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Abstract

This paper concerns empirical measurement of Hicksian consumer welfare under interval-
reported income. Bhattacharya (2015, 2018a) has shown that for discrete choice, welfare
distributions resulting from a hypothetical price-change can be expressed as closed-form trans-
formations of choice probabilities. However, when income is interval-reported, as is the case in
many surveys, the choice probabilities, and hence welfare distributions are not point-identified.
We derive bounds on average welfare in such scenarios under the assumption of a normal good.
A finding of independent interest is a set of Slutsky-like shape restrictions which are linear
in average demand, unlike those for continuous choice. A parametric specification of choice
probabilities facilitates imposition of these Slutsky conditions, and leads to computationally
simple inference for the partially identified features of welfare. In particular, the estimand is
shown to be directionally differentiable, so that recently developed bootstrap methods can be
applied for inference. Under mis-specification, our results provide a "best parametric approx-
imation" to demand and welfare. These methods can be used for inference in more general
settings where a class of set-identified functions satisfy linear inequality restrictions, and one
wishes to conduct inference on functionals thereof. We illustrate our theoretical results using
a simulation exercise based on a real dataset where actual income is observed. We artificially
introduce interval-censoring of income, calculate bounds for the average welfare effects of a

∗We are grateful to Jack Porter for valuable discussion that greatly improves this paper. We thank Bruce Hansen, Xiaoxia Shi, and

Joachim Freyberger for very helpful comments. We also thank conference and seminar participants in IAAE 2015/2016, the Econometric

Society World Congress 2015, 2016 North American Summer Meeting/Asian Meeting of the Econometric Society, cemmap, 2017 CEME

Interaction Conference, University of Oxford, LSE, Universit catholique de Louvain, Academia Sinica, National Taiwan University, North

Carolina State University, UC Irvine, University of Western Ontario, USC, UCSD, and Duke. E-mail: yingying.lee@uci.edu. JEL codes:

C14, C25, C25

1

 Electronic copy available at: https://ssrn.com/abstract=3167071 

yingying.lee@uci.edu


price-subsidy using our methods, and find that they perform favorably in comparison with
estimates obtained using actual income.

Keywords: Binary choice, equivalent variation, interval-data, Slutsky restriction, set identified func-

tion, inference on functionals, directional differentiability.

1 Introduction

This paper concerns Hicksian welfare analysis of price changes in discrete choice settings, us-
ing micro-level demand data. For example, if the government raises the tax on rail-travel in a
city where commuters choose between alternative modes of transport, then a theory-consistent
way to measure its welfare effect is to calculate the compensating variation, i.e., the hypo-
thetical income transfer required to maintain commuters’ utilities Typically, individuals differ
in their preferences, so that a price change produces a distribution of compensating varia-
tions and deadweight losses associated with the tax increase. Bhattacharya (2015, 2018a),
has recently shown that in discrete choice settings with completely general heterogeneity,
the distribution of Hicksian welfare resulting from price-changes can be expressed in terms
of choice-probabilities which are functions of prices and consumer income. Estimating these
probabilities requires knowledge of prices each individual in the sample faces and her in-
come. However, in many datasets commonly used in discrete choice analysis, including the
US Health and Retirement Study, the British Transportation Survey, the Nielsen database,
the Current Population Survey, etc., individual income is reported in intervals, so that the
choice probabilities cannot be calculated directly. This paper aims to develop econometric
methods for welfare analysis in such scenarios.

Our theoretical approach is as follows. We assume that the alternative undergoing the
price change (due to a tax, say) is normal on average, i.e., the probability of choosing it weakly
rises with income, for fixed price. We choose a finite-dimensional parametric model for the
choice probability, in a sense clarified below. We then derive bounds for welfare distributions
that are closed-form functions of the parameters of the approximating model, subject to a
set of new, Slutsky-like inequality restrictions. We develop the formal inference procedure for
these bounds by adapting some recent results on bootstrap-inference for directionally differen-
tiable functionals. Finally, we provide a “best parametric approximation” type interpretation
of our estimates, to allow for the possibility that our parametric model is mis-specified.

Although developed in the context of welfare analysis, our inference procedures have wider
applicability. In particular, consider a function q(x) partially identified by a convex compact
set of the form [L(x), U(x)], where q(x) satisfies a set of linear inequality restrictions. Our
methods can be used to conduct inference for functionals of q(·). Such set identified functions
are common in economics; for example, they arise when dependent variables in regressions are
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interval-censored or suffer from sample selectivity biases; see Manski (2003), Tamer (2010),
and Chandrasekhar, Chernozhukov, Molinari, and Schrimpf (2012) for examples.

Description of the problem Consider an empirical setting of binary choice by a pop-
ulation of heterogeneous consumers. For a random sample drawn from this population, we
observe each individual’s choice among two alternatives 0 and 1, her demographic and other
choice-relevant characteristics, and prices of the alternatives. We are interested in measuring
the distribution of compensating variation, evaluated at income y, of a hypothetical price
rise of alternative 1 from p0 to p1, e.g., one induced by a sales tax. Bhattacharya (2015)
has shown that for this problem the expected compensating variation takes a closed-form
expression, given by

E[CV ] =

∫ p1−p0

0
q(p0 + a, y + a) da, (1)

where q (p, y) is the structural choice probability, representing the fraction of the population
that would choose alternative 1 if price and income were set to (p, y). If individual income is
also observed in the micro-data, then evaluating the above expressions reduces to estimating
the structural choice probabilities. But in many consumer datasets, individual income is
recorded in fixed intervals to produce higher response rates. As the data do not report
the continuous income variable, the conditional choice probability q(p, y) in (1) cannot be
estimated consistently without further assumption.

