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Abstract 

Oxygen is required for the survival of the majority of eukaryotic organisms, as it is important 

for many cellular processes. Eukaryotic cells utilize oxygen for the production of biochemical 

energy in the form of adenosine triphosphate (ATP) generated from the catabolism of carbon 

rich fuels such as glucose, lipids and glutamine. The intracellular sites of oxygen consumption-

coupled ATP production are the mitochondria, double-membraned organelles that provide a 

dynamic and multifaceted role in cell signalling and metabolism. Highly evolutionarily 

conserved molecular mechanisms exist to sense and respond to changes in cellular oxygen 

levels. The primary transcriptional regulators of the response to decreased oxygen levels 

(hypoxia) are the hypoxia-inducible factors (HIFs), which play important roles in both 

physiological and pathophysiological contexts. In this review we explore the relationship 

between HIF-regulated signalling pathways and the mitochondria, including the regulation of 

mitochondrial metabolism, biogenesis and distribution. 
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Introduction 

In humans (and other higher eukaryotes) the availability of molecular oxygen is an important 

determinant of biological outcomes in both physiological and pathophysiological processes, 

ranging from vascular patterning and tissue architecture during development, to the 

proliferation, invasiveness and metastasis of malignant cells in cancer. Oxygen is important for 

in many cellular processes by cells to produce biochemical energy in the form of adenosine 

triphosphate (ATP) [1]. The sites of oxygen consumption-coupled ATP production in the cell 

are the mitochondria, which are therefore centrally important organelles for cell survival, as 

well as in influencing oxygen availability both inside and outside the cell. There are numerous 

non-mitochondrial processes which also generate ATP, such as glycolysis [1], and the enzyme 

creatine kinase (CK) which plays an important role in buffering ATP levels in tissues with high 

energetic demands such as skeletal muscle [2, 3]. Furthermore, a small number of eukaryotes 

are facultative anaerobes, and can generate ATP and survive in environments with little or no 

oxygen, such as yeast [4] and aquatic invertebrates [5]. 

 

In humans, reductions in the availability of oxygen (hypoxia) are sensed directly and indirectly 

by several cellular signalling pathways, which elicit a variety of transcriptional, metabolic and 

morphological responses to maintain cellular homeostasis. The major transcriptional regulators 

of the response to hypoxia consist of a highly evolutionarily conserved oxygen-regulated 

family of transcription factors, named the hypoxia inducible factors (HIFs) [6, 7]. The HIFs 

are dimeric transcription factors that consist of a HIF-α subunit (HIF-1α or HIF-2α) which is 

rapidly degraded in an oxygen-dependent manner [6, 8-10], and a proteolytically stable beta 

subunit [7, 11]. The alpha subunit is continuously synthesised in the cytosol, where it is rapidly 

degraded by the 26S proteasome under normoxic conditions [10]. When oxygen is limiting, 

HIF-α is stabilised, and translocates to the nucleus, where it binds to conserved sequences 

(RCGTG) in the promoter regions of HIF-regulated genes [9, 12, 13], which are named hypoxia 

response elements (HREs). Transcriptional transactivation of genes is dependent on the 

association of the HIF-α with the HIF-1β subunit, also known as ARNT (aryl-hydrocarbon-

receptor nuclear translocator) [14, 15], as well as other coactivators such as CBP/p300 (CREB-

binding protein/adenovirus E1A-binding protein p300) [16].  

 

The transcriptional targets of HIF include genes involved in cell survival and metabolism [17], 

and are thus essential for the adaptation of cells to hypoxia. A growing number of HIF targets 

directly or indirectly influence mitochondrial biology, and there is a reciprocal relationship 
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between mitochondria and the HIF pathway. In this review, we will explore the relationship 

between HIF and mitochondria, with particular focus on cancer. It is important to note however 

that HIFs have significant cell-specific roles in non-transformed cells, resulting in different 

outcomes under hypoxic stress e.g. the hypoxic preconditioning of cardiomyocytes and 

neurons in ischaemic disease [18, 19], the metabolic adaptation of skeletal muscle to altitude-

related hypoxia [20], and the enhancement of neutrophil lifespan in hypoxic niches [21].  

 

Mitochondria, oxygen consumption and energy production 

The eukaryotic mitochondrion is hypothesised to have arisen as the result of an endosymbiotic 

fusion between an archaeal host cell and a protobacterium that had evolved the ability to 

generate chemical energy through oxidative phosphorylation (OXPHOS) [22, 23]. One 

fundamental outcome of mitochondrial endosymbiosis was the acquisition by eukaryotes of the 

means to harness the oxidative power of molecular oxygen in order to efficiently generate large 

quantities of energy in the form of ATP, through enzymatic means. The mitochondrial ATP 

synthase is an F1F0-type ATP synthase, which catalyses the phosphorylation of adenosine 

diphosphate (ADP) to ATP, is powered by a proton-motive gradient between the inner matrix 

of the mitochondria and the inter-membrane space (IMS). This proton gradient is formed by 

the action of three protein complexes, namely Complex (C)I, CIII and CIV, which ‘pump’ 

protons against the gradient from the matrix into the IMS. The proton-motive action of CI, CIII 

and CIV is energetically unfavourable, and therefore requires energy in the form of serial 

transmission of electrons between the complexes through two intermediaries, ubiquinone (CI 

and CII to CIII) and cytochrome c (CIII to CIV), which together is referred to as the electron 

transport chain (ETC), or respiratory chain. Electrons are supplied to the ETC by a sequence 

of reactions in the matrix of the mitochondria termed the tricarboxylic acid (TCA) cycle, which 

produces three reducing (electron donating) equivalents of NADH, and one reducing 

equivalent of FADH2. The terminal electron acceptor in the chain is CIV, which combines 

molecular oxygen, protons and the electrons received from CIII via cytochrome c, to produce 

water. Energy can also be produced through the glycolytic metabolism of glucose to pyruvate 

in the absence of oxygen, and pyruvate can then undergo anaerobic fermentation to lactate, 

rather than undergoing oxidation in the mitochondria. However, the yield of ATP from 

glycolysis alone is only 2 molecules per molecule of glucose consumed, compared with 30-38 

molecules of ATP through glycolysis combined with oxidative phosphorylation [1]. Thus, 

oxidative phosphorylation maximises the release of energy stored in carbon-rich fuels such as 

glucose for use by the cell (Fig. 1). 
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As the major oxygen consuming organelle of the cell, mitochondria are uniquely dependent on 

the continued availability of oxygen for ETC function. Indeed, it has been estimated that as 

much as 90% of cellular oxygen consumption is carried out by cytochrome c oxidase (CIV), 

which has a very high affinity for oxygen, with a Km in the sub-micromolar range [24]. As a 

consequence, adaptations to hypoxia have evolved in order for cells to maintain bioenergetic 

homeostasis, while minimising the harmful effects of decreased oxygenation such as reactive 

oxygen species (ROS) production. Many of these adaptations involve communications to and 

from mitochondrial metabolic pathways as well as changes in mitochondrial morphology, 

dynamics and subcellular localization. Adaptations to hypoxia are exquisitely controlled by 

HIF and the hypoxia-response machinery of the cell, which includes various signalling 

pathways and gene expression changes regulated by HIF.  

