy source 

2) are both connected to the load of 70 Ω resistor and 1 µF connected in parallel. Power 

converter 3 (for energy source 3) and 40 mA constant current sink are not connected in the 

system. It can be observed from the waveforms that both power converter 1 and power 

converter 2 deliver an output current simultaneously to the load. It can be determined from 

the bus voltage (2.16 V) that the loading of the system is less than 50 %. The output current 

from both converters are consistent with the designed loadlines as shown in Figure 2.8 

before.   

2) At t = 1, power converter 3 is connected, increasing the available power of the system. As a 

result, the bus voltage rises indicating that the loading of the system is reduced, and both 
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output current from power converter 1 and power converter 2 decrease as the load is now 

shared with power converter 3.  

3) At t = 2.5, 40 mA constant current sink is connected, increasing the load in the system. All 

power converters respond to this sudden change in load by increasing their output current, 

and the bus voltage drops due to the higher loading. 

4) At t = 4, power converter 2 is disconnected, decreasing the available power in the system. 

As a result, the load is now shared between power converter 1 and power converter 3. The 

output current from both of these converters increase to balance out the absence of output 

current from power converter 2. The bus voltage decreases due to the higher loading in the 

system. In these simulations, it was observed that the steady state values of the converters 

agree with the designed loadlines.  

This simple simulation shows that the operation of parallel power converters can be easily 

regulated via the introduction of this voltage droop mechanism. The observations and 

conclusion drawn from this simulation include: 

1) Voltage droop enables all connected power converters to simultaneously deliver current, 

hence power to the load. This means that the system could be used to power up heavy load 

that could not be powered by a single energy harvester, hence increasing the loading 

capability of the energy harvesting system. 

2) The system is capable in reliably responding to the connection and disconnection of any 

power converters and loads, and provided the generation capacity is higher than the power 

demand from the load, the system will not collapse. The response time is determined by the 

time constant of each converter connected to the system. This means that in the actual 

system, the plug-and-play feature is easily achievable.  

3) Apart from a pre-set design value, there is no communication between power converters to 

regulate the sharing mechanism, hence there is no need to establish a communication link 

for the converters. The bus voltage is used by all converters as the main regulation 

parameter. 

4) Load burden is shared equally by all connected power converter in terms of their generation 

capacity.  

5) The bus voltage can be used to determine the loading in the system, hence more features 

such as load shedding can be integrated based on the magnitude of the bus voltage. 

In the next section, the implementation of this voltage droop mechanism in actual control 

circuitry of the power converter is investigated. Furthermore, as energy harvesters possess 
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time-varying output power, the droop needs to be regularly tuned to match this variation and 

the solution for this issue will be presented. 

2.3 Droop Demonstration 

In this section, the implementation of voltage droop mechanism in presented. Although the 

general concept has been outlined in the previous section, the implementation aspect in actual 

circuits has neither been presented nor discussed yet. Moreover, the droop magnitude presented 

in the previous section is fixed and static, however since the amount of output power from the 

energy harvester will vary over time, the magnitude of the droop needs to be able to follow this 

variation. The method to achieve this droop variation with rated power for the energy harvester 

proposed here has not been reported elsewhere and is the main contribution from this chapter. 

This section investigates the implementation and presents the results of this variable droop 

mechanism in the feedback circuitry of a power converter.   

2.3.1 I-V Characterisation for Harvesters 

The first step to demonstrate the droop mechanism is to investigate the characteristics and 

performance of energy harvesters/transducers that will be used in the system. In this aspect, 

two types of harvester are proposed; solar panel and thermoelectric generator (TEG). Each of 

these harvesters was put under controlled environment conditions and the magnitude of 

harvested power that will be fed to the system is determined.  

a. Solar Panel 

The characteristics and equivalent circuit models of solar panel have been proposed, presented, 

and discussed in great details in the literature. Under any illumination, a typical solar panel 

possesses a standard and recognisable shape of current voltage (I-V) and power voltage (P-V) 

characteristics. Additionally, since solar panel possesses parasitic series and shunt resistance, 

there is a point in the P-V curve where the solar panel outputs the maximum available power 

to the load. This point is commonly known as maximum power point (MPP). This point 

typically occurs when the output voltage of the solar panel is at 80 % of its open circuit voltage 

(VOC). Most power converters are equipped with MPP tracking (MPPT) functionality designed 

to adjust the input impedance to ensure that the solar panel is always operating in the region 

around this MPP voltage (VMPP).  

The solar panel used in this thesis is an amorphous silicon (a-Si) AM-7E04CAR manufactured 

by Sanyo as shown in Figure 2.11 (a). In order to obtain the I-V characteristic of this panel, it 
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was put under four different illuminations as described in Table 2.1 and the I-V curve was 

extracted for each illumination by drawing a set current from the panel by using Keithley 

Sourcemeter 2604B as shown in Figure 2.11 (b). Figure 2.11 (c) shows the extracted I-V and 

calculated P-V curves of the solar panel under these different illuminations. Figure 2.11 (d) 

presents the plot of output voltage of the panel when the MPP occurs (VMPP) against open 

circuit voltage (VOC). All the relevant results are tabulated in Table 2.2. 

Table 2.1: Illumination level 

Illumination LED Lux (lx) 

Illumination 1 White (cool white) 500 

Illumination 2 Yellow (warm white) 600 

Illumination 3 Both white and yellow 1100 

Illumination 4 Typical fluorescent indoor light 120 

 

 

Figure 2.11: Experimental setup and characterisation results from the solar panel. 
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From the I-V curve, it can be observed that the short circuit current (ISC), VOC, and extracted 

MPP vary strongly with illumination. The highest MPP of 100 mW was extracted when the 

solar panel was illuminated through a combination of warm and cool LEDs. Under a typical 

indoor fluorescent light illumination, 2 mW of MPP was able to be extracted. Finally, from the 

VMPP/VOC ratio, it can be observed that the MPP occurs at approximately 80 % of VOC, which 

agrees with the expected behaviour of any typical solar panel. 

Table 2.2: Parameters for the solar panel for all illuminations 

Illumination VOC (V) ISC (mA) VMPP (V) MPP (mW) 

4 8.62 0.35 6.8 2.04 

3 11.30 12.62 9.2 99.09 

2 10.72 6.55 8.8 49.72 

1 10.63 5.93 8.4 46.62 

 

b. Thermoelectric Generator (TEG) 

The TEG is able to convert the difference in temperature, ∆T between its two exposed surfaces 

to a useful electrical voltage (Seebeck effect), which can be used to power up an external low 

power load. Generally, its equivalent circuit is simply a voltage source in series with an internal 

resistance. The magnitude of the output voltage varies linearly with the temperature difference. 

When the current flows through the TEG (when connected to the load), a reversible effect 

known as the Peltier effect can be observed; the applied voltage across the TEG created the 

temperature difference between its two surfaces. This causes the temperature of the hot side 

surface of the TEG to drop and vice versa, reducing the output voltage from the Seebeck effect 

and hence the output power of the TEG. Due to this unavoidable phenomenon, it is extremely 

important to maintain ∆T between the two exposed surfaces in TEG to ensure a stable output 

power.  

The TEG used in this thesis is Seebeck Effect Module GM250-241-10-12 manufactured by 

European Thermodynamics. Since the TEG possesses a very low output voltage, two similar 

TEGs exposed to the same temperature on each side are connected in series to boost the total 

output voltage. Insulating foam was placed in between the hot side and cold side. The surface 

of the hot side is directly exposed but heatsinks (PGA, 9.8 K/W, 36 x 36 x 12.3 mm) were 

attached to the surface of the cold side using a thermal interface (polyamide, 0.37 W/mK 0.127 

mm) to provide a better heat dissipation. The constructed TEGs system is shown in Figure 2.12 

(a). The small inset picture in the same figure shows the TEG module used in the system. 
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Figure 2.12: Pictures showing the TEG harvester and experiment setup together with the 

characterisation results. 

To extract the I-V characteristics under a different ∆T, a setup with a hotplate (Stuart UC152) 

and a digital thermometer (Omega HH501BJK) with a K type thermocouple were used. The 

hot side was placed directly on a hotplate and the heatsinks on the cold side were exposed to 

air with a fan facing towards it to assist the heat dissipation process. The hotplate temperature 

was controlled to heat up the hot side of the TEGs. In order to accurately monitor the surface 

temperature, K type thermocouples were placed on both sides. The temperature of the hotplate 

was varied and the ∆T and respective I-V characteristic were extracted by sinking the current 

to Keithley Sourcemeter 2604B. The setup was left for 30 minutes between each measurement 

to ensure that the temperature was stabilised for both sides. The experimental setup is shown 

in Figure 2.12 (a). Figure 2.12 (b) shows the extracted I-V characteristics for multiple ∆T. At 

∆T = 50.5 °C, a maximum power of 24.5 mW was extracted from the TEGs. At ∆T = 14 °C 
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which is the typical ∆T expected when the hot side is equal to the body temperature (≈ 36 °C) 

and the cold side is equal to the room temperature (≈ 22 °C), maximum power of approximately 

2 mW was extracted. It can be observed that the I-V curves have a strong dependency on ∆T. 

Figure 2.12 (c) shows this dependency by plotting VOC against ∆T. This plot reveals a strong 

agreement with the expected linear characteristics between these two parameters. Since TEG 

has a parasitic series resistance, similar to a solar panel, there will be a point where MPP will 

occur. Figure 2.12 (d) shows the plot of VMPP vs. VOC for the TEGs used in this thesis. From 

this, it can be concluded that the VMPP occurs at approximately 50 % of VOC.  These findings 

agree with the typical characteristic of TEG as reported in the literature. All results are tabulated 

in Table 2.3. 

Table 2.3: Extracted parameters for the TEGs under different temperature differences, ∆T. 

∆T (°C) 
Hot side 

temp. (°C) 

Cold side 

temp. (°C) 
VOC (V) ISC (mA) VMPP (V) 

MPP 

(mW) 

14.0 39.6 25.6 0.36 22 0.19 2.05 

26.0 56.3 30.3 0.69 37 0.37 7.01 

40.0 74.0 34.0 1.00 56 0.49 13.92 

50.5 87.5 37.0 1.25 78 0.69 24.33 

 

2.3.2 Calculating Required Droop from Converter V-I Loadline  

After the expected range for input voltage and power from the harvesters have been obtained, 

the interface circuitry can be designed to output the regulated voltage with a droop mechanism. 

In this thesis, COTS DC-DC converter integrated circuits (IC) suitable for the input and output 

specifications for both harvesters are used. As will be shown later, a simple addition to these 

ICs enable simple yet accurate droop mechanism to be seamlessly integrated. Unless otherwise 

stated, only steady state conditions/values are used in all analyses in the following sections. In 

order to determine the output voltage of the required power converters and subsequently to 

calculate the magnitude of the required droop, the droop parameters are presented in Table 2.4. 

Table 2.4: Parameters for droop voltage and full load. 

Parameter Magnitude 

No load output voltage (0 mA) 2.2 V 

Full load output voltage 1.8 V 

Percentage of full load from rated power 90 % 
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a. LTC-3129 for Solar Panel 

The output voltage for the solar panel used is relatively high (> 8 V). Due to this, a buck 

converter is necessary to step down the DC voltage to the required 2.2 V. For this purpose, a 

synchronous buck-boost DC-DC converter IC LTC-3129 manufactured by Linear Technology 

was selected. This input voltage range for this IC is within the expected output voltage range 

of the solar panel (1.92 to 15 V) and the quiescent current of the IC is typically around 1.3 µA. 

Since the magnitude of the down conversion of the voltage is low, the duty cycle of the 

converter would be placed to the extreme low edge, which could degrade the power conversion 

efficiency (PCE) and introduce significant noise in the system. To counter this issue, this IC 

comes with a burst mode, in which the PWM will automatically skip its switching cycle if the 

output voltage is still within a tolerable pre-set value. Furthermore, this IC has a feedback loop 

in the input side to programme the VMPP to ensure MPP can be extracted from the solar panel. 

This MPP programmed function ensures that the voltage of the solar panel is always kept above 

a pre-set VMPP, regardless of the loading condition. Since the programmed voltage is fixed 

depending on the resistor network divider ratio in the input feedback loop, a resistor with its 

resistance varies with the illumination in the same magnitude as the variation of the solar panel 

VOC with illumination is needed. This will ensure that the programmed VMPP follows the 

variation of VOC of the solar panel for any illumination level. To achieve this, a LDR whose 

resistance decreases with illumination is used.  

 

Figure 2.13: The programmed MPP function and the resistance of the LDR compared with 

the required resistance to ensure a reliable MPP functionality. 
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Figure 2.13 shows the variation of resistance value needed on the bottom side of the resistor 

network and subsequently the variation of resistance of NSL 19M51 LDR manufactured by 

Advanced Photonix, both against the VOC of the solar cell which corresponds to the different 

level of illumination. It is shown that by connecting this LDR in series with a 6 kΩ resistor, an 

almost similar illumination response with the solar cell was obtained and hence this can be 

used in the MPP feedback loop. However, as will be discussed next, the significantly low total 

resistance in this loop (< 70 kΩ) would cause a significant amount of current to flow in this 

loop especially when the voltage of the solar panel is high, and this can degrade the efficiency 

of the system. Figure 2.14 shows the circuit layout for the converter.  

 
Figure 2.14: LTC-3129 circuit configuration for solar panel used in this thesis. 

The constructed circuit was then tested under three different illuminations as presented in the 

previous section. The output of the converter was connected to Keithley Sourcemeter 2604B 

to sink set current and subsequently the output voltage was recorded. The sink current was 

slowly increased until the converter could no longer regulate the output voltage, signifying an 
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overloaded condition and the collapse of the operation. The V-I loadline was plotted to 

determine the internal droop of the converter due to the parasitic resistance. At the same time, 

the input voltage and current were also recorded. This enables an accurate determination of the 

overall efficiency of the converter. The results are shown in Figure 2.15. 

 

Figure 2.15: Results from the constructed circuit. 

As shown in Figure 2.15 (a), the loadline for the converter possesses a linear characteristic, 

signifying the effect of internal series resistance in the output side of the converter. This 

resistance of 2.9 Ω can be determined from the slope of the loadline. It should be noted that 

this high value of resistance also includes the resistance of the cable connecting the setup to 
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the sourcemeter, which is around 1.5 Ω. From the input and output power determined from the 

recorded current and voltage on both the input and output sides, the efficiency for each of the 

illuminations was calculated and shown as the lines with symbols in Figure 2.15 (b). The peak 

efficiency was around 50 % for all illuminations and is significantly lower than the expected 

efficiency as stated in the datasheet (≈ 65 %). The main reason is the significant amount of 

current flowing into the MPP feedback loop due to the low total resistance in this leg. The ratio 

of power flowing into this loop per input power was calculated and it is shown in the same 

figure as the solid lines. It can be observed that minimum reduction of 10 % in the overall 

efficiency was contributed from the feedback loop. Aside from that, the dynamic power 

consumption and parasitic resistance losses also cause further reduction on the overall 

efficiency.  

Another observation is the dependency of the maximum current hence power with the 

illumination level. The relationship between maximum power and illumination agrees with the 

previous I-V characterisations of the solar panel. Figure 2.15 (c) shows a comparison between 

extracted MPP from the solar panel in this section and previous section. The almost similar 

magnitude of MPP in all illuminations validates the functionality of the LDR based MPPT.  

 

Figure 2.16: Droop calculations. 

Since the maximum available power from the converter varies with illumination, the droop 

required for each illumination is also different in magnitude to ensure reliable equal load 

sharing in the final system. Similarly, as before, the total droop required for each illumination 

is calculated as follows: 
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∆Drooptotal =
V(no load,   0% loading) − V(max.loading,   90% loading)

0.9 ×
P(max)

V(max. loading,    90% loading)

=
2.2 − 1.8

0.9 ×
Pmax
1.8

=
0.8

Pmax
  …  eq. (2.1) 

Figure 2.16 (a) illustrates the desired new loadlines based on the calculated droops. It can be 

observed from the equation that since Pmax is a function of illumination, therefore the droop 

value is also a function of illumination. From the calculated total droops, the required additional 

droops needed to be introduced in the system can be determined: 

∆Drooprequired = ∆Drooptotal − ∆Droopinternal … eq. (2.2) 

Here, the internal droop is the droop as a result from the internal resistance of the converter. 

From this, the additional required droops were calculated and shown in Figure 2.16 (b). The 

design of the circuit to introduce these droops which vary with illumination level will be 

presented in the next section. 

b. LTC-3105 for TEG 

The output voltage for the TEGs harvesting system is low (1 V) and the voltage is expected to 

always be lower than the required output voltage of the converter (2.2 V). For this reason, a 

low voltage step-up converter is required and for this purpose, an IC manufactured by Linear 

Technology LTC-3105 specifically designed to harvest energy from a low input voltage high 

impedance source is selected. This IC has a minimum start-up voltage of 250 mV and is capable 

of stepping up the voltage to 5.25 V, configurable by the feedback loop configuration. This IC 

typically consumes as low as 24 µA of quiescent current during full operation to provide better 

efficiency. Furthermore, as before, this IC also has a programmable VMPP function to 

programme the output voltage of the TEGs in the region of around 50 % of its VOC to ensure 

maximum power extraction. However, this maximum power point controller (MPPC) function 

depends solely on the value of resistance in its loop without any direct feedback from the input 

side. In case of static resistance value, the VMPP is set at a fixed value regardless of the 

temperature difference, hence TEGs VOC variation. To counter this issue, a resistor whose 

resistance varies with temperature, thermistor is used.  Figure 2.17 (a) shows the MPPC 

configuration of this IC. Since the magnitude of the temperature difference depends on the 

temperature of two different surfaces, a minimum of two thermistors are needed, one for each 

surface. The thermistor on the hot side should have a positive temperature coefficient (PTC) 

and the thermistor on the cold side should have a negative temperature coefficient (NTC) to 

ensure the weightage for both sides is considered in determining the temperature difference.  

Figure 2.17 (b) shows the resistance of a PTC thermistor LT300014T2610KJ and an NTC 
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thermistor B57871S0123H000 against the operating temperature. The expected ranges of 

temperature for the hot side and both sides in the final system are 40 – 70 °C and 10 – 30 °C, 

respectively. Assuming the temperature of the PTC thermistor is equal to the temperature of 

the hot side and vice versa, and by fixing the hot side temperature within the expected range in 

10 °C intervals, the total resistance of both NTC and two PTC thermistors connected in series 

was determined and is shown in Figure 2.17 (c). The required programmed resistance value 

based on the formula given in Figure 2.17 (a) is also shown as the thick black line in the same 

figure. As can be seen, the blue line corresponds to the hot side temperature of 50 °C yields the 

closest value to the required resistance value. Deviations from the required resistance value can 

be observed for other temperatures, however based on the availability of an NTC and PTC 

thermistor available in the market, this combination of thermistors produces the closest value 

to the required resistance. Similarly, by fixing the temperature of the cold side, the comparison 

was drawn between the resistance of the thermistors and the required resistance value and is 

shown in Figure 2.17 (d). Similar to before, small deviations from the required value can be 

observed at around ∆T = 30 °C, however, significant deviations can be observed whilst moving 

away from this value. The final circuit is shown in Figure 2.18. 

The circuit was then tested under four different ∆T and the output of the converter was 

connected to Keithley Sourcemeter 2604B to sink set current and subsequently the output 

voltage was recorded. Similar to before, the sink current was slowly increased until the 

converter could no longer regulate the output voltage, signifying the collapse of the operation. 

The V-I loadline was plotted to determine the internal droop of the converter due to the parasitic 

resistance. At the same time, the input voltage and current were also recorded. This enables an 

accurate determination of the efficiency of the converter. The results are shown in Figure 2.19. 

As shown in Figure 2.19 (a), initially, the loadline for the converter possesses a linear 

characteristic, signifying the effect of internal series resistance in the output side of the 

converter. A steep drop from the linear characteristic can be observed after certain current 

magnitudes indicating the converter has lost its voltage regulation capability due to the limited 

input power. From the slope in the linear region, the internal series resistance was determined 

to be 4 Ω (including 1.5 Ω from cable resistance of the Keithley Sourcemeter). From the input 

and output power determined from the recorded current and voltage on both the input and 

output sides, the efficiency was calculated and it is shown in Figure 2.19 (b). The peak 

efficiency was around 65 % when ∆T = 39 °C, and overall efficiency of > 50 % was obtained, 

which agrees with the expected efficiency obtained from the datasheet. The efficiency curve 
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shows a typical increase trend when the current is initially increased. This is due to the ratio of 

the dynamic power consumed by the IC to operate to the output power of the converter is 

slowly reduced. After reaching the peak value, the efficiency starts to drop due to the 

increasingly parasitic resistance loss due to the increase in current. When the converter has lost 

its voltage regulation capability, the input power starts to drop however the efficiency shows a 

slight increase, due to the decreasing voltage on the output side of the converter.  

 

Figure 2.17: The MPPC function, the resistance of the PTC and NTC thermistors, and the 

usage of these thermistors in simulated situations when compared to the required resistance to 

ensure a reliable MPPC functionality. 
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Figure 2.18: LTC-3105 circuit configuration for TEGs used in this thesis. 

