
Article

Integration of Parallel Opposing Memories Underlies

Memory Extinction
Graphical Abstract
The Drosophila memory center: the mushroom body

Punishment 
dopamine

Reward
dopamine

Aversive learning Omission 
of punishment

Naive Aversive memory
Aversive memory

and
Appetitive memory

MVP2 neuron
[GABA]

Approach 

M6 neuron
[Glutamate]
Avoidance

Appetitive 
extinction memory

Avoidance
Initial aversive

 memory

250 nm 2.5 µm 
Highlights
d Omission of expected punishment extinguishes learned

avoidance behavior

d Lack of punishment is learned as a positive experience

d The original aversive and the new appetitive memory co-

exist in different places

d Opposing memories are integrated within specific output

neurons to steer behavior
Felsenberg et al., 2018, Cell 175, 709–722
October 18, 2018 ª 2018 The Author(s). Published by Elsevier Inc
https://doi.org/10.1016/j.cell.2018.08.021
Authors

Johannes Felsenberg, Pedro F. Jacob,

Thomas Walker, ...,

Gregory S.X.E. Jefferis, Davi D. Bock,

Scott Waddell

Correspondence
scott.waddell@cncb.ox.ac.uk

In Brief

The omission of punishment is

remembered as a rewarding experience,

and this positive memory then competes

against prior aversive memory to mediate

the extinction of avoidance behavior.
.

mailto:scott.waddell@cncb.ox.ac.uk
https://doi.org/10.1016/j.cell.2018.08.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2018.08.021&domain=pdf


Article
Integration of Parallel Opposing
Memories Underlies Memory Extinction
Johannes Felsenberg,1,6 Pedro F. Jacob,1 Thomas Walker,1 Oliver Barnstedt,1 Amelia J. Edmondson-Stait,2

Markus W. Pleijzier,2 Nils Otto,1,2 Philipp Schlegel,2 Nadiya Sharifi,3 Emmanuel Perisse,1 Carlas S. Smith,1

J. Scott Lauritzen,3 Marta Costa,2 Gregory S.X.E. Jefferis,2,4,7 Davi D. Bock,3,8 and Scott Waddell1,5,9,*
1Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
2Drosophila Connectomics, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
3Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
4Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
5Twitter: @scottishwaddell
6Twitter: @FelsenbergJ
7Twitter: @gsxej
8Twitter: @dddavi
9Lead Contact
*Correspondence: scott.waddell@cncb.ox.ac.uk

https://doi.org/10.1016/j.cell.2018.08.021
SUMMARY

Accurately predicting an outcome requires that
animals learn supporting and conflicting evidence
from sequential experience. Inmammals and inverte-
brates, learned fear responses can be suppressed by
experiencing predictive cues without punishment, a
process called memory extinction. Here, we show
that extinction of aversive memories in Drosophila
requires specific dopaminergic neurons, which indi-
cate that omission of punishment is remembered
as a positive experience. Functional imaging re-
vealed co-existence of intracellular calcium traces
in different places in the mushroom body output
neuron network for both the original aversive mem-
ory and a new appetitive extinction memory. Light
and ultrastructural anatomy are consistent with par-
allel competing memories being combined within
mushroom body output neurons that direct avoid-
ance. Indeed, extinction-evoked plasticity in a pair
of these neurons neutralizes the potentiated odor
response imposed in the network by aversive
learning. Therefore, flies track the accuracy of
learned expectations by accumulating and inte-
grating memories of conflicting events.
INTRODUCTION

Learning allows animals to predict future events. However,

sometimes things do not happen when expected. Therefore, an-

imals must also learn when expectations are not met, so that

their behavior remains most appropriately directed by life expe-

rience. When humans have problems recognizing that a trau-

matic episode is unlikely to recur they may exhibit pathological

manifestations of anxiety (Lissek and van Meurs, 2015).
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A wide variety of animals can be trained to recognize that a

specific sensory cue predicts pending punishment. When

encountering the cue after training, they exhibit avoidance or

escape behaviors, and if there is nowhere to go, they sometimes

freeze. In almost all cases, learning that the cue is not such a

reliable predictor, following repeated exposure without penalty,

reduces the behavioral response, through a process called

extinction learning. This new learning is thought to produce a

parallel extinction memory, which competes with the initial aver-

sive memory (Bouton, 2004). Many studies have indicated that

extinction memory involves neural circuitry and molecular path-

ways different than those required for initial learning (e.g., Ber-

man and Dudai, 2001; Bahar et al., 2003; Repa et al., 2001; Herry

et al., 2010). However, it is unclear how and where extinction

memories are formed and what neural network mechanisms

allow extinction memories to be integrated with the initial mem-

ory, to neutralize learned behavior.

Studying extinction of olfactory memory in Drosophila pro-

vides an opportunity to understand the underlying neural pro-

cesses at cellular resolution. Recent progress has uncovered

mechanisms for the formation and expression of aversive and

appetitive memories (Cognigni et al., 2018). Anatomically

discrete dopaminergic neurons (DANs) provide punishment or

reward teaching signals to different compartments in the mush-

room body (MB) network (Claridge-Chang et al., 2009; Aso et al.,

2010; Liu et al., 2012; Burke et al., 2012; Lin et al., 2014). There,

dopamine release acts through dopamine receptors, especially

DopR1, to drive cAMP-dependent plasticity of odor-evoked ac-

tivity and ultimately presynaptic depression of specific output

synapses from odor-activated Kenyon cells (KCs) (Yu et al.,

2006; Kim et al., 2007; Tomchik and Davis, 2009; Qin et al.,

2012; Zhang and Roman, 2013; Boto et al., 2014; Hige

et al., 2015). Aversive learning depresses the relative conditioned

odor drive from KCs to mushroom body output neurons

(MBONs) whose activity favors approach behavior, whereas

reward learning weakens connections onto MBONs directing

avoidance (Séjourné et al., 2011; Owald et al., 2015; Hige

et al., 2015; Perisse et al., 2016). Therefore, in simplistic terms,
ber 18, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 709
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:scott.waddell@cncb.ox.ac.uk
https://doi.org/10.1016/j.cell.2018.08.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2018.08.021&domain=pdf
http://creativecommons.org/licenses/by/4.0/


UAS-Shits1

Training

0

CS+ CS-
shock

30 min

Reactivation

CS+

60 min

Test

CS- CS+

A
Training

0

CS+ CS-
shock

30 min

Reactivation

60 min

Test

CS- CS+CS+
or

CS-

P
er

fo
rm

an
ce

 in
de

x

Reactivation
Trials

ITI min

 CS+CS--
0 2 2
0 15 15

-0.6

-0.4

-0.2

0

*

B

blocked PAM
dopamine neurons

C

Training

0 30 min

Reactivation

60 min

Test
32oC
23oC

Training

0 30 min

Reactivation

60 min

Test
32oC
23oC

blocked PPL1
dopamine neurons

D

P
er

fo
rm

an
ce

 in
de

x

Reactivation  CS+CS+CS- CS- CS+CS-
MB504B-GAL4

-0.4

-0.2

0

* * *

P
er

fo
rm

an
ce

 in
de

x

Reactivation  CS+CS+CS- CS- CS+CS-

UAS-Shits1

R58E02-GAL4

* * ns

-0.4

-0.2

0

P
er

fo
rm

an
ce

 in
de

x

-0.6

-0.4

-0.2

0

Reactivation  CS+  CS+ CS+-
Trials 0 2 2 5

- 1 15 1ITI min

*

Figure 1. Extinction of Aversive Memory Requires PAM Dopamine

Neurons

(A) Top: protocol. Bottom: two (15 min ITI) or five (1 min ITI) CS+ re-exposures

induces extinction.

(B) Top: protocol. Bottom: CS+, but not CS�, re-exposure induces extinction.

(C) Left: protocol with temperature shifting (dashed line) and R58E02-GAL4

DANs schematic. Right: blocking R58E02 neurons with UAS-Shits1 during CS+

re-exposure abolishes aversive memory extinction.

(D) Left: protocol and MB504B-GAL4 DANs schematic. Right: blocking

MB504B neurons during CS+ or CS� re-exposure does not alter extinction.

Asterisks denote significant differences. Data are represented as the mean ±

SEM; individual data points are displayed as dots.