 

 

Oxygen-dependent regulation of HIF signalling 

The transcriptional activity of HIF-α proteins is regulated in an oxygen-dependent manner by 

controlling their protein stability in the cytosol, and through regulation of their binding to 

transcriptional coactivators in the nucleus. Regulation at both levels is mediated by the 

hydroxylation of specific amino acids by oxygen-dependent dioxygenases. Two classes of 

dioxygenases are capable of hydroxylating HIF-α proteins: the proline-targeting prolyl 

hydroxylase domain (PHD) containing enzymes (1, 2 and 3) [25-27], and the asparagine-

targeting factor inhibiting HIF (FIH) enzyme [28-30]. Both classes of enzyme catalyse the 

oxidative decarboxylation of 2-oxoglutarate (2-OG, or α-ketoglutarate (α-KG)), which 

produces carbon dioxide, and succinate as by-products. Iron in the ferrous (Fe2+) oxidation state 

is also required, which is maintained in this state by the reducing action of ascorbic acid [31, 

32]. Proline hydroxylation of HIF-α subunits by the PHDs permit their recognition and binding 

by the von-Hippel Lindau protein (pVHL) [10, 25, 26] (also see Fig. 1), which is the recognition 

component of a multimeric ubiquitin ligase. pVHL, along with elongin B (TCEB2), elongin C 

(TCEB1), cullin 2 (CUL2) and ring-box 1 (RBX1), is responsible for the ubiquitination of HIF-

α subunits which targets the protein for proteasomal degradation [33]. Loss of pVHL activity 

through mutation leads to constitutive stabilisation of HIF-α proteins in normoxia, which 

contributes to disease progression in the tumour syndrome von-Hippel Lindau Disease [34, 

35]. Hydroxylation by FIH does not affect HIF-αprotein stability, but rather inhibits the 

interaction between HIF-α subunits and the transcriptional co-activator, CREB-binding protein 
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(CBP/p300) [28-30], which inhibits the transactivation of target genes by HIFs. In conditions 

of hypoxia, the hydroxylase activity of the PHDs and FIH is inhibited, which blocks the binding 

and ubiquitination of HIF-α proteins by pVHL, leading to cytoplasmic stabilisation of the HIF-

α subunits [25-29]. Accumulated HIF-α translocates to the nucleus, where they then bind to 

HREs, dimerise with HIF-β subunits and recruit additional transcriptional co-activators to 

transactivate the transcription of hypoxia-responsive genes [36, 37]. 

 

 

HIF-dependent regulation of mitochondria 

The reduction in oxygen availability under hypoxia means that cells must adapt their metabolic 

programme in order to maintain the catabolic and anabolic reactions that rely on the availability 

of ATP normally supplied by OXPHOS. In general, HIF-1 signalling is considered to support 

anaerobic ATP production and downregulate OXPHOS, thus reducing the cell’s reliance on 

oxygen-dependent energy production [38]. Indeed, this metabolic reprogramming under 

hypoxia was one of the first functions ascribed to HIF-1 activity [8, 39, 40]. While there is 

evidence that HIF-1α and HIF-2α have some opposing roles when co-expressed, with relation 

to mitochondrial function, both have been shown to act to decrease a cell’s dependence on 

mitochondrial OXPHOS in a similar manner [41]. For example, in the absence of HIF-1α, as 

in the case of certain renal cell carcinomas, HIF-2α instigates the same remodelling of cellular 

metabolism away from OXPHOS and towards anaerobic means of ATP production [42, 43].  

 

Suppression of the TCA cycle and ETC activity 

As mentioned above, the TCA cycle is a series of enzymatically catalysed reactions in the 

mitochondrial matrix, that provide electrons to the ETC, in the form of the reducing equivalents 

NADH and FADH2. TCA cycle intermediates are derived from external carbon sources, whose 

catabolism provide transitional metabolites that enter the TCA cycle at different points. Three 

major metabolites are used to provide carbons to replenish TCA cycle intermediates, namely 

glucose and fatty acids which are catabolised to acetyl-CoA, and glutamine, which in part is 

catabolised to succinyl-CoA via 2-OG by the TCA cycle. In hypoxia, HIF-regulated gene 

expression diverts glucose and fatty acid -derived carbons from being catabolised to acetyl-

CoA, while glutamine-derived carbons are diverted from being catabolised to succinyl-CoA 

(Fig. 2). 
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To maintain ATP production from glycolysis in the context of decreased oxidative 

phosphorylation, HIF upregulates lactate dehydrogenase (LDHA) [8], an enzyme responsible 

for the conversion of pyruvate to lactate, in a reaction which regenerates NAD (Fig. 2). This 

diverts pyruvate away from conversion to acetyl-CoA in the mitochondria and the TCA cycle, 

and suppresses ETC activity. HIF also upregulates pyruvate dehydrogenase kinase 1 (PDK1), 

an enzyme responsible for the phosphorylation and inactivation of the mitochondrial enzyme 

pyruvate dehydrogenase (PDH) [38, 44]. PDH is responsible for the mitochondrial conversion 

of pyruvate to acetyl-CoA, and without PDH activity more pyruvate is available for conversion 

to lactate by LDHA. In addition, HIF upregulates monocarboxylate transport 4 (MCT4), a 

plasma membrane transporter which exports the increased levels of lactate out of the cell to 

maintain optimal cytoplasmic pH [45], and avoid competitive inhibition of LDHA. Lactate 

produced under hypoxic conditions is not merely a waste product, and can be re-oxidised by 

cells to pyruvate via LDHA, and thus contribute towards gluconeogenesis or oxidative 

phosphorylation upon reoxygenation [46-48]. In brain tissues, there is evidence to suggest the 

existence of a lactate shuttle whereby lactate exported from astrocytes under hypoxia can then 

be imported and utilised as a fuel by neurons [49, 50]. Similarly, lactate produced by skeletal 

muscle can be used as a fuel source by heart muscle under exercise-induced hypoxia [51]. Thus, 

HIF-mediated upregulation of LDHA under hypoxia can in certain tissues both decrease and 

increase mitochondrial activity to support energetic homeostasis. HIF also upregulates plasma 

membrane glucose transporters (GLUT1, GLUT3) [40, 52, 53] and glycolytic enzymes such 

as hexokinase 2 (HK2) [54], aldolase A (ALDA) and enolase 1 (ENO1) [8]) to increase 

glycolytic flux and thus maintain ATP homeostasis, since glycolytic ATP production is less 

efficient (2 ATP/glucose molecule) than OXPHOS (30-36 ATP/glucose molecule).  