A common empirical approach is to make assumptions on the distribution of unobserved
income within the observed intervals, and impute the missing income values thereof. A com-
mon short-cut is to simply use the interval’s mid-point as the imputed income. If true income
varies within the interval, as it must surely do in the real world, the midpoint imputation
approach implies a strange behavioral assumption, viz. that there is no income effect on
choice probabilities within the income interval that happens to have been fixed arbitrarily by
the survey design, but there can be income effects across income intervals, as no restrictions
are imposed on the income effect across intervals in the mid-point imputation approach. Of
course, one can assume that there is no income effect anywhere; but this assumption is hard
to justify in many contexts. Indeed, if one assumes away income effects, then the problem
studied in this paper disappears, as true average welfare equals the usual Marshallian con-
sumer surplus. In more general, non-demand settings, Hsiao (1983) shows that the common
approaches of using the midpoint or dummy variable regression pose problems for statistical
inference and for interpreting linear regression models; Manski and Tamer (2002) provide
further discussion on this point. An alternative is to use the observations on interval-valued
income to bound the conditional choice probability, which is the approach we take here.

Toward that end, assume that the alternative 1 is normal on average, meaning that its
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choice probability is increasing in income y for fixed p.1 Then for given price p, the choice
probability q(p, y) can be bounded below [above] by the conditional choice probabilities av-
eraged over an income interval containing values smaller [larger] than y. Such bounds can be
estimated nonparametrically, producing a bounded convex set as the identification region for
the partially identified choice probability.

Depending on the size of the income intervals, the bounds on the conditional choice prob-
abilities may not be tight; so we turn to economic theory for another source of identifying
power. We derive a Slutsky type restriction on the choice probabilities. These take the form
of linear inequality restrictions on the choice probabilities – a result that is of independent
theoretical interest (c.f. Bhattacharya (2018b)). We use these restrictions to tighten the
bounds on average CV, and develop a method of inference for these bounds. To achieve these
objectives, we use the following approach.

We first assume that the choice probability takes a probit form, develop tools of inference,
and finally we provide an interpretation of this exercise as an approximation that minimizes
mean squared error in an appropriate sense. Given the probit specification, the average CV
in (1) is approximated by a nonlinear function of the probit coefficients. As the choice prob-
ability is partially identified, so are the corresponding probit coefficients. Our goal is to find
bounds on this average CV subject to the Slutsky restriction, which we achieve in two steps.
First, we characterize the interior points of the identification set of the probit coefficients.
Second, we show how to impose the Slutsky restrictions, and translate the identification set
characterization of the coefficients into bounds for the average CV. Specifically, we construct
a convex and compact identified set for the probit/logit coefficients. This is done by using
an approach developed in the recent literature on support function based identification (c.f.,
Horowitz and Manski (2006); Beresteanu and Molinari (2008); Bontemps, Magnac, and Mau-
rin (2012); Chandrasekhar, Chernozhukov, Molinari, and Schrimpf (2012); Kline and Santos
(2013); Kaido and Santos (2014); Escanciano and Zhu (2014); Kaido (2016)). The set is char-
acterized by its boundary points which have closed-form expressions, and its interior points
are convex combinations of these boundaries. These features facilitate the later imposition of
shape restrictions.

The next step involves solving a stochastic programming problem that maximizes/minimizes
a non-convex objective function subject to linear inequality restrictions. The resulting esti-
mand is a non-differentiable function of the preliminary parameters, so inference on it is
non-standard (c.f., Hirano and Porter (2012); Woutersen and Ham (2013); Fang and Santos
(2019); Hong and Li (2018); Hansen (2017)). Interestingly, however, we can show that our
estimand is directionally differentiable, and derive the asymptotic distribution of its sample

1This assumption cannot be directly tested, since true income are not reported. But one can verify that the
price-conditioned choice probability on the income intervals are increasing as one moves to the higher intervals.
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analog estimator. In particular, we show that the bootstrap method recently developed by
Dümbgen (1993), Fang and Santos (2019), and Hong and Li (2018) provides a consistent
approximation to the limiting distribution, and use this to construct confidence intervals for
the average CV and for its identified set. Last, but not least, our sample-analog estimator
preserves the simplicity of ordinary least squares and is easy to calculate in practice.

We study the effectiveness of our methods using a simulation exercise based on a real
dataset. Specifically, we use survey data from India on teenagers choosing whether to attend
school or not, and the ultimate object of interest is the average EV for a hypothetical tuition
subsidy. To judge the efficacy of our bounds approach, we first compute the average EV using
the true incomes reported in the dataset, using the method of Bhattacharya (2015). Then
we artificially create the problem of interval-valued incomes by categorizing true income into
intervals, and compare the identified set for average welfare, constructed using methods of this
paper, with the estimates obtained by using the true income data and midpoint imputations.
We find that the point estimates using midpoint imputations can be potentially misleading.
This setting also allows us to examine the behavior of our estimators and confidence sets under
different extents of interval-censoring, e.g., many small intervals versus few large intervals.

The rest of the paper is organized as follows. Section 2 introduces the setup. Section 3
begins with a parametric specification and overviews the estimation procedure. Section 4
presents the inference theory and bootstrap method. Section 5 provides some discussion of
welfare analysis under endogeneity. In Section 6, we discuss the mis-specification and best
parametric approximation. Section 7 demonstrates the efficacy of our methods through a
simulation exercise using data on school-attendance in India. All technical proofs are collected
in an Appendix.