The trend from Figure 2.19 (a) also indicates a strong dependency of the maximum output 

current (when the converter still retains its voltage regulation) with ∆T. In order to verify the 

functionality of the thermistor based MPPT integrated in the IC, a comparison was drawn from 

the MPP extracted from the TEGs when connected to the IC with the expected MPP obtained 

from the characterisation in the previous section. Before that, due to the limited controllability 

over ∆T in the setup, the expected MPP from the TEGs needs to be determined since ∆T data 

in this section are different from the previous section. From the previous characterisation, both 

VOC and short circuit current (ISC) are determined to possess a linear dependency with ∆T, as 

shown in the insets in Figure 2.19 (c). By assuming that the VMPP and the current at which MPP 

occurs (IMPP) vary linearly with VOC and ISC, respectively, then the MPP can be assumed to 

vary quadratically with ∆T. Based on the MPP data obtained from the previous section, a best 

fit polynomial curve (to the power of 2) of MPP against ∆T was obtained and is shown in 

Figure 2.19 (c). From this, the expected MPP for all ∆T can be approximated and a comparison 

was drawn between the expected MPP with the extracted MPP by the IC for all ∆T in this 

section and is shown in Figure 2.19 (d). The extracted MPPs are slightly lower than the 

expected MPP, mainly due to inaccuracy of the thermistor resistance value compared to the 
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required resistance value in the loop. However, an overall satisfying performance of MPPT 

was demonstrated. 

 

Figure 2.19: Results from the constructed circuit. 

Since the maximum available current hence power available from the converter varies with ∆T, 

the droop required for each ∆T is also different in magnitude to ensure reliable equal load 

sharing in the final system. The droop was calculated in the similar manner as the previous 

section and the new desired loadlines for different ∆T are shown in Figure 2.20 (a). From this, 

the magnitude of total droop and the required additional droop against maximum drawn current 
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is plotted and is shown in Figure 2.20 (b). The design of the circuit to introduce these droops 

which vary with ∆T will be presented in the following section. 

 

Figure 2.20: Droop calculations. 

2.3.3 Variable Droop Demonstration 

In the literature, static droop (voltage droop which does not vary with time) regulation for load 

sharing has been widely demonstrated. Whilst this idea has been implemented in high power 

applications, two major challenges exist for low power energy harvesting applications. The 

first challenge is associated with the power consumption of the control feedback circuitry, 

which could become significant if the power level in the system is too low, hence degrading 

the overall efficiency or even worse, is higher than the power generated by the source. The 

second challenge is related to the frequent variation of input power which would cause the 

variation of the rated output power of the converter. This in turn would require that the amount 

of voltage droop to follow this variation. In most systems however, the amount of voltage droop 

is designed to be fixed or stiff, and even if it is not fixed, an additional circuitry (example: 

perturb and observe method) is needed hence further increasing the power consumption. This 

can be further explained by referring to Figure 2.21. When the harvester output power is 

increased, the rated output power of the converter will increase. For the same converter voltage 

(minimum after full droop) as shown in the Figure 2.21 (a), the maximum output current will 

increase. Hence the magnitude of the droop which is equal to the gradient of the loadline needs 

to change to cater for this variation to ensure that maximum amount of power is available from 
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each converter to the load. For example, by defining that VMAX = 2.2 V and VMIN = 1.8 V, the 

variation of the required droop against maximum output current is shown in Figure 2.21 (b). 

 

Figure 2.21: The need for variable droop gain.  

The typical configuration for a static voltage droop regulation is shown in Figure 2.22. In this, 

the voltage droop is integrated in the voltage feedback loop of the power converter to modify 

the reference required output voltage to achieve regulation. The RD shown in the figure which 

is the gain for the output current corresponds to the magnitude of the voltage droop. The most 

outer droop loop has a slower response than the output voltage loop and the inner current loop 

(if the converter is in current mode controlled), thus the dynamic behaviour of the converter 

can be effectively decoupled from the droop loop. Therefore, the behaviour of the system can 
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be accurately modelled by assuming that the new reference voltage introduced to the system 

after deduction by the required droop as a constant while analysing the response of the 

converter. 

 

Figure 2.22: Droop integrated in the voltage feedback loop of a DC-DC converter. 

Since the magnitudes of current for both solar panel and TEGs are very low, therefore the 

typical Hall Effect current sensor is not suitable to be used in this system. A more sensitive 

current sensor is needed and the most suitable solution for this is to use a current shunt monitor. 

A current shunt monitor works by sensing a differential voltage across a very small sense 

resistor placed in series with the conduction path from the output of the converter to the load, 

which will be multiplied with the set gain to output a voltage which is linearly related to the 

magnitude of the current that flows in this path. The proposed circuitry for the droop 

configuration used in this thesis is presented in Figure 2.23 (a). Figure 2.23 (b) shows the non-

inverting summing amplifier used in the loops. In this configuration, the scaled voltage in the 

droop loop is summed with the scaled voltage in the feedback loop and then fed to the feedback 

input of the previous ICs. By selecting an appropriate gain for both loops, they can be 

seamlessly integrated with the ICs whilst maintaining the same level of reliable operation 

throughout the range of expected output voltage and voltage droop. 

From Figure 2.23 (a), the value of differential voltage VSENSE is: 

VSENSE = IOUTRSENSE 

The output voltage for the current shunt monitor is magnified by a constant, β, and is connected 

in series with variable resistance R5 and R6. The voltage across R5 and R6 is equal to: 

VR5+R6 = βVSENSE = βIOUTRSENSE 
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The resistance R5 and R6 are variable resistors whose values can be programmed to vary with 

the input power to ensure proper droop at all input power level. The voltage across R6 is fed to 

the input of the non-inverting summing amplifier: 

VR6 = αβVSENSE = αβIOUTRSENSE 

where α is: 

α =
R6

R5 + R6
…  eq (2.3) 

Another input of the non-inverting summing amplifier is the voltage across R2 which is a scaled 

voltage of the converter output voltage responsible for the voltage regulation loop of the 

converter: 

VR2 = γVOUT … eq (2.4) 

where γ is: 

γ =
R2

R1 + R2
 

From Figure 2.23 (b), the transfer function of the non-inverting summing amplifier is: 

VFB = (1 +
R7

R7
) (

R7

R7 + R7
αkVSENSE +

R7

R7 + R7
βVOUT) = αβVSENSE + γVOUT 

In this configuration, R7 needs to be significantly larger than R2 and R6 in order to ensure that 

there is no significant proportional amount of current to flow through R7 in both loops, hence 

ensuring the accuracy of the programmed voltage ratio. The current shunt monitor used in this 

thesis is a Texas Instruments INA283AID, with a fixed gain of 200 V/V. The minimum supply 

voltage for this IC is 2.7 V. This level of voltage is not available in the circuit therefore an 

external source is required. In this thesis, this IC is directly powered by a Panasonic CR2032 

3V Lithium Manganese Dioxide Coin Button Battery. However, by ensuring that the power 

consumption of this IC is much lower than the power transferred to the load when the power 

converter is online, positive power gain can still be maintained in the system. In order to ensure 

accurate determination of output current, RSENSE cannot be too small otherwise noise will 

dominate the voltage across it. However, large RSENSE contributes to more losses. Moreover, 

with the 3 V supply to the current shunt monitor, the maximum VSENSE to ensure that the voltage 

is still within the gain range without saturating is 15 mV. The expected maximum current for 

each harvester needs to be considered whilst deciding the magnitude for RSENSE. 
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Figure 2.23: Droop loop implementation and non-inverting summing amplifier configuration. 

   



Chapter 2  Parallel Load Sharing 

45 

 

R5 and R6 are resistors whose values vary with the input power to ensure proper droop variation. 

In case of solar panel, an LDR will be used and in case of TEGs, both PTC and NTC thermistors 

will be used. This will be discussed in the following sections. The ratio of R1 and R2 should 

follow the datasheet of the power converter IC. The op-amp used in this thesis is a 

STMicroelectronics TSV632IDT. This low power op-amp requires a minimum supply voltage 

of 1.5 V. Similar as before, this op-amp will be directly powered by a Panasonic CR2032 3V 

Lithium Manganese Dioxide Coin Button Battery. It should be noted that throughout the entire 

experiments, the power consumption of these two ICs are monitored and considered in 

evaluating the efficiency of the whole system.  

a. Variable Droop for Solar Cell 

For the LTC-3129 power converter used for the solar cell, the internally generated reference 

voltage for the feedback loop is 1.175 V. When no current is flowing to the load, only the 

scaled voltage from the output voltage feedback loop will be compared with this reference 

voltage, therefore the selection of the resistance values for R1 and R2 will follow the datasheet. 

However, when the current starts to flow to the load, the summation of the voltage from the 

output voltage feedback loop with the droop feedback loop will be compared together with the 

reference voltage. In order to design an accurate droop regulation, in steady state, the 

summation of these two voltages should be equal to 1.175 V at the full range of the expected 

output voltage.  

The first step of the design process is to define the value of RSENSE. Based on the output 

characteristics of the converter obtained from Section 2.3.2, the maximum current expected 

from this converter when powered by the solar panel is around 30 mA. From this maximum 

current, the value for RSENSE was selected to be 0.5 Ω. By using this resistance value, and by 

considering the maximum input voltage from the coin battery (3 V) and also the fixed gain of 

the current shunt monitor (200), a full range of output current of 30 mA can be accurately 

sensed by the current shunt monitor before it saturates. 

The plot of the output voltage of the shunt current monitor against the output current for the 

theoretical and experimental values are shown in Figure 2.24 (a). It can be observed that a good 

agreement was obtained from these two values. Next, the droops need to be recalculated since 

the insertion of the RSENSE in the path of the output current will add an internal droop of 0.5 

mV/mA to the converter: 
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Internal droop (
mV

mA
) = ROUT + RSENSE = ROUT + 0.5 

Here ROUT is the existing internal droop before the addition of the droop feedback circuitry. 

The calculations follow the steps presented in eq. (2.1) and eq. (2.2) before. The plot for the 

calculated required droop is shown in Figure 2.24 (b) together with the total and internal droops 

against the full range of output current. By using the value of internal droop in the figure, the 

converter output voltage (without external droop mechanism) can be determined. Due to the 

presence of this internal droop, the new minimum voltage at full load that should be directly 

outputted from the converter is no longer 1.8 V, however it is higher and depending on the 

IMAX as shown in Figure 2.24 (c), since the internal drop varies with IMAX. By placing the 

voltage feedback loop (resistor divided network R1 and R2) as close as possible to the VOUT pin 

of the converter, the voltage across resistor R2 (VR2) can be determined based on eq. (2.4) 

presented before for each IMAX and is shown in Figure 2.24 (d). At the steady state operation 

of the converter, the summation of VR2 with the feedback from the droop loop (voltage across 

R6, VR6) needs to be equal to the internally generated reference voltage of the converter (1.175 

V for LTC3129). Thus, the required magnitude of VR6 was calculated and shown in the same 

figure: 

VR6(at IMAX) = 1.175 − VR2(at IMAX) 

The droop feedback loop needs to be accurately tuned to produce this level of VR6 for different 

IMAX. From the required VR6, the resistor divider network ratio for R5 and R6 can be calculated 

from eq. (2.3) and is shown in Figure 2.24 (e). At a low current edge, the required ratio is 

negative due to the level of current shunt output voltage which is less than what is required 

from VR6. In other words, VR6 will not be able to reach the required value. In turn, the 

magnitude of the droop in this region will be below the required value, hence the operation of 

the converter could potentially collapse before VMAX is reached, due to the insufficient amount 

of input power available. Thus it is important that this operating region is avoided.  

From the required ratio, the calculated resistance value needed for R6 with the variation of IMAX 

for a fixed value of R5 of 44 kΩ is shown in Figure 2.24 (f). The three IMAX shown in the figure 

correspond to the calculated IMAX from PMAX of the converter for three different illuminations 

as obtained in the previous section. In the same figure, the resistance of N5AC501085 LDR 

subjected to the same illuminations is shown. An almost perfect match for this LDR resistance 

with the required resistance value for R6 was obtained for illumination 1 and 2, whereas a 

deviation can be observed for illumination 3. However, since the resistance of the LDR for this 
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illumination is higher than the required value, it would not jeopardize the operation of the 

converter, since a similar or higher resistance value is needed to prevent the operation from 

collapsing due to overloading condition. This LDR was then used as R6 and the circuit was 

tested. Both solar panel and LDRs for MPPT functionality and droop voltage regulation were 

subjected to the same level of illumination throughout the test. Figure 2.25 shows examples of 

a scope view of the output voltage of the converter subjected to illumination 2 and 3 after the 

droop feedback mechanism has been integrated. The output voltage shows a dependent on the 

output current (output voltage decreases with the increase in output current) hence validates 

the function of the droop feedback loop. However, a steady state error for a no load condition 

(0 mA) can be observed. This is suspected mainly due to the small error of the resistance of the 

resistors used and also the non-unity gain of the summing amplifier due to this error. 

In order to provide an accurate assessment on the variable droop of the converter, the results 

were further analysed and are shown in Figure 2.26. Figure 2.26 (a) provides a comparison 

between actual (solid lines) and required (dashed lines) V-I loadlines of the converter for these 

3 different illuminations. An almost perfect match was obtained for illumination 1 and 2, 

however the IMAX in the actual loadline for illumination 3 was less than the required IMAX. This 

agrees with the deviation of LDR resistance from the required resistance for R6 when subjected 

to illumination 3. Figure 2.26 (b) shows the output power of the converter against output 

current. The blue region corresponds to the power consumption of the droop feedback loop 

which was powered by an external battery. A power gain in the system is obtained when the 

output power of the converter is higher than 2 mW. Figure 2.26 (c) shows the efficiency of the 

converter against output current for each illumination. Compared to the converter with no 

presence of droop feedback loop, a reduction of around 10 %, 8 %, and 6 % was observed for 

illumination 1, 2, and 3 during IMAX, respectively. This reduction is fully attributed to the power 

consumption of the droop feedback loop. This shows that it is possible to design a reliable 

droop mechanism for any low power converter. Figure 2.26 (d) shows a comparison for 

maximum power at VMIN (1.8 V) between actual and desired condition. Similar as before, an 

almost perfect match was obtained for illumination 1 and 2, however the actual power for 

illumination 3 was less than the desired power, which means that there will be a presence of 

unutilised power from the converter when the system is under illumination 3. This error is 

suspected to become even larger when the illumination level is further increased. Hence, it is 

important for the LDR resistance to be chosen to match the expected illumination level in the 
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system. Overall, it was shown that the droop feedback loop is capable of reliably self-adjusting 

the droop gain to account for the variation of input power. 

 

Figure 2.24: Voltage droop feedback calculations for the LTC-3129 (solar panel). 
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Figure 2.25: Scope waveform results for the droop test for the LTC-3129 (solar panel). 
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Figure 2.26: Analyses for voltage droop performance for the LTC-3129 (solar panel). 

b. Variable Droop for TEGs 

For TEG, the maximum expected range of the converter output current is 10 mA. Considering 

this, a 1.5 Ω precision resistor was used as RSENSE. The output voltage for the current shunt 

monitor against the current through RSENSE is shown in Figure 2.27 (a). The same method was 

applied for the droop feedback loop for the TEG. However, instead of comparing all parameters 

with the converter output current, they were compared with ∆T in order to provide a more 

accurate representation of the variation of input power. For a solar panel, this cannot be done 

since the illumination level cannot be quantified and only the output current of the converter 
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information is available based on the original V-I loadlines. In order to estimate the output 

power hence current of the converter for different ∆T, the following expression was used: 

PMAX converter(∆T) = ȠMPPT × Ƞconverter × PMPP TEG(∆T) 

Where ȠMPPT is the efficiency of MPPT based on the thermistors configuration presented in the 

previous section (≈ 80 %) and Ƞconverter is the efficiency of the converter (≈ 60 %). The MPP of 

the TEG was obtained from Figure 2.19 (c). From this, the estimated maximum output power 

for the converter against ∆T is shown in Figure 2.27 (b). Following the same steps as before, 

the calculated droops, the new minimum voltage of the converter taking into account the 

additional and internal droops, feedback voltage (VR2 and VR6), and R5/R6 ratio, all against ∆T, 

are shown in Figure 2.27 (c), (d), (e), and (f), respectively. The only different for this IC is the 

internally generated reference voltage which is at 1.004 V.  

Unlike solar panels whose output power depends only on one factor (illumination), TEG output 

power depends on ∆T which in turn depends on two factors; the temperature for hot and cold 

sides. For this, the thermistors configuration is more complicated than the LDR configuration. 

From the required R5/R6 ratio, the magnitude of each R5 and R6 when the other is being set to 

1 Ω was determined and is shown in Figure 2.28 (a). By setting the coupling of R5 with cold 

side and R6 with the hot side, the trend of the required resistance against temperature can be 

determined. From this, it was deduced that both thermistors need to possess NTC 

characteristics.  

Figure 2.28 (b) shows the resistance value for three NTC thermistors against temperature. 

Based on these values, it was determined that there are two possible combinations to 

satisfactorily meet the design requirements for the thermistors configuration. The first 

configuration is 1 unit of ND03U00105J thermistor coupled to the hot side and 2 units of 

B57861S0503H040 thermistor coupled to the cold side and the second configuration is 1 unit 

of B57861S0503H040 thermistor coupled to the hot side and 2 units of B57871S0123H000 

thermistor coupled to the cold side. For the first configuration, the value of the actual and 

required resistance for R6 is shown in Figure 2.28 (c) for each of the value of R5/temperature 

of the cold side. Although not a perfect match was obtained, it was preferable to maintain the 

actual value of R6 to be higher than the required value to prevent the converter operation from 

collapsing due to excessive loading at IMAX/VMIN. In this configuration, this criteria is met when 

∆T is greater than 20 °C. Similarly, for the second configuration, the comparison between 

actual and required resistance value is shown in Figure 2.28 (d). For this configuration, actual 
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R6 is higher than the required R6 when ∆T is greater than 30 °C. However, it can be observed 

that the value of actual R6 for this configuration has a better matching with the required R6 

compared to the first configuration. By considering the presence of a guard factor in 

determining IMAX, the second configuration was selected.  

 

Figure 2.27: Voltage droop feedback calculations for the LTC-3105 (TEG). 
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The circuit was then tested and the actual view of the scope for the converter output voltage 

for ∆T = 39 °C is shown in Figure 2.29. The voltage shows a dependent on the output current 

hence validates the function of the droop feedback loop. However, a steady state error for no 

load condition (0 mA) can be observed. Similar as before, this is suspected mainly due to the 

small error of the resistance of the resistors used and also the non-unity gain of the summing 

amplifier due to this error. 

 

Figure 2.28: Thermistors configurations for the LTC-3105 to self-track input power variation 

for TEG. 

The results were further analysed and the actual V-I loadlines for multiple ∆T were compared 

with the required/desired loadlines. This is shown in Figure 2.30 (a). The actual loadlines for 
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all ∆T have the magnitude of IMAX less than the required value, however the matching between 

the actual and required loadlines is better at lower ∆T. This agrees with the expected trend due 

to the actual value of R6 which has a better matching with the required value at lower ∆T. 

Figure 2.30 (b) shows the output power of the converter against output current. Similar as 

before, the blue region corresponds to the power consumption of the droop feedback loop 

which was powered by an external battery. A power gain in the system is obtained when the 

output power of the converter is higher than 1.3 mW. Figure 2.30 (c) shows the efficiency of 

the converter against the output current for each ∆T. When compared to the converter with no 

presence of droop feedback loop, a reduction of generally around 20 % of the efficiency was 

observed for all ∆T during IMAX. This is higher than the value reported previously for the solar 

panel due to the higher proportion of droop feedback power consumption from the lower power 

capability of the TEG. Figure 2.30 (d) shows a comparison for maximum power at VMIN (1.8 

V) between the actual and desired condition. Generally, the actual power was lower than the 

desired power, which means that there will be a presence of unutilised power when the droop 

feedback loop is operated. Overall, similar to before, it was shown that the droop feedback loop 

is capable of reliably self-adjusting the droop gain to account for the variation of input power.  

 

Figure 2.29: Scope waveform results for the droop test for the LTC-3105 (TEG). 

This section has demonstrated that by using the right combination resistance value for LDR 

and thermistor, a reliable MPPT and variation in droop gain functionality can be achieved. The 
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same concept can be extended to any other converter or even other types of harvesters, provided 

that some resistance or reference voltage in the system can vary with the magnitude of 

harvested power. In the next section, the load sharing results for the solar panel and TEG when 

connected in a single system will be presented.  

 

Figure 2.30: Analyses for voltage droop performance for the LTC-3105 (TEG). 

2.4 Load Sharing Demonstration 

After the self-adjusted droop mechanism has been successfully demonstrated for both solar 

panel and TEG applications, the circuits need to be connected together to validate the reliable 

parallel and load sharing operation of these multiple converters. In this section, this parallel 

system of multiple and multitype converters was constructed and subsequently the results 
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obtained from the constructed system are presented and the general performance of the system 

is discussed. 

2.4.1 System Layout 

 
Figure 2.31: System layout and test rig used to validate the load sharing experiments. 

