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Abstract 25 

Statistical Energy Analysis (SEA) is a prominent method for predicting the high frequency 26 

response of complex structures under steady loading where the structure is split into subsystems 27 

and the subsystem energies are calculated. Since at high frequencies, the dynamic response of 28 

nominally identical structures can differ greatly, methods have been developed to predict both 29 

the mean and variance of the energy in the subsystems of a system across an ensemble of 30 

systems. SEA can be extended to predict the transient response of a system, either to shock or 31 

time-varying inputs and is known as Transient SEA, although this formulation has so far only 32 

been interested in the mean response. In this paper, a method for predicting the variance of the 33 

transient response is derived by considering how an individual realisation can deviate from the 34 

mean. A matrix differential equation for the covariance of the subsystem energies is derived 35 

which is driven by terms representing the variability in the system. These variance terms are 36 

provided by assuming that the natural frequencies in each subsystem conform to the Gaussian 37 

Orthogonal Ensemble. The accuracy of the method is investigated both numerically and 38 

experimentally using systems involving coupled plates and its limitations are discussed. 39 

 40 
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I. Introduction 45 

The transient response of structures to either shock or time-varying loading is of considerable 46 

importance when designing systems to protect against failure or reduce noise. Transient 47 

Statistical Energy Analysis (TSEA) (see for example Lai and Soom, 1990b, 1990a; Langley et 48 

al., 2019; Lyon and DeJong, 1995; Manning and Lee, 1968; Pinnington and Lednik, 1996a, 49 

1996b) is a popular technique used to predict the high frequency response of complex structures 50 

under these conditions and has been applied to both academic and industrial applications such 51 

as predicting the noise levels in buildings due to impulses and footsteps (Robinson and 52 

Hopkins, 2015).  53 

Transient SEA is based on steady-state SEA which has been developed over a number of 54 

decades to predict the response of complex structures subjected to steady external loads. 55 

Steady-state SEA is most commonly employed at high frequencies where, due to the short 56 

wavelength of vibrations, traditional vibration analysis approaches such as the finite element 57 

method become undesirable. At these frequencies and wavelength-scales, an extremely 58 

detailed model with a very fine mesh is required and any imperfections in the system of 59 

comparable length-scale to the wavelength will have a significant effect on the structural 60 

response. Consequently, nominally identical structures can generate very different frequency 61 

response characteristics. The SEA method inherently circumvents these issues by splitting a 62 

structure into large regions that contain similar properties known as subsystems and concerning 63 

itself only with the average and variance of the energy in each subsystem where the average is 64 

taken both spatially over the subsystem and over an ensemble of nominally identical 65 

subsystems that encompasses all random imperfections. 66 

In addition to the mean energy of each subsystem, it is important to quantify the spread of the 67 

energy within each system across the ensemble since any particular system drawn from the 68 
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ensemble may have subsystem energies that are very different from the ensemble average 69 

values. A preliminary method for calculating the response variance was suggested by Lyon and 70 

DeJong (1995), but a more suitable and widely adopted method was later developed by Langley 71 

and Cotoni (2004a). This built on the work by Langley and Brown (2004a, 2004b) that used 72 

the principle of universality, which states that if a system is sufficiently random then the 73 

statistical distribution of its natural frequencies is independent of how the system is 74 

randomised. Assuming, due to strong empirical evidence, see for example (Weaver, 1989), that 75 

the natural frequencies of a subsystem are governed by the Gaussian Orthogonal Ensemble 76 

(GOE) Mehta (2004) and that the modeshapes are Gaussian across the ensemble, the variance 77 

of the energy in a built-up system can be calculated by investigating how any single realisation 78 

differs from the mean (Langley and Cotoni, 2004a).  79 

It is thought that the extension of steady-state SEA to the transient case is reasonable when the 80 

assumptions on which steady-state SEA are built are not violated. This generally requires the 81 

energy in the system to vary slowly with time compared to the time period of its oscillations 82 

and many modes to be excited. Under these conditions, the steady-state SEA coupling loss 83 

factors (CLFs) can be used for the transient analysis and have been shown to produce strong 84 

results (Hopkins and Robinson, 2013; Langley et al., 2019; Robinson and Hopkins, 2015) 85 

despite suggestions that time-varying CLFs could be more suitable, particularly at lower 86 

frequencies (Lai and Soom, 1990b). 87 

At present, there exist well-tested SEA-based methods for calculating the mean and variance 88 

of the response of complex systems to steady loading and the mean response to transient and 89 

impulsive loading. This paper aims to derive a method for calculating the variance of the 90 

response under shock and transient external loading conditions using a similar approach to 91 

Langley and Cotoni (2004a). In what follows Section II presents a brief summary of the TSEA 92 

equations used to calculate the mean response before applying them in Section III to derive 93 
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equations for calculating the variance of the response. Numerical and experimental validation 94 

using systems of coupled plates is then presented in Sections IV and V respectively before the 95 

limitations of the method are discussed in Section VI and conclusions are made in Section VII. 96 

 97 

II. Summary of the TSEA mean equations 98 

In this section, a brief summary of the TSEA method for calculating the mean subsystem 99 

energies is presented. The TSEA equation is based on the steady-state SEA equation derived 100 

by Lyon and DeJong (1995) by considering a power balance between subsystems at each 101 

frequency such that 102 

𝐏in(𝜔) = 𝐀(𝜔)𝐄(𝜔), (1) 103 

which can be written using index notation as  104 

𝑃in,𝑗 = 𝜔𝜂𝑗𝐸𝑗 + ∑ 𝜔𝜂𝑗𝑘𝑛𝑗 (
𝐸𝑗

𝑛𝑗
−

𝐸𝑘

𝑛𝑘
)