2 Setup

We begin by laying out a general problem that includes as a special case our problem of
interest, viz., welfare analysis with interval-valued income. Then, in Section 2.1, we describe
the theory for the binary choice model and structural objects of interest by building on
Bhattacharya (2015) and present a new, nonparametric Slutsky restriction for binary choice.
Following this, in Section 2.2, we discuss the issue of partial identification of welfare measures
in the context of interval-valued income.

The general statistical problem can be stated as follows. Consider a situation where
the object of interest is f̄(q), a real-valued functional of a function q (·) that is partially
identified, i.e., it is contained in an estimable, compact and convex set, and satisfies an

5

 Electronic copy available at: https://ssrn.com/abstract=3167071 



inequality restriction R̄(q) ≤ 0. Specifically, the identified set for q has the following form:

Q ≡ Qdata ∩Qmodel,where

Qdata ≡ {q ∈ C(X ) : L(x) ≤ q(x) ≤ U(x) for all x ∈ X} and

Qmodel ≡
{
q ∈ C(X ) : R̄(q(x)) ≤ 0 for all x ∈ X

}
,

where C(X ) denotes a space of continuous functions on X ⊂ Rdx . The bounding functions L
and U in Qdata can be estimated consistently from the data. The shape restriction functional
R̄ : C(X ) → RdR is known, and is implied by the economic model. Our goal is to perform
inference on f̄(q) and the set containing it, i.e.,2[

inf
q∈Q

f̄(q), sup
q∈Q

f̄(q)

]
. (2)

In our welfare-analysis setting, q is the structural choice probability, f̄ is the average CV,
and R̄ comes from Slutsky-type restrictions.

2.1 Binary choice model

Consider an individual with income Y , who faces the choice between two options labelled
1 and 0. Individual utilities from choosing 1 and 0 are respectively U1(W, η) and U0(W, η),
whereW is the quantity of numeraire, which the individual consumes in addition to the binary
good, and η represents unobserved taste; other observed individual-specific characteristics are
implicitly controlled for. We allow the unobserved heterogeneity η to be of unknown dimension
and enter the utility functions in any arbitrary way. The budget constraint is PQ+W = Y ,
where Q ∈ {0, 1} represents the binary choice with price P . So the individual chooses 1 if
and only if U1(Y − P, η) > U0(Y, η), i.e., Q ≡ Q(P, Y, η) = 1{U1(Y − P, η) > U0(Y, η)}.

Now suppose the price of option 1 increases from p0 to p1, with the marginal distribution
of η remaining unchanged. We wish to calculate the marginal distributions of the welfare
change evaluated at fixed income y0 corresponding to this price change. In particular, the
compensating variation measures the income CV to be given to an η type individual at
income y0, facing price p1 so that her maximized utility with this additional income equals
her maximized utility when the price was p0 and income was y0. Then CV as a function of

2In general, the set
[
infq∈Q f̄(q), supq∈Q f̄(q)

]
is a superset or a convex hull of the identified set of f̄(q) defined

by {f̄(q) : q ∈ Q}. We could call the former set in (2) an "outer" identified set. In the rest of the paper, we omit
the term "outer" and use "identified set" for (2) for simplicity without loss of clarity. We thank one anonymous
referee to point this out.
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(p0, p1, y0, η) solves the equation:

max {U0(y0 + CV, η), U1(y0 + CV − p1, η)} = max {U0(y0, η), U1(y0 − p0, η)} .

The equivalent variation measures the income EV to be subtracted from this individual so
that her maximized utility at price p0 equals that when price was p1. The EV as a function
of (p0, p1, y0, η) solves the equation:

max {U0(y0 − EV, η), U1(y0 − EV − p0, η)} = max {U0(y0, η), U1(y0 − p1, η)} .

Our analysis focuses on the CV; the results for the EV are analogous.
Bhattacharya (2015) shows that the marginal distributions of individual CV and EV can

be expressed as closed-form transformations of choice probabilities. Specifically, denoting the
structural choice probability at a hypothetical price and income (p, y) as

q(p, y) ≡
∫

1{U1(y − p, η) > U0(y, η)}dFη(η),

the main result in Bhattacharya (2015) is the following:

Result 1 (Theorem 1 in Bhattacharya (2015)) Assume U0(W, η) and U1(W, η) are strictly
increasing in W for each η. Consider a price rise from p0 to p1. Then across individuals with
income y0, the marginal distribution of the CV is given by

Pr(CV ≤ a) =


0 if a < 0,

1− q(p0 + a, y0 + a) if 0 ≤ a < p1 − p0,

1 if a ≥ p1 − p0.

Given this, we focus on the average CV: E[CV ] =
∫ p1
p0
q (p, y0 + p− p0) dp. More gen-

eral structural objects of interest include functionals of q(·, ·), such as the marginal effect of
changing income on the choice probability or quantiles of the CV.

Our first result, stated as Proposition 1, provides a Slutsky-type restriction for the choice
probability.