See also Figure S1 and Table S1.
learning switches off certain odor-specific connections in the

overall MBON network, which skews odor-driven activity toward

the remaining MBON pathways either directing avoidance or

approach (Aso et al., 2014b; Owald and Waddell, 2015).

An important consequence of this skewed MBON network

model is that after learning, re-exposure of the trained odor
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drives a different configuration of the MBON network to that

driven prior to and during learning. Since aversive learning

switches the network into an avoidance configuration, all cir-

cuitry that lies downstream of avoidance directing MBONs

should also be preferentially driven by the conditioned odor

when the fly re-experiences it without punishment.

Here, we describe a neural mechanism for extinction of aver-

sive olfactory memory in Drosophila. Re-experiencing a trained

odor, without expected punishment drives acquisition of

extinction memory. Extinction learning requires activity of a

population of dopaminergic neurons, some of which are known

to encode reward and are downstream of avoidance directing

MBONs. Imaging odor-evoked calcium responses in the

MBON network established that traces of the original aversive

and new extinction memories co-exist. Anatomy and physi-

ology demonstrate that the two memories interact within a

pair of MBONs, which direct avoidance behavior. Extinction

driven plasticity, measured in the dendrites of these specific

MBONs (M6 or MBON-g5b02a), neutralizes potentiation of the

trained-odor response that was imposed by aversive learning,

via the release of feedforward inhibition to the M6 axons. Aver-

sive memory performance is therefore extinguished by compe-

tition with a new memory of positive valence, formed at a

different place in the MBON network.

RESULTS

Aversive Memory Extinction
Drosophila can learn to associate an odor as a predictor of

forthcoming electric shock (Tully and Quinn, 1985). Following

training, flies exhibit odor-specific avoidance in a T-maze.

Aversive olfactory memory performance can be partially extin-

guished (Quinn et al., 1974; Dudai 1977; Tully and Quinn,

1985). We first established conditions that most effectively ex-

tinguished aversive memory (Figures S1A and S1B). Flies were

trained by pairing odor with 90 V shock (CS+ odor) followed

by another odor alone (CS� odor). 30 min after training, flies

were re-exposed to CS+ without shock to potentially extin-

guish memory. Finally, after a further 30 min, flies were given

2 min to choose between CS+ and CS� to test 1 hr aversive

memory performance. Re-exposing flies to two spaced trials

of CS+ alone (with a 15 min inter-trial interval [ITI]) or five

massed CS+ trials (1 min ITI) significantly reduced learned

odor avoidance, as compared to flies re-exposed to two

massed CS+ trials or not re-exposed to odor (Figure 1A).

Re-exposing flies twice to CS� with a 15 min ITI did not impair

1 hr aversive memory (Figure 1B). Extinction of aversive mem-

ory is therefore specifically driven by CS+ re-exposure and

depends on the number of, and spacing between, CS+ extinc-

tion trials.

Learned avoidance behavior can be re-established (Fig-

ure S1C). Flies retrained 30 min after extinction show memory

performance immediately after retraining that is comparable to

flies whose memory has not been extinguished. Moreover,

when tested 90min later, retrained flies exhibited higher memory

performance than flies only trained once. These results suggest

that flies accumulate information across training, extinction, and

retraining sessions (cf. Quinn et al., 1974).



Aversive Memory Extinction Requires Dopaminergic
Neurons
Extinction of appetitive memory in flies requires a small number

of DANs in a cluster called PPL1 (paired posterior lateral 1), many

of which can provide punishment teaching signals (Felsenberg

et al., 2017). This finding suggested a plausible model for extinc-

tion where reward memory competes with an opposing aversive

memory to steer behavior. We therefore tested whether aversive

memory extinction required PAM (protocerebral anterior medial)

cluster DANs, many of which can provide reward teaching sig-

nals. We expressed the dominant temperature sensitive dyna-

min UAS-Shibirets1 (UAS-Shits1) transgene in PAM DANs with

R58E02-GAL4 (Figure 1C). At a temperature of >29�C, Shits1

blocks membrane recycling and synaptic vesicle release, which

is restored on returning to <25�C. All flies were trained at permis-

sive 23�C, and DAN blockade restricted to the period of CS+ or

CS� odor re-exposure 30 min after training, by raising the tem-

perature to >29�C. Flies where then returned to 23�C to restore

DAN function during testing. All controls subjected to this heat

regimen and CS+ exposure showed normal extinction; learned

avoidance was significantly reduced, compared to flies treated

the same way other than being re-exposed to CS�. However,

CS+ driven memory extinction was abolished when PAM DANs

were blocked in R58E02-GAL4; UAS-Shits1 flies. Importantly,

memory performance was extinguished in all groups if the entire

experiment was performed at 23�C (Figure S1D). Furthermore, if

PAM DANs were only blocked during testing, avoidance

behavior was not different from controls (Figure S1E). We also

tested whether PPL1 DANs that are necessary to acquire aver-

sive memory were required again during extinction. Blocking

these DANs specifically during odor re-exposure using

MB504B-GAL4; UAS-Shits1 (Figure 1D) did not impair extinction.

Aversive memory extinction therefore requires output specif-

ically from PAM DANs during CS+ re-exposure.

Avoidance-Directing MBONs Are Required for Aversive
Memory Extinction and Are Functionally Connected to
g5 DANs
Since extinction is evoked by odor re-exposure we reasoned

that the relevant PAM DANs must be driven through an olfactory

neural pathway. Aversive conditioning depresses CS+ odor drive

to approach-directing MBONs, such as cholinergic MBON-V2a

and GABA-ergic MVP2 (MBON-g1pedc>a/b), and potentiates

CS+ responses in avoidance-promoting M4b0 and M6 neurons

(MBON-b02mp and MBON-g5b02a) on the horizontal MB lobe

tips (Séjourné et al., 2011; Owald et al., 2015; Bouzaiane et al.,

2015; Perisse et al., 2016). This plasticity therefore leaves

avoidance MBONs preferentially driven by CS+ after training.

In addition, presynapses from M4b0 and M6 neurons are close

to dendrites of PAM DANs that innervate the sameMB compart-

ments (Aso et al., 2014a; Owald et al., 2015). We therefore tested

whether PAM DANs could be driven by M4b0 and M6 activation,

in explanted brains. We expressed red-light activated channelr-

hodopsin lexAop-CsChrimson (Klapoetke et al., 2014) with

VT1211-LexA in M4b0 and M6 and light-stimulated them, while

simultaneously recording fluorescence from presynaptic termi-

nals of PAM DANs with R48B04-GAL4 driven UAS-GCaMP6f

(Chen et al., 2013) (Figure 2A). Signals were assigned to discrete
DANs innervating b02, g4, and g5 compartments. M4b0 and M6

neuron stimulation consistently produced robust g5 DAN excita-

tion (Figures 2B and S2A), consistent with a recent report (Zhao

et al., 2018). In contrast, g4 DANs did not respond (Figure 2C),

whereas b02p and b02 m DANs showed a subtle delayed inhibi-

tion and excitatory rebound (Figures 2D and 2E).

We also tested whether M4b0 and M6 MBONs are required for

aversive memory extinction using VT1211-GAL4; UAS-Shits1

flies. Blocking M4b0 and M6 output during CS+ re-exposure,

impaired memory extinction (Figure 2C). Blocking M4b0 and M6

during CS� re-exposure unexpectedly also abolished odor

avoidance behavior (Figure 2C) whereas only raising the temper-

ature without memory reactivation had no effect (Figure S2B).

Extinction and avoidance behavior following CS� re-exposure

were also unaltered in VT1211-GAL4; UAS-Shits1 flies at 23�C
(Figure S2C). These data are consistent with a model in which

odor re-exposure via M4b0 and M6 MBONs drives g5 DANs to

form a parallel extinction memory at the connection between

CS+ odor-activated KCs and dendrites of M6 neurons.