 

Alongside glucose, lipids can be catabolised to produce acetyl-coA to replenish the TCA in a 

process called β-oxidation, which occurs almost exclusively in the mitochondria [55]. Indeed, 

when rates of glycolysis are decreased, β-oxidation is upregulated to ensure a continued supply 

of acetyl-CoA to support OXPHOS [56]. However, in the absence of oxygen, this process is 

inhibited by reduced respiratory chain activity, and through HIF-mediated suppression of 

peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), a 

transcriptional co-activator and critical regulator of lipid homeostasis [57] (described in more 

detail below) (Fig. 2). One of the transcriptional targets of PGC-1α is the mitochondrial protein 

carnitine palmitoyltransferase I (CPT1) [58] which catalyses the rate-limiting step in oxidation 

of long-chain fatty acids (C8+), required for their mitochondrial import. Depletion of HIF-1α 
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or HIF-2α in cultured hepatic cells has been shown to block the hypoxic suppression of PGC-

1α-regulated gene expression, including genes involved in lipid catabolism [59] (such as 

CPT1), while HIF-2α (Epas1) deletion, but not HIF-1α deletion, was found to have the same 

effect in hepatic mouse tissue [60]. 

 

HIF activity therefore suppresses the synthesis of both glucose-derived and fatty acid-derived 

acetyl-CoA through multiple means. In addition, HIF-1 has been shown to regulate the 

expression of proteins involved in the import of extracellular fatty acids across the plasma 

membrane, such as fatty acid binding protein 3 and 7 (FABP3, FABP7) [61, 62], as well as 

enzymes involved in lipid storage, such as perlipin 2 (PLIN2) [63]. HIF-1 also regulates the 

expression of lipin-1 (LPIN1), an enzyme which catalyses the penultimate step in triglyceride 

synthesis [64]. As a consequence of decreased mitochondrial lipid catabolism and elevated 

lipid import, synthesis and storage, lipid accumulation in droplets is commonly observed in 

multiple cell types under hypoxia [65-67] (Fig. 2). Hypoxic lipid accumulation appears to be a 

precautionary survival mechanism in cancer cells, to protect from ROS-mediated damage and 

cell death during reoxygenation [63]. 

 

A further way that HIFs support lipid synthesis is through the stimulation of glutamine 

catabolism to replenish TCA cycle intermediates, and ultimately generate lipogenic acetyl-

CoA. Two distinct pathways exist to generate acetyl-CoA from glutamine, both the canonical 

conversion of glutamine-derived 2-OG to acetyl-CoA via malate [68], as well as the reductive 

carboxylation of 2-OG to produce acetyl-CoA via citrate through the reductive reverse reaction 

of isocitrate dehydrogenase (IDH) [69]. Under hypoxia, the canonical oxidative route is 

inhibited by HIF through the upregulation of siah E3 ubiquitin ligase 2 (SIAH2), a 

mitochondrial ubiquitin ligase which leads to the proteolytic destruction of the TCA cycle 

enzyme oxoglutarate dehydrogenase (OGDH) [70]. OGDH catalyses the conversion of 2-OG 

to succinyl-CoA, and thus decreased OGDH activity increases the concentration of 2-OG 

derived from glutamine (Fig. 2). The accumulated 2-OG can then be converted back to acetyl-

CoA through reductive carboxylation catalysed by the isocitrate dehydrogenase (IDH) 

enzymes, IDH1 (cytosolic) and IDH2 (mitochondrial). Indeed, OGDH knock-out leads to 

normoxic stabilisation of HIF-α proteins, highlighting the importance of this enzyme in the 

relationship between HIF and mitochondria [71]. Furthermore, HIF upregulates the enzyme 

glutaminase 1 (GLS1) [72], which is responsible for the conversion of glutamine to glutamate, 

thus increasing the flux of glutamine to 2-OG, and on to lipogenic acetyl-CoA. While the 
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precise contribution of HIF activity to glutamine-dependent lipid synthesis is unclear, both 

constitutive HIF-1 and HIF-2 signalling appear able to stimulate this metabolic shift [73].  

 

Hypoxic upregulation of microRNAs 

A number of microRNAs (miRNAs) have been identified as regulators of genes involved in 

mitochondrial function, morphology and biogenesis (reviewed in [74]). One such miRNA is 

the HIF-upregulated miR-210 [75], which is commonly considered as the major hypoxia-

responsive miRNA. miR-210 directly downregulates the expression of iron-sulphur cluster 

assembly proteins (ISCU) 1 and 2, leading to decreased incorporation of iron-sulphur clusters 

in proteins involved in mitochondrial metabolism, including Complex I,  aconitase (ACO) [76] 

and SDHB [77] (Fig. 2). In addition, miR-210 has been shown to target and decrease the 

expression of the CIV assembly protein COX10 [78]. Together, these changes contribute to the 

reduction in OXPHOS under hypoxia, stimulated by HIF activity. 

 

Detoxification and suppression of ROS production 

Hypoxia can stimulate the production of reactive oxygen species (ROS) from the mitochondria, 

largely from CIII [79], but also from CI and CII [80], as well as from enzymes of the TCA 

cycle such as OGDH [81]. Mechanistically, decreased CIV activity in hypoxia slows electron 

transfer along the ETC, increasing the likelihood of unwanted electron transfer to molecular 

oxygen, which produces the highly reactive superoxide anion (•O−
2). ROS can be extremely 

damaging to cells, causing peroxidation of membrane lipids, redox damage to proteins, and can 

introduce single strand breaks into DNA. Because of the potential for ROS to damage the cell, 

there are several cellular antioxidant defence systems, including detoxifying enzymes, and a 

large pool of the redox active tripeptide, glutathione, to absorb free radicals and maintain 

protein redox states. HIF signalling is responsible for mitigating ROS-mediated damage in 

hypoxia in a variety of ways (Fig. 3). 

 

Superoxide dismutases (SODs) catalyse the conversion of the superoxide radical to hydrogen 

peroxide (H2O2), which is itself a reactive species, but which can then be converted to harmless 

water and oxygen by catalase enzymes. In mice, deletion of the epas1 gene identified that 

expression of the mitochondrial protein SOD2 was dependent on HIF-2α expression [82], while 

reporter gene assays in human cells showed that SOD2 expression was induced under hypoxia 

in a HIF-2 dependent manner [83]. Interestingly, SOD2 expression has also been shown to be 

suppressed under hypoxia in renal carcinoma cells in a HIF-1 dependent manner, suggesting 
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that SOD2 expression under hypoxia is context specific [84], and may represent one of the 

opposing facets of HIF-1 and HIF-2 activity. 