Proposition 1 (Slutsky restriction) Under the conditions of Result 1, monotonicity of
the marginal distributions of the EV and the CV in Result 1 is equivalent to the restriction

q(p, y) ≥ q(p+ b, y + c), for any b ≥ c ≥ 0. (3)
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When q(p, y) is differentiable, the restriction (3) holds if and only if

∂

∂p
q(p, y) +

∂

∂y
q(p, y) ≤ 0 and

∂

∂p
q(p, y) ≤ 0, for any (p, y). (4)

The Slutsky condition (3) follows from the assumption that U0 (·, η) and U1 (·, η) are
strictly monotone. This result is new to the literature, to the best of our knowledge. It may be
contrasted with the case of a continuous good with demand qc(p, y, η), where the conventional
Slutsky equation is ∂qc(p, y, η)/∂p+ qc(p, y, η)∂qc(p, y, η)/∂y ≤ 0. Defining Q (p, y, τ) as the
τth quantile of demand, Dette, Hoderlein, and Neumeyer (2016) have shown that the Slutsky
condition also holds for quantile demand, i.e., for all p, y, and for all τ ∈ [0, 1],

∂

∂p
Q(p, y, τ) +Q(p, y, τ)

∂

∂y
Q(p, y, τ) ≤ 0.

Observe that this last inequality is nonlinear in Q, in contrast to the linear inequalities in (4)
for the binary good.

2.2 Identification

We now state two assumptions, viz., exogeneity and monotonicity, under which we will derive
our first set of bounds.

Assumption 1 (i) Price and income are jointly independent of the unobserved preference
heterogeneity η (ii) The structural choice probability q(p, y) is increasing in y for each p and
is differentiable in (p, y).

Independence of preferences and budge sets (conditional on covariates) has been main-
tained in this literature (c.f., Hausman and Newey (2016)). Below, we provide a brief dis-
cussion on relaxing it. The second assumption states that alternative 1 is a normal good on
average. That is, if income goes up with price remaining fixed, the probability of buying good
1 goes up. Note that we need this assumption to hold only on average; alternative 1 being a
normal good for all consumers is sufficient but not necessary for this assumption to hold.

In order to implement the Bhattacharya (2015) formulae for calculating welfare distribu-
tions, one needs to observe the price faced by each consumer, as well as individual income.
However, when income is censored into intervals, the structural choice probability q(p, y), and
consequently, the CV/EV distributions cannot be point-identified. The first step, therefore,
is to construct the identified set for q(p, y). We then show how revealed preference restrictions
would make the set tighter.
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Toward that end, suppose that incomes are recorded in fixed intervals. That is, the true
income belongs to a sequence of intervals or brackets given deterministically by administrators
and not chosen by the respondents. This setup of fixed intervals is precisely how incomes are
recorded in many survey data. We assume that a set of nonrandom grid points {y1, ..., yK}
partitions the support of income into disjoint intervals: Y = [y0, yK+1] =

⋃K
k=0 Yk, where the

interval Yk ≡ [yk, yk+1) for k = 0, 1, ...,K − 1 and YK ≡ [yK , yK+1].
We observe the realizations of (Q,P ), the income interval where the unobserved income

Y belongs. When price and income are observed and Assumption 1(i) holds, the structural
choice probability is point-identified by the conditional expectation of the binary outcome
given the covariates q(p, y) = E[Q|P = p, Y = y]. But given the sampling scheme involving
interval censored income, we can point-identify the conditional choice probability given price
p and interval [y1, y2), which we denote by

π
(
p, [y1, y2)

)
≡ Pr

(
choose 1|P = p, Y ∈ [y1, y2)

)
.

From the data, we can nonparametrically estimate π
(
p, [y1, y2)

)
using individuals whose in-

come lies in [y1, y2).
We will assume that the choice probability also satisfies restrictions from economic theory,

viz., the Slutsky restriction in Proposition 1 and monotonicity in Assumption 1(ii). Putting
all of this together, we define the following identified set with shape restrictions:

Q ≡ Qdata ∩Qmodel,where

Qmodel ≡
{
q ∈ C(P × Y) :

∂

∂p
q(p, y) +

∂

∂y
q(p, y) ≤ 0 and

∂

∂y
q(p, y) ≥ 0, for all (p, y) ∈ P × Y

}
.

As the choice probabilities are partially identified, so are the welfare effects based on
CV/EV, e.g., the average CV at income y0 for a price change from p0 to p1 in (1).

Nonparametric Formulation In principle, one can attempt to nonparametrically es-
timate the set Q and explore inference for functionals with domain Q. This problem is
equivalent to the following constrained optimization problem. Let f (·, ·) denote the unob-
served joint density function of (P, Y ), and Pr(p,Yk) denote the observed joint distribution
of (P,Yk). For a price increase from p0 to p1, the upper bound of the expected CV can be
obtained by solving the constrained, infinite-dimensional optimization problem:

max
f(·,·),q(·,·)

∫ p1−p0

0
q (p0 + a, y0 + a) da,
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s.t. ∫
Yk
q (p, y)× f (p, y) dy = π(p,Yk)Pr(p,Yk)︸ ︷︷ ︸

Observed

, k = 0, 1, ...,K,

∫
Yk
f(p, y)dy = Pr(p,Yk)︸ ︷︷ ︸

Observed

, k = 0, 1, ...,K, (5)

∂

∂y
q (p, y) > 0, and

∂

∂y
q (p, y) +

∂

∂p
q (p, y) < 0.

Since an admissible choice of f is where the entire probability mass within each observed
income interval is concentrated at the right end-points, we can satisfy the first constraint
in (5) by setting q (p, y) = q

(
p, yk+1

)
for all y ∈ Yk. Assumption 1(ii), the integrand

q (p, y0 + p− p0) in the objective function can take a value at least as high as q
(
p, yk+1

)
where yk+1 is the right end point of the observed income interval containing y0 + p − p0.3

However, q
(
p, yk+1

)
is also unobserved, and we will need to find an upper bound on it.