Extinction Memory Co-exists with the Original Aversive
Memory
Next, we testedwhether a physiological trace of the original aver-

sive memory survived extinction, and if so, whether a parallel

extinction memory could be visualized in dendrites of M6 neu-

rons. Flies expressing GCaMP6m in MVP2, M4b0, or M6 neurons

(with MB112C-GAL4, R39A05-GAL4, or R66C08-GAL4, respec-

tively) were prepared for odor-evoked imaging and trained under

the microscope. Individuals were either left undisturbed after

training or subjected to memory extinction at 30 min. CS+,

CS�, and novel odor responses were measured in each fly

60 min after training and all CS+ and CS� responses were

normalized to those for novel odor. Flies trained and not sub-

jected to extinction showed the expected aversivememory trace

of a relative depressionofCS+ responses inMVP2dendrites (Fig-

ure 3A). No trace of aversive memory was evident in these flies in

the dendrites of M4b0 (Figure 3B) or M6 neurons (Figure 3C); CS+

and CS� responses were equivalent. However, following extinc-

tion, flies maintained a significant decrease in the relative

response to CS+ in MVP2 neurons (Figure 3D). In addition,

although no change was evident in odor responses measured

in dendrites of M4b0, a significantly decreased response to CS+

emerged in M6 dendrites after extinction (Figures 3E and 3F).

Importantly, training and extinction-induced changes in odor

responsiveness of MVP2 and M6 neurons were also present

when the reciprocal odor was used as CS+ (Figures S3A–S3D),

and when GCaMP6f was expressed in M6 using VT1211-GAL4

(FiguresS3E–S3H). Nochangeswere observed inM4b0 dendrites
in experiments using reciprocal odor asCS+ (FigureS3I andS3J).

Lastly, flies subjected tomock trainingdidnotdisplay the learning

or extinction-induced differences between odor responses (Fig-

ures S2K–S2R). These data suggest that an aversive memory

trace remains after extinction and that a parallel memory of

opposing valence is formed elsewhere in the MBON network.

Finding a relative depression of CS+ responses inM6MBONs af-

ter extinction suggests that aversive memory extinction resem-

bles appetitive olfactory learning reinforced with a sugar reward

(Owald et al., 2015).
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(A) M4b0 and M6 neurons were activated with CsChrimson and GCaMP6f Ca2+ responses measured in presynapses of specific PAM DANs, identified by

compartment innervation in the MB lobes. Insets: maximum projections of imaging planes with pseudo-colored GCaMP signals and g4, g5, b02p, and b02 m
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(B) M4b0/M6 activation evoked significant signals in g5 PAM DANs.
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(E) DANs. Arrows, time points, before and after light stimulation (red box), used for quantification. Paired measurements connected (green lines) and mean

response (gray bar).
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See also Figure S2 and Table S1.
MVP2 Makes Different Inhibitory Synapses with M4b0

and M6 Neurons
An MVP2-M4b0/M6 neuron connection could allow aversive and

extinction memories to interact. Artificially triggering MVP2 neu-

rons inhibited odor-responses in M4b0/M6 neurons, and light mi-

croscopy suggested MVP2 neurons might directly synapse onto

primary neurites of M4b0 andM6 neurons (Perisse et al., 2016). In

addition, aversive learning lead to relative potentiation of CS+ re-

sponses in M4b0 and M6 axons (Owald et al., 2015), which could

result from release of CS+ specific feedforward inhibition

through MVP2 neurons (Perisse et al., 2016). Lastly, since

odor-responses measured in M4b0 and M6 dendrites did not

show obvious change after aversive learning (Figures 3B and

3C), we wondered whether placement of MVP2 inhibitory input

to M4b0 and M6 neurons would be important.

We revisited MVP2-M4b0/M6 neuron connectivity (Figure 4A;

Video S1) using light and electron microscope data. We first

imaged brains from VT1211-LexA/UAS-mCD8::GFP;MB112C/

lexAop-rCD2::RFP flies using an Airyscan equipped confocal mi-

croscope. Analysis of 3D reconstructed data revealed different

patterns of MVP2 innervation in the vicinity of M4b0 and M6 den-

dritic fields. Whereas MVP2 terminals were visible around the

periphery of M4b0 dendrites (Figure 4B; Video S2), MVP2 pro-

cesses in M6 dendrites were larger in diameter and appeared

to follow M6 neurites (Figure 4B; Video S3).
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Next, we took advantage of a recently acquired electron mi-

croscope (EM) volume of a full adult female fly brain to

study MVP2-M4b0 and MVP2-M6 neuron connectivity at

higher resolution (Zheng et al., 2018). We extensively traced

complete skeletons of the fly’s right side MVP2, M4b0, and

M6 neurons and examined whether they were directly con-

nected (Figures 4A, 4C–4F, and S4A–S4D). MVP2 forms

many synaptic bouton-type connections within distal sections

of the M4b0 dendritic field (Figures 4C, 4D, and S4E). In

contrast MVP2 forms fewer en passant synapses along the

primary neurite and more proximal sections of M6 at the

root of the dendritic tree (Figures 4E, 4F, and S4A–S4E).

This placement of MVP2 synapses on the M6 neuron could

shunt activity from entire dendritic branches and/or the com-

plete dendritic tree.

We also visualized morphology of individual synaptic connec-

tions with volume reconstructions of profiles in sections of the

M4b0 and M6 dendritic fields, where they contact MVP2 neurons

(Figure 5). A representative MVP2 bouton was found forming

synapses with multiple M4b0 dendritic protrusions (Figures 5A–

5C; Video S4). In contrast MVP2 makes multiple synaptic con-

nections onto spine-like twigs protruding from the large diameter

neurite of M6 (Figures 5D–5F; Video S5). Therefore, both place-

ment and morphology of MVP2 connections to M4b0 and M6

neurons are unique.
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Figure 3. Parallel Memory Traces Form When Aversive Memory Is Extinguished

(A) Imaging plane in MVP2 dendritic field, training and imaging protocol under the microscope. Aversive conditioning significantly reduces CS+ responses

in MVP2.

(B and C) No differences evident in M4b0 (B) or M6 (C) dendrites after aversive conditioning.

(D) Extinction protocol. Training induced reduction in CS+ response in MVP2 remains after extinction.

(E) Odor responses in M4b0 dendrites unchanged following extinction.

(F) Extinction induces relative decrease in the CS+ response in M6 dendrites. Odor-evoked activity traces, mean (solid line) and SEM. (shadow). Black line, 5 s

odor presentation. Paired measurements from individual flies shown as black (CS+ response < CS� response) or white (CS+ response > CS� response) dots.

Asterisks, significant difference between averaged CS+ and the CS� responses. ns, no significant difference.

See also Figures S3 and S6 and Table S1.
Aversive and Opposing Extinction Memories Are
Integrated in M6 Neurons
Since aversive memory extinction caused a decrease in condi-

tioned odor drive to M6 dendrites, we tested whether activity

in M4b0 and M6 neurites might reveal integration between the

physiological effects of the original aversive memory and the

new extinction memory.

Flies trained and not subjected to the extinction protocol

showed the previously reported (Owald et al., 2015) aversive
memory trace of a relative potentiation of the CS+ odor response

measured in themixed neurites of theM4b0 andM6 neurons (Fig-

ure 6A, VT1211-GAL4). Measuring from M4b0 and M6 neurons

individually showed that the potentiated CS+ response was pre-

sent in both M4b0 and M6 neurons (Figures 6B and 6C; M4b0,
R39A05-GAL4 and M6, R66C08-GAL4). However, following

extinction, the increased CS+ response remained in the M4b0

neurite, but was no longer evident in the M6 neurite (Figures

6D–6F). These effects were also observed when the reciprocal
Cell 175, 709–722, October 18, 2018 713
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odor was used as CS+, but not after mock training (Figures S5A–

S5J). We therefore propose that the aversive and extinction

memories are integrated within the M6 neurons, whose activity

determines the robustness of the expression of conditioned

avoidance behavior.

DISCUSSION

Extinction was first described by Pavlov (1927) in his experi-

ments with dogs. Although extinction is broadly believed to

result from new inhibitory learning, rather than erasure of the

original memory (Myers and Davis, 2007; Herry et al., 2010),

the underlying neural mechanisms have remained elusive. In

this study, we describe how competing memories arise and

are integrated to extinguish aversive memory in Drosophila.

How Does the Omission of Punishment Drive New
Learning?
Extinction of aversive memory required PAM dopaminergic neu-

rons during the period of odor re-exposure. Some of these DANs

provide teaching signals when flies are trained with odor and

sugar or water reward (Liu et al., 2012, Burke et al., 2012; Lin

et al., 2014). Importantly, sugar reward learning mediated by

these DANs induces relative depression of CS+ odor-evoked re-

sponses in M4b0/M6 MBONs (Owald et al., 2015), which we also

observed following extinction of aversive memory. Since

reduced odor-driven activity in M6 MBONs is enough to convert

odor avoidance behavior into attraction (Owald et al., 2015;

Barnstedt et al., 2016), plasticity of aversive memory extinction

can be considered to be appetitive. These results together sug-

gest that absence of predicted punishment is coded in the fly

brain in a similar way to positive experience. But how can lack

of punishment lead to a potential reward signal?