 

The tripeptide glutathione (γ‐l‐glutamyl‐l‐cysteinylglycine) represents another major defence 

against ROS [85]. Glutathione (represented as GSH) maintains protein redox status by serving 

as an electron donor, and is capable of reducing and breaking disulphide bonds in proteins that 

have been oxidised during oxidative stresses such as hypoxia. In the process disulphide bonds 

are formed between cysteine thiol groups on adjacent molecules of glutathione, to produce 

glutathione disulphide (represented as GSSG) [85]. In addition, glutathione can directly 

detoxify hydrogen peroxide as a substrate of the peroxiredoxin (Prx) and glutathione 

peroxidase (GPx) enzymes [85, 86]. Glutathione disulphide (GSSG) is recycled to its 

monomeric form by the reducing power of NADPH, in a reaction catalysed by the enzyme 

glutathione reductase (GSR) [87]. As the reducing power of NADPH is essential for the 

recycling of glutathione and maintenance of this antioxidant defence, several key NADPH 

producing pathways are upregulated under hypoxic conditions. Serine synthesis is one such 

pathway that generates NADPH, and HIF-1 has been shown to upregulate several pathway 

enzymes, such as phosphoglycerate dehydrogenase (PHGDH) [88], and the mitochondrial 

enzyme serine hydroxymethyltransferase 2 (SHMT2) in a MYC-dependent manner [89].  

 

Not only does HIF-1 activity help to maintain glutathione in its decreased form, it also 

contributes to increased de novo glutathione synthesis (Fig. 3). HIF-1 is responsible for both 

upregulating enzymes directly involved in glutathione biosynthesis, and also enzymes involved 

in the biosynthesis of the three constituent amino acids of glutathione [88-90]. For example, 

while the serine biosynthetic pathway is an important source of NADPH, serine is also an 

important precursor for the synthesis of glycine and cysteine [91]. Thus, the HIF-1 dependent 

upregulation of serine synthesis pathway enzymes in hypoxia increases serine availability for 

glycine and cysteine synthesis. Furthermore, HIF-1 is responsible for the hypoxic upregulation 

of solute carrier 7 family member 11 (SLC7A11), which is a component of the xCT cysteine 

import channel [90], thus increasing cysteine flux into the cell. SLC7A11 is an antiporter which 

exports one molecule of glutamate for every molecule of cysteine imported, but glutamate is 

the third component amino acid of glutathione, and so export of glutamate via SLC7A11 would 

inhibit glutathione synthesis by depleting intracellular glutamate levels. To counteract this, 

glutamate synthesis from glutamine is increased through HIF-dependent upregulation of the 

glutaminase 1 and 2 enzymes (GLS1, 2) in the cytosol and mitochondria. Recent work has 
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shown that HIF-1α stabilisation by hypoxia or EGLN1 (PHD2) deletion in periosteal progenitor 

cells stimulates GLS1 expression, and thus increases cellular glutathione levels, which protects 

these cells from ROS-mediated cell death [72]. Furthermore, HIF-1 has been shown to directly 

stimulate glutathione synthesis in breast cancer cells by upregulating the enzyme responsible 

for the rate-limiting step in the pathway, namely glutamate-cysteine ligase (GCLM) [90].  

 

Finally, while the HIFs bolster a cell’s antioxidant defence, they are also responsible for 

minimising ROS production from the mitochondria in hypoxia. This is achieved firstly by 

reducing mitochondrial mass, as described in detail below, and also through regulating the 

expression of alternative isoforms of subunits of the respiratory complexes (Fig. 3). The CI 

subunit NADH dehydrogenase [ubiquinone] 1 alpha sub complex, 4-like 2 (NDUFAL2), is 

strongly induced in hypoxia in a HIF-1 dependent manner, and acts to decrease ETC activity 

and mitochondrial ROS production [92]. The mechanism by which NDUFA4L2 decreases CI 

activity remains unknown, but it is induced in hypoxia in different cell types, and its expression 

is negatively correlated with expression of all other CI subunits in hypoxia. Similarly, HIF-1 

decreases ROS production by upregulating an isoform of the CIV subunit COX4, namely 

cytochrome c oxidase subunit 4 isoform 2 (COX4-2), which makes electron transfer and 

oxygen consumption more efficient in hypoxia [93]. In parallel, HIF-1 upregulates the 

mitochondrial lon protease (LON), which is required for the degradation of the less efficient 

COX4-1 subunit [93]. 

 

Together, these studies show that HIF signalling regulates mitochondrial ROS production and 

detoxification at multiple levels, which is essential for the maintenance of cell viability in 

hypoxia. It is important to note that there is a reciprocal relationship between HIF signalling 

and ROS, since ROS are capable of regulating HIF-α stabilisation under hypoxia, which is 

discussed in more detail below. 

 

Downregulating mitochondrial mass 

New mitochondria are synthesised in advance of cell division [94], in response to bioenergetic 

demand [95], and to replace damaged or unwanted mitochondria that have been cleared by 

mitochondrial autophagy (mitophagy) [96]. While mitochondria possess a small circular 

genome, mitochondrial biogenesis is largely regulated by the action of a number of nuclear 

encoded genes. The first genes implicated in mitochondrial biogenesis were the nuclear 

respiratory factors (NRFs) 1 and 2, which are transcription factors that regulate the expression 
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of many genes involved in OXPHOS, including all ten nuclear CIV subunit genes [97, 98]. 

Along with the NRFs, the orphan nuclear receptor estrogen related receptor alpha (ERRα) [99] 

and the initiator element binding factor yin yang 1 (YY1) [100] are also involved in the 

expression of genes involved in mitochondrial function and biogenesis. The transcriptional 

activity of each of these nuclear factors is dependent on the expression and activity of the PGC 

family of transcriptional coactivators, which includes PGC-1α, PGC-1β and PRC. Energetic 

stress can be signalled via AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT-1) to 

activate PGC-1α by phosphorylation [101] and deacetylation [95], respectively. Activation of 

PGC-1α and its subsequent association with other nuclear factors stimulates the expression of 

numerous genes involved in mitochondrial biogenesis, including genes that regulate replication 

such as DNA-directed RNA polymerase mitochondrial (POLRMT), as well as transcription and 

translation, such as transcription factor A mitochondrial (TFAM) of the mitochondrial genome 

[102]. 

 

There is considerable overlap between the AMPK and HIF signalling pathways, as both are 

involved in responding to energetic stresses, though the relationship is complex, with both 

opposing and co-operative outcomes depending on the context. For example, both AMPK and 

HIF increase glucose uptake [40, 103], glycolytic flux [54, 104] and autophagy [105, 106], and 

both suppress protein translation via mTOR [107, 108]. AMPK is also a potent stimulator of 

mitochondrial biogenesis as described above, which in normoxic conditions acts to restore ATP 

homeostasis. However, under hypoxia which constitutes an energetic stress, and thus leads to 

AMPK activation [109], additional mitochondrial biogenesis and oxygen consumption would 

only exacerbate the stress caused by decreased oxygen availability, and thus HIF signalling 

under prolonged hypoxia generally acts to decrease mitochondrial mass. Thus, the HIF and 

AMPK signalling pathways respond to specific but related stresses, and are able to indirectly 

influence each other depending on the cellular context. A more detailed discussion of the 

relationship between HIF and AMPK signalling can be found elsewhere [110]. 