In order to demonstrate the proposed system, a test rig was constructed and the layout is shown 

in Figure 2.31 (a). Two similar circuits for the solar panel were constructed and connected with 
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a single TEG. There were switches between the converter output and DC bus to demonstrate 

the plug-and-play action. The actual test rig is shown in Figure 2.31 (b). Two cases are 

presented. 

2.4.2 Case 1: Parallel Load Sharing Demonstration 

In case 1, all converters were connected to the DC bus at all times. The current demand from 

the constant current load mimicked by the Keithley Sourcemeter was varied (also indicating 

plug-and-play action for load) and for each of this variation, the bus voltage and the current 

from each converter (obtained indirectly from the output of the shunt current monitor) were 

recorded. This situation is to assess the ability of the system to share the load equally between 

each of the harvesters, in terms of their generation capacity. The TEG was put under ∆T = 60 

°C and both solar panels were subjected to illumination 3. The load current was varied as 

follows: 

1. From T = 0, the load current is set to 0 mA (no load condition). 

2. At T = 20 s, the load current is increased to 5 mA. 

3. At T = 60 s, the load current is increased to 10 mA. 

4. At T = 100 s, the load current is increased to 15 mA. 

5. At T = 140 s, the load current is increased to 20 mA. 

6. At T = 180 s, the load current is reduced to 0 mA (no load condition).  

The results for the bus voltage, current from TEG, current from solar panel 1 (SP1), and current 

from solar panel 2 (SP2) are shown in Figure 2.32 (a). As can be seen, at all times when there 

was a current flowing to the load, all converters simultaneously worked together to supply this 

current. This is the main feature that differentiates this system with the typical OR-ing 

configuration implemented in most of the parallel converters system discussed at the beginning 

of this chapter. Although the total current from all converters was a bit higher, it was almost 

equal to the magnitude of the current flowing to the load. Similar to the previous tests, a steady 

state error can be observed in a no load condition. In order to accurately determine the loading 

of the converter for each of these conditions, the loading factor in terms of percentage of current 

from the maximum current for each converter is shown in Figure 2.32 (b). The loading almost 

matches perfectly for all converters, with a maximum sharing error of 5 %. The small 

deviations, even for the same two solar panel systems, can be attributed to the presence of 

parasitic resistance, capacitance, and inductance in the constructed circuits. In this experiment, 

the circuit was constructed on a stripboard and each connection was soldered manually. The 
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inconsistency arises from the layout of the circuits and soldered connections give rise to the 

variation of different parasitic factors which contributed to these variations. Furthermore, the 

error could be contributed from the error in the output of the current shunt monitor. Overall, 

this test validates the ability of load sharing in terms of generation capacity of the harvesters. 

The DC bus voltage was also determined to match the loading of the system, ≈ 2 V at 50 % 

loading. 

 
Figure 2.32: Results from the test in case 1. 
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2.4.3 Case 2: Plug-and-play (PnP) Demonstration 

In case 2, SP1 was always connected to the load however SP2 and TEG were switched on and 

off to mimic the action of plug-and-play-ing whilst the current demand was maintained at 7 

mA. This situation is to assess the plug-and-play capability for the source converters in the 

system. The TEG was put under ∆T = 60 °C and both solar panels were subjected to 

illumination 3.  

 

Figure 2.33: Results from the test in case 2. 
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The connection was varied as follows: 

1. From T = 0, only SP1 was switched on. 

2. At T = 20 s, SP2 was switched on. 

3. At T = 60 s, TEG was switched on. 

4. At T = 100 s, SP2 was switched off. 

5. At T = 140 s, TEG was switched off. 

The results for the bus voltage, current from TEG, current from solar panel 1 (SP1), and current 

from solar panel 2 (SP2) are shown in Figure 2.33 (a). As can be seen, whenever a converter 

was switched on, the load current was automatically shared between the switched converter 

and also the existing converter. When a converter was switched off, the current from all the 

online converters in the system increased to cover the sudden dip in the current level. Similar 

as before, the loading factor in terms of percentage of current from the maximum current for 

each converter was determined and is shown in Figure 2.33 (b). The loading almost matches 

perfectly (with a maximum error of approximately 5 %) for all converters hence validating the 

ability of load sharing in terms of generation capacity of the harvesters and also the plug-and-

play capability.  

A few important observations from these two cases include: 

• The system can ensure that the load is shared equally between the source converters. With 

the variable droop, this means that the load is shared equally in terms of the generation 

capacity/rated power of the harvesters. The sharing accuracy relies on the accuracy of the 

voltage droop to follow the variation of the input power, i.e the accuracy of the resistance 

of the LDR and thermistor. 

• Plug-and-play capability for the source (increase/decrease in power sourcing capacity) and 

load (increase/decrease in power sinking demand) is achieved. At any time, the system 

possesses an automatic response to the increase/decrease in the system input/output power. 

• Bus voltage can be used to determine the loading magnitude in the system. This means that 

energy storage can be integrated in the system and it can be set to charge and recharge at 

certain set bus voltage to prevent the system from losing its regulation hence collapsing. 

For example, when the loading is less than 20 % (bus voltage > 2.12 V), the energy storage 

can be set to charging mode and when the loading is greater than 80 % (bus voltage < 1.88 

V), the energy storage can be set to discharging mode. This means that the bus voltage can 

be used as an indirect communication channel between all converters in the system, hence 
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eliminating the need for a complicated communication link for determining the power level 

in the system.  

• However, the bus voltage is not constant due to the droop mechanism, hence there is 

probably a need for another interface converter for the load side. This will reduce the PCE 

of the overall system. 

• The droop feedback loop is still operated even when there is only a single converter in the 

system and there is no need for a load sharing mechanism. In this sense, a cut-off function 

is needed for the droop feedback loop. However, as will be shown in the next chapter, this 

feature is required to regulate the charging/discharging mechanism for the energy storage. 

• The droop feedback loop is still operated when the power produced by the harvester is less 

than the power consumed by the droop feedback loop. Similarly, a cut-off function is 

needed for this. 

2.5 Summary 

In this chapter, the concept of load sharing among power converters for multiple and multitype 

energy harvesters was discussed and the voltage droop method was proposed to be utilised as 

the load sharing mechanism for the parallel operation for these DC-DC converters. This method 

does not rely on the typical master-slave configuration and does not require any communication 

links between the control circuitry for each converter, hence the system configuration is 

simplified and therefore is suitable for low power applications. 

From the characterisations of the solar panel and TEG used in this thesis, the expected output 

power, voltage, and current were determined and power converter COTS ICs were selected to 

provide the required regulation. Since these ICs possess an input feedback loop based on a pre-

set resistance value for the MPP regulation, a resistor value whose resistance vary with the 

input power needs to be used. For this, LDRs were used for solar panel and thermistors were 

used for TEG. It was demonstrated that by using the correct variable resistors, a satisfactorily 

MPP extraction performance was obtained from the feedback regulation loop. 

The same concept was further utilised to provide a variable droop regulation for each converter. 

Since the magnitude of the droop needs to be varied with the variation of input power to ensure 

that a maximum possible power is capable to be delivered to the load, this variable droop was 

accomplished through the usage of variable resistors in the droop feedback loop. It was 

demonstrated that the voltage droop mechanism has been successfully integrated and a 

satisfactory performance of the variable voltage droop was achieved. 
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Finally, the circuits were arranged to form a parallel system and the load sharing performance 

was tested, presented, and discussed. It was shown that the proposed method enables the 

connected converters to share the load equally between them (in terms of each converter rated 

power), within 5 % sharing error. Furthermore, the proposed method was also shown to possess 

plug-and-play capability for both source converter and load. Overall, it was demonstrated in 

this chapter that this variable voltage droop regulation based on variable resistors does not have 

high power consumption hence is suitable for low power applications and with the right 

selection of these variable resistors, a reliable parallel load sharing operation is possible to be 

achieved. The method presented in this chapter was used as the load sharing mechanism in the 

proposed pico-grid system. 
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3.1 Foreword 

In this chapter, the integration of energy storage elements in the pico-grid is investigated, 

presented, and discussed. Since the nature of the output power of the energy harvesters is 

sporadic and intermittent, the integration of energy storage elements is a requisite in the system 

to ensure that a continuous supply of power is available at all times to the load. However, these 

energy storage elements need to be regulated to allow charging when the power level in the 

system is high and to allow discharging when the power level in the system is low or depleted 

to zero. The method to set the charging and discharging mode of these storage elements is 

presented, tested, and discussed in this chapter. Finally, the overall operation of the pico-grid 

including start-up, no source and no load condition, and load shedding are discussed.   

3.2 Energy Storage Integration 

In this section, some background and theoretical aspects of different types of rechargeable 

battery and supercapacitor are presented. Then, the charging and discharging circuits are 

constructed based on COTS ICs specifically designed for energy harvesting applications. The 

performance of these circuits is then presented and discussed. Finally, the method to control 

and activate the power flow from the DC bus into the storage charging circuit and from the 

storage discharging circuit to the DC bus based on the power level of the system is proposed 

and demonstrated.  
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3.2.1 Rechargeable Battery and Supercapacitor 

 
Figure 3.1: (a) Family of Ni-MH battery family. (b) Li-ion battery. (c) 1000F rectangular 

supercapacitor. (d) 3000F cylindrical supercapacitor. All images were taken from [38]–[41] 

respectively. 

Energy storage is a mandatory element or an ‘enabler’ in the pico-grid system to serve as an 

energy buffer to continuously meet the power demand of the system load and also to store 

excess power produced by the energy harvester. A portable and wearable energy storage system 

is needed, and in most energy harvesting system, a rechargeable battery (RB) is used as an 

energy buffer. Recently, the use of a supercapacitor (SC) has also been proposed, since a 

supercapacitor has a faster response to the load variation and will be able to meet the occasional 

peak power demand of the load, especially the transient power demand when a new load is 

connected to the system. 

RB which can be found in almost all of electronics equipment can be considered as a relatively 

matured technology, although ongoing researches are still being conducted to further improve 

the reaction mechanism, structure, and also to explore the possibility of using new chemical 

substances. Among the most common RBs are Ni-Cd (nickel cadmium), Ni-MH (nickel metal 

hydride), and li-ion (lithium ion). There are several other types of RB, such as lead acid 

however they are not suitable to be used in the pico-grid system due to the issues such as 

excessive weight and low energy density.  

• Ni-Cd – One of the earliest RBs, therefore is a matured technology and inexpensive. They 

also possess a very low equivalent series resistance (ESR) that normally limits the current. 

Considered a ‘tough battery’, they perform well under heavy working condition, and among 
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other advantages, have a longer lifetime (high charge/discharge cycle) and can be ‘slow’ 

(trickle) charged without the presence of a charge termination circuit, provided the charging 

current falls within the acceptable value. One of the most claimed advantages of Ni-Cd is 

their flat discharge curve, therefore they act like an ideal voltage source [42]. They offer the 

best cost vs. performance among all of the available RBs. However, they have the lowest 

energy density and also contain cadmium, which is a toxic substance. Furthermore, they 

have a high self-discharge rate and high memory effect, thus maintenance/cleaning of the 

electrode is required after several operations.  

• Ni-MH - An improvement from the Ni-Cd version, particularly to eliminate the use of toxic 

substance. Similar to Ni-Cd, they are relatively inexpensive and possess a low ESR. They 

are also capable of being trickle charged, however their current tolerance is much lower. 

They have a slightly higher energy density, however it is much lower when compared to the 

li-ion battery. Their discharge curve is also almost flat. The major disadvantages include 

high self-discharge and a required maintenance. Overall, they offer almost the same features 

as Ni-Cd battery, however in an environmentally friendly package.  

• Li-ion – Often claimed as the most superior RB, they offer improvements on almost all 

features of Ni-Cd and Ni-MH battery, in particular a much higher energy density, 

lightweight, no memory effects, and a higher voltage. However, they also have some 

inherent major disadvantages, such as short lifetime, high ESR, and have a steep discharge 

curve. The most cited problem with li-ion batteries is that they are very fragile, therefore 

they require a safety cut off function during charging, to prevent overheating or even 

exploding [43]. A variation of the li-ion battery, li-ion polymer RB has also been proposed, 

which offer improvements from the current li-ion battery, particularly being much safer and 

less fragile.  

Overall, in most portable electronics applications, li-ion battery is the preferred option since 

the most important factors are being lightweight and having a high energy density. Although 

the safety aspect is the main concern, this can be eliminated by integrating a safety cut-off 

function in the charging circuit. This cut-off function can be triggered by the voltage or 

temperature of the battery. 

In a system where variation of power demand is expected to happen regularly, the usage of a 

battery will be a major disadvantage since battery ‘likes’ to work in a constant power 

environment, and putting battery in a very rigorous fluctuating environment will shorten its 

lifetime [44]. In order to counter this problem, an SC is proposed to enter the system and supply 
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the load first, and the RB is only used to supply the load when the power from the SC is not 

capable to supply the full load demand. Since SC stores its energy in the form of electrical 

charge, its stored power can be released in a short time. Furthermore, as with discharging, SC 

is also able to charge from any impulse power, thus making them suitable to capture even a 

short impulse of current for storage, although this feature will be hindered by the charging 

circuit. Moreover, SC also possesses an almost infinite charging-discharging cycle, and unlike 

battery, theoretically they can perform for eternity. These features make them a perfect 

complement for RB to be implemented in the pico-grid system. Among other advantages are 

very low ESR, small in size, have a high charging efficiency, and are environmentally friendly. 

However, they suffer from high self-discharge rate and have a linear discharge voltage profile 

[45]. Due to this linear discharge profile, the integration of a power converter to regulate the 

output voltage from the SC is needed. Different types of SC exist such as electrochemical 

double layer capacitor (EDLC) and pseudo capacitor [46]. Appendix 2 summarises the 

characteristics of different types of RB and SC.  

A system that incorporates both RB and SC is not new, in fact most hybrid electrical vehicles 

(HEV) utilise this storage system, in order to provide a storage mechanism that is capable to 

capture impulse power from the regenerative braking and to provide intermittent power 

support. These are presented in numerous publications, for example Lerman et. al.[47] and 

Sefik et. al. [48] have proposed and presented a battery-supercapacitor energy source system 

for HEV. In energy harvesting applications, Jia et. al. [49] for example have proposed the same 

system to be implemented in a renewable energy application to prolong the battery life and to 

also capture as much power as possible. 

 

Figure 3.2: Rechargeable battery and supercapacitor used in this thesis. 

In this thesis, the RB used is a 3.7 V rechargeable li-ion battery pack manufactured by Enix 

Energies with a capacity of 1840 mAh. This battery pack can be charged at a maximum current 

of 2 A and has its own built-in circuit protection. The SC pack used comprises three units of 
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15 F 4.2 V EDLC supercapacitor manufactured by Vishay Electronics connected in parallel to 

boost the storage capacity. 

3.2.2 Charging and Discharging Mechanism 

The RB and SC each require a dedicated charging circuitry to ensure that they are being charged 

with the correct magnitude of current and voltage, below the maximum values as specified by 

the manufacturer in order to ensure that the quality of the storage elements is not compromised 

or deteriorated. On top of that, this charging circuitry should also be able to stop the charging 

process when the storage elements have been fully charged to prevent overcharging. Since the 

output voltage of these storage elements are varying and not necessarily equal to the required 

input voltage for the load, the addition of a voltage regulation circuit on the output side of these 

storage elements becomes necessary for the discharging condition. In this section, the interface 

circuitries for these purposes are presented, tested, and the performance is discussed.  

a. BQ25504 for Battery Charging 

The main challenge with a li-ion battery is it cannot tolerate overcharging, otherwise the safety 

aspect will be compromised. State-of-charge (SOC) of a li-ion battery is defined as the 

available amount of energy in a battery expressed in a percentage (0 % is fully 

discharged/empty and 100 % is fully charged/full). Several methods are used to estimate the 

SOC of a li-ion battery, with the open circuit voltage (OCV) being the most common indicator 

of SOC used in portable electronics applications. This method is very simple yet reliable. 

However, this method also possesses some drawbacks, such as a strong dependent factor of the 

OCV on the temperature, discharge rate, and the age of the battery [50]. Several other methods 

have also been proposed to determine SOC, such as specific gravity (SG) measurement and 

internal impedance measurement [50], however the complexity of the measurement circuits 

outweighs the benefit of the improved estimation accuracy. With an accurate SOC estimation 

based on OCV sampling, the charging mechanism can be safely designed to prevent the battery 

of being overcharged. This method is particularly preferred in low power applications since 

only a single voltage feedback loop is required for the charging cut-off function, hence reducing 

the complexity and power consumption of the control circuitry.  

The most common way to charge a li-ion battery is the constant current constant voltage (CC-

CV) method. In this method, there are two main stages of the charging process, the first stage 

is to charge the battery at a constant high current and wait until the voltage of the battery reaches 

a pre-determined voltage, and the second stage is to charge at a constant voltage and wait until 
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the current decreases to a certain pre-determined level, where the charging process will be 

terminated [51]. To prevent the battery being discharged over time when not in use, the battery 

will be trickle charged with a very low current. In low power applications with irregular 

charging rate and unavailability of high current source such as in energy harvesting 

applications, Buchmann [52] suggested that the battery can be charged at a varying current 

until the voltage of the battery reaches a pre-determined value (essentially similar to first stage 

of the CC-CV charging) and the charging process can be cut off (normally SOC is at 85 %). 

He suggested that this method, which is known as charge and run, will prolong the lifetime of 

the battery. It is also important to prevent a li-ion battery from reaching 0 % SOC, since this 

will significantly degrade its performance. To prevent this, in most applications there is a cut 

off mechanism when the voltage of the battery reduces to a pre-determined low threshold limit. 

Considering all these factors, a low power battery charger and battery management IC 

specifically targeted for energy harvesting applications manufactured by Texas Instruments; 

BQ25504 was selected. This IC is capable of starting-up from an input voltage as low as 330 

mV and has a very low consumption quiescent current (< 330 nA). The constructed circuit is 

shown in Figure 3.3 (a). By referring to this figure, the operation of the IC is explained; initially 

when the IC is connected to a source with an input voltage greater than 330 mV, an internal 

low efficiency hysteretic boost converter is cold started to charge the CSTO to 1.8 V. When the 

voltage of CSTO reaches 1.8 V, the main boost charger circuit is on and when the voltage of 

CSTO reaches the minimum set voltage (the minimum voltage of the battery to prevent 

overdischarge) of the RB, the CSTO is shorted to VB to start the charging process. When VB 

reaches the pre-set voltage value higher than the minimum RB voltage, the VBAT-OK signal 

is turned high, shorting the RB to the load. If VB keeps increasing and reaching the maximum 

set voltage (the maximum voltage of the battery to prevent overcharge), CSTO is disconnected 

from VB to stop the charging process. If VB decreases to the pre-set voltage value, then the 

VBAT-OK signal is turned low, disconnecting the RB from the load. The operation of the IC 

is further summarised in Figure 3.3 (b) with the selected voltage level. 

The circuit was then tested to evaluate its performance. The input side is connected to a constant 

2 V voltage source mimicked by a Keithley Sourcemeter. The charging process ran for 4000 

seconds and the charging current and RB voltage were recorded. These are shown in Figure 

3.4. From this figure, it can be observed that there is a small increase in the RB voltage from 

3.81 V to 3.82 V from the start to the end of the charging process. A constant charging current 
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of approximately 18.7 mA was continuously supplied to the RB, and is suspected to be limited 

by the IC itself, the internal resistance of the RB, and the connection from the IC to the RB. 

 

Figure 3.3: Circuit configuration and voltage programmed level for BQ25504. 
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Figure 3.4: Charging profile of the constructed circuit. 

The charging process and the RB voltage was rising extremely slowly due to the low level of 

the charging current and the high capacity of the RB (1840 mAh). The charging current was 

extracted from a current sensor constructed from a current shunt monitor with a very small 

precision resistor (0.2 Ω) and it can be observed that the data obtained from this sensor is quite 

noisy due to this low resistance value. From the voltage and current data from the input and 

output sides, the efficiency of the converter during the charging process was determined to be 

84 %, which is the expected value from the datasheet.  

b. LTC3105 for Supercapacitor Charging 

Unlike RB, the SC charging process is simpler and as long as the SC is not being charged at a 

voltage greater than its rated voltage, then the charging process is safe. This means that if the 

SC is being charged by a voltage source, the voltage source needs to have an output voltage 

that is lower than the SC rated voltage. If the SC is being charged by a current source, then the 

SC voltage needs to be monitored for the charging process to be terminated.  

The same DC-DC converter IC used for TEG in the previous chapter was used as the charging 

circuit for the SC. The output voltage was set (4 V) to be slightly below the rated voltage of 

the SC (4.2 V) as a safety margin. The circuit constructed is shown in Figure 3.5. The limiting 

resistor (RLIMIT) was put in series with the SC to limit the charging current of the SC, which 

could go be incredibly high during the charging process. The RLIMIT value was chosen to be 22 

Ω. Similar as before, the IC was then supplied from a constant 2 V voltage source mimicked 

by a Keithley Sourcemeter and the charging process was run for 2000 seconds.  
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Figure 3.5: Charging circuit for SC. 

 
Figure 3.6: Charging profile for SC. 