Previous data and those presented here suggest that aversive

learning reconfigures the MBON network into a state primed to

preferentially drive a reward teaching signal, when the flies re-

experience trained odor without punishment (Figure 7). Prior

work, reproduced here, showed that aversive learning de-

presses conditioned odor drive to the KC-MVP2 MBON

pathway, that favors approach behavior (Hige et al., 2015; Peri-

sse et al., 2016). Furthermore, like the role for disinhibition in

mice (Letzkus et al., 2015), aversive learning reduces MVP2-

mediated feedforward inhibition in the network and thereby

also indirectly potentiates M4b0/M6 MBON odor responses

that drive avoidance behavior. Since some avoidance directing
Figure 4. MVP2 Neurons Connect in Different Ways to M4b0 and M6 Ne

(A) 3D view of right-brain hemisphere MVP2, M4b0, and M6 neurons from EM traci

lobes (black outline). Scale bar, �20 mm. Dorsal, ventral, medial, and lateral dire

(B) Confocal projections of MVP2 (cyan), M4b0 (orange), and M6 (magenta), wher

peripheral dendrites in b02 (white arrows). Bottom row: large diameter MVP2 axo

See also Videos S2 and S3.

(C) EM tracing of MVP2 inputs to M4b0 dendrites. MVP2 presynapses (red dots) o

from dendritic fields are marked (green shades). Two dendritic branches project

(D) Dendrogram of M4b0 neuron showing postsynapses opposing MVP2 input

preserved. Main axon branches, arrows. Asterisks, axonlets.

(E) EM tracing of MVP2 input to M6 dendrites. Annotated as in C. MVP2 inputs (

(F) Dendrogram of M6. MVP2 input (red), KC input (blue), presynaptic output (gree

See also Figure S4.
MBONs can provide recurrent input to PAM DANs (Owald

et al., 2015; Aso et al., 2014b; Cohn et al., 2015), odor re-expo-

sure after aversive learning should preferentially drive a positive

teaching signal via theseMBONs.When directly triggered, gluta-

matergic M4b0 and M6 neurons selectively activated DANs

releasing dopamine in the g5 compartment. Finding that extinc-

tion induced a corresponding depression of conditioned odor

drive to M6 neurons is therefore also consistent with the previ-

ously trained odor activating g5 DANs, to direct odor-specific

plasticity at KC-M6 synapses.

We do not know whether extinction-relevant g5 DANs are the

same as those providing water or sugar reward-teaching signals.

Despite our expectations, we were unable to observe increased

odor-evoked activity in g5 DANs after aversive learning, using

GCaMP6m. R58E02-GAL4-labeled g5 DANs exhibited robust

oscillatory activity (data not shown), which impeded reliable

recording of odor-evoked events. Some g5 DANs may oscillate

and others be cue evoked, but we currently lack the genetic tools

to direct transgene expression to meaningful subsets. Neverthe-

less, there are between 8 and 21 g5 DANs (Aso et al., 2014a) and

g5 presynaptic innervation within that MB compartment may be

further segregated (Huetteroth et al., 2015). If individual g5 DANs

have input and output specificity, different KC-M6 synapses

along the same odor-activated KC would be modified by sugar

reward learning and aversive memory extinction, thereby ex-

panding the coding range within the KC-MBON network. Never-

theless, this level of potential synaptic specificity of reward

learning and extinction would still generate a similar odor-spe-

cific depression when recording broad odor-evoked signals

from M6 dendrites. Although anatomical specificity is appealing

and not at odds with our current and prior data (Owald et al.,

2015), it will be essential to determine how individual g5 DANs

operate and analyze KC-M6 dendritic plasticity at higher

resolution.

Without knowing the specific location of extinction-driven syn-

aptic plasticity, our model predicts that if punishment does not

follow conditioned odor presentation, extinction plasticity trig-

gered at the KC-M6 MBON junction readjusts the balance in

the MBON network. Whereas if shock were to follow, extinction

plasticity would be offset by additional modification made to the

site of the original aversive memory. We assume an opposite

scenario underlies the extinction of appetitive memory, which

is initially coded as depression of conditioned odor drive to

avoidance directing MBONs (Owald et al., 2015; Felsenberg

et al., 2017). Re-exposing flies to the conditioned odor, without
urons

ng. MVP2, M4b0, and M6 neurons have ipsi- and contralateral processes in MB

ctions indicated. See also Video S1.

e they intersect in MB lobes. Top row: MVP2 processes intermingle with M4b0

n branches (cyan) overlay M6 dendrites in g5 (white arrows). Scale bar, 10 mm.

pposing M4b0 postsynapses. M4b0 axonlets, presynaptic processes extending

into crepine (arrows). Scale bar, �5 mm.

s (red dots), KC inputs (blue), presynaptic output (green). Neurite length not

red) often cluster along M6 major neurites. Scale bar, �2.5 mm.

n). Two primary axon branches (black arrows). Contralateral axon (gray arrow).
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Figure 5. Ultrastructure of MVP2 Synapses onto M4b0 and M6 Neurons

(A) 3D view of EM tracing of MVP2 presynapses within M4b0 dendritic field (same as Figure 4C). Most MVP2 presynapses are on bouton-like structures.

(B) Inset, area modeled in 3D reconstruction of MVP2 bouton (blue) and corresponding presynapses (red) making inputs to different M4b0 dendrites (orange).

Scale bar, 1 mm. Gray lines (1–4), locations of EM data shown in (C).

(C) 1, EM image of MVP2 synapse onto unrelated neuron (white arrow). 2–4, MVP2 to M4b0 synapses. This MVP2 bouton also inputs to other neurons. Synaptic

cleft (red). Scale bar, 1 mm.

(D) 3D view of MVP2 presynapses within M6 dendrite (same as Figure 4E). MVP2 makes en passant synapses onto spines in M6 dendritic field. Scale bar, 1 mm.

(E) Inset, area modeled in 3D reconstruction of en passant MVP2 (blue) presynapses (red) onto spine-like twigs (asterisk) of M6 (magenta). Gray lines (1–4),

locations of EM sections in (F).

(F) 1, presynapse (red) fromMVP2 (R) (blue) onto postsynapse of M6 spine-like twig (magenta). 2, section between synapses. 3, white arrowMVP2(L) presynaptic

site (red). 4, synaptic cleft (red) of same presynapse extending into two postsynaptic sites (inputs) onto M6 spine-like twig (magenta). Scale bar, 500 nm.

See also Videos S4 (MVP2-M4b0) and S5 (MVP2-M6).
sugar, neutralizes odor driven approach (Tempel et al., 1983).

However, this process instead required aversively reinforcing

DANs, some of which are functionally connected to approach

directing MBONs. Omission of predicted reward therefore ap-

pears to be coded as aversive experience (Felsenberg et al.,

2017). Taken with data here, we propose that DAN-driven forma-
716 Cell 175, 709–722, October 18, 2018
tion of a competingmemory of opposite valence is a general, and

likely conserved (Pan et al., 2013), feature of memory extinction.

Prediction error, an unexpected change in reward or punish-

ment contingency, has a strong theoretical and experimental

foundation in mammalian dopaminergic neurons (Rescorla and

Wagner, 1972; Schultz et al., 1997; Steinberg et al., 2013; Pan



Training

0 60 min

ImagingExtinction

30

CS+ CS-

no
rm

al
iz

ed
 

ar
ea

 u
nd

er
 c

ur
ve

 (a
.u

.)

D

M4β' MBONs
M6 MBONs

Training

0 60 min

Imaging

30

no
rm

al
iz

ed
 

ar
ea

 u
nd

er
 c

ur
ve

 (a
.u

.)

CS+ CS-

A

MVP2 MBONs

CS+ MCH
CS- OCT

1 s

0.2
norm. F/F0

CS+ MCH
CS- OCT

1 s

0.2
norm. F/F0

Training

0 60 min

Imaging

30

no
rm

al
iz

ed
 

ar
ea

 u
nd

er
 c

ur
ve

 (a
.u

.)