Note that the probability mass on the next interval to the right, i.e.
[
yk+1, yk+2

]
can be

concentrated at yk+1. Therefore, the sharp upper bound for q (p, y0 + p− p0) is given by
q
(
p, [yk+1, yk+2)

)
, i.e. π(p,Yk+1). A similar idea works for the lower bound. For example,

for y ∈ [y2, y3), π(p, [y1, y2)) ≤ q(p, y) ≤ π(p, [y3, y4)), as illustrated in Figure 1. Formally,
the identified set of q in the presence of interval-censored income and under Assumption 1 is

Qdata ≡ {q : L(p, y) ≤ q(p, y) ≤ U(p, y), for all (p, y) ∈ P × Y} ,where (6)

L(p, y) =

K∑
k=1

π(p,Yk−1)1
{
y ∈ Yk

}
and

U(p, y) =
K−1∑
k=0

π(p,Yk+1)1
{
y ∈ (yk, yk+1]

}
+ 1{y > yK}.

As the bounding functions (L(p, y), U(p, y)) are between zero and one, Qdata is bounded and
convex. Under Assumption 1, the identified set Qdata describes all the information available
from the data. The above argument shows Qdata is sharp (see Proposition 1 in Manski and
Tamer (2002)).

The bounding functions (L,U) of q, defined in (6) can be used to compute the bounds
for the average CV. However, since the bounding functions are averages of the conditional
choice probabilities over the income interval π(·,Yk), it is nontrivial to impose the Slutsky
restriction in nonparametric estimation of π(p,Yk). But without the Slutsky restrictions, the
resulting identified set for the average CV based on π(·, Yk) might not be tight. To impose

3By a similar logic, the integrand will take a value no smaller than q
(
p, yL (p)

)
where yL (p) is the left end point

of the observed income interval containing y0 + p− p0, etc.
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Figure 1: The curve is the true structural choice probability q(p, y) at a price p. The horizontal axis is the
income variable y, whose support is partitioned to four intervals by a set of grid points {y1, y2, y3}. The
upper bounding function U(p, y) (blue dashed line) and the lower bounding function L(p, y) (green solid
line) are composed of the conditional choice probabilities π(p,Yk) ≡ E[Q|P = p, Y ∈ Yk] for k = 0, 1, 2, 3.

Slutsky restrictions while allowing for interval-data, we begin with a parametric specification
of q(·) in Section 3.

3 Parametric modelling

We consider a parametric model q (x) = Φ(x>β), where Φ is a specified link function. For
example, Φ can be the normal C.D.F. for a probit model. Assumption of parametric forms
for the outcome equation is ubiquitous in the interval data literature, c.f. Manski and Tamer
(2002), Wan and Xu (2015) (we discuss mis-specification issues in Section 6, below). Now,
given the parametric model, since q depends only on β, we can re-write our functional of
interest as an operator f on the parameter β by f(β) ≡ f̄(Φ(x>β)). The linear shape
restriction R̄(q) ≤ 0 implies there exists a function R such that R(β) ≤ 0 if and only if
R̄(Φ(X>β)) ≤ 0 almost surely. Then our problem in (2) becomes one of conducting inference
on a nonlinear function of β that is partially identified by conditional moment inequalities
and shape restrictions R(β) ≤ 0.

In particular, for our binary choice model, the covariates X = (1, P, Y )>. A paramet-
ric specification of the choice probability q(p, y) is given by Φ(β0 + βP p + βY y). Then the

11

 Electronic copy available at: https://ssrn.com/abstract=3167071 



constraints in Qdata in (6) can be expressed by 2K conditional moment inequalities:

E[(−Q+ Φ(β0 + βPP + βY y
k))1{Y ∈ Yk}|P ] ≤ 0 and

E[(Q− Φ(β0 + βPP + βY y
k+1))1{Y ∈ Yk}|P ] ≤ 0, for k = 1, ...,K. (7)

We impose the shape restrictions implied by economic theory: βY ≥ 0 and βP + βY ≤ 0,

i.e., R(β) =

(
0 0 −1

0 1 1

)
(β0, βP , βY )> ≤ 0. This setup covers many general objects of

interest. For example, for the marginal effect of income on the choice probability, f(β) =

βY φ((1, p, y)β); for the average CV for a price change from p0 to p1 at income y0, we have
that f(β) =

∫ p1−p0
0 Φ(β0 + βP (p0 + a) + βY (y0 + a))da. Therefore the set in (2) becomes[

inf
q∈Q

f̄(q), sup
q∈Q

f̄(q)

]
=

[
min
β∈B

f(β),max
β∈B

f(β)

]
,where B ≡ Bdata ∩ Bmodel,

Bdata ≡ {β : (7) holds.} and Bmodel ≡ {β : βY ≥ 0, βY + βP ≤ 0}. (8)

We propose a tractable approach that transforms the problem in (2) to perform inference
on f(β) and its identified set, denoted by

[
f l, fu

]
. In the following, we first characterize the

identified set for β. Then we search for the maximum and minimum of nonlinear functions
of β over the identified set subject to shape restrictions.