𝑁

𝑘=1

(2) 105 

where 𝜔 is the frequency of interest, 𝐸𝑗, 𝑛𝑗 , 𝜂𝑗 and 𝑃in,𝑗 are the ensemble average vibrational 106 

energy, modal density, internal loss factor and power into subsystem j and 𝜂𝑗𝑘 is the coupling 107 

loss factor between subsystems j and k. If the system is subjected to a shock or time-varying 108 

external power input, a time derivative term can be included in the SEA equation representing 109 

an increase or decrease of energy in the subsystems with time. However, this means the 110 

subsystem energies are a function of both time and frequency. Most commonly, the TSEA 111 

equation is averaged over a frequency band, 𝜔1 < 𝜔 < 𝜔2 say, such that the energy variable 112 

represents the time evolution of the ensemble average of the energy in a given band. The TSEA 113 

equation is thus 114 
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𝐏in(𝑡) =
d𝐄(𝑡)

d𝑡
+ 𝐀𝐄(𝑡) (3) 115 

where each term is now considered to be averaged over the frequency band. This equation is 116 

used to derive the equations for predicting the variance of the subsystem energies. 117 

Much previous work has addressed the conditions under which the steady state SEA equations, 118 

Eq. (1), are valid, and these conditions can be expressed in terms of either modes or waves.  In 119 

modal terms, the modal responses of each subsystem must be uncorrelated and have 120 

equipartition of energy, and they must also be uncorrelated from the modal responses of other 121 

subsystems.  An equivalent statement in terms of waves is that each subsystem must carry a 122 

diffuse wavefield (in an ensemble sense), and the wavefields must be uncorrelated across the 123 

different subsystems. These conditions are promoted by weak coupling between the 124 

subsystems.  Recent work on the mean TSEA, Eq. (3), has elucidated the additional conditions 125 

which must be met for these equations to be valid (Langley et al., 2019).  In wave terms, the 126 

rate of change of energy within a subsystem must be slow compared to the time taken for a 127 

wave to transit the subsystem several times, so that the subsystems can be considered to carry 128 

diffuse wavefields at all times.  This condition is again promoted by weak coupling between 129 

the subsystems. The following section considers the variance of the response, and this requires 130 

the additional assumption that the natural frequencies and mode shapes of each subsystem have 131 

statistics which are governed by the Gaussian Orthogonal Ensemble.  As discussed by Wright 132 

and Weaver, 2010, this condition is widely applicable to structures which display a sufficient 133 

degree of randomness, in the sense that random variations in the natural frequencies are greater 134 

than the mean modal spacing (Kessissoglou and Lucas, 2009).    135 

 136 

 137 
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III. Derivation of the TSEA variance equations 138 

This section derives the TSEA equations for predicting the time-varying variance of the system 139 

response based on the approach adopted by Langley and Cotoni (2004a). The TSEA equation 140 

that governs the ensemble average of the response of a system is given by Eq. (3).  If a single 141 

realisation of the ensemble is considered then the mean TSEA equation is no longer applicable, 142 

but a similar equation can be written for the individual ensemble member that relates d𝐄(𝑡)/d𝑡, 143 

𝐄(𝑡) and 𝐏in(𝑡) following the same approach as Langley and Cotoni (2004a) and noting that 144 

the terms can be written as second order in the excitation. The SEA matrix, the power input, 145 

and the response energy will all differ from the ensemble average values, and the resulting 146 

equation for a single realisation can be written as  147 

d

d𝑡
[𝐄(𝑡) + �̃�(𝑡)] + [𝐀 + �̃�][𝐄(𝑡) + �̃�(𝑡)] = 𝐏in(𝑡) + �̃�in(𝑡) (4) 148 

where a “tilde” over a variable represents the deviation from the ensemble average value.  It 149 

has been shown by Langley and Cotoni (2004a) that power balance implies that the row sum 150 

of the SEA matrix must be zero, which implies (if 𝑁 is the number of subsystems) that 151 

∑ �̃�𝑗𝑘 = 0

𝑁 

𝑗

        
 

⇒         �̃�𝑘𝑘 =  − ∑ �̃�𝑗𝑘

𝑁 

𝑗≠𝑘

. (5) 152 

Hence the diagonal entries of the “random part” of the SEA matrix can be expressed in terms 153 

of the off-diagonal components.  If Eq. (3) is subtracted from Eq. (4) then the result is 154 

d�̃�(𝑡)

d𝑡
+ 𝐀�̃�(𝑡) + �̃�𝐄(𝑡) + �̃��̃�(𝑡) = �̃�in(𝑡), (6) 155 

and this equation can be rewritten using the summation convention in the form    156 

d�̃�𝑗

d𝑡
+ 𝐴𝑗𝑘�̃�𝑘 + �̃�𝑗𝑘𝐸𝑘 + �̃�𝑗𝑘�̃�k = �̃�in,𝑗 (7) 157 
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where the arguments of the various functions are omitted for ease of notation.  Now Eq. (7) 158 

can be multiplied by �̃�𝑟 and averaged across the ensemble to yield  159 

E [�̃�𝑟 (
d�̃�𝑗

d𝑡
+ 𝐴𝑗𝑘�̃�𝑘 + �̃�𝑗𝑘𝐸𝑘 + �̃�𝑗𝑘�̃�k − �̃�in,𝑗)] = 0. (8) 160 

Likewise the rth component of Eq. (6) can be multiplied by �̃�𝑗 and averaged across the 161 

ensemble to yield 162 

E [�̃�𝑗 (
d�̃�𝑟

d𝑡
+ 𝐴𝑟𝑘�̃�𝑘 + �̃�𝑟𝑘𝐸𝑘 + �̃�𝑟𝑘�̃�k − �̃�in,𝑟)] = 0. (9) 163 

Equations (8) and (9) can be added, and on neglecting third order terms (or alternatively, 164 

assuming that these terms average to zero) this yields 165 

�̇�𝑗𝑟 = −𝐴𝑗𝑘𝐶𝑘𝑟 − 𝐴𝑟𝑘𝐶𝑘𝑗 − 𝐸𝑘(𝑞𝑟
(𝑗𝑘)

+ 𝑞𝑗
(𝑟𝑘)

) + 𝑃𝑗𝑟 + 𝑃𝑟𝑗 , (10) 166 

where 𝐶𝑘𝑟 is the krth component of the covariance matrix of the energies, and the following 167 

definitions are introduced 168 

𝐶𝑘𝑟 = E[�̃�𝑘�̃�𝑟],      𝑞𝑟
(𝑗𝑘)