The charging profile for the SC is shown in Figure 3.6. It can be observed that the voltage of 

the SC is increasing during the charging process from 3.48 V to 3.75 V, signifying a successful 

charging operation. During the charging process, the current was decreasing progressively 

before becoming almost constant (10.8 mA). This is mainly due to the presence of the RLIMIT 

which limits the magnitude of the charging current. From the voltage and current data from the 

input and output sides, the efficiency of the converter during the charging process was 

determined to be at 76 %. 
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c. LTC3105 for Storage Discharging 

The discharging circuits for providing output voltage regulation for both RB and SC were 

constructed using LTC-3105 IC. The output voltage for SC discharging circuit was set to output 

a voltage that is slightly higher (1.82 V) than RB discharging circuit (1.79 V). The main reason 

behind this will be discussed in the next section.  

 

Figure 3.7: Converter loadline and efficiency for both discharging circuits. 
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Figure 3.7 shows the converter V-I loadline and efficiency for the discharging circuits for both 

of the storage elements. For the RB discharging circuit, it can be observed that the no load 

output voltage is equal to the required value (1.79 V) but the voltage begins to droop as the 

load current increases due to the presence of parasitic output resistance. The efficiency 

increases in line with increased load current until it reaches a peak before it decreases again 

due to the significant effect of parasitic resistance loss which would dominate at a high current. 

The same trends can be observed for the discharging circuit for SC. 

3.2.3 Demonstration of Bus Voltage Dependent Mechanism (Mode Select) 

As demonstrated in the previous chapter, the bus voltage can be utilised as an indirect indication 

of the loading magnitude in the pico-grid system. The lower the bus voltage, the higher the 

load current in the system, hence the higher the loading of the system. Since the charging of 

the storage elements should only be activated when the load demand is low, and vice versa, the 

bus voltage can be utilised as the signal to trigger the activation of the charging/discharging 

mechanism. The proposed voltage level for each mode is shown in Figure 3.8 below. 

 

Figure 3.8: Operating mode at each bus voltage level. 

For discharging, the SC was set to start discharging when the bus voltage drops below 1.82 V 

(approximately 95 % loading). Due to this, the output voltage of the discharging circuit of the 

SC was previously designed to output a voltage of 1.82 V. Since the RB acts as the final power 

back-up, it should only be discharged when the system reaches a full loading capacity and was 

therefore set to start discharging when the bus voltage drops below 1.79 V (> 100 % loading, 

to prevent the bus voltage from collapsing). Similarly, due to this, the output voltage of the 
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discharging circuit of the RB was previously designed to output 1.79 V. For charging, since 

the SC was placed at a higher priority for discharging, and to ensure that the power in SC is 

readily available for discharging, the threshold voltage for the SC charging to stop was put at 

a higher level than the RB.  

 

Figure 3.9: Configuration for the bus voltage dependent mechanism and the comparator. 

In order to integrate this voltage dependent mode mechanism in the pico-grid, the power flow 

from the bus voltage to the charging circuit and from the storage element to the discharging 

circuit needs to be regulated. To achieve this, an extremely low resistance n-channel 

enhancement mode MOSFET was put in this path to act as a switch. The gate of this MOSFET 
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is driven by an ultra-low power comparator whose one of the inputs is a fixed voltage reference. 

The other input should be a scale version of the bus voltage (achieved through a proper 

selection of resistors in the voltage divider circuit). Table 3.1 provides the values for these 

resistors. A small ceramic capacitor was placed in the input side of the comparator with the 

voltage divider network to filter any noise and prevent any unnecessary output trigger. 

Furthermore, the comparators used in this thesis have a built-in hysteresis of 10 mV to prevent 

any low level noise around the threshold voltage to trigger the output continuously, hence 

contributing to energy loss. This configuration is shown in Figure 3.9 (a) and the connections 

for the comparator are shown in Figure 3.9 (b). An additional undervoltage-lockout (UVLO) 

circuit for the RB was integrated in the output path of the RB. Referring to the charger IC 

BQ25504 for the RB presented previously, due to the dependence of the VBAT-OK on the 

VSTO and not on VB, an external UVLO is required to replace the VBAT-OK signal to ensure 

that the RB is cut-off from the discharging path when its voltage drops below the under voltage 

threshold limit (3 V), regardless of the value for VSTO. This UVLO is not needed for the SC 

since SC energy can be fully depleted to zero without compromising its storage integrity.  

Table 3.1: Value of resistors in the voltage divider network. 

Mode Connection for voltage divider RDIV1 (Ω) RDIV2 (Ω) 

UVLO for RB Non inverting 1.4 M 1 M 

RB Charging Non inverting 720 k 1 M 

RB Discharging Inverting 680 k 1 M 

SC Charging Non inverting 464 k 1 M 

SC Discharging Inverting 440 k 1 M 

 

The power for the mode select circuitry which comprises the comparators and voltage reference 

was provided directly from the RB (after the UVLO connection). Only one voltage reference 

IC was used for all comparators. Similar to the discharging path, the power for this circuitry 

will be cut-off once the voltage of the RB falls below 3 V. It was determined from a quick test 

that the peak power consumption of the mode select circuitry is at 0.1 mW. The power for the 

UVLO circuit which is comprised of a comparator and a voltage reference IC was provided by 

an external coin battery. The system will cease to function if the power of this battery depletes 

to zero, therefore this can be used as an indirect indication on when to replace this coin battery. 

The peak power consumption of this UVLO circuit was determined during testing to be at 0.07 

mW.  
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Each of the mode select configuration was individually tested first to ensure that they are 

switching at the right voltage level. Then, the mode select system for the energy storage system 

was tested by connecting the common DC bus to a voltage source mimicked by a Keithley 

Sourcemeter. The voltage source level was varied and the current level for each of the charging 

and discharging paths was recorded. Figure 3.10 below shows the results from this testing. 

 
Figure 3.10: Results from the bus voltage dependent mechanism configuration. 

As shown in the figure above, when the voltage source level was initially set at 2.20 V, both of 

the charging circuits automatically switched on to enable charging for the storage elements. 

When the voltage source level was dropped to 2.13 V, the charging circuit for the RB switched 

off since the bus voltage level was lower than the threshold voltage set for the charging circuit. 

When the bus voltage was further reduced to 2.08 V, the charging circuit for the SC switched 

off. At 1.81 V, it was observed that the discharging circuit for the SC was activated and the 

current started to flow from the discharging circuit into the DC bus. Finally, at 1.79 V, the 

discharging circuit for the RB was activated and both the SC and RB were discharging to the 

DC bus. In addition, it was also observed that the levels of the discharging current for both SC 

and RB are in good agreement with the converter loadline obtained in Figure 3.7. This also 

indicates that in real applications, the maximum current for the SC discharging converter is 

approximately 12 mA (approximated from Figure 3.7) before the converter voltage drops to 

1.79 V, hence activating the RB discharging circuit. Overall, from this test, it can be concluded 

that the voltage dependent mode for the charging and discharging mechanism was successfully 

demonstrated and a satisfactory performance was achieved.    
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3.3 System Operation 

In this final section, various operating modes of the pico-grid corresponding to various 

situations are presented and discussed.  When the first prototype is constructed, it is important 

to ensure that the operation of the pico-grid runs smoothly and in order to achieve this, some 

of the important operations such as start-up, no source (energy harvester) condition, and no 

load (0 A load current) condition are first explored and discussed. Additionally, the load 

shedding mechanism which is important to prevent the operation of the pico-grid from 

collapsing due to excessive loading is also investigated.   

3.3.1 Start-Up 

Although the sources and load in the pico-grid are expected to possess a plug-and-play 

capability, the energy storage circuitry comprises the RB and SC as presented previously is 

always expected to be connected to the system. However, extra energy storage elements with 

a similar mode select operation can be further integrated in the system through the same plug-

and-play port. Due to this, the start-up procedure for the pico-grid involves the switching of 

the storage circuitry, before any load or sources are connected to the system. Figure 3.11 below 

shows the start-up profile for the pico-grid. 

 

Figure 3.11: Start-up profile for the pico-grid. 
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As observed from the figure, at t = 5s, the energy storage circuitry was switched on. The 

circuitry was switched on by switching on the power supply from the coin battery to the UVLO 

circuit for the RB. If the voltage of the RB is above the minimum threshold limit, then the 

power supply for the mode select circuit will be automatically switched on. If the voltage is 

below the minimum threshold limit, then the RB is needed to be externally recharged before 

the system can resume its operation. If the system still fails to start and the RB voltage is above 

the threshold minimum, then this means that the power from the coin battery is fully depleted 

and a replacement is needed. After the UVLO has been switched on and the power was supplied 

to the mode select circuit, since at this moment, the bus voltage was at 0 V (no sources or load 

connected to the system), both of the discharging circuits were activated. Due to the output 

voltage of the SC discharging circuit which was set at a higher voltage than the RB, the bus 

voltage settled down at this voltage level (1.82 V). The SC would then have a very small 

discharging current, mainly due to the bus voltage sampling circuit (for the voltage divider 

network) and also parasitic resistance along the DC bus. The RB discharging circuit was then 

deactivated since the bus voltage was greater than its designed threshold limit.  

3.3.2 No Source Condition 

After a successful start-up operation, the system was further tested in a no source condition. In 

this situation, no source was connected to the system and the load current from the DC bus was 

increased. The storage elements then acted as the power source to meet the demand of the load 

current, as shown in Figure 3.12. 

Referring to the same figure, it can be observed that the bus voltage was initially at 1.82 V, 

indicating a successful start-up operation. Then the load current was increased (sinking by the 

Keithley Sourcemeter) slowly at t = 10s and at 15 mA, the output voltage of the SC discharging 

circuit dropped to 1.79 V due to the internal droop, hence activating the RB discharging circuit. 

When the load current was further increased, both SC and RB discharged their current 

simultaneously to meet the load demand. After careful inspection, it was observed that the 

output V-I loadline for both discharging circuits is almost consistent with the one obtained in 

Figure 3.7. The total current from both circuits were greater than the load current, due to the 

current flow to the voltage sampling circuit. One possible explanation for this is the steady state 

error introduced by the current sensor used to measure the discharge current in the output path 

of both converters.  
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Figure 3.12: No source condition whilst load is connected to the system.  

3.3.3 No Load Condition 

If an energy source is connected to the DC bus after a successful start-up operation (no load), 

then the mode select circuit will enter a charging mode. To mimic this condition, both SP1 and 

SP2 were connected to the DC bus. Both panels were subjected to illumination 1. Since the 

output voltage of the solar panel circuits was both set at 2.20 V (no load), then the bus voltage 

will be at this level (plus a steady state error). For the sake of data collection, the energy storage 

circuitry was initially disconnected from the DC bus. Since the charging current previously 

obtained for both RB and SC were too high, the value of RLIMIT for SC was further increased 

to 44 Ω and a new RLIMIT of 33 Ω was installed in series with the RB, both to limit the charging 

current to ensure that the current is within the rated power capability of the energy sources.  

Figure 3.13 shows the results from this test. In Figure 3.13 (a), at t = 10s, the energy storage 

circuitry was connected to the system. It can observed that initially, the charging currents for 

both SC and RB increased, however after the bus voltage dropped below the threshold voltage 

for RB charging, the charging current for RB dropped to 0 mA. In order to demonstrate the RB 

charging mechanism in no load condition, in Figure 3.13 (b), the same test was repeated but at 

t = 30s, the SC charging circuit was disconnected from the system. During this period, the RB 

charging mechanism was activated and a small charging current of approximately 3 mA flows 

to the RB. From this, it can be deduced that it is important for the right value of RLIMIT to be 
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selected to match the expected rated power from the energy harvesters. In order to further 

improve the system, it is possible to integrate a mechanism that switches off/alter the voltage 

droop mechanism in the source converters during a no load condition, in order to maximise the 

amount of power to charge the storage elements. However, this option is not explored in this 

thesis. 

 

Figure 3.13: No load condition whilst SP1 and SP2 are connected to the DC bus. 
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3.3.4 Maximum Load Condition and Load Disconnect (Shedding) 

If the loading of the pico-grid is excessively increased beyond the power capability of the 

energy sources and energy storage, then the bus voltage will drop and then collapse, and the 

pico-grid will no longer be able to maintain its regulating operation. In order to avoid this, it is 

important that a load shedding mechanism is integrated in the system, which functions to 

progressively cut-off the load according to the load priority precedence before the voltage falls 

below a threshold value. From a test, it was discovered that the energy storage converters will 

fail to maintain the bus voltage regulation when the bus voltage falls below 1.62 V. This is the 

absolute maximum loading, therefore the load shedding process needs to start above this 

voltage level.  

The proposed voltage level for the load shedding process to be first triggered is 1.80 V (100 % 

loading for harvesters). When the bus voltage reaches this level, the least priority load needs to 

be cut-off from the system. If the bus voltage keeps dropping after the first load has been cut-

off, then the second least priority load will be cut-off and so on. The bus voltage should not be 

allowed to fall below 1.72 V, therefore a main cut-off function is needed to switch off all loads 

at this voltage level (maximum loading).  

The implementation of this load shedding mechanism can be conducted in the same way as the 

mode select mechanism. A MOSFET can be used to switch the load on/off. Since for this 

purpose, a normally-on MOSFET is preferred to provide a cut-off mechanism, a depletion 

mode MOSFET can be used. The implementation aspect is not explored in this thesis. 

 

Figure 3.14: Proposed load shedding mechanism. 
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3.4 Summary 

In this chapter, the integration of energy storage elements (rechargeable battery and 

supercapacitor) in the pico-grid was presented and demonstrated. Since the power from the 

energy harvesters is not necessarily available at all times, the need for energy storage becomes 

eminent to support the continuous load demand.  

The charging and discharging circuits for these storage elements were presented, tested, and 

discussed. These circuits which were built from COTS ICs are demonstrated to perform 

reliably. The mechanism to switch on/off these circuits was also proposed based on a 

comparator configuration. The comparator was used to compare the bus voltage (loading 

indication in the system) with a fixed reference voltage and to provide a switching signal to a 

MOSFET. It was demonstrated that the power consumption of this mode select circuit is very 

low, hence suitable to be implemented in the pico-grid system. The proposed system was built 

and the performance was tested. It was demonstrated that a successful mode select operation 

was achieved. 

Finally, to ensure a successful operation of the pico-grid prototype, several operating 

conditions corresponding to several different scenarios were demonstrated and discussed. It 

was demonstrated that a successful start-up procedure, no source, and no load conditions were 

able to be accomplished. A load shedding mechanism to prevent the pico-grid from overloading 

was also proposed and discussed. 
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4.1 Foreword 

In this chapter, a full system integration is presented and its performance is presented and 

discussed. The first wearable prototype of the pico-grid is built and the features of the prototype 

are outlined in this chapter. This prototype is not fully optimised for real world applications 

hence some recommendations for improvement are presented at the end of this chapter.  

4.2 System Integration 

The full system layout for the pico-grid is shown in Figure 4.1 (a). The UVLO circuitry for the 

RB is not shown in the figure. Similar to the previous tests, the load for the pico-grid is a 

constant current sink mimicked by the Keithley Sourcemeter. The configuration for each of the 

connected subsystems is similar to the previous chapters, with the exception of the voltage 

droop circuitry for all of the source converters, in which the power is now directly supplied 

from the RB, through the same path as the supply power for the mode select circuit. This 

eliminates the need for a coin battery to power up each of these circuits as presented in Chapter 

2. A three pin JST connector was used for all of the plug-and-play ports to the common DC 

bus; each one is for the DC bus, ground, and power supply for the voltage droop circuity for 

the source converter (this connection is present however not needed for the load). The test rig 

for the built pico-grid is shown in Figure 4.1 (b). 
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Figure 4.1: System layout and test rig for the final system. 
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4.2.1 Plug-and-play Demonstration 

The first test for the integrated pico-grid system is to demonstrate its full plug-and-play 

capability. In this test, the converters for the SP1 and TEG were disconnected and reconnected 

to the DC bus and the performance of the system was evaluated. Both SP1 and SP2 were 

subjected to illumination 2 and ∆T = 50 °C for the TEG. Similarly, the load current absorbed 

by the Keithley Sourcemeter was varied to simulate the action of plugging and unplugging of 

load to the system. The sequence of the test carried out is described as follows: 

1. At t = 0 s, the start-up procedure commences. 

2. At t = 50 s, all energy sources (SP1, SP2, and TEG) are connected to the system.  

3. At t = 100 s, the loading for the system (Keithley Sourcemeter) is set to 1 mA.  

4. At t = 150 s, the loading is further increased to 5 mA. 

5. At t = 200 s, TEG is disconnected from the system. 

6. At t = 250 s, SP1 is disconnected from the system. 

7. At t = 300 s, the loading is further increased to 10 mA. 

8. At t = 350 s, SP1 is reconnected back to the system. 

9. At t = 400 s, the loading is further increased to 30 mA. 

10. At t = 450 s, the loading is further increased to 50 mA. 

The results from the test are shown in Figure 4.2. Each ‘Q’ in the diagram corresponds to the 

different sequence of the test. The data from the test is also tabulated in Table 4.1. 

 

Figure 4.2: Results from the plug-and-play test. 
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Table 4.1: Data from the plug-and-play test. 

Sequence Status 

Bus 

Voltage 

(V) 

RB 

Out 

(mA) 

RB In 

(mA) 

SC 

Out 

(mA) 

SC In 

(mA) 

TEG 

(mA) 

SP1 

(mA) 

SP2 

(mA) 

Q1 
Storage 

on 
1.82 0 0 0.1 0 0 0 0 

Q2 

SP1 + 

SP2 + 

TEG on 

2.14 0 0 0 6.1 1.0 2.7 2.5 

Q3 
1 mA 

loading 
2.13 0 0 0 6.1 1.3 3.2 2.8 

Q4 
5 mA 

loading 
2.10 0 0 0 6.1 2.0 5.1 4.2 

Q5 TEG off 2.09 0 0 0 6.1 0 5.9 5.2 

Q6 SP1 off 2.07 0 0 0 0 0 0 5.4 

Q7 
10 mA 

loading 
1.94 0 0 0 0 0 0 10.4 

Q8 SP1 on 2.09 0 0 0 0 0 5.4 5.0 

Q9 
30 mA 

loading 
1.86 0 0 0 0 0 15.7 14.9 

Q10 
50 mA 

loading 
1.77 6.2 0 10.2 0 0 17.1 16.7 

 

A few important observations from this test include: 

• Generally, the pico-grid performed as expected. The bus voltage decreased when the loading 

was increased or the rated input power was reduced, and vice versa. The mode select 

operation was successfully demonstrated. The system can also perform under several 

variations of input and output power in the test, indicating a successful plug-and-play 

demonstration.  

• At any point, the total current flowing into the DC bus (from source converters + discharging 

circuits) was slightly higher than the total current flowing out from the DC bus (to charging 

circuits + current sink). This slight difference can be attributed to the current flowing into 
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the voltage divider network for bus voltage sampling. Since the magnitudes of the current 

were obtained from the output voltage of the current shunt monitor, the slight difference can 

also be attributed to the steady state error of the current sensor, the inaccuracy of the 

resistance value used to sample the small voltage drop across the current path, or some noise 

in the output side of the current sensor. This is further supported by the significant presence 

of noise in the current waveforms in Figure 4.2.  

•  From the test, the maximum loading for the source converters (subjected to the test 

condition) without activating the discharging circuits for energy storage was approximated 

by the data to be around 40 mA. 

• A small discrepancy can be observed between the output current of SP1 and SP2, although 

the circuit configuration for both of the converters were similar. This could be due to the 

small discrepancy of the value of resistance for the LDR used in the droop voltage 

mechanism or the different in the value of resistance in the voltage feedback loop. Also, the 

illumination incident angle for the solar panel and LDR for each of the converter might not 

be accurately similar.  

• The charging circuit for RB was never activated due to the high threshold voltage set for 

this mode. Improvements that can be done to ensure the RB is charged include lowering 

down the threshold voltage or by increasing the RLIMIT for the SC. 

• Generally, the measurements data was quite noisy. This could be due to the environmental 

noise factors or the noise that was present in the oscilloscope or the probe. In all of the tests 

carried out in this thesis, due to the portability issue, a portable oscilloscope which has a 

lower quality compared to the typical bench oscilloscope was used. Nevertheless, it was 

shown that the mode select operation was successfully activated without any issue (in 

particular with the 10 mV hysteresis, no flickering or oscillation in the output signal of the 

comparator was observed) hence this confirms that the noisy measurement was mainly due 

to the equipment issues and not the system itself. The magnitude for each of the data 

presented in Table 4.1 for each of the sectors was obtained by taking the average of the low 

pass filtered value (with a  cut-off frequency of 1 Hz) of the measured signals. 

Overall, a successful plug-and-play operation was accomplished with the pico-grid system. An 

equal load sharing (with 5 % error) was achieved between each of the source converters in 

terms of their rated power and it was demonstrated that at full loading, the energy storage was 

successfully discharged to support the load demand of the system.  
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4.2.2 Full System Evaluation  

After a successful plug-and-play operation has been demonstrated, the next step is to conduct 

a final test on the performance of the full system when every subsystem is connected to the DC 

bus. In this test, both SP1 and SP2 were subjected to illumination 3 and ∆T = 38 °C for TEG. 