Estimation Overview Given that q (x) = Φ
(
x>β

)
, the parameter β can be written as

the minimizer of a quadratic loss function,

β = arg min
b∈Rdx

Eµ
[(

Φ−1(q(X))−X>b
)2
]

=
(
Eµ
[
XX>

])−1
Eµ
[
XΦ−1(q(X))

]
, (9)

where Eµ[g(X)] denotes the expectation of a known function g(X), when X is distributed
according to a continuous measure µ on the support of the covariates X. Since the true
distribution of X is unknown due to interval censoring of income, there is no unique way
to choose the measure µ (analogous to choosing the weighting matrix for constructing the
criterion function in moment (in)equality models), except to ensure that µ is consistent with
the observed feature of the data. We discuss more on the choice of µ below.

Given µ, as q is partially identified by Q = Qdata ∩ Qmodel, we can define a set of obser-
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vationally equivalent parameter vectors β as follows:

Bµ ≡ Bdata,µ ∩ Bmodel,where

Bdata,µ ≡
{
β =

(
Eµ
[
XX>

])−1
Eµ
[
XΦ−1(q(X))

]
for some q ∈ Qdata

}
and (10)

Bmodel ≡ {β : R(β) ≤ 0}.

This results in an identified set for f(β):[
min
β∈Bµ

f(β),max
β∈Bµ

f(β)

]
(11)

that contains the set defined in (8).

We now show how to calculate this identified set in a computationally tractable way. We
use the well-known fact that the boundary of a convex, compact set is determined by the
hyperplanes that are tangent to it (e.g., Rockafellar (1970), Chapter 13).

Accordingly, let the unit sphere in Rdx be denoted S ≡ {s ∈ Rdx : ‖s‖ = 1}. The support
function of the set Bdata,µ is the set of tangent hyperplanes given by {maxb∈Bdata,µ s

>b : s ∈ S}.
The boundary point of Bdata,µ that maximizes s>b has a closed-form expression given by

β̄(s) ≡ arg max
b∈Bdata,µ

s>b = Σ−1Eµ[X γs(X)],where (12)

Σ ≡ Eµ[XX>] and γs(X) ≡ Φ−1 (U(X))1{s>Σ−1X ≥ 0}+ Φ−1 (L(X))1{s>Σ−1X < 0}.

As q(X) is partially identified by an interval [L(X), U(X)], the constructed variable γs(X)

switches between the bounds Φ−1 (L(X)) and Φ−1 (U(X)) depending on the sign of s>Σ−1X.
Then the maximizer β̄(s) characterizes the boundary of Bdata,µ by tracing out all direction
s ∈ S.

Having the closed-form expression for the boundary points of Bdata,µ, we now characterize
the interior points. As the set Bdata,µ is strictly convex and compact by construction due to
a continuous measure µ, there is a unique point on the boundary of Bdata,µ that intersects
its supporting hyperplane in a given direction (e.g., Bontemps, Magnac, and Maurin (2012)).
So each interior point is a convex combination of the boundary points. It follows that the set
Bdata,µ in (10) can be expressed as

Bdata,µ =
{
β(s, t) : β(s, t) ≡ tβ̄(s) + (1− t)β̄(s0), for s ∈ S, t ∈ [0, 1]

}
for any s0 ∈ S. This is a key step for imposing shape restrictions on β over the parameter
space [0, 1] and for finding the max/min of nonlinear functions of β. The optimization problem
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in (11) becomes  min
(s,t)∈S×[0,1]

R(β(s,t))≤0

f(β(s, t)), max
(s,t)∈S×[0,1]

R(β(s,t))≤0

f(β(s, t))

 ≡ [f l, fu] .
The expression based on β(s, t) changes the parameter space of the optimization problem to
a nonrandom set S × [0, 1]. Figure 2 illustrates the idea by projecting the identified set to
the joint identified set for (βY , βP ).

Figure 2: The joint identified set for (βY , βP ). In the left panel, the boundary point β̄(s) =

arg maxb∈Bdata,µ s
>b for s =

(
0, 0.8, 0.6

)>. In the right panel, the shaded area satisfies the shape re-
striction R(β) = (−βY , βP + βY )> ≤ 0. The red solid line of the line segment of β̄(s0) and β̄(s) lies
in Bµ.

In sum, the estimands are the lower endpoint given by

f l ≡ min
β∈Bµ

f(β) = min
s∈S,t∈[0,1]

f(β(s, t)) subject to R(β(s, t)) ≤ 0, (13)

and the upper endpoint fu that is defined analogously by changing min to max in (13). Our
estimator is a straightforward sample analog as outlined in the procedure below. To perform
inference, we introduce a bootstrap method in Section 4.2.

Estimation Detail

Step 1. Bounding functions L and U .

For each income interval Yk, estimate the conditional choice probability given price
p by a parametric probit/logit or a nonparametric kernel/sieve estimator, denoted by
π̂(p,Yk).

14

 Electronic copy available at: https://ssrn.com/abstract=3167071 



Obtain Φ−1(π̂(p,Yk)) by a transformation of the inverse link function, which constitutes
the bounding functions l̂(p, y) and û(p, y) for Φ−1(q(p, y)).

Step 2. Identified set for β. For each direction on the unit sphere s ∈ S = {s ∈ Rdx : ‖s‖ =

1}, the boundary point of the identified set for β is estimated by an OLS-type estimator

ˆ̄β(s) = Σ−1Eµ[X γ̂s(X)],where Σ = Eµ
[
XX>

]
and

γ̂s(X) = û(X)1{s>Σ−1X ≥ 0}+ l̂(X)1{s>Σ−1X < 0}.