 

The relationship between HIFs and mitochondrial biogenesis has primarily been investigated 

in renal carcinoma cells, which are commonly deficient in pVHL activity [43, 111, 112]. Loss 

of pVHL leads to constitutive stabilisation of HIF-α subunits, as well as constitutive expression 

of HIF-regulated genes. Microarray studies have shown that pVHL deficiency and constitutive 

HIF activation leads to the upregulation of genes involved the suppression of oxidative 

phosphorylation, while reconstitution of pVHL reverses these gene changes, and increases both 
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mitochondrial mass, ETC activity and oxygen consumption rates [57, 113]. One of these genes, 

MAX-interactor 1 (MXI1) encodes a negative regulator of C-MYC expression and activity, and 

thus constitutive MXI1 expression decreases C-MYC-dependent expression of PGC-1α, which 

suppresses mitochondrial biogenesis [113] (Fig. 4). While it appears that HIF-1 is 

unequivocally an antagonist of C-MYC, the relationship between C-MYC and HIF-2 is less 

clear. Co-immunoprecipitation experiments have shown that HIF-1α associates with and 

sequesters various cofactors required for C-MYC activity, including SP1 and MAX [41]. 

Conversely, HIF-2α overexpression increases C-MYC binding to these same cofactors, and 

increases the expression of C-MYC regulated genes, such as cyclin D1 (CCND1) and 

transcription factor E2F1 (E2F1) to promote proliferation [41]. The expectation might then be 

that HIF-1 and HIF-2 have differential effects on mitochondrial biogenesis. However, a 

separate study showed that shRNA-mediated silencing of both HIF-1α and HIF-2α in pVHL 

deficient renal carcinoma cells suppressed MXI1 expression, leading to increased C-MYC-

dependent PGC-1α expression, and increased mitochondrial biogenesis [57]. Both HIF-1 and 

HIF-2 have also been shown to positively regulate the expression of another transcriptional 

repressor, deleted in esophageal cancer 1 (DEC1), which suppresses PGC-1α expression [57], 

and leads to decreased mitochondrial biogenesis. Thus, while the regulation of mitochondrial 

biogenesis may represent one feature of the regulation of metabolism that differs between HIF-

1 and HIF-2 in a context specific manner, taken together the evidence suggests that hypoxia 

(and HIF) stimulates a reduction in mitochondrial biogenesis.  

 

In addition to the suppression of mitochondrial biogenesis, it has been reported that hypoxia 

induces mitochondrial turnover [114], through organelle specific autophagy, termed 

‘mitophagy’. Autophagy is a bulk degradative process which leads to the lysosomal digestion 

of cellular contents, including whole organelles when they are damaged or unwanted. 

Mitochondria are flagged for autophagy by various means, and each encourages the interaction 

of the outer mitochondrial membrane with nascent autophagocytic membranes, that eventually 

surround and isolate the unwanted mitochondrion (Fig. 4). Two such autophagic tags are the 

closely related proteins BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) 

and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (BNIP3L/NIX) [105], 

both of which are localised to the outer mitochondrial membrane, and are HIF-regulated genes 

that are strongly induced under hypoxia [115, 116]. While BNIP3 and NIX expression 

stimulate the expression of biochemical markers of autophagy, such as LC3B lipidation [117], 

hypoxia-induced mitophagy has yet to be confirmed by more direct methods such as electron 
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microscopy. Thus, while HIF-dependent BNIP3 and NIX expression correlate with decreased 

mitochondrial mass, the direct relationship between HIF signalling and mitophagy is 

incompletely understood. 

 

Changing mitochondrial distribution 

The name ‘mitochondria’ was coined in 1898 by Carl Benda, and is derived from the Greek 

words ‘mitos’ meaning ‘thread’, and ‘chondros’ meaning ‘granule’. This describes the dual 

nature of mitochondria, as an interconnected network of discrete compartments. The 

mitochondrial network is a highly dynamic cellular compartment, both in term of its 

distribution and its morphology. The advent of live-cell imaging has uncovered the degree to 

which the mitochondrial network behaves like a single organelle that is in constant flux with 

regards to its continuity and its localisation. In the majority of resting cells, the mitochondrial 

network is primarily reticulated and distributed throughout the cytoplasm, but mitochondria 

are far from static, and have varying degrees of motility depending on the cell type and context. 

In neurons, for example, mitochondria travel greater distances than in other cells because of 

their axon which can vary in length, and the high energetic demand of the remote synaptic 

terminal. Defects in mitochondrial trafficking have been identified in a number of 

neurodegenerative diseases in humans, including Alzheimer’s disease [118] and Huntington’s 

disease [119], while genetic deletion of various trafficking proteins lead to neuronal phenotypes 

in mice [120] and drosophila [121]. Together, these examples indicate that the nervous system 

is particularly reliant on effective mitochondrial trafficking, which is likely due to the 

functionality of the neuronal type and length of their axons.  

 

Hypoxia has been identified as one of the few bona fide physiological stimuli to induce a shift 

in the distribution of the mitochondrial network, and in all cases this has been reported as a 

retrograde redistribution towards the nucleus (Fig. 5). A perinuclear accumulation of the 

mitochondrial network has been described after short (3h) and long (72h) exposures to hypoxia. 

This shift in distribution is microtubule-dependent, and appears to be required for the efficient 

delivery of mitochondrial ROS to the nuclei, for the full activation of the promoter regions of 

certain HIF-1α target genes, including vascular endothelial growth factor (VEGF) [122]. 

 

Hypoxia upregulated mitochondrial movement regulator (HUMMR) is a HIF-1α upregulated 

gene that has been identified as a regulator of the interaction between mitochondria and the 

cytoskeleton via the trafficking proteins mitochondrial Rho GTPase 1 and 2 (MIRO1, 2) [123]. 
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Mitochondrial movement occurs along microtubules (MTs) in a retrograde (towards the MT 

minus-end) or anterograde (towards the MT plus-end) fashion. The polarity of the microtubules 

is defined relative to the microtubule organizing centre (MTOC), whose intracellular 

localization depends on the cell-type and cellular context (e.g. cell-cycle stage) [124]. Hypoxic 

upregulation of HUMMR leads to both elevated anterograde movement of the mitochondria, 

and increases mitochondrial axonal content which is dependent on HIF-1α [123]. In addition, 

exogenous overexpression of HUMMR in astrocytes and the tumour cell line HEK-293 leads 

to a collapse of the mitochondrial network around the perinucleus [123]. HUMMR may 

therefore represent a biomechanical link between hypoxia and changes in the intracellular 

distribution of mitochondria, but is likely to be cell-type and context specific. Similarly the 

mitochondrial IMS protein coiled-coil-helix coiled-coil helix domain containing protein 4 

(CHCHD4, Mia40 in yeast) has also been shown to stimulate mitochondrial perinuclear 

clustering, and thus intracellular oxygenation, in a HIF-1α-dependent manner in U2OS 

osteosarcoma cells [125]. Perinuclear mitochondrial clustering has also been described in a 

number of other physiological settings, including fertilization and embryonic development 

[126]. Since hypoxia is a key stimulant of vasculogenesis during development, and HIF-1α is 

essential for embryogenesis, it is possible that the relationship between hypoxia signalling and 

mitochondrial distribution plays an important role during development. Indeed, overexpression 

of HUMMR (MGARP in mice) in mouse neocortical cells leads to aberrant mitochondrial 

transport, as well as defects in neocortical development [127].  