= E[�̃�𝑗𝑘�̃�𝑟],        𝑃𝑗𝑟 = E[�̃�in,𝑗�̃�𝑟]. (11 − 13) 169 

Equation (10) is a matrix Riccati equation, with “forcing” arising from the final four terms on 170 

the right-hand side. Now a differential equation for the variables 𝑞𝑟
(𝑗𝑘)

 can be derived by 171 

multiplying Eq. (7) by �̃�𝑛𝑚 (𝑛 ≠ 𝑚) and taking the ensemble average to yield 172 

E [�̃�𝑛𝑚 (
d�̃�𝑗

d𝑡
+ 𝐴𝑗𝑘�̃�𝑘 + �̃�𝑗𝑘𝐸𝑘 + �̃�𝑗𝑘�̃�k − �̃�in,𝑗)] = 0. (14) 173 

By noting that the matrix �̃�𝑛𝑚 does not depend upon time, Eq. (14) can be written in the form 174 

�̇�𝑗
(𝑛𝑚)

= −𝐴𝑗𝑘𝑞𝑘
(𝑛𝑚)

− 𝐸𝑘E[�̃�𝑗𝑘�̃�𝑛𝑚] + E[�̃�in,𝑗�̃�𝑛𝑚],       𝑛 ≠ 𝑚. (15) 175 
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Langley and Cotoni (2004a) have argued that, apart from the constraint imposed by Eq. (5), 176 

the entries of the matrix �̃�𝑛𝑚 are uncorrelated, and moreover they are uncorrelated from the 177 

power inputs.  Equation (15) therefore yields 178 

�̇�𝑗
(𝑛𝑚)

= −𝐴𝑗𝑘𝑞𝑘
(𝑛𝑚)

− 𝛿𝑗𝑛𝐸𝑚Var[�̃�𝑛𝑚] + 𝛿𝑗𝑚𝐸𝑚Var[�̃�𝑛𝑚],       𝑛 ≠ 𝑚 (16)  179 

where Var[..] represents the variance of its argument. Furthermore, the “diagonal” values of 180 

𝑞𝑗
(𝑛𝑚)

 can be expressed in terms of the off-diagonal entries by employing Eq. (5) to yield 181 

𝑞𝑗
(𝑚𝑚)

=  − ∑ 𝑞𝑗
(𝑛𝑚)

𝑁 

𝑛≠𝑚

. (17) 182 

A differential equation for the terms 𝑃𝑗𝑟 that appear in Eq. (10) can be obtained by multiplying 183 

Eq. (7) by �̃�𝑟 and taking the ensemble average to give 184 

E [�̃�in,𝑟 (
d�̃�𝑗

d𝑡
+ 𝐴𝑗𝑘�̃�𝑘 + �̃�𝑗𝑘𝐸𝑘 + �̃�𝑗𝑘�̃�k − �̃�in,𝑗)] = 0. (18) 185 

Langley and Cotoni (2004a) have shown that the power input to different subsystems can be 186 

considered to be uncorrelated, which means that Eq. (18) can be written as 187 

�̇�𝑟𝑗 = −𝐴𝑗𝑘𝑃𝑟𝑘 + 𝛿𝑟𝑗Var[�̃�in,𝑗]. (19) 188 

It is assumed here that �̃�in,𝑟 is either constant or varies slowly with time such that �̇̃�in,𝑟�̃�𝑗 ≪189 

�̃�in,𝑟 �̇̃�𝑗. Equations (10), (16), (17) and (19) form a set of first order differential equations that 190 

can be integrated to yield the variance of the response energy. 191 

Note that 𝑃𝑗𝑟 arises from the presence of a steady-state power acting on the system, in addition 192 

to any shock loading applied at 𝑡 = 0.  If the system is subjected only to shock loading, then 193 

this can be applied as an initial condition on 𝐶𝑘𝑟 therefore all the terms relating to 𝑃𝑗𝑟 go to 194 

zero, and the differential equation for these terms, Eq. (19), is not needed. If the external power 195 
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input varies slowly with time relative to the oscillations of the system, accurate results are also 196 

expected. It can be shown (by removing time derivatives in Eqs. (10), (16) and (19) and noting 197 

that Eq. (10) can be split and solved as a collection of terms plus their transpose) that with a 198 

steady-state power input the solution to the transient variance equations is identical to the 199 

solution that is calculated using the steady-state theory of Langley and Cotoni (2004a). 200 

The “Var” terms that appear in Eqs. (16) and (19) act as source terms, and they can be evaluated 201 

using the theory based on the Gaussian Orthogonal Ensemble described by Langley and Brown 202 

(2004a, 2004b).  The relative variance, denoted RelVar[..], of the power inputs is given by 203 

RelVar[𝑃𝑗] = (
𝛼𝑗 − 1

𝜋𝑚𝑗𝐵𝑗
2) {2𝐵𝑗 tan−1 𝐵𝑗 − ln(1 + 𝐵𝑗

2)} +
1

(𝜋𝑚𝑗𝐵𝑗)
2 ln(1 + 𝐵𝑗

2) . (20) 204 

Here 𝑚𝑗 is the effective modal overlap factor of subsystem j, which is given by Langley and 205 

Cotoni (2004a) as 206 

𝑚𝑗 =
1

(𝐂−1)𝑗𝑗
, (21) 207 

where 𝐂 is the conventional steady-state SEA matrix, 𝐶𝑗𝑘 = 𝐴𝑗𝑘𝑛𝑘. The parameter 𝐵𝑗 in Eq. 208 

(20) is a bandwidth parameter defined by Langley and Cotoni (2004a) as 209 

𝐵 = Δ
𝑛𝑗

𝑚𝑗
. (22) 210 

Finally, the parameter 𝛼𝑗 depends on the nature of the applied loading, and for single point 211 

loading is found to be approximately 2.7 (Langley and Brown, 2004a). 212 

The term Var[�̃�𝑛𝑚] which appears in Eq. (16) can be evaluated by noting that for steady-state 213 

the relative variance of the matrix entry �̃�𝑛𝑚  is given by Langley and Cotoni (2004a) as 214 