Estimate Eµ[g(X)] by the sample analogue m−1
∑m

j=1 g(Xµj) with a random sample
{Xµj : j = 1, ...,m} from a continuous measure µ.

Step 3. Identified set for f(β). Fixing one direction s0 ∈ S, define a convex combination
β̂(s, t) ≡ t ˆ̄β(s) + (1− t) ˆ̄β(s0) for t ∈ [0, 1]. The lower endpoint is estimated by

f̂ l = min
s∈S

min
t∈[0,1]

f(β̂(s, t)) subject to R(β̂(s, t)) ≤ 0.

The upper endpoint f̂u is estimated the same by changing min to max.

In our welfare analysis for the average CV for a price change from p0 to p1 at income y0,
X = (1, P, Y )> and

f̂ l = min
s∈S

min
t∈[0,1]

∫ p1−p0

0
Φ
(

(1, p0 + a, y0 + a) β̂(s, t)
)
da

subject to

(
0 0 −1

0 1 1

)
β̂(s, t) ≤ 0.

Choice of µ Researchers can specify a continuous measure µ, provided that the resulting
set Bdata,µ is strictly convex and compact. For the general problem in (2), a natural estimator
of µ would be the empirical distribution of the covariates X (e.g., Kline and Santos (2013)).
Such choice is not feasible in our application, as income is interval-censored. In our setup,
we can use the empirical distribution of the price and interval-valued income, assign uniform
density within each income interval,4 and discard the extreme income intervals Y0 and YK .
This is because the lower bound of q(p, y) for y ∈ Y0 is the worst-case bound, 0. The
transformations by the inverse link function Φ−1(0) might not be finite, e.g., a normal C.D.F.
Similarly, the upper bound q(p, y) for y ∈ YK is the worst-case bound, 1. These bounds are

4More specifically, this measure µ specifies the joint probability of (p, y) to be
∑K
k=0 fP |Yk

(p, y)1{y ∈ Yk}/|Yk|,
where |Yk| is the length of the deterministic interval Yk. The conditional density function of price given income
interval fP |Yk

(p, y) is consistently estimated by its empirical counterpart using the empirical distribution function.
And for each observation we draw income value from a uniform distribution over that income interval.
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not informative and implied by the link function bounded between 0 and 1. So the measure µ
also summarizes the information contained in Qdata. Instead of simulating from a uniform
distribution within each income interval, we could also use the marginal distribution of income
that might be available from other datasets. In practice, we can check the sensitivity of the
estimates to different µ. In our empirical application in Section 7, we compare the estimates
using the empirical measure described above and using an uniform measure that assigns equal
weight over the support of income and price.

We view the measure µ as somewhat similar in spirit to the choice of instrument func-
tions that transform conditional moment inequality/equality restrictions to unconditional
ones (Andrews and Shi (2013), Chen (2007)), and the choice of weighting matrix in forming
the optimization criterion function thereof. In theory, one would aim to exhaust all possible µ
such that ∩µBdata,µ = Bdata ≡ {β : (7) holds.} to avoid losing information in the conditional
moment inequalities. But it is not obvious as to how one may implement this in practice.

3.1 Relation to existing literature

An important feature of our method is that we characterize the interior of the identified set of
β, because the optimizer might locate at the interior. Toward that end, we build on prior work
by Beresteanu and Molinari (2008), Bontemps, Magnac, and Maurin (2012), Chandrasekhar,
Chernozhukov, Molinari, and Schrimpf (2012), and Kline and Santos (2013). Their focus is on
the identified set for the underlying function (i.e., q (·) known up to β), which they construct
by characterizing the boundary of the identified set of β using the support functions. In
contrast, our interest is in functionals of partially identified functionals of q (·), subject to
q (·) satisfying a set of shape restrictions. Thus the above methods cannot be directly applied
to our problem. Our approach, instead, is to express the interior points in terms of support
functions, and then to obtain a closed-form expression for the interior points of the identified
set for β. These, in turn, yield simple expressions for bounds on the scalar parameter of
interest, viz. average welfare.

Some results on inference for functions of partially identified parameters appear in Bugni,
Canay, and Shi (2017) and Kaido, Molinari, and Stoye (2017) for unconditional moment
inequality models; these cannot be applied directly to our conditional moment inequality
setting in (7). It may be possible to transform our conditional moment inequalities to a finite
number of unconditional moment inequalities (c.f. Andrews and Shi (2013)), and then to
apply one of these methods for valid inference. But such extensions appear more complicated
for our set-up, relative to a direct and simpler alternative, which is feasible here due to the
special structure of our problem that delivers a compact and convex identified set.

In a related paper, Chernozhukov, Newey, and Santos (2015) study inference for func-
tionals of parameters defined by very general conditional moment restrictions and shape
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constraints. Their sieve generalized method of moments J-test can be applied to both a
parametrically specified q(·) in (8) and nonparametrically specified q(·) in (2), and encom-
passes the case where the function q is point-identified. However, the test-inversion approach
can be computationally demanding, as it requires searching for all points not rejected by a
hypothesis-test. On the other hand, this approach can cover more general types of identified
sets, beyond what we need for our problem. In particular, in our setting, the function of
interest is set-identified by a compact convex set (c.f. the set Qdata in (6)), which motivates
the support-function approach, and enables us to provide a direct inference procedure that is
computationally simpler.5 Finally, when the parametric model is mis-specified, our approach
can be interpreted via a "best-parametric approximation" route (see Section 6); the inter-
pretation of "pseudo-true" parameters using the above-mentioned alternative methods is less
obvious.