The RLIMIT for both RB and SC charging circuits were increased to 47 Ω and 68 Ω, respectively. 

This was done to reduce the magnitude of the charging currents to better match the rated power 

rating in the system. The sequence of the final test carried out is as follows: 

11. At t = 0 s, all subsystems are connected to the DC bus. The load is set to 0 mA. 

12. At t = 50 s, the loading for the system (Keithley Sourcemeter) is set at 5 mA. 

13. At t = 100 s, the loading is increased to 10 mA. 

14. At t = 150 s, the loading is increased to 15 mA. 

15. At t = 200 s, the loading is increased to 20 mA. 

16. At t = 250 s, the loading is increased to 25 mA. 

17. At t = 300 s, the loading is increased to 30 mA. 

18. At t = 350 s, the loading is increased to 35 mA. 

19. At t = 400 s, the loading is increased to 40 mA. 

20. At t = 450 s, the loading is increased to 45 mA. 

The results from the test is shown in Figure 4.3. Each ‘Q’ in the diagram corresponds to the 

different sequence of the test. The data from the test is also tabulated in Table 4.2. 

 

Figure 4.3: Results from load variation test. 
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Table 4.2: Data from load variation test. 

Sector Status 

Grid 

Voltage 

(V) 

RB 

Out 

(mA) 

RB In 

(mA) 

SC 

Out 

(mA) 

SC In 

(mA) 

TEG 

(mA) 

SP1 

(mA) 

SP2 

(mA) 

Q1 All on 2.17 0 1.1 0 3.3 0.9 1.8 1.7 

Q2 
5 mA  

loading 
2.14 0 0 0 3.3 1.0 4.2 3.9 

Q3 
10 mA  

loading 
2.11 0 0 0 3.3 1.2 6.8 6.1 

Q4 
15 mA 

loading 
2.09 0 0 0 0 1.2 7.3 6.6 

Q5 
20 mA  

loading 
2.07 0 0 0 0 1.4 9.9 8.7 

Q6 
25 mA  

loading 
2.04 0 0 0 0 1.6 12.0 11.4 

Q7 
30 mA 

loading 
2.02 0 0 0 0 1.9 14.8 13.5 

Q8 
35 mA  

loading 
1.99 0 0 0 0 2.1 17.1 15.9 

Q9 
40 mA 

loading 
1.96 0 0 0 0 2.2 19.5 18.3 

Q10 
45 mA 

loading 
1.92 0 0 0 0 2.4 21.8 20.9 

 

A few important observations from this test include: 

• Generally, the pico-grid performed as expected. At each sink current increment, the bus 

voltage decreased, and the current from each of the source converters increased.  

• At any point, the total current flowing into the DC bus (from source converters + discharging 

circuits) was slightly higher than the total current flowing out from the DC bus (to charging 

circuits + current sink). This slight difference can be attributed to the same reasons as stated 

in the previous section. 

• With the increase of the RLIMIT for SC and RB, both storages were charged at the start of the 

test, when the loading of the system was still below the threshold limit set for both charging 
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circuits. From this, it was demonstrated that the value of RLIMIT needs to be accurately tuned 

to match the expected rated power of the system. Similarly, the magnitude of threshold 

voltage for the charging could also be tuned to match the rated power. If this was not done 

correctly, then there would be a high possibility that the storage would not be charged at all. 

If the charging current is too high, even in a no load condition, the mode select circuit for 

the charging converters would be oscillated between on and off.  

• From the test, it was observed that at 45 mA, the system still has not reached the full loading 

capacity. At 1.92 V, the discharging circuits were still not activated. The higher rated power 

from this test compared to the previous test was due to the higher available power from the 

solar panels due to the higher illumination level. This confirms the successful operation for 

the variable droop mechanism as presented in Chapter 2. 

• Similar to before, a small discrepancy can be observed between the output current of SP1 

and SP2, although the circuit configuration for both of the converters were similar.  

• Similar to before, the measurements data was noisy, although in this instance the magnitude 

of the noise was less severe.  

• For this test, the input and output voltage and current for each converter were recorded and 

from these values, the efficiency of each of the subsystems was calculated. The results are 

shown in Figure 4.4. The power consumption for the droop feedback/mode select circuitry 

was considered in the calculations. The efficiency for the charging and discharging circuits 

are all above 75 %. The efficiency for the source converters are lower, due to the higher 

power consumption of the droop feedback circuitry. It was determined from this that the 

power consumption for the current shunt monitor dominates the total power consumption of 

this circuitry. Generally, the average power consumption for the droop feedback circuitry is 

20 times greater than the power consumption of the mode select circuitry (average 2 mW 

vs. 0.1 mW). Furthermore, the presence of a precision resistor across the output current path 

in each of the source converters for output current sampling also contributed to a higher loss 

in these converters. Other reasons for the lower efficiency of these source converters have 

been presented in Chapter 2.  

Overall, a successful operation of the pico-grid was demonstrated. From the two tests that were 

carried out, it was determined that the pico-grid system was ready to be built into the first 

wearable prototype. The construction and the performance of this first prototype will be 

presented and discussed in the following section.  
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Figure 4.4: Efficiency of each of the subsystems. The efficiency presented here has taken into 

account the power consumption of the droop/mode select circuitry. 
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4.3 Wearable Prototype 

In this section, the construction of the first wearable prototype is presented and the performance 

is discussed. Since the first prototype was not optimised for real life applications due to a 

number of limitations related to the research funding and time constraints, some 

recommendations for improvement are presented by the end of this section. Although the 

prototype is still not suitable for real world applications, the aim of this section is mainly to 

demonstrate the proof-of-concept and the possibility and feasibility for the pico-grid to function 

in a wearable or portable mode, since the target applications for this system are mainly for 

WSN and WBAN.  

4.3.1 Prototype Construction 

Each subsystem circuitry was placed in an enclosure made from acrylonitrile butadiene styrene 

(ABS) as shown in Figure 4.5. The main purpose for this is to provide an electrical insulation 

for the circuitry. This is to prevent an excessive electrostatic discharge from destroying the ICs, 

which are prone to occur when the circuit is attached to a jacket and subjected to the continuous 

friction between the jacket and the human body. Furthermore, these enclosures also serve as a 

platform for the circuitry to be attached to a jacket.   

 

Figure 4.5: The prototype. Each enclosure contains a full circuitry for each subsystem. 
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Figure 4.6: The prototype when attached to a jacket. 
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Each of the enclosures was attached to the inner part of the jacket through a Velcro™ tape. 

This tape provides a detachable platform for the enclosure, hence supporting the expandability 

feature of the system. The pictures of the jacket is shown in Figure 4.6. The solar panels and 

LDRs were placed on the shoulder area, where these elements have a higher chances of 

receiving maximum amount of light from the surroundings. A hole is made in the jacket to 

accommodate the TEG and to provide a good coupling between the hot side and the wearer’s 

body. The first prototype needs some aesthetic development, which should be further improved 

for real life applications. The weight of the prototype was measured and the data is tabulated 

in Table 4.3 below. The system total weight is 2.08 kg, which is approximately equal to 

carrying 12 iPhone Xs (each iPhone X weights 174 g). Most of the total weight was contributed 

from the weight of the enclosures (≈ 54 %). Based on multiple tests, it was determined that the 

size of the enclosure that contributes the most to the degradation of the overall comfortability 

of the prototype. The weight although can be further reduced, was determined to be at an 

acceptable level without sacrificing much comfort to the wearer. 

Table 4.3: Weight of each subsystem in the prototype. 

System Subsystem Subsystem weight (g) System weight (g) 

SP1 

Solar panel 65 

355 

LDR + circuit board 40 

Converter circuitry + circuit 

board 
90 

Enclosure box 160 

SP2 

Solar panel 65 

355 

LDR + circuit board 40 

Converter circuitry + circuit 

board 
90 

Enclosure box 160 

TEG 

Thermoelectric generator + 

thermistors setup 
95 

320 
Converter circuitry + board 65 

Enclosure box 160 

Mode Select 

Mode select circuitry + 

circuit board 
90 

250 

Enclosure box 160 

RB 

Battery + circuitry + circuit 

board 
166 

326 

Enclosure box 160 

SC 

Supercap. + circuitry + 

circuit board 
80 

240 

Enclosure box 160 

Voltage Bus  
Circuitry + circuit board 75 

235 
Enclosure box 160 

  Total weight (kg) 2.08 
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4.3.2 Prototype Performance 

The prototype was tested in a typical summer outdoor environment and the performance data 

was collected. Due to the difficulty in measuring the current in the prototype, only the data for 

the bus voltage was able to be collected and analysed. Figure 4.7 below shows the scope view 

taken directly from the portable oscilloscope for the bus voltage when the sources converters 

were connected to the system and the load current was varied. 

 

Figure 4.7: Scope view for the bus voltage of the wearable prototype. 

Initially when the start-up procedure was performed, the bus voltage was recorded to be at the 

expected level of 1.83 V.  At Q3, the source converters were connected to the system. The DC 

bus was recorded to be at 2.13 V, and it was expected that the SC was being charged during 

this period. The loading was then progressively increased and the DC bus voltage was recorded 

to be progressively reduced during this time, which is the expected behaviour. At Q6 and Q7, 

the discharging circuits for both storages were activated to support the high load current 

demand. At Q7, there was a sudden voltage peak due to the unexpected movement of the wearer 

during the test, which may have temporarily disconnected/disturbed the DC bus connection to 

the Keithley Sourcemeter. After the movement, the DC bus had levelled off at a slightly lower 

magnitude, possibly due to the difference in illumination level received by the solar panels and 

LDRs compared to the conditions before the movement, hence demonstrating the variable 

droop operation. It was postulated that during the full period of the test, the TEG did not 
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contribute any (or very low) power to the system, since the surroundings temperature was quite 

high (≈ 26 °C). At Q8, the load current demand was reduced to 7 mA, and the DC bus voltage 

level rose again. Whilst maintaining the same level of load current, at Q9, all of the source 

converters were disconnected from the system. The bus voltage was recorded to be at 1.80 V, 

which is at the expected level by considering the loadline of the SC discharging circuit as 

obtained in Figure 3.7. At this level, the RB discharging circuit was not activated.  

Overall, from this test, a successful operation for the prototype was demonstrated. This 

prototype proves the feasibility and reliability of the system to be implemented in real world 

applications.  

4.3.3 Recommendations for Improvement 

Some recommendations for the improvement of the first prototype are: 

• The circuitry should be built and soldered on a flexible printed circuit board (PCB). This 

was initially in the scope of this PhD, however due to some unforeseen issues, this work was 

not completed. By using flexible PCBs, the size and weight of the overall circuit can be 

greatly reduced (approximately 60 % reduction). Currently, each circuit was built on a strip 

board. Furthermore, by using flexible PCBs, the circuit can be safely placed on the area 

where the circuit is expected to experience bending, and this will provide a better comfort 

to the wearer. The flexible PCB can be laminated to provide electrical insulation for the 

circuit. 

• The solar panel and TEG are preferred to be flexible. With the availability of semiconductor 

materials and devices that can be deposited at low temperatures (< 200 °C), the fabrication 

of thin film devices on a flexible substrate that can match the performance of silicon based 

devices have been reported in recent years [53]–[57]. Among these, some flexible solar 

panels and TEGs have also been reported [58]–[62]. The integration of flexible solar panels 

and TEGs is not only able to improve the comfort of the system, but also opening up the 

possibility of direct integration with the clothing itself. Furthermore, to improve the variable 

droop accuracy for the solar panel and TEG, the same materials used to fabricate these 

devices can be further used to fabricate the LDR and thermistor. This ensures that both the 

energy harvester and the variable resistor have the same response towards the variation of 

the energy source.  

• The connection wires are a hindrance to the overall comfortability of the system, and also 

make the system look less appealing. The wires can be hidden in the linings of the jacket, 
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however a better solution is to integrate silver fibres in the clothing to serve as a conductive 

thread to deliver power across any area on the jacket. Few preliminary works have been 

conducted (to support the work carried out by other students/postdoctoral associates under 

1D-Neon project) on this, particularly extracting the electrical parameters such as resistance 

of the silver fibres. It was determined that the resistance of the thread is as low as the 

resistance of the typical copper wire with the same thickness, however the resistance will 

deteriorate (increase) after the thread was subjected to multiple stretching. This was due to 

the multiple cracks formed on the fibre after it was stretched, as shown in the scanning 

electron microscope (SEM) images in Figure 4.8. More work is required on this and if this 

issue can be solved, then the fibres have a huge potential to be implemented in the pico-grid 

system.  

 

Figure 4.8: SEM images show each yarn in the silver fibre in a good and new condition 

(left) and after multiple stretching (right). The samples used for both images are different. 

• Since the circuitry is preferred to be built on a flexible PCB, the passive components could 

be potentially fabricated/printed in thin film package to similarly possess the same flexibility 

feature. This ensures that the PCB is fully flexible and can bend in the same degree as the 

components placed on it. Since it is difficult to build a fully flexible thin film power circuit 

that can match the performance of a CMOS based power circuit, the usage of CMOS IC 

cannot be avoided. However, generally the size of these ICs is small and the size of the 

passive components will dominate the area on the board. Therefore, to ensure that the PCB 

is fully flexible, it is important to ensure that these passive components are flexible as well.  

• Similarly, a flexible and thin film supercapacitor and rechargeable battery could be used as 

the energy storage and integrated in the system. 
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• The built prototype only utilises solar panel and TEG as the main source of energy. Several 

other energy sources such as piezoelectric generator, electromagnetic induction generator, 

triboelectric generator, and even wireless power (near field charger) all have potential to be 

integrated in the system. The method to track the variation of input power for each of these 

harvesters need to be explored and investigated in order to design the variable droop 

mechanism for the system. Furthermore, since the nature of these harvesters are in ac, the 

integration of a rectifier circuit, preferably flexible, is needed. Some preliminary work to 

fabricate and characterise a thin film diode that can be deposited at low temperature hence 

can be fabricated on a flexible substrate has been completed and will be presented in the 

following chapters.  

4.4 Summary 

In this chapter, the system integration for the pico-grid was presented and discussed. The 

integrated system was tested in two different ways; the first was aimed to demonstrate the plug-

and-play capability of the source converters and load, and the other was aimed to demonstrate 

the general performance and to extract the efficiency of the system. Both tests were 

successfully carried out, and the performance expected from the pico-grid was successfully 

accomplished. It was determined that the efficiency of the source converters is significantly 

lower than the efficiency of the charging and discharging circuits (< 50 % vs. > 75 %), mainly 

due to the high power consumption of the droop feedback circuitry, which was dominated by 

the power consumption of the current shunt monitor.  The first wearable prototype for the pico-

grid was then constructed and the performance of the prototype was presented and discussed. 

Overall, a successful operation was achieved. Since the first prototype was not optimised for 

real world applications, some suggestions and recommendations for improvement were 

presented.  

In conclusion, the proof-of-concept operation of the pico-grid has been successfully 

demonstrated and achieved, through both on-bench and wearable prototypes. Several important 

operations to improve the reliability, efficiency, and feasibility of the pico-grid such as variable 

mode select mechanism and plug-and-play operation were successfully demonstrated. In the 

following chapters, due to the opportunity of working with new semiconductor compound and 

accessibility to the fabrication facilities, some preliminary work on thin film diode fabrication 

for the purpose of fabricating a fully flexible rectifier circuit are presented.
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Chapter 5: ZnON Thin Film Diode – Fabrication and Characterisation 

 

ZnON Thin Film Diode – Fabrication and 

Characterisation 
 

 

5.1 Foreword 

This chapter presents the fabrication and characterisation results for the zinc oxynitride (ZnON) 

thin film diode. After the operation of the pico-grid has been successfully demonstrated, there 

is a huge opportunity to further improve the overall system performance and to increase the 

feasibility of the operation by improving each sub-system. One of the possible areas is the 

power circuit.  

In order to integrate any ac energy harvesting mechanism such as piezoelectric and electrostatic 

transducer in the pico-grid system, an AC-DC rectification stage is required to convert the ac 

voltage from these sources to a useful dc voltage. This is shown in Figure 5.1. In order to 

achieve this, a device with a blocking capability is needed and in most cases, Schottky diode 

is preferred due to its low forward voltage drop. Furthermore, since the targeted applications 

for the pico-grid are mainly on WBAN systems, flexible circuit is a favourable feature since 

this feature will enable a seamless integration of the circuit with the conductive textiles. In 

order to achieve this, the low temperature fabrication of a Schottky diode is investigated and 

presented in this chapter. The Schottky barrier diode performance fabricated from the selected 

semiconductor material is then evaluated and discussed. 
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Figure 5.1: The need for a flexible diode for AC-DC rectification for AC energy harvesting 

mechanisms in WSN or WBAN applications. 

5.2 Background 

This section provides an overview on the selection of the semiconductor material and also the 

structure of the fabricated diode. 

5.2.1 ZnON Semiconductor 

Metal oxides semiconductors have garnered huge interest in recent years due to its superior 

performance. Among other advantages, low cost, possibility of low temperature deposition, 

and flexibility of integration with other organic and inorganic compounds are key attributes. In 

the application of thin film transistor (TFT), this type of semiconductor is preferred when 

compared to the conventional amorphous silicon due to its higher mobility. One of the most 

extensively studied semiconductor in this group is perhaps zinc oxide (ZnO). ZnO is an 

intrinsically n-type transparent conductive oxide (TCO) and was once used by multiple 

research groups as a TFT channel material [63]–[66]. However, the polycrystalline structure of 

ZnO means it suffers from a few instability issues. In particular, the traps in the dense grain 

boundaries of the crystalline structure and the grain nucleation issue has made it hard to control 

the fabrication process and produce a TFT with consistent performance. In order to improve 

this, a cation and anion control strategy has been implemented and investigated. Metal cation 

control is able to reduce the grain boundaries hence reducing the potential barrier and 
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increasing the mobility. However, this method is not as effective in amorphous metal oxides 

since the interaction of different metal cations can result in additional potential barriers.  In this 

sense, the anion control strategy which can suppress potential barrier resulted from grain 

boundaries and at the same time eliminate the interaction of different metal cations is preferred. 

Examples of semiconductor materials utilising these methods include InGaZnO and InZnO for 

metal cation control and ZnON for anion control. Among these, ZnON has a huge potential 

since it can be fabricated at low temperature, and possesses high mobility and high illumination 

stability. However, ZnON is not to be confused and mixed with ZnO:N, which suffers from 

instability issue, which will be discussed next.  

Perhaps the first paper related to nitrogen doped ZnO can be traced back to 1998 when 

Futsuhara et al. [67] doped ZnO with nitrogen through sputtering method by using ZnO target 

with argon and nitrogen gas flowed into the chamber. The purpose of most of the initial work 

was mainly to reduce the bandgap of the ZnO by introducing impurity dopants. Later in 2006, 

Yao et al. [68] published a paper outlining the change in conductive behaviour of ZnO film 

doped with nitrogen through reactive sputtering process, in which the film could change from 

p-type to n-type under different circumstances, and vice versa. In this sense, the instability 

issue is apparent in nitrogen doped zinc oxide, or ZnO:N. Due to this conductive behaviour 

instability, this material is not suitable to be used as the semiconductor material in thin film 

diode.   

However, three years later in 2009, Ye et al. [69] was the first to publish a paper outlining the 

method of reactive sputtering process which promotes competitive reaction between nitrogen 

and oxygen with zinc (using Zn target), resulting in a rather amorphous ZnON structure, which 

upon annealing at 400 °C, was able to produce a high mobility n-type semiconductor exceeding 

100 cm2 V-1 s-1 and most importantly is stable. The main difference from previous publications 

is that they used a Zn target with oxygen, nitrogen, and argon gases (ZnON) instead of ZnO 

target with nitrogen and argon gases (ZnO:N). The competitive reactions between zinc and 

oxygen (which produces hexagonal ZnO) and zinc and nitrogen (which produces cubic Zn3N2) 

are the main reasons that promote the amorphous structure of this film. Lee et al. [70] reported 

that the properties of ZnON can be adjusted based on the nitrogen flow rate in the reactive 

sputtering process. In their publication, it was found that the carrier mobility and bandgap are 

both highly dependent on the nitrogen content as shown in Figure 5.2. This feature is sometimes 

desired due to the different requirements of semiconductor material in different applications. 
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Since 2009, many different groups have managed to fabricate a good TFT from ZnON film 

[71][72].  

However, degradation in the performance of ZnON has been observed in the deposited film 

since oxygen which possesses higher reactivity with zinc compared to nitrogen, can react with 

ZnON and change the chemical composition of the film. Two main treatments have been used 

to counter this issue; thermal annealing and argon plasma treatment. Thermal annealing has 

been shown to enhance the electron concentration from the increase in nitrogen vacancies of 

ZnxNy bonds in the ZnON film [73]. Argon plasma treatment assists the film to redistribute its 

atomic structure, hence leading to a more energetically stable configuration [74]. In both cases, 

degradation in performance has been significantly reduced, resulting in a longer shelf life of 

the ZnON film.     

As a result of its superior performance in TFT especially stability and simple low temperature 

fabrication technique, ZnON was chosen as the semiconductor material to fabricate the diode. 