CS+ CS-

M4β' MBONs

B

MVP2 MBONs

Training

0 60 min

ImagingExtinction

30

CS+ CS-

no
rm

al
iz

ed
 

ar
ea

 u
nd

er
 c

ur
ve

 (a
.u

.)

E

CS+ MCH
CS- OCT

1 s

0.2
norm. F/F0

CS+ MCH
CS- OCT

1 s

0.2
norm. F/F0

*
Training

0 60 min

Imaging

30

Training

0 60 min

ImagingExtinction

30

CS+ CS- CS+ CS-

no
rm

al
iz

ed
 

ar
ea

 u
nd

er
 c

ur
ve

 (a
.u

.)

no
rm

al
iz

ed
 

ar
ea

 u
nd

er
 c

ur
ve

 (a
.u

.)

M6 MBONs

C F

MVP2 MBONs

ns

ns

CS+ MCH
CS- OCT

1 s

0.2
norm. F/F0

CS+ MCH
CS- OCT

1 s

0.2
norm. F/F0

0

1

2

*

0

*

1

2

0

1

2

0

1

2

2

4

6

0

*

2

4

6

0

Figure 6. Aversive and Extinction Memories Are Integrated in M6 Neurons

(A) Imaging plane and protocol. Aversive conditioning increases CS+ response in the axon of M4b0/M6 MBONs.

(B and C) Potentiated response to CS+ evident in M4b0 (B) and M6 (C).

(D) Extinction protocol. Extinction nullifies training-induced increase in CS+ response in M4b0/M6 axons.

(E) Training-induced potentiation of CS+ response in M4b0 axon survives extinction.

(F) Extinction nullifies training-induced increased CS+ response in M6 axon. Odor-evoked activity traces show mean (line) with SEM. (shadow). Black line, 5-s

odor during imaging phase of the experiment. Paired measurements are the same as those used in Figure 3. Asterisks, significant difference between CS� and

CS+ responses.

See also Figures S5 and S7 and Table S1.
et al., 2013; Matsumoto and Hikosaka, 2009; Bromberg-Martin

et al., 2010). However, it is not clear how errors are registered

and how dopaminergic activity alters the underlying network.

By coding valence of learning as a particular skew in the

MBON network, the fly can use opposing arms of the DAN sys-

tem to keep track of when expected contingencies between

odors and positive or negative events are not met. Such a model

predicts that odors that are learned to be avoided will preferen-

tially trigger appetitively reinforcing DANs if punishment does not

follow, whereas odors learned to be approached will more
strongly activate aversive DANs and be registered as bad, if

the expected reward is omitted.

ParallelMemoriesCo-exist andCompete toDirect Odor-
Driven Behavior
We observed physiological traces of the original aversive mem-

ory, and new extinction memory in different nodes of the MBON

network at the same time after training. An aversive memory

trace measurable in the dendrites of MVP2 neurons survived

extinction, while a new extinction trace arose in the odor
Cell 175, 709–722, October 18, 2018 717
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Figure 7. Model of Extinction: AversiveMem-

ory Expression Is Limited by Competition

with a Parallel Extinction Memory of Oppo-

site Valence

(A) Individual DANs from the PPL1 and PAMclusters

innervate distinct mushroom body lobe compart-

ments. PPL1-DANs (red) provide teaching signals

during aversive conditioning and PAM-DANs

(green) for appetitive conditioning. Each compart-

ment, innervated by a particular DAN also houses

dendrites of a corresponding MBON, which are

GABAergic (blue), glutamatergic (magenta), or

cholinergic (not shown). MBONs receive excitatory

acetylcholine from odor coding KCs (black). Ter-

minals of PPL1 DANs overlap dendrites of MBONs

promoting approach behavior (blue), whereas

PAM DANs overlap MBONs directing avoidance

(magenta). MBONs drawn are valence-coding

MBONs described to harbor traces of aversive or

appetitive memory (Owald et al., 2015; Perisse

et al., 2016).

(B) When a naive fly detects neutral odor, odor-

specific KCs (black) drive an equally weighted

network of approach and avoidance promoting

MBONs. This balanced network configuration does

not promote directed behavior.

(C) During aversive conditioning, CS+ induced ac-

tivity in KCs and downstream MBONs coincides

with activity of PPL1 DANs, leading to compartment

restricted synaptic depression between odor-acti-

vated KCs and respective MBON.

(D) Following aversive conditioning, CS+ drive to

approach MBONs is reduced (smaller triangle) and

as result of reduced odor-specific MVP2-mediated

feedforward inhibition, CS+ drive to avoidance

promoting M4b0/M6 is also potentiated.

(E) During extinction, learned configuration of the

MBON network favors CS+ activation of avoidance

promoting MBONs, which, in turn, drives appeti-

tively reinforcing g5 PAM DANs. Coincidence of

CS+ during extinction and g5 DAN activity de-

presses odor-activated KC synapses onto M6

MBONs.

(F) After extinction, reduced CS+ drive to avoidance

coding M6 (smaller triangle) partially compensates

for the network potentiation of M6 neuron response

induced during initial aversive training.
responsiveness of M6 neurons. Although functional imaging

suggests that the change in relative odor drive from KCs to

MVP2MBONs that accompanies aversive learning remains after

extinction, we cannot be sure that it results from the same unal-

tered synaptic or neural mechanism.

Flies simultaneously form parallel memories of opposite

valence, if trained with odor and sugar laced with bitter taste.

These separate aversive and appetitive memories compete to

guide either learned odor avoidance or approach behavior

(Das et al., 2014). Since aversive memory followed by extinction

is equivalent to sequential formation of parallel memories, it fol-

lows that a new extinction memory written in the KC-M6 MBON

connection by g5 DANs, can partially neutralize behavioral
718 Cell 175, 709–722, October 18, 2018
expression of the original aversive memory, formed at the

KC-MVP2 junction. Since multiple MBON pathways (e.g.,

MVP2 and V2a) are modified by aversive learning (Séjourné

et al., 2011; Owald et al., 2015; Hige et al., 2015; Perisse et al.,

2016), but only the KC-M6 junction is modified by extinction

(not KC-M4b0), an imbalanced number of plastic connections

might account for the partial nature of aversive memory

extinction.

The apparent stability of learning induced changes in odor-

evoked activity in MVP2 neurons after extinction, taken with

our retraining experiments indicate that flies can accumulate in-

formation across training, extinction, and retraining trials. We

propose that retention of learned information following extinction



is a fundamental feature of a memory network. Combining

supporting and conflicting information from consecutive experi-

ence is certainly a prerequisite for more complex probabilistic

learning.

MVP2 Neurons Make Different Types of Feedforward
Inhibitory Synapses
MVP2 neurons innervate multiple compartments of the MB and

appear tomake different connections with vertical and horizontal

lobe MBONs (Perisse et al., 2016). Ultrastructure shows that an

MVP2 neuron forms distinct synaptic connections with M4b0 and
M6MBONs. Whereas MVP2makes large bouton-type synapses

onto M4b0 distal dendrites, MVP2 forms en passant synapses

along M6 primary neurites. These connections are reminiscent

of those made by unique types of mouse GABA-ergic neurons

(Krabbe et al., 2018).

Aversive and Extinction Memories Are Integrated in the
M6 Neurons
Recent EM reconstruction of the larval MB wiring diagram

described connections betweenMBONs, and convergence neu-

rons pooling collections ofMBON inputs (Eichler et al., 2017).We

found that aversive and extinction memories are already inte-

grated within the MBON network and specifically in M6 neurons,

that promote avoidance. The learning induced potentiated odor-

response in M6, resulting from reduced MVP2 mediated inhibi-

tion, appeared nullified by addition of odor-specific depression

of the KC-M6 connection. This suggests that extinction memory

can suppress expression of the original aversive memory and

consequently learned odor avoidance behavior.

It is not known how Drosophila appetitive memories are coun-

tered by their corresponding extinction memory to suppress

conditioned approach. At present the MBON network architec-

ture looks more complex than a straightforward ‘‘winner-takes-

all’’ scenario involving direct reciprocal inhibitory connections

between approach and avoidance directing pathways.