RelVar[�̃�𝑛𝑚] = (
𝛼𝑛𝑚 − 1

𝜋𝑚𝑛𝐵𝑛
2

) {2𝐵𝑛 tan−1 𝐵𝑛 − ln(1 + 𝐵𝑛
2)} +

1

(𝜋𝑚𝑛𝐵𝑛)2
ln(1 + 𝐵𝑛

2) (23) 215 
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where values for the parameter 𝛼𝑛𝑚 are also given in Langley and Cotoni (2004a).  216 

At early times, immediately after an impulse all modes of the system are in phase and so power 217 

transfer between subsystems is not a smooth function of time until the coherence between the 218 

modes is lost. If it is assumed over the ensemble that the natural frequencies take a uniform 219 

distribution, the instantaneous power transferred through the coupling between subsystems 𝑖 220 

and 𝑗 can be written  221 

𝑊𝑖𝑗(𝑡) =
1

Δ
∫ 𝑊𝑖𝑗,𝑎𝑣(1 + cos(2𝜔𝑡))d𝜔

𝜔2

𝜔1

= 𝑊𝑖𝑗,𝑎𝑣 (1 + cos((𝜔1 + 𝜔2)𝑡) sinc(Δ𝑡)) (24)

 222 

where 𝑊𝑖𝑗,𝑎𝑣 is the average power transferred 𝜔1 and 𝜔2 are the lower and upper frequencies 223 

of the frequency band and Δ = 𝜔2 − 𝜔1. Ignoring the fast frequency oscillations at the 𝜔1 +224 

𝜔2 frequency, the variance of the power transfer and therefore the coupling loss factor matrix 225 

must be amended such that Eq. (23) becomes 226 

RelVar[�̃�𝑛𝑚] = (1 + sinc(Δ𝑡))
2

{(
𝛼𝑛𝑚 − 1

𝜋𝑚𝑛𝐵𝑛
2

) {2𝐵𝑛 tan−1 𝐵𝑛 − ln(1 + 𝐵𝑛
2)}

                                                                + 
1

(𝜋𝑚𝑛𝐵𝑛)2
ln(1 + 𝐵𝑛

2)} . (25)

 227 

Provided the bandwidth is reasonably wide, the effect of this modification, enacted by the sinc 228 

function, will decay after a short time.  229 

By solving the mean TSEA equation, Eq. (3), the variance terms in the TSEA variance 230 

equations, Eqs. (16) and (19), can be calculated from the relative variance of the power input 231 

and coupling loss factors using Eqs. (20) and (25). All that remains for the TSEA variance 232 

equations to be integrated and solved is an appropriate set of initial conditions. 233 

 234 

 235 
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A. The initial conditions 236 

The initial conditions on the 𝐶𝑘𝑟, 𝑞𝑟
(𝑗𝑘)

 and 𝑃𝑗𝑟 variables are case dependent; however under 237 

impulsive loading, there will be no external excitation so 𝑃𝑗𝑟 = 0 and the initial energy in a 238 

subsystem will be uncorrelated to its coupling loss factor so 𝑞𝑟
𝑗𝑘

= 0. The initial condition on 239 

the variance of the subsystem energies will only be nonzero for impulsively excited subsystems 240 

and can be obtained by noting that the modal impulse response function (assuming unit 241 

generalized mass) is given by 242 

𝑞𝑛(𝑡) =
𝜙𝑛

 

𝜔𝑑
e 

−𝛽𝜔𝑛𝑡 sin(𝜔𝑑𝑡) , (26) 243 

where 𝛽 is the damping ratio, 𝜔𝑛 and 𝜔𝑑 are respectively the undamped and damped natural 244 

frequencies, and 𝜙𝑛 is the mode shape at the excitation point.  The initial energy due to the 245 

impulse is therefore proportional to 246 

𝑋 = ∑ 𝜙𝑛
2

 

𝜔𝑛⊂Δ

, (27) 247 

where the sum is over the number of modes in the frequency band. Equation (27) can also be 248 

written as 249 

𝑋 = ∑ 𝜙𝑛
2𝑌(𝜔𝑛, Δ)

 

𝑛

, (28) 250 

where the function 𝑌 is zero unless the natural frequency falls in the band, in which case the 251 

function equals unity. The variance of the sum 𝑋 can be obtained from random point process 252 

theory (Mehta, 2004) which yields the result 253 

Var[𝑋] = E[𝜙n
4] ∫ 𝑌2(𝜔𝑛, Δ)𝑓1(𝜔𝑛)d𝜔𝑛

∞

0

+ E[𝜙n
2]2 ∫ ∫ 𝑌(𝜔𝑛, Δ)𝑌(𝜔𝑚, Δ)𝑔2(𝜔𝑛, 𝜔𝑚)d𝜔𝑛d𝜔𝑚

∞

0

∞

0

, (29) 254 
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where 𝑓1 is equal to the modal density of the system, and 𝑔2(𝜔𝑛, 𝜔𝑚) is a function known as 255 

the second cluster function. The double integral which appears in Eq. (29) is very complicated, 256 

but progress can be made by noting that: (i) the first integral yields simply N, the average 257 

number of modes in the band, and (ii) when 𝜙𝑛 = 1 the equation yields the number variance, 258 

denoted Var[𝑁], which is the variance of the number of modes in the band. It can therefore be 259 

deduced that 260 

Var[𝑋] = (E[𝜙n
4] − E[𝜙n

2]2)𝑁 + E[𝜙n
2]2Var[𝑁]. (30) 261 

The mean value of 𝑋 is simply E[𝜙𝑛
2]𝑁, and so the relative variance is given by 262 

RelVar[𝑋] =
𝛼 − 1

𝑁
+

2

(𝜋𝑁)2
(ln 𝑁 + 2.18), (31) 263 

where the known result for the GOE number variance is employed (Mehta, 2004) and from 264 