Furthermore, it would be much easier to integrate the same semiconductor material for both 

diode and TFT on the same substrate to make a working power circuit. 

 

Figure 5.2: The variation of mobility and bandgap of ZnON film with nitrogen content taken 

from [70]. 

5.2.2 Schottky MIS Diode  

The selection of the diode structure needs to consider the available fabrication method and also 

the requirements of the application. Since only the deposition of ZnON film which is an 

intrinsically n-type semiconductor is possible for the semiconductor material, therefore the p-

n or p-i-n junction diode structures are not possible to be fabricated. The Schottky diode 

structure has been selected since it only requires metal contact depositions apart from the 

semiconductor deposition, which makes the entire process relatively simple.  
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The Schottky diode is a metal-semiconductor (MS) diode whose transport is solely based on a 

majority carrier, resulting in a fast switching action. MS contact can result in two different 

operations; ohmic or rectifying. Theoretically, the operation of the contact is dictated by the 

difference of the metal work function and electron affinity of the semiconductor. For an n-type 

semiconductor, if the metal work function is higher than the electron affinity of the 

semiconductor, then the MS contact is expected to behave as a rectifying contact, and vice 

versa. This property is outlined in the Schottky-Mott rule and is shown in Figure 5.3. 

 

Figure 5.3: Energy band diagram of MS contact at thermal equilibrium. The metal work 

function and semiconductor electron affinity both would define the operation of the contact. 

However, in reality, the behaviour of the contact is not solely governed by the metal work 

function, but also the interface quality between the metal and semiconductor. In an ideal case, 

both the metal and semiconductor are considered pure and there is no interfacial layer or 

reaction between them. Interface states and defects, intrinsic surface states, dangling bonds, 

and chemical reaction and diffusion could also occur from the metal to the semiconductor side, 

thus altering the interface properties and preventing the MS contact from behaving according 

to the expected Schottky-Mott rule. Generally, it is difficult to define the expected behaviour 

of an MS contact without testing the conductive behaviour of the actual fabricated contact.  

The Schottky diode has been well known to have a fast switching property, small forward 

voltage drop, but with a high leakage current. These properties are mainly due to the single 

carrier transport mechanism for this diode. The conduction property of the diode is shown in 
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Figure 5.4. The built-in potential is defined as the amount of potential energy that must be 

acquired by a single electron to move from the semiconductor conduction band to the metal 

side. The external bias can be applied to either reduce or increase this potential, resulting in a 

higher or lower probability of electrons to have enough energy to overcome the barrier. When 

the external bias is positively applied to the metal side with respect to the n-type semiconductor 

side, then this potential will be reduced, thereby the current can easily flow. This is called 

forward bias. In reverse bias, the external bias is negatively applied to the metal with respect 

to the n-type semiconductor side, effectively increasing this potential causing only a very small 

current to flow.        

 

Figure 5.4: Energy band diagram for a Schottky diode under forward and reverse bias 

condition. 

A very thin insulating layer (in the range of few nm) is normally intentionally deposited in 

between the metal and semiconductor surfaces. Aside from preventing the reaction and 

diffusion between the metal and semiconductor, this layer serves to enhance the performance 

of the diode, in particular it is capable of reducing interface states and preventing Fermi level 

pinning [75][76]. Fermi level pinning is a common phenomenon which occurs in the MS 

interface, where the degree of band bending in the semiconductor near the interface is 

independent of the metal work function variation, causing the alteration of the actual barrier 

height. Fermi level pinning is a very undesirable feature in MS contact since it can degrade the 
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performance of the diode by introducing higher parasitic resistance to the flow of electrons. 

Furthermore, the presence of a thin insulating layer could also potentially reduce the leakage 

current of the diode [77]. It has been shown that the insertion of the thin insulating layer would 

not significantly affect the transport mechanism of the diode, since this layer is so thin that 

electrons can easily tunnel through it [76]. However, the insulator must be of high quality since 

a low quality insulator can introduce interface states, thus further deteriorating the performance 

of the diode.  

Due to the availability of the fabrication process to deposit high quality insulator with great 

controllability over the thickness, the MIS structure was selected as the diode structure.   

5.3 Fabrication and Characterisation Results 

This section presents the fabrication method and subsequently characterisation results of the 

ZnON MIS diode. 

5.3.1 Fabrication and Characterisation Method 

a. Fabrication Method 

The structure of the fabricated diode is shown in Figure 5.5. The diode was fabricated on top 

of a 1 mm thick Corning 70059 glass substrate measuring 20 mm by 10 mm (cut from 20 mm 

by 20 mm). The substrate was cleaned properly by first rinsing it with deionised (DI) water and 

then ultrasonicating it in acetone and then isopropyl alcohol solution, each for 10 minutes. It 

was then dry blown with nitrogen gas and baked at 120 °C for 30 minutes to remove any 

possible moisture. Molybdenum is used as the bottom contact since it provides good ohmic 

contact with the ZnON film with a very low contact resistance. Nickel was used as the top 

contact since this metal is the only available metal that produces rectifying contact with ZnON 

film. Some other metals and TCO tested apart from nickel were chrome, aluminium, and 

indium tin oxide (ITO), however no definite and consistent rectifying property could be 

obtained. The depositions for both bottom and top metal contact were done at room temperature 

in the custom built-in metal sputter coater machine. The thickness for both layer was 100 nm. 

The depositions for the ZnON semiconductor and Al2O3 insulating layer were done by using a 

cluster tool multi deposition system manufactured by MVSystems, as shown in Figure 5.6. 

This deposition tool is an integrated deposition system capable of carrying out a few different 

deposition processes in multiple chambers; plasma enhanced chemical vapour deposition 
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(PECVD), atomic layer deposition (ALD), and reactive magnetron sputtering, with a vacuum 

isolation and transfer zone between each chamber to ensure no contamination to the samples. 

 

Figure 5.5: Structure and 3-D view of the fabricated diode. The shadow mask used in the 

fabrication is also shown here. 

 

Figure 5.6: MVSystems cluster tool deposition system used in the fabrication process. 



Chapter 5  ZnON Thin Film Diode 

107 

 

Reactive magnetron sputtering for ZnON layer 

The ZnON film was deposited through a reactive magnetron process to produce a 50 nm layer. 

Zn target was used with argon, oxygen, and nitrogen gases flowed into the chamber at specific 

flow rate. Both the target and gases have 99.99 % purity. The optimisation process for the 

fabrication conditions was done by varying the flow rate of the gases into the sputtering 

chamber. Whilst keeping a constant flow rate of argon (4 sccm), the flow rates of nitrogen and 

oxygen were varied and after each fabrication, the characterisations were carried out on the 

fabricated film to get the optical bandgap (from UV-VIS measurement) and hall mobility and 

carrier concentration (from hall effect measurements). At each condition, the chamber pressure 

was set to be almost vacuum (<15 mTorr). The RF power was maintained at 250 W throughout 

all fabrication conditions.  

 

Figure 5.7: Characterisations for different fabrication conditions for ZnON film. 
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The results from the characterisations are shown in Figure 5.7. From Figure 5.7 (a), it can be 

seen that the optical bandgap decreases as the ratio of N2/O2 increases. This can be elucidated 

by considering the bandgap of ZnO (3.2 eV) and Zn2N3 (1.1 eV). As the ratio of N2/O2 

increases, the optical bandgap will reduce due to the lower concentration of ZnO and higher 

concentration of Zn2N3 and nitrogen rich ZnON in the film. Figures 5.7 (b) and 5.7 (c) present 

the extracted hall mobility and carrier concentration for the film under different N2/O2 ratio. 

As the ratio of N2/O2 increases, the mobility increases but the carrier concentration decreases. 

This finding is consistent with some of the reported works in the literature [69][78]. Further 

characterisations involving XPS measurement are needed in order to provide a possible 

explanation for this phenomenon, and this was not carried out in this thesis. Nevertheless, in 

order to provide a figure of merit for the best fabrication condition, the product of mobility 

with carrier concentration was computed and is shown in Figure 5.7 (d). From this, it was 

determined the highest magnitude of this figure of merit was obtained from the following flow 

rate; N2 = 180 sccm and O2 = 1.5 sccm. This condition was then used throughout the fabrication 

of the diode in this thesis.  

Atomic layer deposition (ALD) for Al2O3 layer 

The Al2O3 layer was deposited through an ALD process to produce a 2.5 nm layer. The 

fabrication condition used in this thesis was optimised and provided by MVSystems. Hence, 

no optimisation process was done to further improve the fabrication condition. 

Trimethylaluminum (TMA) and water were used as the main precursors and each cycle of the 

ALD process was determined to produce almost a consistent thickness of 0.1 nm. The thickness 

of the film as obtained from the profilometer against the number of cycles used is shown in 

Figure 5.8. 

The deposition conditions for both processes are tabulated in Table 5.1. A single shadow mask 

with an area of 0.66 mm2 was used to pattern the semiconductor, insulator, and top metal 

contact layer. It is worth mentioning that another insulator, silicon nitride (SiNx) was attempted 

to be used as the insulator, however, the degree for thickness controllability is poor, thus 

consistent film thickness was very hard to be reproduced. Plus, the deposition also requires a 

high substrate temperature (around 370 °C). Apart from the Al2O3 insulating layer, all other 

layers are deposited at room temperature. The overall thickness of the diode excluding the 

substrate is 252.5 nm. 
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Figure 5.8: Thickness of Al2O3 film deposited from the ALD process obtained from the 

profilometer as a function of number of cycles. 

Table 5.1: Deposition process parameters for ZnON and Al2O3. 

Parameter 
Reactive magnetron 

sputtering (ZnON) 

Atomic layer deposition 

(Al2O3) 

Pressure 12.5 mTorr 80 mTorr 

Temperature Room temperature 250 °C 

RF power 250 W N/A 

Target / Precursor 
Zinc (99.99 %) 

TMA (99.99 %) 

Water (H2O) 

Gas flow rate 

Ar – 4 sccm 

N/A O2 – 1.5 sccm 

N2 – 180 sccm 

Cycle N/A 25 

 

b. Characterisation Method 

The I-V and C-V measurements were carried out by using a Keithley 4200 Semiconductor 

Characterisation System (4200-SCS). The sample was put inside the LakeShore probe station 

and the temperature was controlled by a Lakeshore 336 Temperature Controller. Temperature 

dependent measurements were conducted inside a vacuum chamber. All measurements were 

carried out in a dark condition and temperature was varied from 50 °C to 200 °C at 50 °C 

intervals. The room temperature measurements were carried out in normal atmospheric 

conditions.  
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Figure 5.9: Characterisation setup of the fabricated diode. 

c. Reproducibility 

The main challenge with the semiconductor fabrication process is to produce devices with a 

consistent performance regardless of different fabrication batches. This is mainly due to the 

limited controllability over the competitive reaction between zinc with oxygen and nitrogen, 

and limited control can only be achieved via regulating the gas flow rate into the reaction 

chamber. Reproducibility is one of the most important features that must be present in the 

fabrication process of any critical devices. To test the reproducibility of the ZnON film used in 

this experiment (the fabrication processes for other layers are considered consistent and 

reproducible), a set of 4 different samples (from 4 fabrication processes) was fabricated. Each 

sample contains 9 diodes (from the shadow mask). The fabrication processes for each sample 

were exactly the same.  

The performance of the as deposited samples was then tested. In particular, the I-V was swept 

from -1.5 V to 1.5 V at 0.05 V intervals. The results for all 4 samples (average of 9 diodes in 

each sample) are shown in Figure 5.10 (a). Generally, deviations between samples are only 

apparent after the diodes have been turned on in a forward direction. No significant deviations 

between samples can be observed in reverse bias and in low voltage region in forward bias. 

This is suspected to arise mainly due to the different magnitude of series resistance of the 

fabricated diodes.  
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Figure 5.10: Reproducibility of the performance of the diode for an as deposited film 

demonstrated by the fabrication of 4 samples from different batches. 
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The deviations in each sample were further investigated. The performance of 9 diodes from 

each sample was averaged, and the maximum deviations from the average at every voltage 

interval were shown in Figure 5.10 (b). From this, it can be observed that although deviations 

can be observed even between diodes from the same sample, these deviations are very small 

and are mostly constrained within 10 % of the average. For each sample, although all diodes 

were fabricated on the same substrate and went into the same fabrication process, there would 

be a slight difference in chemical composition and thickness. Although the difference is very 

small, the diode in the centre of the substrate would be slightly thicker than the diodes at the 

edges of the substrate. Furthermore, the diode at the centre also was positioned directly beneath 

the sputtering target, which might produce a different chemical composition.  

The deviations between samples were further investigated as shown in Figure 5.10 (c). The 

average of I-V curves of all samples is shown as 100 % (grey line) and the deviations for each 

sample at each interval are shown around the grey line. From this, it can be observed that the 

deviations between samples are mostly constrained within 20 % of the average. From the data 

obtained in this section, it can be concluded that reproducible results within 20 % of the average 

can be easily obtainable from the fabrication of the diode. 

d. Evidence of Schottky Contact Behaviour 

 

Figure 5.11: Evidence of the formation of Schottky contact and thermionic emission transport 

mechanism in the fabricated diode. 

Evidence that the Schottky contact behaviour is formed between the nickel electrode and ZnON 

semiconductor can be obtained by observing the Schottky plot (natural logarithmic value of 
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forward current against square root of electric field). Additionally, the linear relationship 

between these two parameters at low bias indicate the dominant of thermionic emission current 

transport mechanism across the diode. This plot is shown in Figure 5.11. In this figure, the 

forward current data is obtained from the previous reproducibility section. From the linear 

relationship observed in this plot, it is apparent that the thermionic emission current transport 

mechanism dominates the current transport across the diode and therefore, this model is 

implemented to elucidate the characteristic of the diode in the following sections. 

e. Effects of Post Deposition Annealing 

The performance of the ZnON semiconductor has been reported to be enhanced when post 

deposition thermal annealing treatment is carried out. Annealing treatment has been carried out 

in a normal atmospheric pressure post fabrication process and the effect of the annealing to the 

performance of the diode is investigated. Three films from the same fabrication batch have 

been annealed at 3 different temperatures (150 °C, 250 °C, and 350 °C) for three hours 

(measurements were taken at one-hour interval) and the performance of the diode was then 

investigated. The I-V was swept from -1.5 V to 1.5 V at 0.05 V intervals.  

Figure 5.12 shows the effect of annealing at different temperatures to the I-V behaviour of the 

diode. For all temperatures, annealing increases the leakage current in reverse bias and also the 

saturation current of the diode. However, this trend is not consistent in forward bias. For 150 

°C and 250 °C, annealing significantly increases the forward current up until the duration of 2 

hours, and after that the performance starts to degrade. The extent of this degradation is more 

apparent when the diode is annealed at 350 °C. The findings from this experiment corroborate 

with the results reported in [73].  It was postulated that the enhancement in the performance of 

the ZnON film when annealed at 150 °C and 250 °C is due to the increase in electrons 

concentration caused by the increase in the nitrogen vacancies in the defective ZnxNy bonds in 

the ZnON. However, annealing ZnON film at significantly higher temperature such as 350 °C 

would increase the oxygen concentration in the film thus reducing the electrons concentration. 

This reduction of electrons concentrations could also possibly occur when the film is annealed 

at longer durations in lower temperatures, thus explaining the degradation of performance when 

the diode is annealed for more than 3 hours at 150 °C and 250 °C. Another possible explanation 

for the degradation of the performance is not due to the ZnON film, rather degradation in the 

metal contacts and thin insulator quality. This is another possible factor since Ok et al. [71] 

reported that the ZnON enhancement can still be observed even after the film was annealed at 
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250 °C  for 5 hours. This observation is contradicting the results obtained from this experiment, 

however it should be noted that their film was annealed in low pressure ambient. In 

publications, the same annealing condition has been used in [79]. Ye et al. [72] reported that 

apart from enhancing the electrical performance of the film, annealing can also increase the 

shelf life of ZnON film.  

 

Figure 5.12: Effects of post deposition annealing with different temperatures and duration to 

the performance of the diode. 

Another way to elucidate the implications of annealing on the magnitude of current in the 

forward bias characteristics is through Arrhenius plot. The reduction in the forward 

characteristics could be associated to the increase of trap concentration in the insulator 

interface. The activation energy (ET) of the trap can be determined from the thermal emission 
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rate (en) from the deep level into the conduction band of ZnON through the Arrhenius 

relationship: 

en =σnvthNcb exp (
−ET

kT
) =

1

τe
 

Here σn is the capture cross section, vth is the thermal velocity, Ncb is the density of states in 

the conduction band of ZnON, k is Boltzmann constant, T is temperature (K), and τe is the 

emission rate constant. vth and Ncb can be calculated from: 

vth = √
3kT

m∗
 

Ncb = 2(
2πm∗kT

h2
)

3
2 

Here m* is the effective mass of electron in ZnON and h is Planck’s constant [79][80]. From 

this relationship, the thermal activation energy can be obtained from the slope of ln(en/T
2) 

against 1000/T plot (Arrhenius plot) and is shown in Figure 5.13. Additionally, the magnitude 

of capture cross section can be extracted from the y-intercept in the plot. The trap activation 

energies for the different annealing duration were calculated from the slope of the linear 

regression fits and are shown in the same figure. From this, it can be observed that the traps 

have the highest estimated activation energy when the film has been annealed for two hours, 

hence this could explain the improvement for the forward behaviour of the diode in this 

annealing condition for all annealing temperatures.  

 

Figure 5.13: Arrhenius plot to obtain the thermal activation energy of the traps in the diode. 
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The three best forward characteristics obtained from three different annealing temperatures are 

shown in Figure 5.12 (d). From this, it can be observed that the best performance diode in terms 

of forward bias is obtained from annealing the sample at 250 °C for 2 hours. This post 

deposition annealing condition was then used throughout the experiments in this chapter.  

5.3.2 Temperature Dependent I-V Measurements 

In this section, the results of temperature dependent I-V measurements of the diode are 

presented and a curve fitting method based on the thermionic emission model is proposed to 

extract the parameters from the I-V curves. The trends of each of these parameters are then 

discussed.  

For the MIS Schottky barrier diode, the forward bias characteristic can be modelled by the 

thermionic emission-diffusion theory with series resistance expression, neglecting the effect of 

shunt resistance: 

I = IO exp (
q(V − IRs)

nkT
− 1)  …     eq. (5.1) 

Here Io, Rs, n, and T are the saturation current, series resistance of the diode, ideality factor, 

and temperature (K), respectively. All of the values in the equation are constant except these 

three parameters; saturation current, ideality factor, and series resistance which are of interest 

in evaluating the diode.   

Multiple extraction methods for these three main parameters have been proposed in the 

literature. Whilst some extraction methods are straightforward and easily implemented, few 

methods are only applicable to certain types of dominant transport mechanism, interface 

quality, and diode structure. The saturation current is normally extracted from the 0 V intercept 

of the ln(I)-V curve and from the value, the barrier height can be obtained by the following 

relation: 

IO = AA∗∗T2 exp (−
qΦ𝐵

kT
) …    eq. (5.2) 

Here A, A**, and ΦB are the diode active area, effective Richardson constant, and barrier height 

(eV), respectively. The effective Richardson constant here is the value of universal Richardson 

constant multiplied with the correction factor associated with the semiconductor material used 

in the device. It should be noted that the above expression considers the thermionic emission 

as the main transport mechanism (n → 1). One of the disadvantages of using the intercept to 
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extract the value is the noise from the measurement. At a very low current level, the noise could 

dominate the measured current, hence could provide deviation from the true value.  

The ideality factor is commonly extracted according to the following relation: 

n =
q

kT

dV

dln(I)
         

This expression omits the effect of series resistance of the diode, therefore the dV/dln(I) 

expression needs to be evaluated in the linear low current region, where the effect of any series 

resistance is minimal. If the series resistance is large, the region where the plot is linear is very 

small, thus making it harder to determine the ideality factor. Moreover, the shunt resistance of 

the diode which can dominate the current at low bias is assumed to be infinity. 

 

Figure 5.14: Effects of varying specific parameters whilst maintaining other parameters as 

constant on the overall shape of the graph. 

Whilst the literature appears to agree with the method of extracting the saturation current and 

ideality factor, for series resistance, multiple methods have been proposed and used in the 
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literature. Norde [81] has proposed to extract the series resistance from the minimum of the 

auxiliary function F(V), however there can exist several minimums and it was assumed that the 

ideality factor is unity, which is not the case for most diodes. Few improvement methods 

[82][83] were suggested but each of them failed to take into account the variation of the ideality 

factor and barrier height with temperature. Cheung and Cheung [84] have proposed a method 

in which the resistance is extracted from the curvature region of the I-V curve, however few 

published work [85][86] argue that this method could produce inaccurate results and is very 

sensitive to noise. Werner [86] has proposed a method by including the shunt conductance of 

the diode, however this method suffers from inaccuracy due to the fact that the reverse bias 

current is not linear for shunt conductance determination and few issues with evaluating the 

forward conductance as highlighted by E.K Evangelou et. al. [85]. Jung and Guziewicz [87] 

have proposed a method in which both shunt and series resistance can be determined 

simultaneously by using the Lambert W function, however the method is complicated and the 

effect of shunt resistance can actually be omitted in the conduction process if it is in the GOhm 

range. Herein, a simple curve fitting method based on eq. (5.1) is proposed and utilised to 

extract all 3 parameters, which is suitable for all types of diode. 