Depending on Time, Extinguished Memory May
Spontaneously Recover
We exclusively studied extinction soon after training. Prior

studies in flies and other animals suggest processes might differ

at later times (Hirano et al., 2016; Myers et al., 2006; Eisenberg

and Dudai, 2004). Given expression of longer-term memories

is apparently more reliant on ab than g KCs (Yu et al., 2006;

Krashes andWaddell, 2008; Bouzaiane et al., 2015), it is possible

odor re-exposure at later times will drive a different imbalanced

MBON network configuration than that earlier on. In this case,

other appetitively reinforcing DANs, and plasticity at different

KC-MBON junctions, might be required to acquire a competing

extinction memory at that time.

Sometimes extinguished memories spontaneously recover

with time, consistent with a new memory temporarily suppress-

ing previous learned behavior (Rescorla, 2004; Bouton et al.,

2006). In Drosophila, spontaneous recovery of extinguished

aversive memory is time dependent. Memories extinguished

2 days after training remain low for 4 days, whereas those extin-

guished at 5 days recover 4 days later (Hirano et al., 2016). Re-

covery of extinguished memories could be accompanied by
loss of odor-specific plasticity in KC-M6 dendrites. Furthermore,

the ability of extinguished memories to recover might result from

the relative strength of KC-MBON connections in which the

original aversive memory resides, and the extinction memory

is formed, at the time the fly re-encounters the CS+ without

punishment.

Could Extinction Function Similarly in Mammals?
Some reward-activated mammalian DANs (Schultz et al., 1997)

also respond to absence of an expected aversive stimulus (Mat-

sumoto and Hikosaka, 2009; Bromberg-Martin et al., 2010).

Therefore, fear extinction also could be triggered by appetitively

reinforcing DANs (Luo et al., 2018). Acquisition and extinction of

fear memory involves plasticity in basolateral amygdala (BLA)

(Bocchio et al., 2017), which contains distinct neural paths for

fear and reward memories (Shabel and Janak, 2009; Belova

et al., 2007; Redondo et al., 2014; Gore et al., 2015; Namburi

et al., 2015; Beyeler et al., 2016; Kim et al., 2016). Perhaps an

analogous arrangement of parallel competing memories (Grewe

et al., 2017), driven by teaching signals (Saunders et al., 2018)

from BLA-projecting DANs (Lammel et al., 2014), extinguishes

mammalian fear.

A Numerically Simple, yet Functionally Efficient, Neural
Network?
An early mechanistic study of Drosophila extinction concluded

that aversive learning and its extinction both occur within the

same subset of KCs (Schwaerzel et al., 2002). In addition, the au-

thors proposed extinction involved intracellular antagonism with

cAMP signaling that is required for memory formation. Our data

suggest initial aversive learning and subsequent extinction are

coded as consecutive learning events within the same odor-acti-

vated KCs. However, two parallel memories are formed within

anatomically separate output compartments of the same KCs

where they synapse onto different MBONs. Learned behavior

is therefore extinguished as a result of intercellular antagonism

within the output layer of the MB network. This process is likely

reliant on the extended architecture of KCs that separates

KCs’ primary sensory input layer in theMB calyx from a compart-

mentalized error adjustment layer in the lobes. Activity in popu-

lations of KCs therefore represents specific odors, whereas

associated values, such as unexpected shock and absence of

predicted shock, can be independently and locally assigned to

odors by altering the weights of synapses in different output

compartments from the same KCs.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly strains
All Drosophila melanogaster strains were reared at 25�C and 40%–50% humidity on standard cornmeal-agar food in 12:12 h

light:dark cycle. 2-9 day old adult flies were used. Canton-S flies were used as wild-type. Transgenes were expressed with GAL4

lines produced by the Janelia FlyLight (Jenett et al., 2012) and Vienna Tiles Projects (Tirian and Dickson, 2017) and are described;

R58E02-GAL4 (Liu et al., 2012), MB504B-GAL4 (Aso et al., 2014a), MB112C-GAL4 (Aso et al., 2014b), R66C08-GAL4 and

VT1211-GAL4 (Owald et al., 2015), R48B04-GAL4 (Huetteroth et al., 2015), R39A05-GAL4 (Jenett et al., 2012). For behavioral exper-

iments UAS-Shits1 (Kitamoto, 2001) was expressed under the control of the respective GAL4 driver. For the imaging experiments

UAS-GCaMP6m and UAS-GCaMP6f (Chen et al., 2013), and the artificial activation experiments lexAop-CsChrimson- tdToma-

to,UAS-GCaMP6f (Hoopfer et al., 2015), were expressed with the respective GAL4 and LexA drivers.

METHOD DETAILS

Behavioral experiments
Male flies from the GAL4 lines were crossed to UAS-Shits females and 4 to 9-day-old mixed-sex progeny were tested together in all

experiments. Approximately 80 - 100 flies were placed in a 25mL vial containing standard food and a 203 60mmpiece of filter paper

for 14–22 hours before behavioral experiments. Odors used in all experiments were 4-methylcyclohexanol (MCH) and 3-octanol

(OCT) diluted in mineral oil. An odor dilution of�1:104 or 1:106 was used for all experiments except in the pre-exposure experiments

where odor dilutions were �1:103 (specifically, 7 mL OCT, or 12 mL MCH in 8 mL mineral oil), �1:104 (specifically, 300 nL OCT, or

800nl - 1.6 mL MCH in 8 mL mineral oil) and �1:106 (specifically, 7 nL OCT, or 12 nL MCH in 8 mL mineral oil). All experiments

were performed at 23�C and 55%–65% relative humidity. Temperature was only raised to the restrictive 30-33�C, during the odor

reactivation or test phase of the Shits1 experiments.

Aversive olfactory conditioning in the T-maze was conducted as previously described (Tully and Quinn, 1985; Perisse et al., 2016).

Groups of flies were exposed to a first odor for 1 min (the conditioned stimulus+, CS+) paired with twelve 90 V electric shocks at 5 s

intervals. Following 45 s of clean air, a second odor (the conditioned stimulus-, CS�) was presented for 1min without shock. Memory

was subsequently assessed by testing flies for their odor-preference between the CS- and the CS+ in a T-maze (2 min). Performance

Index was calculated as the number of flies in the CS+ armminus the number in the CS- arm, divided by the total number of flies (Tully
e2 Cell 175, 709–722.e1–e5, October 18, 2018
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andQuinn, 1985).MCH andOCT, were alternately used asCS+ or CS- and a single sample, or n, represents the average performance

score from two reciprocally trained groups.

We optimized a published extinction protocol (Schwaerzel et al., 2002) so that the concentration of odor used in the re-exposure

experiments did not alter odor-driven behavior when naive flies received successive presentations (Figure S1A). During the odor

re-exposure phase either the CS+ or CS- odor was presented for 1min in the training tube. The inter-trial interval (ITI) refers to the

time between the end of the preceding trial to the start of the next trial. The retraining trial (Figure S1C) consisted of a single 1 min

CS+ pairing with twelve 90 V electric shocks at 5 s interval.

Functional connectivity experiments
These experiments were conducted under a two-photon microscope (Scientifica), essentially followed our previously published

protocol (Barnstedt et al., 2016). 6-7 day old female flies were housed on standard food supplemented with 1mM retinal for

1-2 days. Fly brains were removed from the head capsule and adhered to a polylysine coated coverslip bathed in carbogenated

(95% O2, 5% CO2) buffer solution (103 mM NaCl, 3 mM KCl, 5mM N-Tris, 10 mM trehalose, 10 mM glucose, 7mM sucrose,

26 mM NaHCO3, 1mM NaH2PO4, 1.5 mM CaCl2, 4mM MgCl2, osmolarity 275 mOsm, pH 7.3) after dissection in cold calcium-free

buffer. For optogenetic light activation a high-power LED (Mulitcomp OSW-6338, 630nm) was relayed onto the specimen via a

50mmdiameter lens with focal length of 60mmfiltered through a 632/10 bandpass filter (EdmundOptics). The power at the specimen

wasmeasured to be 0.85mWmm2 and the LEDwas triggered by amicrocontroller (Arduino MEGA). After identification and focusing

on the targeted field of view, brains were let rest for 5 min. 10 s after recording the baseline fluorescence (F), 10 ms light pulses were

delivered at 40 Hz for a total of 500 ms. Fluorescence was excited using 140-fs pulses, 80MHz repetition rate, centered on 910 nm

generated by a Ti-Sapphire laser (Chameleon Ultra II, Coherent) and images of 256 X 256 pixels were acquired at 5.92Hz, controlled

by ScanImage 3.8 software (Pologruto et al., 2003). Processes of dopaminergic neurons were imaged at the level of the tip of the

horizontal mushroom body lobe and signals were assigned to discrete DANs that innervate the b02, g4 and g5 compartments by

manually drawing a region of interest (ROI) in the relevant areas. Images were manually segmented and further analyzed using

customized MATLAB scripts. F0 was defined as the mean F from the first 9 s of baseline recording. DF/F0 was compared between

1 s before the stimulation with 1 s after stimulation onset, using a paired t test.