 

Changing mitochondrial morphology 

In addition to regulation of the subcellular distribution of mitochondria within the 

mitochondrial network outlined above, changes in mitochondrial morphology are also highly 

regulated. Mitochondria undergo repeated fission and fusion events, which together is referred 

to as mitochondrial dynamics. Mitochondrial dynamics are regulated by the opposing functions 

of a core group of GTPases, as well as a number of accessory and regulatory proteins. Studies 

of these GTPases have shown that mitochondrial dynamics are also determinants of 

mitochondrial distribution. Overexpression of the fusion inducing protein mitofusin 2 (MFN2) 

leads to enlargement of the mitochondria, as well as perinuclear clustering of the mitochondrial 

network [128]. Similarly, overexpression of a dominant negative form of the fission inducing 

protein dynamin related protein (DRP1) encoded by the DNML1 gene, leads to hyperfusion of 

the mitochondrial network and perinuclear aggregation [129] (Fig. 5). 
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Hypoxia and mitochondrial dynamics are closely connected, as has been shown by a number 

of studies [122, 125, 130, 131]. Under chronic hypoxia (72h) mitochondria have been observed 

to enlarge through additional MFN1-dependent (hyper)fusion and decreased DRP1-dependent 

fission in cancer cells [130]. The HIF-1α target genes BNIP3 and BNIP3L (NIX) also appear 

to play an important role, and together this elevated mitochondrial fusion confers resistance to 

apoptosis by improving mitochondrial membrane integrity [130]. Shorter exposures (24h) to 

hypoxia in NIH 3T3 cells on the other hand appear to promote mitochondrial fission, through 

mechanisms which are only partially dependent on HIF-1α. Instead, degradation of the 

mitochondrial scaffolding protein A-kinase anchor protein 1 (AKAP121), by SIAH2, relieves 

AKAP121-mediated suppression of DRP1 activity [131]. SIAH2 regulates HIF-1α stability, 

through the downregulation of PHDs 1 and 3 under hypoxia, and therefore may play a role in 

regulating the HIF-dependent changes in mitochondrial dynamics and distribution.  

 

Hypoxia-reoxygenation stress has also been shown to result in the appearance of shorter 

mitochondria due to impaired ATP synthesis [132]. In addition, short exposures to hypoxia 

(1h) in glucose-free medium, or hypoxia-reoxygenation in glucose-containing medium leads 

to the formation of toroidal mitochondria, due to anomalous fusion events caused by swelling 

and detachment from the cytoskeleton [132]. However, since these effects occur after hypoxia 

exposures shorter than those generally required for HIF-mediated transcriptional responses, it 

is likely they are independent of HIF activity. The effect of hypoxia on mitochondrial dynamics 

appears therefore to be time-dependent, and also dependent on the underlying nutrient 

availability to cells. 

 

 

Mitochondrial regulation of HIF signalling 

As mitochondria are the major oxygen-consuming organelles of the cell, it is perhaps 

unsurprising that they are capable of influencing the oxygen-dependent degradation of both 

HIF-1α and HIF-2α subunits [133]. Indeed, ethidium bromide mediated depletion of 

mitochondria to generate ρ0 cells is capable of blocking HIF induction in hypoxia, though the 

HIF response remains intact under exogenous anoxia ([O2] ≤ 0.1%) [79]. In addition, the use 

of ETC inhibitors, such as rotenone (CI) and antimycin A (CIII), or knockdown of subunits of 

ETC complexes inhibits the hypoxic stabilisation of HIF-α proteins. The mechanisms by which 

mitochondria regulate HIF signalling (that have been experimentally demonstrated) all appear 

to converge on PHD-mediated hydroxylation of the HIF-α subunits (Fig. 6).  
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The availability of molecular oxygen. 

Oxygen-dependent hydroxylation is the primary mechanism by which the PHD and FIH 

enzymes transmit the signal of changes in cellular oxygenation to the HIF machinery. 

Measurements of intracellular oxygenation using phosphorescence lifetime imaging [134] or 

immunofluorescence imaging of the nitroimidazole agent pimonidazole in cells [125] have 

demonstrated that regions of low oxygenation co-localise with the mitochondria [125, 134]. 

Another imaging study using renilla luciferase to measure intracellular oxygen demonstrated 

that ETC inhibition redistributed oxygen towards the PHDs [135]. It has also been shown that 

mitochondrial oxygen consumption at CIV of the ETC influences intracellular oxygenation and 

hypoxia, as well as HIF-1α stabilisation [125]. Additionally, stimulation of mitochondrial 

biogenesis through exogenous overexpression of PGC-1α leads to increased HIF signalling 

through an elevation in mitochondrial OCR and intracellular hypoxia [136]. This is of 

particular interest in cancer when allied with the observation that PGC-1α upregulation is a 

critical feature of circulating tumour cells in a mouse xenograft model of breast cancer 

metastasis, and is strongly correlated with distant metastases in breast cancer patients [137]. 

Thus, mitochondrial biogenesis is not only experimentally linked to HIF signalling through 

PGC-1α, but also to tumour cell dissemination. Moreover, there has been repeated 

demonstration that chemical inhibition of the ETC using a variety of inhibitors of complexes 

I, III and IV is capable of blocking hypoxic HIF-α induction in hypoxia [138-140]. Together, 

these studies demonstrate the importance of the mitochondria and their oxygen-consuming 

activity in regulating the stabilisation of HIF-α proteins and HIF signalling under hypoxia. 

 

TCA cycle intermediates. 

The hydroxylation of HIF-α by PHDs requires 2-oxoglutarate (2-OG), and produces succinate 

as a by-product [31, 32]. Both of these metabolites are freely diffusible intermediates of the 

TCA cycle, which takes place exclusively in the matrix of the mitochondria (Fig. 6). Elevated 

levels of succinate are capable of inhibiting the hydroxylation reaction [141], as is elevation in 

the levels of a second TCA cycle intermediate, fumarate [142]. Thus, the intracellular ratio of 

2-OG to succinate or fumarate greatly influences PHD activity, and the degree of HIF-α 

stabilisation in both hypoxia and normoxia [142]. Indeed, treatment of succinate 

dehydrogenase (SDH, CII)-deficient cells with cell-permeable 2-OG derivatives is capable of 

reversing normoxic HIF-α expression by competitively reversing the inhibition of PHDs 
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caused by succinate accumulation [143]. In addition, pharmacological activators of HIF 

signalling include 2-OG analogues, such as dimethyloxalylglycine (DMOG) [144] and N-

oxalylglycine (NOG). In a disease setting, inactivating mutations in the enzyme fumarate 

hydratase (FH) or subunits of succinate dehydrogenase (SDH) or its assembly factors 

(SDHAF1, 2) are causative for certain rare tumour syndromes [145-147] in which constitutive 

HIF stabilisation is detectable and is thought to contribute to disease progression [148]. The 

primary metabolic defect in SDH and FH deficiency is an accumulation of succinate or the 

closely related compound fumarate, respectively. Both metabolites are capable of inhibiting 