(Langley and Brown, 2004a)  α = E[𝜙𝑛
4]/E[𝜙𝑛

2]2 and is discussed below. The initial condition 265 

on the variance for any subsystem j that is subjected to an impulsive force, 𝑓(𝑡), is therefore 266 

E[�̃�𝑗
2] = {

𝛼𝑗 − 1

𝑁𝑗
+

2

(𝜋𝑁𝑗)
2 [ln 𝑁𝑗 + 2.18]} 𝐸𝑗

2(0), (32) 267 

where 𝐸𝑗
 (0) is the initial mean energy and can be calculated using the method of Langley et 268 

al., 2019. 269 

The result of Eq. (32) assumes that the square of the modeshapes, 𝜙𝑛
2, are uncorrelated from 270 

each other. However, depending on the specific application of the impulsive excitation, this 271 

correlation can be significant and act to reduce the initial energy variance. This poses a 272 

limitation on the applicability of Eq. (32) and is discussed further in Section VI. 273 

 274 

 275 
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B. Selecting a suitable bandwidth 276 

Since any bandwidth of interest could be very wide, it can be split into smaller bandwidths, or 277 

‘sub-bands’, and the variance from each can be added together. This assumes that each sub-278 

band is sufficiently wide such that it is uncorrelated to neighbouring bands. The problem with 279 

taking a very wide bandwidth is that it averages over the frequency detail of the response and 280 

so can produce less accurate results. Sub-bands must therefore be selected that balance having 281 

a wide enough bandwidth that each sub-band is uncorrelated and a narrow enough bandwidth 282 

that significant frequency information is not lost. Empirical data for the modal statistics 283 

suggests that 𝛼 ≈ 2.7 (Langley and Brown, 2004a) and using the assumption of GOE statistics, 284 

it has been suggested that interaction between approximately 18 neighbouring modes occurs 285 

(Langley and Cotoni, 2004b) hence a bandwidth including 18 modes could be a sensible choice. 286 

The effect of the sub-bandwidths is illustrated in the numerical validation of Section IV. Within 287 

each sub-band a centre frequency must be selected and it has been found that it is important to 288 

use the frequency at which the steady-state response is equal to the band-averaged response. 289 

This provides improved results over simply selecting the mean frequency of the sub-band. 290 

 291 

IV. Numerical validation 292 

In this section, the method of Section III for predicting the variance of the subsystem energies 293 

in an SEA system is validated via comparison with results calculated using the finite element 294 

method (FE). A finite element package is used to model plate structures and generate the 295 

stiffness and mass matrices required for subsequent modal analysis.  296 

A. Methodology 297 

Since SEA is generally applied to energy at high frequencies, any impulse applied can be 298 

thought to only excite within a given frequency band. Here this is applied as an impulse that 299 
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excites only the modes in the frequency range of interest. The contribution of each of these 300 

modes is calculated for a given impulse location and the modal impulse responses are 301 

superimposed to generate the total impulse response of the system. For a narrow frequency 302 

range, this can provide poor results immediately after the impulse for subsystems that are not 303 

directly forced since there are insufficient modes in the band to adequately cancel when 304 

summed and produce zero energy far from the input.  305 

In order to generate an ensemble of structures to compare to TSEA, the plates are randomised 306 

by adding to each plate ten masses each of 2% of the plate mass and two springs of stiffness 307 

(250 × 2𝜋)2𝑀𝑗 at random locations where 𝑀𝑗 is the mass of the jth plate. These values are 308 

selected to generate sufficient statistical overlap in the subsystem natural frequencies to 309 

produce GOE statistics as discussed by Kessissoglou and Lucas, 2009. The location of each 310 

mass and spring is random, although it is ensured that they are not placed too close to the force 311 

location.  312 

The plate parameters used are for 5 mm thick Aluminium plate with Young’s modulus 70 GPa, 313 

density 2700 kg m-3, Poisson ratio 0.33, loss factor 0.01 and with all edges pinned to allow 314 

rotation, but zero displacement. Only out-of-plane modes are considered and an ensemble of 315 

1000 realisations over a frequency range of 500-1500 Hz is used and is considered as a single 316 

frequency band unless otherwise stated. The FE solution uses second order triangular shell 317 

elements with a minimum element length of less than one sixth of the wavelength of vibration 318 

at the highest frequency of interest. The TSEA solution was performed with a timestep of 319 

2 × 10−4 s. 320 

 321 

 322 

 323 
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B. Prediction of the variance of the subsystem energies 324 

For the system shown inset in Figure 1a, the mean and standard deviation TSEA results for 325 

plates one and two are compared to FE results in Figure 1 where plate one is subjected to an 326 

impulse. The system consists of two plates of areas 1.26 and 1.3 m2 coupled via three point 327 

connectors that are constrained to only move in the vertical direction and behave like 1D 328 

springs of stiffness 2.5 × 106 N m-1. The standard deviation is plotted instead of the variance 329 

so the results can be more easily compared to the mean. The force location is varied with each 330 

realisation and the CLFs are calculated analytically by modelling the connectors as springs. In 331 

order to ensure that any errors in the transient variance results are due to deficiencies in the 332 

method rather than errors carried over from the mean TSEA or steady-state SEA variance 333 

methods, the mean TSEA results are tuned to fit the FE by modifying the CLFs and the steady-334 

state band-averaged variance from SEA is also tuned to closely match the variance from the 335 

FE simulations by modifying the variance parameters. 336 

 337 

 338 

 339 

 340 

 341 
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 342 

a      b  343 

  344 

c      d 345 

Figure 1: (Colour online) TSEA results (dashed) compared with FE results (solid) for a) 346 

plate one mean, b) plate one standard deviation, c) plate two mean and d) plate two 347 

standard deviation. 348 

 349 

The standard deviation results show good agreement with the FE results. The variance of the 350 

initial energy in plate one is well predicted by Eq. (32) and the decay is also matched well. In 351 

plate two, the rise rate and time of maximum variance is very well predicted, with the TSEA 352 

results slightly overpredicting the maximum variance by approximately 7% and yielding a 353 

slightly slower peak time. The decay in the variance is close, but not perfectly matched to the 354 