In order to implement the curve fitting method in the equation, the effects of each parameter to 

the overall shape of the curve was first investigated. The effects of varying the value for these 

3 parameters whilst maintaining the magnitude of other parameters as a constant are shown in 

Figure 5.14. From the figure, it can be observed that each of these 3 parameters significantly 

affect different regions of the curve, which makes the fitting method in the diode equation 

easier and simpler. This also means that there is only one combination of all parameters that 

can produce a good fit. The saturation current only significantly affects the low voltage region, 

in particular the magnitude of the starting point of the curve from 0 V. The ideality factor 

mainly affects the area around the curvature, in particular the extent of the bending up until the 

curvature, and the series resistance have a significant effect on the area after the curvature, 

where the resistance starts to dominate the current. From this, the fitting method is proposed as 

follows; first the saturation current was estimated from the starting point of the curve, next by 

using the estimated saturation current, the ideality factor is varied whilst maintaining the series 

resistance as 0 Ω until a good fit from the low voltage region up until the curvature can be 

obtained (this region should be almost linear in a semilog plot), and finally the series resistance 

is slowly increased until a good fit for the overall curve is obtained. After this, if needed, all 3 

parameters can be varied to produce a better fit. As can be seen from eq. (5.1), the current term 
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appears twice in the equation, which makes the plotting difficult since the current needs to be 

solved iteratively. To counter this issue, a short programme was written in Wolfram 

Mathematica to plot the curve when each value is being varied. The programme was provided 

by Prof. John Wager of Oregon State University and is shown in Appendix 4. 

 

Figure 5.15: Experimental and fitted curve for J-V temperature dependent measurements. 

Figure 5.15 shows the J-V results in forward bias for the diode at all four temperatures. It can 

be observed that the J-V characteristic depends strongly on temperature, depicting the usual 

trend of the saturation current increasing with temperature. The curvature starts to form at 

around 0.5 V, indicating the effect of series resistance starting to dominate the current at this 

voltage. Using the proposed 3-parameter fitting method for V > 0 V yield the solid coloured 

lines, which can be observed to produce good fits for the measured J-V curves. The extracted 

parameters from all curves are tabulated in Table 5.2. From the table, it can be observed that 

these parameters vary strongly with temperature. The barrier height was extracted by using eq. 

(5.2). The Richardson constant for the ZnON semiconductor was calculated based on the 

following relation: 

A∗∗ =
4πqm∗k2

h3
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Here h is a Planck constant and m* is the effective mass of the electron. We use the value for 

effective mass of the electron for ZnON film as reported by Ryu et al. [79] and Ok et al. [80], 

i.e. m* = 0.19 me, where me is the rest mass of an electron, yielding the constant to be 22.8 

A/cm2K2. It should be noted that the value of effective mass of the electron in the fabricated 

semiconductor film may differ from the reported values due to the different fabrication 

conditions used in this thesis and in the reported work. 

 

Figure 5.16: Temperature dependent reverse bias experimental and fitted I-V data. 

Next, the reverse trend against temperature was investigated and is shown in Figure 5.16. 

Similar to the forward bias characteristic, the reverse trend shows a great dependence on 

temperature and the current increases with temperature. No sign of saturation is observed which 

is due to the effect of image force lowering of the barrier height of the diode [88]. Another 

interesting observation from the measurement is that the trend at each temperature shows an 

almost linear behaviour, which suggests that the reverse current is dominated by the shunt 

resistance of the diode, in particular this trend suggests the existence of a parallel resistive 

leakage path in this diode [89]. Werner [86][90] has suggested that the effect of parallel 

conductance is exceptionally more dominant in reverse bias and high barrier diode (˃ 0.83 eV), 

which agrees with this experiment. From this, the linear fit of each line was extrapolated and 

the fit was used to estimate the shunt resistance. These values are tabulated in Table 5.2.  
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Table 5.2: Extracted parameters from the curve fitting method. 

Temp. (K) Io (A) n RS (Ω) ΦB (eV) Rshunt (GΩ) 

323 6.15 × 10-10 2.43 7700 0.86 0.50 

373 1.68 × 10-9 1.90 3550 0.97 0.33 

423 1.12 × 10-8 1.72 1050 1.04 0.05 

473 6.56 × 10-8 1.65 420 1.10 0.01 

 

Figure 5.17: Trends of each extracted parameter against temperature. 

All of the five extracted parameters; saturation current, barrier height, ideality factor, series 

and shunt resistance are temperature dependent parameters and the trends of each of these 

parameters are plotted against the temperature in Figure 5.17. The saturation current increases 

with temperature, which shows the expected behaviour as more carriers are generated at a 

higher temperature. The barrier height shows an interesting trend; it increases with temperature. 

This is against the typically negative temperature coefficient of II-IV compound 
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semiconductor. This disagreement has been observed in numerous literature [91]–[93] and the 

main reason is due to the barrier height inhomogeneities around the insulator-semiconductor 

interface. In a model developed by Tung [94], a scattered region of ‘patches’ with a distribution 

of lower barrier heights than the main barrier height are assumed to exist at the junction. These 

patches may result from atomic defects such as grain boundaries and facets or from high 

electric field at the edge of the diode. In the barrier height inhomogeneity model, the current 

mechanism is assumed to be thermionic emission over an inhomogeneous barrier. The area of 

these patches might be much smaller than the total area of the diode. At high temperatures, the 

current is dominated by the thermionic emission over the main barrier because of high current 

density and the transport through these patches becomes gradually important with decreasing 

temperature, hence explaining the variation of the effective barrier height with temperature. 

The ideality factor decreases with increase in temperature, suggesting that other transport 

mechanisms apart from thermionic emission are more dominant at lower temperatures. These 

include generation-recombination near the space charge region and electron tunnelling through 

the barrier and across the thin insulating layer. As the temperature increases, more electrons 

are being emitted over the barrier hence the ideality factor approaches unity. It can also be 

observed that the values for the ideality factor are significantly high, suggesting the presence 

of bias dependent Schottky barrier height and image force lowering. The shape of the ideality 

factor curve against the temperature is almost reciprocal, which agrees with the T0 anomaly 

effect. Both series and shunt resistance decrease with an increase in temperature, which is 

expected as at higher temperatures, the conductivity of the semiconductor is being enhanced as 

more free carriers are available. The series resistance of the diode is significantly high, even in 

high temperature, and this would limit the electrical performance of the diode. The series 

resistance from this diode arises from the contact resistance, semiconductor bulk resistance, 

and interfacial layer resistance. It is suspected that the semiconductor bulk resistance and the 

interfacial layer resistance significantly contribute to the overall series resistance. Furthermore, 

the high temperature annealing process is also suspected to cause the nickel from the top metal 

contact to diffuse to the semiconductor and contribute to the increase in this series resistance. 

In this experiment, the device was annealed for 2 hours at a moderately high temperature (250 

°C), therefore the high resistance could be attributed to this. The voltage drop across the 

interfacial layer is also reflected in the magnitude of the series resistance and ideality factor 

[89]. The voltage drop across this layer will increase both the ideality factor and series 

resistance, which agrees with the trend of these two parameters in this experiment. Although 

the reverse bias trend is dominated by shunt resistance, the calculated magnitude of the 
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resistance is very high, therefore unlike the series resistance, the shunt resistance would not 

hinder the performance of the diode. It is suspected to arise from the existence of a leakage 

path around the edges of the device. In this experiment, the same shadow mask was used to 

pattern the layers, therefore there is a high possibility of leakage path around the edges to occur. 

It was also suggested by some published work that the shunt resistance could also be due to the 

crystal defects [95]. 

5.3.3 Room Temperature I-V and C-V Measurements 

In the final results section in this chapter, the I-V and C-V measurement results for the diode 

are presented and discussed. The method proposed to extract the parameters of the diode from 

the I-V curve in the previous section is implemented. From the C-V measurement results, the 

carrier concentration is determined and discussed.  

a. I-V Measurements 

The performance of the diode was then measured in an uncontrolled room temperature 

environment under a dark condition and the voltage was swept from -3 V to 3 V at 0.2 V 

intervals. The J-V plot is shown in Figure 5.18 (a). The diode shows typical rectifying 

behaviour (exponential increase of current in forward bias and weak dependence in reverse 

bias) with a threshold voltage of around 0.75 V and leakage current density of 0.4 μA/cm2 at -

3 V. It has been suggested that the introduction of a thin interfacial layer between the metal 

and semiconductor is not only able to reduce the leakage current, but could also possibly shift 

and increase the threshold voltage [75]. This could explain why the threshold voltage of the 

fabricated diode is quite high.  

The 3-parameter curve fitting method was implemented to extract all 3 main parameters for the 

room temperature measurement. From this, a good fit was obtained and the extracted 

parameters are as follows; ideality factor of 2.55, saturation current of 1.59 × 10-10 A (yielding 

a barrier height of 0.83 eV), and series resistance of 3800 Ω. Similar to before, the reverse bias 

current is almost linear as shown in Figure 5.18 (a), and the magnitude of the shunt resistance 

determined from this is 1.3 GΩ. All values agree with the trends obtained from the previous 

temperature dependent section, except for the series resistance. This is mainly due to the effects 

of temperature dependent measurements that were carried out on the sample after room 

temperature measurement. Unlike room temperature measurement, the temperature dependent 

measurement was carried out at high temperature in low pressure chamber and the period in 
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which the sample was subject to high temperature was significantly longer to ensure that the 

sample reached the desired temperature, thus it might change the behaviour of the device. 

 

Figure 5.18: J-V and C-V data and analysis at room temperature. 

Table 5.3: Extracted parameters from the curve fitting method. 

Parameter Magnitude 

Ideality factor (n) 2.55 

Rseries 3800 Ω 

Rshunt 1.3 GΩ 

ΦB (I-V) 0.83 eV 

ΦB (C-V) 0.86 eV 
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b. C-V Measurements and Carrier Concentration 

The C-V characterisation was done to determine the carrier concentration and zero bias barrier 

height. The C-V sweep was carried out in a dark environment at 1 MHz with an ac modulation 

voltage of 30 mV. At this frequency, the effect of interface state is omitted since the carrier 

lifetime (τ) is larger than the measured period (1/2πf). To determine the carrier concentration 

and barrier height, the 1/C2-V plot in the reverse biased condition was constructed according 

to the following relation and is shown in Figure 5.15 (b): 

1

C2
=

2(VR + VO)

qεsNCA2
 

Here, VR is the reverse biased voltage, VO is the built-in potential and is determined from the 

x-intercept of the 1/C2-V plot, εs is the dielectric constant of the semiconductor, and NC is the 

carrier concentration. As can be observed from Figure 5.18 (b), the 1/C2 against V plot in the 

reverse biased condition yields a straight line. This linearity shows that at the measured 

frequency, the interface states and the inversion layer charge do not significantly contribute to 

the diode capacitance. By rearranging the expression, the following relation can be obtained 

and the slope from the plot was used to determine the carrier concentration:   

d(C−2)

dV
=

2

qεsNCA2
 

The barrier height was determined based on the following relation: 

Φb = V0 +
kT

q
+ Φ𝑛 

where Φn is the Fermi energy measured from the conduction band edge. From this, the 

calculated carrier concentration and barrier height are 2.15 × 1018 cm-3 and 0.86 eV, 

respectively. The small discrepancy of the barrier height obtained from C-V and I-V methods 

is due to the nature of the measurement. The C-V method is less sensitive to potential 

fluctuations at length scale less than the space-charge width and it averages over the whole 

area. However, the direct current in the I-V method increases exponentially with barrier height, 

and thus is more sensitive to the detailed barrier distribution at the interface. Several other 

reasons include the possibility of the existence of an interfacial native oxide layer near the 

insulator-semiconductor interface and barrier height inhomogeneities. 

5.3.4 Comments on the Overall Performance of the Diode  

The fabricated diode is intended for power circuits in energy harvesting applications. In this 

final section, the performance of the diode is discussed and compared with other published 
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work. In order to be utilised in power circuits such as rectifier and power converter, few 

characteristics of the diode are important. These include turn on voltage, series resistance, 

forward current, forward and reverse breakdown voltage, leakage current, rectification ratio, 

and maximum operating frequency. A summary of this work and a few related published works 

is presented in Table 5.4.   

For the diode structure, most of the work focused on a p-n diode, which requires intricate and 

expensive fabrication technique and lengthy processes due to multiple different layers, unlike 

the Schottky diode which only requires one deposition of the semiconductor active layer and 

metal contact (and an insulator for MIS Schottky diode). The thickness plays an important role 

as it is one of the factors that enable flexibility. It can be seen from Table 5.4 that the diode 

produced in this work has one of the best thicknesses. In terms of performance, the diode has 

a moderate turn on voltage and forward current density, low leakage current density, and good 

rectification ratio. However, a comparison for breakdown voltage cannot be drawn as this was 

not reported or stated in most of the published work. Nevertheless, our test has shown that the 

fabricated diode has a good operating voltage range (-25 to 25 V). Although the turn on voltage 

is slightly higher and the forward current density is slightly smaller than some reported work, 

no important issues nor significant effects can be foreseen as the intended application for this 

diode is for energy harvesting, where the voltage and current are expected to be high and low 

respectively, such as the output produced by a piezoelectric transducer and electromagnetic 

micro-generator. The only limiting factor of the performance of the diode is the series 

resistance. Similar to the breakdown voltage, a comparison cannot be drawn as this value is not 

reported in the literature. However, our diode shows a very high resistive behaviour, which 

makes it unsuitable to be used in power circuits, especially for high current application. Overall, 

we believe that the only issue with the diode is the series resistance, and provided the series 

resistance can be further reduced, we believe that this diode is suitable to be used in power 

circuits in energy harvesting applications. The future work will focus on reducing the series 

resistance of the diode, and at the same time exploring the possibility of other semiconductor 

material in the same group to be used in the same intended applications. 
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Table 5.4: Comparison between diode in this chapter and other published work. 

Publication 
Diode 

Structure 

Layer 

Material 

Thickness 

(nm) 

Turn-

on 

Voltage 

(V) 

Break- 

down 

Voltage 

(V) 

Leak. 

Current 

Density 
(A/cm2) 

For. 

Current 

Density 
(A/cm2) 

Rectification 

Ratio 

B V Mistry 

et al. (2011) 

[96]  

p-n 
p-NiO / 

n-ITO 
160  0.06  - 

0.15 × 

10-3 at -

5 V 

3.75 at  

0.35 V 
- 

A N 

Banerjee 

and K K 

Chattopadhy

ay (2008) 

[97] 

p-n 

p-

CuAlO2 

/ n-

ZnO:Al 

1100  0.8  - 

3 × 10-6 

at  

-4 V 

0.1 × 

10-3 at 

5 V 

50 at ± 2 V 

B S Kang et 

al. (2008) 

[98] 

p-n 

p-CuO / 

n-

InZnOx 

- 
0.5 – 

0.7  
- 

35 × 

10-3 at -

2.45 V 

35 × 

103 at 

2.45 V 

106 at ± 2.45 

V 

B N Pal et 

al. (2008) 

[99] 

p-n 

p-

pentace

ne / n-

ZnO  

200 nm 

(excluding 

n-ZnO 

thickness) 

1.5  
25 

(forward) 

53 × 

10-3 at -

5.5 V 

160 at  

5.5 V 

3000 at ± 

5.5 V 

R S Ajimsha 

et al. (2007) 

[100]  

p-n 

p-

AgCoO2 

/ n-ZnO 

200  
0.5 – 

0.7  
- 

185.7 

at  

-5.5 V 

1.3 × 

103 at 

1.5 V 

7 at ± 1.5 V 

D S Kim et 

al. (2006) 

[101] 

p-n 

p-

CuAlO2 

/ n-ZnO 

400  0.3  - 

2.5 × 

10-3 at -

4 V 

0.1 at 4 

V 
40 at ± 4 V 

A S Juarez 

et al.(2005) 

[102] 

p-n 
p-SnS / 

n-SnS2  
500 

0.6 – 

0.8  
- 

3.98 × 

10-3 at -

1 V 

1.19 at 

1 V 
300 at ± 1 V 

S Steudel et 

al. (2005) 

[103] 

MS 

(organic) 

Au / 

Pedot:P

SS - 

Pentace

ne / Al 

570  2 – 4  

19 

(forward) 

and -30 

(reverse) 

N/A 
150 at 

5V 
- 

A Kudo et 

al. (1999) 

[104] 

p-n 

p-

SrCu2O2 

/ n-ZnO  

1300 
0.3 – 

0.6  
- - - 

80 at ± 1.5 

V 

This work MIS 

Ni / 

Al2O3 / 

ZnON 

252  
0.6 - 

0.9  

25 

(forward) 

and -25 

(reverse) 

0.4 × 

10-6 at -

3 V 

3.79 × 

10-3 at 

3 V 

9500 at ± 3 

V 
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5.4 Summary 

In this chapter, the low temperature fabrication of a ZnON thin film diode in an MIS structure 

is presented. The reasons behind selecting the ZnON semiconductor and MIS diode structure 

is discussed. From multiple fabrications, it was demonstrated that good reproducibility can be 

attained despite the amorphous structure and limited controllability over the reaction processes. 

Post deposition annealing treatment has been carried out and the effects of different 

temperature and duration were investigated. From this, it was determined that annealing the 

device at 250 °C for 2 hours leads to the enhancement of the device performance.  

From the temperature dependent I-V measurements, the parameters for the diode were 

extracted based on the proposed 3 parameter curve fitting method. From this, the ideality factor, 

saturation current, barrier height, and series resistance were extracted. The trends of these 

parameters with temperature were investigated and discussed. The high ideality factor indicates 

that thermionic emission is not the main current transport mechanism in the diode.  

From room temperature I-V measurements, the proposed 3 parameter curve fitting method was 

used to extract the main parameters, and the trends of these parameters with the previous 

parameters obtained from the temperature dependent I-V measurements were discussed. The 

room temperature C-V measurements at high frequency enable determination of barrier height 

and carrier concentration of the semiconductor.  

Finally, the overall performance of the diode is presented and discussed. The performance was 

then compared with other relevant published work in this field. It was concluded that although 

the overall performance and some of the parameters of the diode are better than other reported 

work, the series resistance would hinder the performance of the diode if this diode were to be 

used in power circuit applications. Overall, this work has paved a possibility of integrating this 

semiconductor material and device into the pico-grid system.
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6.1 Conclusion  

In this thesis, an integrated low power energy harvesting system specifically designed for WSN 

and WBAN applications is proposed and the proof-of-concept pico-grid system is presented. 

This system is designed to be capable of delivering power simultaneously from multiple 

sources at the same time to the target load. Furthermore, due to the requirements of the 

applications, few other necessary features such as plug-and-play functionality, equal load 

sharing, energy storage integration for charging and discharging mechanism, and portability 

are presented and discussed. A side project aiming to fabricate a thin film diode at low 

temperatures in order to achieve the flexibility feature in a rectifier circuit with the final 

objective to be integrated in the final pico-grid system is also presented.   

The contents of this thesis can be segregated into two main parts; the first part focuses on the 

development of the system itself, from the discussion of the load sharing mechanism to the 

presentation of the first wearable prototype. The first part comprises Chapter 2 to Chapter 4. 

The second part focuses on the side project and presents the work related to the fabrication and 

characterisations of the device. These work are presented in Chapter 5. Separate key findings, 

contributions, and concluding sections are presented for both parts.  
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6.1.1 Key Findings, Contributions, and Conclusion for Part 1 

The key findings, contributions, and conclusion for part 1 are summarised as follow: 

• For a parallel connected power converter system, a load sharing mechanism is needed to 

regulate the power flow between converters in the system. In this thesis, a voltage droop 

method is proposed. This method introduces a virtual impedance in the output side of a 

converter connected in parallel with another converters to provide a load sharing regulation.  

• With the time-varying nature of the output power for energy harvesters, the voltage droop 

mechanism integrated in the power converters responsible to regulate the output voltage of 

these harvesters also need to be time-varying and capable of adjusting automatically to the 

variation of the power of the harvesters. A method for a self-adjusted voltage droop 

mechanism is proposed for solar panel and TEG energy harvesting scheme by introducing 

a variable resistor whose resistance varies in the same way as the energy source for the 

harvesters in the voltage droop feedback loop. LDR and thermistor are selected for the solar 

panel and TEG scheme, respectively. Through a series of presented calculations, specific 

LDRs and thermistors are chosen to meet the requirements of the energy harvesting scheme 

and the power converter circuit. A series of experiments is carried out and a self-adjusted 

voltage droop mechanism for these two harvesting schemes are successfully demonstrated. 

The magnitude of the droop is shown to almost accurately follow the variation in the output 

power of the harvesters, with a small error attributed to the deviations of the actual resistance 

value for the LDRs and thermistors from the required resistance value in the full range of 

the expected output power of the energy harvesters. The proposed self-adjusted voltage 

droop mechanism is relatively simple and only relies on the operation of passive components 

to accurately follow the variation in input power.  

• The same concept is also further demonstrated to work for MPPT functionality.  