Aversive conditioning under the microscope
3-8 day old adult female andmale flies were immobilized on ice andmounted in a custommade chamber, allowing free movement of

the antennae and legs. The head capsule was opened under room temperature carbogenated buffer (see section above) and the fly,

in the recording chamber, was placed under the Two-Photon microscope. A constant air stream, carrying vapor frommineral oil sol-

vent (air), was applied and an electrifiable grid was raised from below until the fly’s legs made contact. Flies were trained and re-

exposed to odors under the microscope using essentially the same regimens and odor concentrations as those in the behavioral

experiments. An odor stream was added to the air for 1 min (CS+) while twelve 90 V electric shocks were delivered to the fly’s

legs. The first electric shock arrives 1.2 s after the onset of the CS+ odor. Following 45 s of air, a CS- odor was added for 1 min

to the clean air stream and presented to the fly without electric shock. Trained flies were either re-exposed to two CS+ trials

(15 min ITI) without the electric shock, or were left untreated. After training, flies in the custom chamber were removed from the mi-

croscope and rested until the odor re-exposure, or test phase of the experiment. For odor re-exposure flies were placed into the

airstream for 30 s followed by two 1 min exposures to the CS+ (with a 15 min ITI). The carbogenated buffer was changed before

each re-exposure phase, or every 30 min for the flies not re-exposed to odor. To control for odor exposure effects an independent

set of flies was subjected to mock training: the same odor regimen as in training but no electric shock was applied. One hour after

training, or mock training, GCaMP responses to the CS+, the CS- and a novel odor were measured in the relevant MBONs. The flies

were sequentially exposed to the CS+, CS- and a novel odor, isoamyl acetate (IAA; 1:106 odor concentration) interspersed by 30 s of

air (Owald et al., 2015; Perisse et al., 2016). To image the dendritic field of MVP2 or the axonal segments of the M4b0 and M6 (and

M4b0/M6 together) neurons, processes in one hemisphere of the brain were selected. Tomeasure responses in theM4b0 andM6 (and

M4b0/M6) dendrites, signals were simultaneously acquired from both hemispheres and averaged responses were analyzed.

Fluorescence was excited using �140 fs pulses, 80 MHz repetition rate, centered on 910 nm generated by a Ti-Sapphire laser

(Chameleon Ultra II, Coherent). Images were acquired with a Two-Photon microscope (Scientifica) with a 403, 0.8 NA water-immer-

sion 40X objective, controlled by ScanImage 3.8 software (Pologruto et al., 2003). Odors were delivered using a custom-designed

system (Shang et al., 2007). Shock voltage and delay was controlled by a DS2A Isolated Constant Voltage Stimulator (Digitimer, Hert-

fordshire, UK) and a DG2A Train/Delay Generator (Digitimer), respectively.

For analysis, two-photon fluorescence images were manually segmented using Fiji (Schindelin et al., 2012). Movement of the an-

imals was small enough such that images did not require registration. For subsequent quantitative analyses, custom Fiji andMATLAB

scripts were used. The baseline fluorescence, F0, was defined for each stimulus response as themean fluorescence F from 2 s before

and up to the point of odor presentation. F/F0 accordingly describes the fluorescence relative to this baseline. The area under the

curve (AUC) was measured as the integral of F/F0 during the 5 s odor stimulation. To account for variance between individual flies,

the responses of the CS+ and CS�were normalized to the response to IAA. Each AUCwas divided by the IAA AUC from the respec-

tive trial and individual fly. Boxplots show the 25th - 75th percentiles (box), themedian (line) and theminimum andmaximum (whiskers)

values for the normalized area under the curve of the responses during the odor presentation.
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Light microscopy
The signal of the GFP and RFP proteins was boosted using anti-GFP and anti-DsRed antibodies as described (Perisse et al., 2016).

Imaging was performed using a ZEISS Laser Scanning Microscope (LSM) 880 equipped with a fast Airyscan detection unit (Carl

Zeiss AG, Oberkochen, Germany). We used a high NA oil immersion alpha Plan-Apochromat 63X/1.46 Oil Corr M27 objective

with Immersol 518F immersion media (ne = 1.518 at 23�C). In line scanning confocal mode we adjusted laser power, pixel offset

and gain to avoid clipping at zero signal and saturation. This optimization was performed in the top z-section of the acquisition,

which is usually the brightest of the stack. In Airyscan mode the beam was aligned on a cropped high intensity ROI and remained

fixed over the entire acquisition. Airyscan reconstructions were made in Zeiss ZEN 2.3 (blue edition) using automated regularisation

selection.

Neuron reconstruction - ‘tracing’
Neurons were traced in a serial section transmission electronmicroscopy (ssTEM) volume of a full adult femaleD.melanogaster brain

(FAFB) (Zheng et al., 2018) using CATMAID, a web-based software for collaborative neural circuit reconstruction from large image

datasets (https://catmaid.readthedocs.io/en/stable/) (Saalfeld et al., 2009; Schneider-Mizell et al., 2016). Consistent with previous

studies (Eichler et al., 2017; Schlegel et al., 2016; Schneider-Mizell et al., 2016), tracing followed the centerline of a neuron’s profiles

through the dataset to reconstruct neurite morphology and annotate synaptic sites. We used an iterative approach established and

tested by Schneider-Mizell et al. (2016), where initial reconstruction is followed by a systematic proofreading by at least two expe-

rienced reviewers (> 500h of tracing experience).

MBON identification: MBONs were located by sampling downstream of previously identified KC synapses in the respective mush-

room body lobe compartments. Their identity was confirmed by comparison with light level data (Aso et al., 2014b).

Synapse annotation: Synaptic sites were identified based on three, previously described criteria (Prokop and Meinertzhagen,

2006) and reviewed as above: an active zone with (1) T-bar(s) and (2) surrounding vesicle cloud, and (3) a synaptic cleft to which

all postsynaptic neurons must have access.

In Drosophila, presynapses have been found on fine axonal processes (Schneider-Mizell et al., 2016), boutons (Butcher et al.,

2012), and other neurites that are neither in the dendritic nor the axonal field. Post-synapses have been found on large or fine dendritic

processes and fine spine like twigs that are shorter than 3mm (Schneider-Mizell et al., 2016). M4b0 M6R and M6L were reconstructed

the same way to maintain consistency in the placement of synapses. Schneider-Mizell et al. (2016) estimated that the tracing

approach employed typically finds 99.8% of all pre- and 91.7% of all post-synapses. The probability of identifying false-positive

post-synapses is 2.2% and negligible for presynapses. Since all synaptic sites on the MVP2 axon and M4b0 and M6 dendrites

were annotated, we can estimate the upper and lower bounds of the number of synapses between MVP2 and M4b0 or M6 neurons

(Note only integer numbers of synapses are expected):
Found Lower Bound Upper Bound

MVP2- > M6R 17 16.6 18.4

MVP2- > M6L 16 15.6 17.3

MVP2- > M4b’ 47 46 50.8
Our error margins are likely smaller than those listed above, because the respective neurites of all neurons were more extensively

reviewed than the agreed standard.

Reconstructed neurons were visualized using Blender 3D, an open-source 3D software (https://www.blender.org/). Neuron data

from CATMAID were imported and shaded by Strahler order using an existing CATMAID plugin for Blender (https://github.com/

schlegelp/CATMAID-to-Blender; Schlegel et al., 2016).

Volumetric reconstruction of synapse architecture was achieved by importing and annotating FAFB image data into ImageJ using

the TrakEM2 plugin (Cardona et al., 2012). Reconstructions were exported for rendering to Blender 3D.