FE results and this can be a consequence of band-averaging as discussed later.  355 
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To illustrate the necessity of calculating the variance as well as the mean of the ensemble, 356 

Figure 2 presents the 95% confidence intervals for both plates, with 100 realisations of the 357 

response superimposed. The variance provides an accurate measure of the spread of the 358 

response and the subsystem energies of any one realisation could be under or over predicted if 359 

only the mean value is used. It is assumed here that the probability density function of the 360 

energy of each subsystem exhibits a lognormal distribution as discussed by Langley et al. 361 

(2013). At any one time five realisations should lie outside the 95% confidence interval and 362 

this is observed to be approximately true. 363 

 364 

a      b 365 

Figure 2: 95% confidence interval (black dotted) from the TSEA results (mean in solid 366 

black) compared with 100 realisations (grey), a) plate one and b) plate two. 367 

 368 

The effect of using different sub-bands is investigated in Figure 3 where the standard deviation 369 

for both plates is plotted over the overall frequency range 500-1500 Hz with 1, 10 and 100 sub-370 

bands. The average modal density of the two plates is 0.082 modes/Hz meaning that there are 371 

approximately 8 modes per 100 Hz in each subsystem. The sub-bandwidth has a noticeable 372 

effect on the standard deviation, in particular the decay rate, initial conditions, peak values and 373 

peak times. The initial condition in plate one is overestimated with the smallest sub-bands 374 
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because the assumption that bands are uncorrelated breaks down. Whilst the predictions of 375 

plate two appear worse for smaller sub-bands, this is likely due to the steady-state band-376 

averaged variance being tuned for the case of a single sub-band and improving the tuning for 377 

the narrower sub-bands should improve accuracy. Additionally, as the sub-bandwidth reduces, 378 

the decay rate approaches that of the FE results illustrating that accuracy can decrease with a 379 

wide bandwidth.  380 

  381 

a      b 382 

Figure 3: (Colour online) Standard deviation of the energy from FE (solid) and TSEA 383 

with 1 (dashed), 10 (dash-dot) and 100 (dotted) sub-bands for a) plate one and b) plate 384 

two. 385 

 386 

It is important to discuss what level of accuracy the TSEA variance approach can be expected 387 

to provide and what is considered sufficient when applied in real engineering design scenarios. 388 

Due to similar assumptions in the derivation, it is reasonable to expect similar accuracy from 389 

transient SEA as is achieved in steady-state SEA and therefore the two should be compared. It 390 

is generally accepted that errors of ±3 dB (or approximately a factor of two) are reasonable for 391 

steady-state SEA especially when considering the relative difference between subsystem 392 

energies can be orders of magnitude. The predictions of the peak energy standard deviation 393 
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observed here are within 1 dB of the benchmark results. Additionally, It is most common to 394 

plot SEA results on a logarithmic scale, whereas Figures 1-3 are displayed on a linear scale. 395 

The results of Figure 1 are replotted on a logarithmic scale in Figure 4 where any errors now 396 

look relatively small when considering the large drop in the variance of the energy between the 397 

plates is well predicted. The decay rate of the variance of the energy in both plates is not 398 

predicted particularly well by the TSEA and this is thought to be a feature of the band-averaging 399 

as discussed above. 400 

 401 

a      b 402 

Figure 4: (Colour online) a) Mean and b) standard deviation of the energy from FE 403 

(solid) and TSEA (dashed) plotted on a logarithmic scale. Plates one and two are the top 404 

and bottom lines respectively. 405 

 406 

The variance equations are also applicable when a steady-state load is applied. For the case 407 

where the system used in Figure 1 is initially at rest and plate one is given a stationary band-408 

limited load with constant spectrum in the frequency range 500-1500Hz, the mean and variance 409 

FE and TSEA results are shown in Figure 5. The load is applied as white noise that only acts 410 

on the modes within the frequency band and the equations of motion are reformulated into the 411 

non-stationary Lyapunov equation to be solved with numerical integration. In these figures, 412 
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horizontal lines are included to represent the results that are obtained from a purely steady-state 413 

analysis and it is clear that the TSEA mean and variance results asymptote towards these values, 414 

illustrating that the TSEA equations collapse to the steady-state equations under stationary 415 

conditions. As before, the SEA parameters such as the CLF and input power are tuned to 416 

provide close agreement with the FE results so that the transient response from the TSEA 417 

method can be reasonably compared. For both the mean and standard deviation, close 418 

agreement between the predicted TSEA and benchmark FE results is observed, although the 419 

rise time of the standard deviation in plate one is slightly overpredicted. 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 
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 430 

a         b  431 

 432 

c      d 433 

Figure 5: (Colour online) TSEA results (dashed) compared with FE results (solid) for 434 

plate one of the two plate system under steady loading. a) plate one mean, b) plate one 435 

standard deviation, c) plate two mean and d) plate two standard deviation. Dash-dot 436 

and dotted lines represent results from steady-state FE and SEA respectively. 437 

 438 

 439 

 440 

 441 

 442 

 443 
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V. Experimental validation 444 

To supplement the numerical validation of the TSEA method in Section IV, an experiment 445 

involving a two-plate system similar to that displayed in Figure 1 is also presented. Two 446 

aluminium plates with area 0.8 and 0.48 m2 are suspended using string and coupled with two 447 

steel point connections as displayed inset in Figure 6a. A sharp impulse with high-frequency 448 

content is applied with a stiff-tipped impulse hammer containing a force transducer at an 449 

approximately consistent location to the upper plate, denoted plate one, and the responses of 450 

the plates are measured using five randomly spaced accelerometers on each plate from which 451 

the average velocity and therefore an estimate of the energy of each plate is calculated. In order 452 

to randomise the modeshapes and generate an ensemble of systems, a number of masses, 453 

totalling approximately 10% of the plate mass, are attached to each plate and are redistributed 454 

for each impulsive excitation. 455 

The loss factors of each subsystem are determined at a number of frequencies by investigating 456 

the decay curves of the subsystems in isolation and are found to be approximately 0.01. The 457 