• A full test for the parallel connected converters is carried out to test the load sharing accuracy 

of the proposed concept. Power from all converters is simultaneously delivered to the load. 

A maximum load sharing error of 5 % (in terms of input rated power) is demonstrated, 

indicating a successful load sharing operation. The system is also shown to possess an 

inherent plug-and-play capability for both the harvesters and load. Furthermore, due to the 

nature of the voltage droop mechanism, the bus voltage can be used as an indicator for the 

loading magnitude in the system.  

• Since the proposed energy harvesting scheme has an intermittent output power, a storage 

system comprised of a rechargeable battery pack and a supercapacitor pack is integrated in 
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the system to ensure a continuous power is available for the load. This storage system needs 

to be charged when excess power is available in the system, and needs to be discharged to 

support the load demand when the loading level is high/available power in the system is 

low. In order to achieve this, a method for discharging and charging based on the level of 

the bus voltage is proposed and presented. A test is carried out to test the operation of the 

proposed method and successful charging and discharging operations are accomplished. 

• Several important operations such as start-up, no source condition, no load condition, and 

load shedding mechanism are presented and successfully demonstrated. 

• The first on-bench prototype is built from the integrated system. The performance of the 

prototype is successfully demonstrated and an almost perfect load sharing is achieved. The 

energy storage system is shown to absorb the power from the system when the power level 

is high and deliver power to the system when the power level is low. The efficiency for the 

energy storage system is relatively high for low power applications (> 75 %), however the 

efficiency of the power converter for the harvesters is relatively low (< 50 %) due to the 

high power consumption of the droop feedback circuitry. 

• The first wearable prototype is built from the on-bench prototype. The system is shown to 

perform according to expectations. However, since the prototype is not optimised for real 

world applications, few recommendations are suggested.  

Overall, the main objectives for part 1 have been successfully achieved. An equal load sharing 

mechanism is successfully shown and a self-adjusted voltage droop mechanism based on a 

novel concept is introduced and successfully demonstrated. Two main contributions from this 

part are; (1) the introduction and demonstration of the self-adjusted voltage droop mechanism 

based on variable resistor (passive component) and suitable for low power applications and (2) 

the introduction of the pico-grid system for WSN and WBAN applications.  

6.1.2 Key Findings, Contributions, and Conclusion for Part 2 

The key findings, contributions, and conclusion for part 2 are summarised as follow: 

• The low temperature fabrication of ZnON MIS diode is presented. The whole structure can 

be fabricated at room temperature, except for the thin insulator which is deposited at a higher 

temperature (250 °C). This insulator is intentionally sandwiched in between the metal and 

semiconductor to further improve the electrical performance of the diode. However, in 

actual applications, this insulator can be replaced with any other high quality insulator that 

can be deposited at lower temperatures (this cannot be done in this thesis due to the 
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unavailability of material and facility for this purpose). The low temperature fabrication and 

the thin film structure means the actual device can be fabricated on a flexible substrate, 

opening up the possibility of fabricating a fully flexible thin film rectifier circuit.  

• The I-V characterisation results obtained from 4 different fabrication batches undergo 

similar fabrication processes suggesting that the I-V performance of the diode is 

reproducible and within 20 % maximum deviations from each other. The deviations can be 

attributed to the limited controllability over the reaction processes during the deposition of 

the ZnON film.  

• The effects of annealing to the performance of the diode, in particular in the forward bias 

condition are investigated. It is determined that annealing the sample at 250 °C for 2 hours 

in atmospheric pressure produces the best performance sample in terms of the magnitude of 

forward bias current.  

• From the temperature I-V measurement results, a novel 3-parameter curve fitting method to 

extract important parameters of the diode is proposed. From this method, the ideality factor, 

series and shunt resistance, and barrier height are successfully extracted and the trends of 

these parameters with temperature are discussed. One important observation from the data 

obtained from the measurements is the magnitude of the series resistance of the diode. The 

extracted series resistance value for the diode is significantly high, and is suspected due to 

the contribution from the resistance of the interfacial layer, semiconductor film, and also 

due to the possible oxidation and diffusion of nickel into the semiconductor layer. In actual 

rectifier circuit application, this high series resistance would limit the magnitude of the 

forward current hence will degrade the efficiency of the conversion operation.   

• The parameters extracted from the I-V characterisation results obtained from room 

temperature measurement agree with the expected trends, except for the series resistance. 

This is suspected possibly due to the nature of the measurement and the post heating effects 

from the temperature dependent I-V measurements carried out before. From the C-V 

measurements, the barrier height and carrier concentration are determined. The magnitude 

of barrier height obtained from the C-V measurements is in a good agreement with the 

magnitude of the same parameter obtained from the I-V measurements.  

• The general performance of the diode in terms of the turn-on voltage, rectification ratio, 

thicknesses, leakage current density, and reverse breakdown voltage is compared with some 

other relevant and similar published work. It is determined that although other parameters 

of the diode possess a comparable or better performance than some of the published work, 
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the significantly high series resistance of the diode is deemed to be the main factor that 

would downgrade the overall performance of the diode, should the diode be implemented 

as a rectifier circuit.  

Overall, the main objectives for part 2 have not been fully achieved. Although the performance 

of the device has been successfully demonstrated, the high series resistance presents in the 

device make it unsuitable to be implemented in the rectifier circuit since the overall efficiency 

will be significantly reduced. Three main contributions from this part are; (1) the first 

demonstration of a successful thin film diode fabricated from a ZnON semiconductor with the 

possibility to be fully deposited at room temperature and (2) the proposal of a 3-parameter 

curve fitting method.  

6.2 Future Work 

Similar to the conclusion section, this section is also separated into two different parts. 

6.2.1 Future Work for Work Package Part 1 

Most of the future work for the pico-grid system is focused on the improvements of the 

prototype in order to be implemented for a real world applications. These have been presented 

in Section 4.3.3. These include the reconstruction of the whole circuitry on a flexible PCB, the 

integration of flexible passive components that can be achieved via printing/low temperature 

thin film/organic deposition technique, the use of conductive fibres to replace the connection 

wires, the integration of flexible solar panels and TEGs to replace the existing harvesters, and 

the use of flexible thin film battery and supercapacitor to replace the existing storage system. 

One of the most important future works is to integrate other possible energy harvesting schemes 

such as a piezoelectric generator, electromagnetic induction generator, and wireless power 

(flexible wireless coil receiver). Since these harvesting schemes would also require a variable 

and self-adjusted voltage droop mechanism, some other possible method to achieve this such 

as open circuit voltage sampling of the energy harvester need to be explored and investigated.  

6.2.2 Future Work for Work Package Part 2 

Due to the high resistance of the fabricated ZnON thin film diode, the diode is deemed 

unsuitable for a rectifier circuit. In order to possibly reduce this resistance, the metal used for 

the top metal contact should be changed to another metal (with work function > 4.2 eV) and 

the performance of the diode needs to be re-evaluated. Nickel is a very reactive metal and hence 

at high annealing temperature, there is a high possibility for this metal to diffuse through the 



Chapter 6  Conclusion & Future Work 

134 

 

insulator and react with the semiconductor material. Furthermore, nickel is also easily oxidised 

and forms a p-type semiconductor. Any of these effects could occur during the fabrication 

process presented in this thesis, hence contributing to the increase in the magnitude of the series 

resistance. Moreover, since the work function of nickel is relatively high (5.1 eV), this causes 

the turn-on voltage of the diode to be high. By changing the top metal contact with another 

type of metal, two possible advantages can be achieved; the reduction in turn-on voltage and 

series resistance of the diode. Another possible improvement is to perform argon plasma 

treatment on the semiconductor film after the deposition process has finished. 

 

Figure 6.1: I-V characterisation result for the ISO MIS diode. 

By the end of the PhD, it was discovered that a diode fabricated from another new oxide 

semiconductor material, indium silicon oxide (ISO) possesses better performance than the 

ZnON diode. The I-V characteristic of this diode in a similar structure and thicknesses to the 

ZnON diode except this time the ZnON layer was replaced with an ISO layer is presented in 

Figure 6.1. It can be observed that this diode possesses a lower turn-on voltage and lower series 

resistance when compared to the ZnON diode. This material can be deposited at similar room 

temperature and therefore, has a huge potential to be implemented in a flexible rectifier circuit. 

It should be noted that the presented I-V characterisation was done without any post fabrication 
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treatment performed to the film. Typically, an oxide semiconductor will demonstrate a superior 

property after annealing, and therefore this material can be further optimised. 
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Appendix 2 – Comparison between rechargeable batteries and supercapacitor 

Table 7.1: Comparison between different types of rechargeable battery and supercapacitor 

[42][44][105]. 

Parameter Ni-Cd Ni-MH Li-ion Supercapacitor 

Power Density 

(W/kg) 
10-500 10-500 10-500 3000 

Energy Density 

(Wh/kg) 
45-80 60-120 110-160 1-10 

Cycle Life 1500 300-500 500-1000 106 

Charging Time 

(seconds) 
> 1000 > 1000 > 1000 0.3-100 

Overcharge 

Tolerance 
Moderate Low Very Low Very High 

Operating 

Temperature (oC) 
-40 - 60 -20 - 60 -20 - 60 -40 - 65 

Cell Voltage (V) 1.25 1.25 3.6 - 

Cost Per Cycle 

(USD) 
0.04 0.12 0.14 0.0001 

Cost Per Wh 

(USD) 
0.90 0.55 0.81 20 

Efficiency (%) 70-85 70-85 70-85 > 95 

Maintenance 

Requirement 
Yes Yes No No 

In Use Since 1950 1990 1991 1982 
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Figure 7.1: Ragone chart for different energy storage technology [45].  
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Appendix 3 – Bill of materials (BOM) for the pico-grid first prototype 

Table 7.2: Bill of materials for the constructed prototype. 

No. Description Category Quantity Unit Cost (£) Total Cost (£) 

1 
Sanyo 852mW Amorphous Solar Cell  
Photovoltaic Solar Panel 

Energy harvester 2.0 54.8800 109.7600 

            

2 
Peltier Module, 9.32W, 1.47A, 15.4V,  
40 x 40mm 

Energy harvester 2.0 43.5800 87.1600 

            

3 

LTC3105EMS#PBF - DC-DC Switching  

Boost (Step Up) Regulator, Adjustable, 225mV-5Vin, 1.5V-
5.25Vout, 400mAout, MSOP-12  

DC-DC converter 4.0 2.4700 9.8800 

            

4 

LTC3129EMSE#PBF - DC-DC Switching  

Buck-Boost Regulator, Adjustable, 1.92V-15Vin, 1.4V-
15.75Vout, 200mAout, 

MSOP-16  

DC-DC converter 2.0 5.5800 11.1600 

            

5 
ENIX Energies 3.7V Rechargeable Lithium  

Battery Pack, 1840mAh 
Energy storage 1.0 38.1500 38.1500 

            

6 
Vishay 15F Supercapacitor EDLC -20 →  
+80% Tolerance 196 HVC Series 4.2V dc Through Hole 

Energy storage 2.0 6.7600 13.5200 

            

7 
BQ25504RGTT - Battery Charger Li-Ion  
battery, 3V input, 5.25V charge, QFN-16  

DC-DC converter 1.0 4.6700 4.6700 

            

8 Multiple resistors: 

Passive component 

      

          

  Resistor; Wirewound; Res 0.5 Ohms 5.0 1.5200 7.6000 

          

  Resistor; Wirewound; Res 1 Ohms 2.0 0.7300 1.4600 

          

  330 Ω 0.25W 250V ±5% tolerance  3.0 0.0080 0.0240 

          

  470 Ω 0.25W 250V ±5% tolerance  5.0 0.0080 0.0400 

          

  680 Ω 0.25W 250V ±5% tolerance  2.0 0.0080 0.0160 

          

  1 kΩ 0.25W 250V ±5% tolerance 14.0 0.0080 0.1120 

          

  1.5 kΩ 0.25W 250V ±5% tolerance  2.0 0.0080 0.0160 

          

  2.2 kΩ 0.25W 250V ±5% tolerance  6.0 0.0080 0.0480 

          

  3.3 kΩ 0.25W 250V ±5% tolerance  13.0 0.0080 0.1040 
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  4.7 kΩ 0.25W 250V ±5% tolerance 17.0 0.0080 0.1360 

          

  6.8 kΩ 0.25W 250V ±5% tolerance  4.0 0.0080 0.0320 

          

  10 kΩ 0.25W 250V ±5% tolerance  19.0 0.0080 0.1520 

          

  15 kΩ 0.25W 250V ±5% tolerance  15.0 0.0080 0.1200 

          

  22 kΩ 0.25W 250V ±5% tolerance  15.0 0.0080 0.1200 

          

  33 kΩ 0.25W 250V ±5% tolerance  21.0 0.0080 0.1680 

          

  47 kΩ 0.25W 250V ±5% tolerance  9.0 0.0080 0.0720 

          

  68 kΩ 0.25W 250V ±5% tolerance  9.0 0.0080 0.0720 

          

  100 kΩ 0.25W 250V ±5% tolerance 10.0 0.0080 0.0800 

          

  150 kΩ 0.25W 250V ±5% tolerance 8.0 0.0080 0.0640 

          

  220 kΩ 0.25W 250V ±5% tolerance  9.0 0.0080 0.0720 

          

  330 kΩ 0.25W 250V ±5% tolerance 6.0 0.0080 0.0480 

          

  470 kΩ 0.25W 250V ±5% tolerance  8.0 0.0080 0.0640 

          

  680 kΩ 0.25W 250V ±5% tolerance  10.0 0.0080 0.0800 

          

  1 MΩ 0.25W 250V ±5% tolerance 8.0 0.0080 0.0640 

          

  1.5 MΩ 0.25W 250V ±5% tolerance  4.0 0.0080 0.0320 

          

  2.2 MΩ 0.25W 250V ±5% tolerance 4.0 0.0080 0.0320 

          

  3.3 MΩ 0.25W 250V ±5% tolerance 2.0 0.0080 0.0160 

          

  4.7 MΩ 0.25W 250V ±5% tolerance  2.0 0.0080 0.0160 

          

  6.8 MΩ 0.25W 250V ±5% tolerance  1.0 0.0080 0.0080 

          

  10 MΩ 0.25W 250V ±5% tolerance  4.0 0.0080 0.0320 

            

9 Multiple capacitors: 
Passive component 

      

          



  Appendix 

234 

 

  100 pF X1/Y2 Ceramic Disc Capacitor 4.0 0.0160 0.0640 

          

  2.2 nF X1/Y2 Ceramic Disc Capacitor 8.0 0.0160 0.1280 

          

  1 uF X1/Y2 Ceramic Disc Capacitor 10.0 0.0160 0.1600 

          

  0.1 uF X1/Y2 Ceramic Disc Capacitor 6.0 0.0160 0.0960 

          

  4.7 nF X1/Y2 Ceramic Disc Capacitor 2.0 0.0160 0.0320 

          

  10 nF X1/Y2 Ceramic Disc Capacitor 1.0 0.0160 0.0160 

          

  470 pF X1/Y2 Ceramic Disc Capacitor 4.0 0.0160 0.0640 

          

  Electrolytic Capacitor, 4.7 µF, 50 V 8.0 0.1090 0.8720 

          

  Electrolytic Capacitor, 10 µF, 50 V 18.0 0.1090 1.9620 

          

  Electrolytic Capacitor, 22 µF, 50 V 6.0 0.1090 0.6540 

          

  Electrolytic Capacitor, 100 µF, 50 V 4.0 0.1090 0.4360 

          

  Electrolytic Capacitor, 1 mF, 50 V 1.0 0.1090 0.1090 

          

  Electrolytic Capacitor, 2.2 µF, 50 V 14.0 0.1090 1.5260 

          

  Electrolytic Capacitor, 1 µF, 50 V 18.0 0.1090 1.9620 

            

10 Multiple inductors: 

Passive component 

      

          

  Inductor SMD shielded 22uH 12.5x12.5x6 1.0 0.3180 0.3180 

          

  

C429 - Inductor Kit, XAL40xx Series  

Shielded Power Inductors, 8.2uH 2.0 0.6520 1.3040 

          

  

C429 - Inductor Kit, XAL40xx Series  

Shielded Power Inductors, 10uH 4.0 0.6520 2.6080 

            

11 Light dependent resistors: 

Passive component 

      

          

  
NSL 19M51. - LDR, 20 Mohm, 50 mW,  

100 V  
2.0 0.6320 1.2640 

          

  

N5AC501085 -  LDR, 5 Mohm, 50 mW,  

100 V 2.0 1.5400 3.0800 
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12 Thermistors: 

Passive component 

      

          

  
LT300014T2610KJ - PTC Thermistor,  

10 kohm, Through Hole, -5% to +5%, LT Series 
2.0 0.3620 0.7240 

          

  
B57871S0123H000 - Thermistor, NTC,  
12 kohm, B57871S Series, 3760 K, Through Hole, Radial 

Leaded 

3.0 0.7880 2.3640 

          

  
ND03U00105J-- -  Thermistor, NTC, 1  

Mohm, ND03 Series, 4840 K, Through Hole, Radial Leaded 
1.0 0.7310 0.7310 

          

  
B57861S0503H040 -  Thermistor, NTC,  
50 kohm, B57861S Series, 3760 K, Through Hole, Wire 

Leaded 

3.0 1.3800 4.1400 

            

13 
Texas Instruments INA283AID, Current  
Shunt Monitor Single Bidirectional 8-Pin SOIC  

Active component/IC 3.0 3.2500 9.7500 

            

14 
STMicroelectronics TSV632IDT, Low Power,  

Op Amp, RRIO, 880kHz, 1.5 → 5.5 V, 8-Pin SOIC  
Active component/IC 3.0 0.7370 2.2110 

            

15 
Microchip MCP6542-I/SN Dual  

Comparator, Push-Pull O/P, 1.6 → 5.5 V 8-Pin SOIC  
Active component/IC 2.0 0.5370 1.0740 

            

16 
Voltage reference IC, REF3012AIDBZT  
1.25V 

Active component/IC 1.0 1.2400 1.2400 

            

17 
Through Hole Slide Switch DPDT On-On  
300 mA Slide 

Switches 6.0 0.3620 2.1720 

            

18 
Diodes Inc DMG2302UK-7 N-channel  
MOSFET, 2.8 A, 20 V DMG2302UK,  

3-Pin SOT-23 

Active component/IC 5.0 0.0730 0.3650 

           

19 
Panasonic Lithium CR2032 3V Lithium  
Manganese Dioxide Coin Battery 

Battery 7.0 1.4400 10.0800 

            

20 12 AWG insulated copper wires: 

Connector/wire 

      

          

  
Alpha Wire EcoWire Series Black, 30m  
MPPE UL11028 Hook Up Wire, 3.3 mm² CSA Flame 

Retardant, 600 V 12 AWG 

1.0 42.6400 42.6400 

          

  
Alpha Wire EcoWire Series Red, 30m MPPE UL11028 Hook 

Up Wire, 3.3 mm² CSA Flame Retardant, 600 V 12 AWG 
1.0 42.6400 42.6400 

            

21 Multiple IC to board adaptors: 

IC adaptor 

      

          

  

LCQT-SOIC8-8 - IC Adapter, 8-SOIC to  

8-DIP, 2.54mm Pitch Spacing, 7.62mm Row Pitch, Correct-
A-Chip Series  

13.0 3.7300 48.4900 
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RE909 - IC Adapter, Fibreglass, 3-SOT-23,  

2.54mm Pitch Spacing  
5.0 1.6200 8.1000 

          

  
RE935-06E - IC Adapter, Fibreglass, 1 
6-QFN, 2.54mm Pitch Spacing, RE935 Series  

1.0 1.6200 1.6200 

          

  
IPC0079 - MSOP-16 to DIP-20 SMT  
Adaptor  

2.0 5.0900 10.1800 

          

  
IPC0078 - MSOP-12 to DIP-16 SMT  

Adaptor  
4.0 4.4900 17.9600 

            

22 
RE520-HP, Single-Sided Stripboard FR-2  

100 x 160 x 1.5mm FR2  
Circuit board 7.0 4.1600 29.1200 

            

23 
AB77 - Plastic Enclosure, PCB Guides,  
Multipurpose, ABS, 178 mm, 122 mm, 36 mm 

Prototyping 7.0 6.5200 45.6400 

            

24 
Thermawrap 400mm x 5m x 3.7mm  
Loft Wrap Easy Fit Loft Insulation without Thickness  

Prototyping 1.0 7.7000 7.7000 

             

25 Heatsink ICK PGA 9.8 K/W Prototyping 2.0 1.7700 3.5400 

            

26 Thermal interface material 40mm polyimid Prototyping 2.0 2.0700 4.1400 

            

27 
VELCRO VEL-EC60245 Brand Heavy  

Duty Stick-On Tape, Black, 50 mm x 2.5 m 
Prototyping 1.0 16.8500 16.8500 

            

28 
JST connectors (male and female pair) with  

headers (set) 
Connector/wire 1.0 8.9900 8.9900 

            

        Grand Total £624.32 
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Appendix 4 – Wolfram Mathematica programme to plot the I-V curve of the diode 

 

Figure 7.2: Programme in Wolfram Mathematica used to plot the I-V curve of the diode. 

 