Analysis: All analyses were performed in R and Python using open-source software. PyMaid (https://github.com/schlegelp/

PyMaid) and RCatmaid (http://jefferis.github.io/rcatmaid/; http://jefferis.github.io/elmr/) were used to interface with CATMAID

servers and perform morphological analyses. Dendrogram representations of neural arbors were generated using new code

(https://github.com/markuspleijzier/AdultEM/tree/master/Dendrogram_code) the graphviz library (https://graphviz.gitlab.io/; Gans-

ner and North, 2000 via Python bindings provided by NetworkX, https://networkx.github.io/; Hagberg et al., 2008). M4b0 axonlets
were defined as distal parts of neurites originating from the dendritic field, whichmade exclusively presynaptic connections. Axonlets

were isolated and imported into Blender 3D using PyMaid. The root of the dendritic field was defined as the point at which the neu-

ron’s main neurite branched into proximal dendrites and distal axon. Geodesic (along the arbor) distances between synapses and

dendritic root were calculated using RCatmaid.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed in GraphPad Prism. All behavioral data were analyzed with an unpaired t test or a one-way

ANOVA followed by a posthoc Tukey’s multiple comparisons test. No statistical methods were used to predetermine sample size.

For the imaging experiments normalized responses were compared by a paired t test for normally distributed data, otherwise a Wil-

coxon matched-pairs signed rank test was used for non-Gaussian distributed data. The respective statistical tests used, the n

numbers and the p values can be found in the Table S1.

DATA AND SOFTWARE AVAILABILITY

Customized MATLAB and Python scripts used in this paper are available upon request.
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Figure S1. Aversive Memory Extinction Requires PAM Cluster Dopamine Neurons, Related to Figure 1

(A) Pre-exposing naive flies to high (10�3), but not low (10�4-10�6) concentration of odor, biases subsequent choice behavior toward avoidance of that odor in an

ITI dependent manner. Low odor concentrations were therefore used in all behavioral experiments in this study.

(B) Learning performance is similar with low (10�6) and high (10�3) odor concentrations.

(C) Retraining after extinction reverses the reduction in learned avoidance behavior (left) and leads to more robust 90 min aversive memory (right).

(D) Permissive temperature control experiment for Figure 1D. All the relevant groups show normal extinction when performance is measured 60min after training.

(E) Blocking R58E02-GAL4 dopamine neurons during the retrieval of an extinguished memory does not impair test performance. 60 min performance of

R58E02-GAL4; UAS-Shits1 flies not statistically different from controls.

Asterisks, significant difference between groups of same genotype. Data, mean ± SEM. All individual data points displayed as dots.
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Figure S2. Mushroom Body Output Neurons Drive g5 Dopamine Neurons and Memory Extinction, Related to Figure 2

(A) Control functional connectivity experiment using flies which express GCaMP6f in PAM DANs but not CsChrimson in M4b0/M6 neurons, light alone does not

evoke a Ca2+ response in PAM DANs innervating g5. ns, no significant difference.

(B) Blocking VT1211-GAL4 labeled M4b0/M6 neurons with UAS-Shits1 for 45 min after aversive conditioning does not alter 60 min memory performance.

(C) Permissive temperature control experiment for Figure 2F.

All groups show comparable avoidance behavior after extinction (left) or after CS- re-exposure (right). Data are mean ± SEM and all individual data points are

displayed (dots).
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Figure S3. Parallel Memory Traces Form When Aversive Memory Is Extinguished, Related to Figure 3

(A and B) Complementary experiment for Figures 3C and 3F. (A) Training protocol under the microscope using 3-octanol (OCT) as CS+. Aversive conditioning

does not significantly change the CS+ odor response in M6 dendrites. (B) Extinction protocol under the microscope. CS+ odor responses in M6 dendrites are

significantly reduced after extinction.

(C and D) Complementary experiment for Figures 3A and 3B. (C) Aversive conditioning significantly reduces CS+ odor responses in MVP2 dendrites. (D) The

training induced reduction in CS+ odor (OCT) response in the MVP2 dendrites remains after extinction.

(E–H) Repeating experiments in Figures 3C, 3F, S3A, and S3B with the VT1211-GAL4 driver confirms the findings: (E and G) aversive conditioning does not

change odor responses in M6 dendrites. (F and H) However, aversive memory extinction leads to reduced CS+ response in M6 dendrites. (I and J) Comple-

mentary experiment for Figures 3B and 3E.

(I) No differences evident in odor-evoked responses in M4b0 dendrites after aversive conditioning.

(J) Odor responses measured in M4b0 dendrites are unchanged following extinction of aversive memory.

(K–R) Mock conditioning, exposing flies to the same odor training regime without electric shock, does not change odor responsesmeasured in (K and N) MVP2 or

(O-R) M6 dendrites. Odor-evoked activity traces show mean (solid line) with SEM. (shadow). Black line represents 5 s odor presentation. Paired measurements

from individual flies displayed as black (CS+ response < CS- response) or white (CS+ response > CS- response) dots.

Asterisks, significant difference between averaged CS- and the CS+ responses.
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Figure S4. MVP2 Neurons Connect in Different Ways to M4b0 and M6 Neurons, Related to Figure 4

(A) Alternative 3D view of the projections of the fly’s right brain hemisphere MVP2, M4b0 and M6 neurons from EM tracing. MVP2 processes in the horizontal MB

lobe, innervate b02 and g5 compartments, occupied by dendrites of M4b0 and M6 neurons, respectively. Scale �20mm. Dorsal, ventral, medial and lateral

directions indicated.

(B) Analysis of ultrastructural connectivity between MVP2 neurons from right and left hemispheres with the right hand M4b0 and right and left M6 neurons.

Numbers of synapses between respective neurons indicated on connections between boxes.

(C) Analysis of dendritic field of left M6(L) neuron confirms that MVP2 inputs (red dots) localize near the root of dendrites. Scale �2.5 mm.

(D) Dendrogram of placement of MVP2 inputs to M6(L). MVP2 input (red), likely-KC input (blue), presynaptic output (green). Two primary axon branches indicated

(black arrows).

(E) Quantification of localization of MVP2 input to M4b0 andM6(R) andM6(L) neurons with respect to their distance to root of the dendritic field. Non-MVP2 inputs,

assumed to be mostly KCs, onto M4b0, M6(R) and M6(L) neurons have a Gaussian or bimodal Gaussian distribution, spread over the dendritic field. MVP2 inputs

to M4b0 are more distally localized than MVP2 inputs to M6(R) and M6(L) neurons.
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Figure S5. Aversive and Extinction Memories Are Integrated within M6 Neurons, Related to Figure 6

(A and B) Complementary experiment to Figures 6A and 6D. (A) Imaging plane and training protocol under the microscope. CS+ is OCT. Aversive conditioning

increases CS+ odor response of axonal segment of M4b0 andM6 neurons. (B) Extinction protocol under the microscope. Aversive memory extinction nullifies the

training-induced increase in CS+ odor response measured in axonal segment of M4b0/M6 neurons. (C and D) Complementary experiment to Figures 6C and 6F.

(C) The potentiated response to the CS+ after aversive conditioning is evident in the axonal segment of M6 neuron.

(D) Consistent with Figure 6F, extinction of aversive memory for OCT nullifies the training-induced increased CS+ odor response in the M6 axon. (E–H) Mock

conditioning with OCT does not change odor responses measured in axonal segments of M4b0 and M6 neurons. Odor-evoked activity traces show mean (solid

line) with SEM. (shadow). Black line, 5 s odor presentation. Pairedmeasurements from individual flies displayed either as black (CS+ response < CS- response) or

white (CS+ response > CS- response) dots.

Asterisks, significant difference between averaged CS- and the CS+ response.
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Figure S6. Parallel Memory Traces Form When Aversive Memory Is Extinguished, Related to Figures 3 and S3

(A–X) All imaging traces for odor responses to the CS+, the CS- (either OCT, blue, or MCH, red) or the novel odor (IAA, orange) for the experiments in the order as

they are depicted in Figures 3 and S3. Individual traces (gray), the mean (colored solid line) and the SEM (shadow) are displayed. Black line represents 5 s odor

presentation during the imaging phase of the experiment.
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Figure S7. Aversive and Extinction Memories Are Integrated within the M6 Neurons, Related to Figures 6 and S6

(A–N) All imaging traces for odor responsesmeasured inM6 axons to the CS+, the CS- (either OCT orMCH) or the novel odor (IAA) for the experiments in the order

as they are depicted in Figures 6 and S6. Individual traces (gray), the mean (colored solid line) and the SEM (shadow) are displayed. Black line represents 5 s odor

presentation during the imaging phase of the experiment.
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