SEA coupling loss factors are then calculated from the experimental steady-state energy 458 

difference between each plate using  459 

𝜂12 =
𝑛2𝐸2

𝑛2𝐸1 − 𝑛1𝐸2
𝜂2 (33) 460 

where the modal densities are calculated analytically for a plate and 𝜂21 can be calculated using 461 

the reciprocity relationship 𝑛1𝜂12 = 𝑛2𝜂21. The modal overlap factors at 1000 Hz are 1.25 and 462 

0.75 for plates one and two respectively. 463 

A slight extension to the variance theory of Section III must be included to account for the 464 

effect of estimating each subsystem energy from a finite number of points. This increases the 465 

observed energy variance since, in addition to the variance across the ensemble given by TSEA, 466 
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denoted Varens(𝐸𝑗), there is a spatial variance, denoted Varspa(𝐸𝑗), due to spatial fluctuations 467 

in energy over the subsystem at any one time. The total variance measured from the experiment 468 

is therefore Varens(𝐸𝑗) + Varspa(𝐸𝑗). If there are 𝑁 observation points and a realisation with 469 

average energy 𝐸�̅� has energy at the nth point given by 𝐸𝑗,𝑛 = 𝐸�̅� + �̃�𝑗,𝑛 then the spatial variance 470 

is given by 𝐸[�̃�2]/𝑁. The spatial relative variance for a system with Gaussian modeshapes is 471 

unity and so the spatial variance becomes E̅2/𝑁. 472 

The experimental results are compared in Figure 6 to transient mean and variance results in the 473 

frequency range 2000-3000 Hz where 30 realisations are taken, and the data is normalised such 474 

that the peak force of each impulse is 1 N. The similarity between the two is very strong, with 475 

comparable rise and decay times, although the TSEA slightly underestimates the peak standard 476 

deviation in plate two. Similar to the mean results, oscillations are observed in the standard 477 

deviation and would be reduced by a larger ensemble or more accelerometers as discussed in 478 

Langley et al., 2019.  479 

 480 

 481 

 482 

 483 

 484 

 485 
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 486 

a       b 487 

 488 

c       d 489 

Figure 6: (Colour online) TSEA results (dashed) compared with experimental results 490 

(solid) for a) plate one mean, b) plate one standard deviation, c) plate two mean and d) 491 

plate two standard deviation. 492 

 493 

VI. Limitations of the method 494 

For the cases presented in Sections IV and V, the variance predictions from the derived method 495 

exhibit strong agreement with the benchmark results. However, the method is limited by the 496 

assumptions it makes thus for certain systems and loading conditions, the predictions are less 497 

accurate. These limitations are explored in this section. 498 
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The results of Figure 1 are obtained by varying the impulse location with each realisation. In 499 

this case, the variance of the initial energy in the excited plate is reasonably predicted by Eq. 500 

(32), although in fact this will generally be an overprediction since it ignores the effect of any 501 

correlations between modeshapes. In the arguably more realistic case where the impulse 502 

location is fixed throughout the ensemble, the effects of the correlations become greater, acting 503 

to reduce the initial variance and so Eq. (32) overpredicts by an amount dependent on the 504 

bandwidth of interest. This effect is displayed in Figure 7 where the impulse location is fixed 505 

and the overprediction can be seen in both plates and the impact of selecting the initial variance 506 

to match the FE results is shown by the dash-dot curve, which displays good accuracy. It might 507 

be suggested that the correlations can be predicted by the GOE correlations (Brody et al., 1981), 508 

although this has been found to be an overestimate. Should an accurate model of these 509 

modeshape correlations be derived, the derived theory is expected to exhibit strong accuracy 510 

as suggested by the dash-dot curve in Figure 7. 511 

 512 

 513 

 514 

 515 

 516 
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 517 

a      b  518 

  519 

c      d 520 

Figure 7: (Colour online) TSEA results (dashed) compared with FE results (solid) for 521 

the point coupled system when the impulse location is constant. The dash-dot curve 522 

displays the TSEA results when the initial variance in plate one is selected to match the 523 

initial variance found in the FE results. a) plate one mean, b) plate one standard 524 

deviation, c) plate two mean and d) plate two standard deviation. 525 

 526 

A second limitation to the method is illustrated clearly by the results from the two edge-coupled 527 

plates displayed in Figure 8 where the impulse location is varied randomly with each 528 

realisation. A clear early peak in the standard deviation in the second plate is observed in the 529 

FE results in Figure 8d, but not the theoretical results. Physically, this is due to waves spreading 530 
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out from the different impulse locations of each realisation taking different amounts of time to 531 

reach the edge coupling and start transferring energy through to the second subsystem. 532 

 533 

a      b  534 

 535 

c      d 536 

Figure 8: (Colour online) TSEA results (dashed) compared with FE results (solid) for 537 

the edge-coupled system with a varying impulse location. a) plate one mean, b) plate one 538 

standard deviation, c) plate two mean and d) plate two standard deviation. 539 

 540 

The discrepancy between the theory and simulations in Figure 8d is due to the theory being 541 

unable to account for the actual method of energy transfer. In Eq. (16), the variance from the 542 

coupling between plates assumes a diffuse wavefield in both plates when in reality, shortly 543 

after an impulse, the wavefield is a propagating wavefield and a wavefront can approach the 544 
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junction and cause high instantaneous transmission. It is interesting to note that this effect 545 

averages out and the mean energy is unaffected. In this case, the variance prediction at later 546 

times may be unreliable due to cumulative effects from the poor prediction at early times. 547 

The accuracy of the method can be estimated by comparing the timescales involved in energy 548 

transport. If the timescale for a subsystem to achieve a diffuse wavefield after an impulse is 549 

short compared to the timescale of energy transfer between subsystems, then the derived TSEA 550 

variance method can be expected to give a good prediction. This occurs when the coupling is 551 

weak and explains the strong accuracy of the results of Figure 1 where the coupling is weaker. 552 

Additionally, if the damping is low then energy transfer between subsystems occurs over a 553 

longer time and so is greater, since the energy decay in the excited subsystem will take longer. 554 

Any effect from the non-diffuse field at early times will therefore be less significant.  555 