PHD and FIH activity by competitive occupation of the enzymatic active site, thus blocking 

the hydroxylation and subsequent degradation of HIF-α subunits [141, 142]. Despite the 

constitutive stabilisation of HIF-α in these cases, PHD inhibition and constitutive HIF 

signalling does not appear to be critical for tumorigenesis, as silencing of HIF-1β does not 

reverse the increased expression of genes involved in regulating epithelial-to-mesenchymal 

transition (EMT) [149]. Furthermore, cyst formation was not inhibited in double Fh1/Hif-1α 

KO mice, and these cysts also grew larger, suggesting that HIF1A may indeed be a tumour 

suppressor in this context [150]. Instead, the accumulation of these metabolites also inhibits 

the TET family of oxygen-dependent dioxygenases, responsible for the demethylation and 

expression of an antimetastatic miRNA cluster. Loss of expression of these miRNAs leads to 

the expression of an EMT gene signature, including increases in the expression of vimentin, 

and loss of expression of E-cadherin [149]. 

 

Mutations in the TCA enzyme isocitrate dehydrogenase 2 (IDH2), or its cytoplasmic 

homologue IDH1 are commonly detected in gliomas [151] and certain types of AML [152], as 

well as in cases of non-malignant metabolic disorders such as D-2-hydroxyglutaric aciduria 

[153]. The disease-associated active site mutations cause a neo-enzymatic reaction in which 2-

OG is reduced to 2-hydroxyglutarate (2-HG) by NADPH reduction [154]. As a metabolite that 

is closely related to 2-OG, 2-HG competitively inhibits the PHDs, leading to constitutive HIF-

α stabilisation and activity [155]. Indeed, 2-HG has been shown to accumulate under hypoxia 

via promiscuous metabolism of 2-OG by the malate dehydrogenase (MDH) and lactate 

dehydrogenase (LDH) enzymes, leading to enhanced hypoxic stabilisation of HIF-α proteins 

[156]. However, as with fumarate and succinate accumulation, the primary oncogenic influence 

of 2-HG accumulation appears not to be due to HIF-α stabilisation and activation. Instead, 2-

HG is also capable of inhibiting histone demethylases which like the PHDs are oxygen-
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dependent dioxygenases, leading to increases in methylation and the blocking of malignant cell 

differentiation [157]. 

 

Reactive Oxygen Species (ROS). 

As discussed above, several mitochondrial ETC complexes are a significant source of ROS, 

and ROS production is elevated under hypoxia. Exogenous treatment of cells with ROS such 

as H2O2 is capable of leading to normoxic HIF-1α accumulation in both wild-type HEK293T 

cells, and HEK293T cells lacking mitochondria [158]. It has also been shown that 

mitochondrially-derived ROS are required for maximal HIF-α protein stabilisation under 

hypoxia [158], and the ROS-scavenging antioxidant ebselen is capable of blocking HIF-1α 

stabilisation [79] and its binding to HREs [159]. Using mitochondrially-encoded cytochrome 

b deleted cybrids of HEK293T cells, the primary source of HIF-inducing ROS has been 

identified as CIII, and that this activity relies on the QO site within the complex [160]. It appears 

that inhibitors of CIII differentially influence HIF stabilisation and signalling depending on 

their ability to induce ROS production from CIII [158]. It has been proposed that the 

mechanism by which ROS lead to HIF stabilisation is due to their effect on the redox state of 

the ferrous cofactor in the active site of the PHDs [161]. By oxidising this group from a 2+ to 

a 3+ state, ROS are thought to decrease HIF-α hydroxylation and pVHL recognition [161] (Fig. 

6). 

 

The role of ROS in HIF signalling has been reviewed recently [162]. While there is no doubt 

that mitochondria are significant sources of ROS in both normoxia and hypoxia [79, 163], it 

still remains unclear as to when endogenously produced mitochondrial ROS are required for 

HIF signalling. Much of the uncertainty arises from experimental models that do not 

unequivocally distinguish between the effects of ROS production and oxygen consumption. 

Interestingly, in a study by Chua et al. [138] they proposed that the ROS-producing activity of 

CIII was not required for HIF-1α protein stabilisation in 143B cells. Hypoxic HIF-1α protein 

stabilisation was similarly blocked by inhibitors of CI, CIII and CIV, and furthermore, 

inhibition of CIII activity using either a ROS-inducing inhibitor of CIII (antimycin A) or a 

ROS-reducing inhibitor of CIII (myxothiazol) both blocked hypoxic HIF-1α stabilisation 

[138]. In addition, myxothiazol completely inhibited oxygen consumption (at CIV), while co-

treatment with TMPD which donates electrons to CIV via cytochrome c, was capable of 

restoring both oxygen consumption and HIF-1α stabilisation [138]. This same study 

demonstrated that exogenous H2O2 had no direct influence on PHD activity in vitro [138], 
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calling into question the mechanistic basis for ROS-mediated HIF-1α stabilisation. Finally, 

several studies have shown that exogenous ROS scavengers such as N-acetylcysteine (NAC) 

and MnTBAP are incapable of influencing hypoxic stabilisation of HIF-1α under conditions of 

CIII inhibition [135], hypoxia [138], or elevated oxygen consumption through CHCHD4 

overexpression [139]. Thus further mechanistic work to clarify the connection between ROS 

and HIF-1α protein stabilization and the precise molecular mechanisms involved is needed. 

 

 

Closing remarks 

As oxygen is central to mitochondrial metabolism it is not surprising that the HIF-mediated 

response to hypoxia involves a global cellular response allowing cells to metabolically adapt 

and survive when oxygen is limiting. Hypoxia-mediated metabolic adaptations involve 

changes in the regulatory control of key molecular components of metabolic pathways 

involving mitochondria, as well as dynamic changes in the morphology, mass and subcellular 

localization of mitochondria themselves. Since mitochondria are of such fundamental 

importance to oxygen-dependent metabolism, it is perhaps also not surprising that HIF-

mediated adaptations to hypoxia impinge on mitochondrial function at many levels. In general 

it is clear that the aim of HIF-mediated adaptation to hypoxia is to decrease mitochondrial 

activity, and thus a cell’s reliance on oxygen for survival. Intriguingly, HIF-1α protein has been 

detected in mitochondrial fractions, suggesting the possibility that HIF-1α protein has a direct, 

non-transcriptional effect on mitochondria [164].  

 

What is perhaps less well appreciated is the reciprocal nature of the relationship between HIF 

signalling and mitochondria. The HIFs are responsive to perturbations of mitochondrial 

biochemistry, and are thus in many ways sensors of mitochondrial health. Conversely, the 

mitochondria are capable of transmitting numerous metabolic stresses to the HIF pathway, and 

thus participate centrally in HIF signalling. Hypoxia is a fundamental feature of metazoan life, 

and underlies physiological processes during development as well as pathophysiological 

processes involved in diseases such as cancer. The relationship between hypoxia signalling and 

mitochondria is important in diverse biological contexts, and therefore warrants continued 

investigation and expansion of our understanding. 
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Figure Captions 

Fig. 1: Oxygen-dependent ATP synthesis and HIF-α degradation. ATP is synthesised in 

the mitochondria by an F1F0-type ATP synthase, also known as CV (V). It uses energy provided 

by an electrochemical gradient formed through proton (H+) pumping between the 

mitochondrial matrix and the intermembrane space, which is carried out by CI, CIII and CIV. 