Weak coupling and low damping are well-known criteria for the reasonable application of 556 

steady-state SEA. In fact, it has been suggested that a measure of coupling strength and validity 557 

of SEA can be taken from mean time-domain energy plots such as Figure 8c by taking the ratio 558 

of peak time to total time duration (Fahy, 1996; James and Fahy, 1997). A value of coupling 559 

strength indicator of 0.07 is suggested as a reasonable threshold above which the coupling can 560 

be considered weak in an SEA sense. From Figure 8c, the edge coupled system is found to 561 

have a coupling strength indicator of 0.15, well above the threshold, although the variance still 562 

displays a discrepancy with theory. It is therefore suggested that for reasonable application of 563 

the TSEA variance method, weaker coupling is required than for steady-state SEA. It should 564 

be noted that despite this limitation, the accuracy of the method is still very strong and well 565 

within the expected accuracy of SEA-based approaches. 566 

To investigate the effect of the wave field in the impulsively excited plate, fifty simultaneous 567 

impulses are applied at random locations with zero mean and unity standard deviation Gaussian 568 
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random magnitudes with the intention of instantaneously generating a more diffuse field in the 569 

plate. The results are presented in Figure 9 where the strong peak in the standard deviation of 570 

the second plate is removed and the TSEA variance method provides accurate predictions. This 571 

reinforces the above discussion suggesting that the method is limited by the diffuse field 572 

assumption. In this case, the initial energy variance in the excited plate is matched to the FE 573 

results rather than found analytically. 574 

 575 

a      b  576 

 577 

c      d 578 

Figure 9: (Colour online) TSEA results (dashed) compared with FE results (solid) for 579 

the edge coupled system with 50 simultaneous random impulses. a) plate one mean, b) 580 

plate one standard deviation, c) plate two mean and d) plate two standard deviation. 581 

 582 
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VII. Conclusions 583 

The transient SEA method is extended to predict the variance of the energy in each subsystem 584 

of a built-up system under both impulsive and steady loads. Prediction of both the mean and 585 

the variance of a system response is important since at high frequencies, nominally identical 586 

structures can behave differently, and some measure of this variability is important when 587 

designing a structure. 588 

Following a similar procedure to Langley and Cotoni (2004a), a power balance equation for 589 

each individual realisation of a system is manipulated to generate a differential equation for the 590 

covariance of the subsystem energies, Eq. (10). Since the variance in the response arises from 591 

variability in coupling loss factors and input power, the covariance equation is ‘forced’ by 592 

terms related to these variance quantities, Eqs. (16) and (19). The variance forcing terms are 593 

themselves calculated from differential equations where any variance terms are found from the 594 

ensemble statistics of the system (Langley and Brown, 2004a, 2004b). When impulsive 595 

excitation is applied, the variability across the ensemble of the energy injected into the system 596 

is imposed as an initial condition on the energy covariance matrix. Under steady-state loading, 597 

the method is shown to collapse to the steady-state SEA variance method of Langley and 598 

Cotoni (2004a). 599 

The applicability and limitations of the derived method are investigated both numerically and 600 

experimentally and it is found to provide close agreement with benchmark results in cases of 601 

weak coupling. However, when coupling is stronger, the theoretical predictions can become 602 

less accurate due to the assumption of a diffuse field occurring instantaneously in an 603 

impulsively excited subsystem becoming less reasonable. Additionally, the variance of the 604 

initial energy in a subsystem that provides the initial condition for the covariance equation 605 

cannot yet be calculated accurately when a constant impulse location is used due to correlations 606 
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between modeshapes. This is a complex issue and outside of the scope of this paper, but it 607 

should be noted that if the force location is not held constant, the correlations become less 608 

significant and a reasonable initial condition can be applied. Despite these limitations, strong 609 

results are observed and errors generally lie well within the accuracy expected from SEA-based 610 

methods. 611 
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List of figure captions 673 

Figure 1: TSEA results (dashed) compared with FE results (solid) for a) plate one mean, b) 674 

plate one standard deviation, c) plate two mean and d) plate two standard deviation. 675 

 676 

Figure 2: 95% confidence interval (black dotted) from the TSEA results (mean in solid black) 677 

compared with 100 realisations (grey), a) plate one and b) plate two. 678 

 679 

Figure 3: Standard deviation of the energy from FE (solid) and TSEA with 1 (dashed), 10 680 

(dash-dot) and 100 (dotted) sub-bands for a) plate one and b) plate two. 681 

 682 

Figure 4: a) Mean and b) standard deviation of the energy from FE (solid) and TSEA 683 

(dashed) plotted on a logarithmic scale. Plates one and two are the top and bottom lines 684 

respectively. 685 

 686 

Figure 5: TSEA results (dashed) compared with FE results (solid) for plate one of the two 687 

plate system under steady loading. a) plate one mean, b) plate one standard deviation, c) plate 688 

two mean and d) plate two standard deviation. Dash-dot and dotted lines represent results 689 

from steady-state FE and SEA respectively. 690 

 691 

Figure 6: TSEA results (dashed) compared with experimental results (solid) for a) plate one 692 

mean, b) plate one standard deviation, c) plate two mean and d) plate two standard deviation. 693 

 694 

Figure 7: (Colour online) TSEA results (dashed) compared with FE results (solid) for the 695 

point coupled system when the impulse location is constant. The dash-dot curve displays the 696 

TSEA results when the initial variance in plate one is selected to match the initial variance 697 
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found in the FE results. a) plate one mean, b) plate one standard deviation, c) plate two mean 698 

and d) plate two standard deviation. 699 

 700 

Figure 8: TSEA results (dashed) compared with FE results (solid) for the edge-coupled 701 

system with a varying impulse location. a) plate one mean, b) plate one standard deviation, c) 702 

plate two mean and d) plate two standard deviation. 703 

 704 

Figure 9: TSEA results (dashed) compared with FE results (solid) for the edge coupled 705 

system with 50 simultaneous random impulses. a) plate one mean, b) plate one standard 706 

deviation, c) plate two mean and d) plate two standard deviation. 707 