Proton transfer against this electrochemical gradient is energetically unfavourable, and is 

therefore powered by serial transfer of electrons (e-) from CI and CII to CIII via ubiquinone 

(UQ), and from CIII to CIV via cytochrome c (cyt c). CIV combines these electrons with 

molecular oxygen (O2) and protons to produce water (H2O). Electrons are provided to the ETC 

by the reducing equivalents NADH (to CI) and FADH2 (to CII), which are produced at various 

steps in the TCA cycle. Oxygen is also used to regulate the stability of HIF-α subunits. In the 

presence of oxygen, PHD and FIH enzymes hydroxylate specific residues on HIF-α proteins, 

which permit their recognition and ubiquitination by pVHL. Polyubiquitination of HIF-α 

proteins then targets them for degradation by the 26S proteasome. 

Fig. 2: HIF-mediated changes to mitochondrial carbon metabolism. HIF signalling 

mediates an increase in anaerobic ATP production, by increasing glycolysis rates, through 

increased expression of glucose transporters GLUT1 and GLUT3, and almost all glycolytic 

enzymes, such as HK2 and ENO1. HIF-signalling also diverts glucose-derived pyruvate away 

from mitochondrial respiration by increasing expression of LDHA, and PDK1, a negative 

regulator of PDH. Lactate efflux is increased by HIF-mediated increase in expression of MCT4. 

Fatty acids (FAs) are also diverted from catabolism to acetyl-CoA, through suppression of the 

rate-limiting enzyme in the mitochondrial import of FAs, CPT1. This is achieved through HIF-

dependent upregulation of two negative regulators of PGC-1α expression, namely MXI1 and 

DEC1. FA import into the cell is increased by HIF-dependent upregulation of FABP3 and 

FABP7, and their conversion to triglycerides and lipid droplets is increased, through 

upregulation of LPIN1 and PLIN2 respectively. Glutamine is diverted from oxidation by the 

TCA cycle, through degradation of the 2-OG metabolising enzyme OGDH, by HIF-mediated 

increase in the expression of the OGDH-targeting SIAH2. This increases 2-OG availability for 

reductive carboxylation via IDH 1 and IDH2, which produces lipogenic acetyl-CoA. Glutamine 
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flux to acetyl-CoA is also increased by HIF-dependent upregulation of GLS1. Conversely, 

oxidation of acetyl-CoA to 2-OG is suppressed through HIF-dependent upregulation of mir-

210, which downregulates ISCU1/2, which is required for the activity of ACO. 

Fig. 3: HIF-mediated suppression of ROS. Hypoxia stimulates ROS production, which can 

damage macromolecules such as proteins, lipids and DNA. HIF signalling upregulates 

synthesis of the antioxidant tripeptide glutathione by multiple means. HIF upregulates 

expression of the rate-limiting enzyme in glutathione (GSH) synthesis, GCLM, as well as 

proteins which increase the cellular levels of the three constituent amino acids of glutathione. 

Cysteine import is increased by upregulation of SLC7A11, while glutamate synthesis is 

increased by upregulation of GLS1. Glycine synthesis is increased by increased serine 

metabolism, first by its synthesis from glycolysis-derived 3-PG, via HIF-dependent 

upregulation of PHGDH, and second through its conversion to glycine via upregulation of the 

folate cycle enzyme SHMT2. The folate cycle also produces NADPH, which is utilised by GR 

to recycle glutathione disulphide (GSSG) to the ROS scavenging GSH. HIF-signalling also 

upregulates the expression of SOD2, a mitochondrial enzyme capable of converting the 

superoxide free radical to H2O2. Subunit switching is another way the HIF-pathway reduces 

ROS production is also reduced by HIF-mediated subunit switching of the ETC complexes. 

The HIFs upregulate expression of an alternative subunit of CI (I), NDUFAL2 which produces 

less ROS than isoform 1. Similarly, HIFs upregulate an alternative subunit of CIV (IV), COX4-

2 which produces less ROS, as well as LON, which degrades isoform 2 (COX4-1). 

Fig. 4: HIF-mediated regulation of mitochondrial mass. The HIF pathway reduces 

mitochondrial number in the cell by suppressing mitochondrial biogenesis and increasing 

mitochondrial degradation through mitophagy. Mitochondrial biogenesis is regulated by the 

PGC-1α pathway, which upregulates mitochondrial proteins required for expression of genes 

encoded by the mitochondrial genome, such as TFAM and POLRMT. This is achieved through 

HIF-dependent upregulation of two negative regulators of PGC-1α activity, namely MXI1, 

which inhibits C-MYC directed PGC-1α expression, and DEC1, which inhibits PGC-1α 

transcription by binding to its promoter. HIF signalling also upregulates the expression of two 

related proteins expressed on the mitochondrial outer membrane, namely BNIP3 and NIX 

(BNIP3L). These proteins flag mitochondria for degradation by the autophagy pathway. 

Fig. 5: HIF-mediated regulation of mitochondrial size and intracellular distribution. HIF 

targets regulate the subcellular distribution of mitochondria. The HIF-target HUMMR 

regulates mitochondrial trafficking along microtubules, and promotes perinuclear clustering of 

the mitochondrial network. The mitochondrial DRS protein CHCHD4 also stimulates 
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perinuclear clustering of the mitochondria in a HIF-dependent manner. Perinuclear 

accumulation of the mitochondria stimulates ROS-mediated HIF-dependent upregulation of 

VEGF transcription. The HIF-regulated genes BNIP3 and NIX (BNIP3L) are involved in the 

MFN1 and MFN2 dependent fusion of mitochondria. Enlargement of the mitochondria confers 

increased mitochondrial membrane integrity, and protection against apoptosis. 

Fig. 6: Mitochondrial regulation of HIF signalling. Mitochondrial oxygen consumption at 

CIV (IV) regulates the intracellular availability of oxygen, which is required for hydroxylation 

of HIF-α subunits by the PHD enzymes. The mitochondria also metabolise the PHD substrate 

2-OG, and consequently regulate its intracellular levels. Two products of mitochondrial 2-OG 

metabolism, succinate and fumarate, are capable of competitively inhibiting PHD activity, and 

thus TCA cycle enzyme activity influences intracellular levels of these metabolites, and 

influence PHD-mediated HIF-α hydroxylation. Disease-associated mutations in IDH2 cause a 

neoenzymatic reaction which produces 2-HG which is also a competitive inhibitor of the PHD 

enzymes. ROS production by the mitochondria also regulates PHD activity by influencing the 

REDOX state of the ferrous (Fe) ion cofactor.  
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