For the case where the function q is point-identified with shape restrictions, Horowitz and
Lee (2018) investigate estimation and inference under shape restrictions. That is not the case
in our set-up, where interval censoring of income prevents the choice probability from being
point-identified even without any shape restrictions.

4 Inference

This section presents the theory of inference based on the estimation method described in
Section 3. Estimating the endpoints

[
f l, fu

]
in (13) is a constrained stochastic optimization

problem. Our main result is the limiting distribution of
(
f̂ l, f̂u

)
in Theorem 1 in Section 4.1.

The limiting distribution is not pivotal and depends on the binding constraints. Nonetheless,
Hadamard directional differentiability and a corresponding delta method allow us to apply the
bootstrap proposed by Dümbgen (1993), Fang and Santos (2019), and Hong and Li (2018).
Theorem 2 in Section 4.2 shows the validity of this bootstrap method in our context.

5To obtain a confidence region, our bootstrap-based inference method with B bootstrap replications involves
2(B + 1) nonlinear optimization problems, each of which can be easily solved by routines available in standard
packages. In the test-inversion approach, designed for general identified sets, the bootstrap procedure to simulate
the critical values is often repeated over all the hypothetical values of f(β) in the null hypothesis.
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4.1 Asymptotic theory

We express our estimator via a constrained stochastic optimization problem. Recall that our
estimand is

f l = min
s∈S,t∈[0,1]

f(β(s, t)) subject to R(β(s, t)) ≤ 0, where β(s, t) = tβ̄(s) + (1− t)β̄(s0)

(14)

for a s0 ∈ S and β̄(s) is defined in (12). For ease of exposition, the presentation focuses
on the lower endpoint f̂ l. The result for the upper endpoint bound f̂u is symmetric by
replacing the objective function with −f in (14). Notice that when the objective function f
is convex and nonlinear, −f is generally nonconvex. To deal with these cases, we allow for
a nonconvex objective function for the minimization problem in (14). Our main theoretical
contribution is Theorem 1 that shows the asymptotic properties of f̂ l by Hadamard directional
differentiability.

The estimand f l can be expressed as a mapping from a function space to the real line
Dφ → R:

φ(θ) ≡ min
(s,t)∈S×T

t∈[0,1], θ(2)(s,t)≤0

θ(1)(s, t), (15)

where θ =
(
θ(1), θ(2)>)> ∈ Dφ ≡ C(S × [0, 1]) × · · · × C(S × [0, 1]) ⊂ RdR+1 and T ⊂

R is a convex compact set. Denote the true θ0(s, t) ≡
(
f (β(s, t)) , R(β(s, t))>

)> and the

estimator θ̂(s, t) =
(
f
(
β̂(s, t)

)
, R
(
β̂(s, t)

)>)>. Then the estimands are f l = φ(θ0) and fu =

φ
((
− θ(1)

0 , θ
(2)>
0

)>). Our sample analog estimator outlined in Section 3 is denoted by φ(θ̂).

To apply the delta method to analyze φ(θ̂), we require
√
n(β̂(s, t) − β(s, t)) to weakly

converge to a tight Gaussian process indexed by (s, t), as in Fang and Santos (2019). In
order to devote maximum space to what is new in our work, we assume the availability of
such a preliminary estimator for the support function process, e.g., Chandrasekhar, Cher-
nozhukov, Molinari, and Schrimpf (2012).6 Assumption 2 states the corresponding high-level
assumption.

Let l∞(X ) be a space of bounded functions on X .

Assumption 2 (Support function process) (i) Bdata,µ is non-empty, strictly convex, and

6The literature mostly focuses on the support function s>β̄(s) rather than the boundary point β̄(s), e.g,
Chandrasekhar, Chernozhukov, Molinari, and Schrimpf (2012) and Kline and Santos (2013). The result in
Chandrasekhar, Chernozhukov, Molinari, and Schrimpf (2012) should be modified to the weak convergence of
√
n( ˆ̄β(s)− β̄(s)).
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compact; (ii) There exist consistent estimators of (l(x), u(x)) such that
√
n
( ˆ̄β − β̄

)
=⇒ Gb,

where Gb is a tight Gaussian process on l∞(S)× · · · × l∞(S) ⊂ Rdx ; (iii) The derivatives of
f and R exist and are non-zero and continuously differentiable such that

√
n(θ̂− θ0) =⇒ G0,

where G0 is a tight Gaussian process on l∞(S × [0, 1])× · · · × l∞(S × [0, 1]) ⊂ RdR+1 with a
non-degenerate covariance function.

Assumption 2(i) is implied by properly choosing the measure µ as discussed in the pre-
vious section. So Σ = Eµ

[
XX>

]
exists and β̄(s) is well-defined for all s ∈ S.7 For

the preliminary nonparametric estimators (l̂(x), û(x)), Chandrasekhar, Chernozhukov, Moli-
nari, and Schrimpf (2012) suggest using series logit estimation in Hirano, Imbens, and Rid-
der (2003).8 By the standard delta method, Assumption 2(ii) and (iii) imply θ0(s, t) =(
f(β(s, t), R(β(s, t))>

)> has a regular estimator θ̂(s, t) =
(
f(β̂(s, t), R(β̂(s, t))>

)>
that weakly

converges to a tight non-degenerate Gaussian process indexed by (s, t).
Using the delta method for Hadamard directionally differentiable functionals and building

on the preliminary result in Assumption 2, we derive the limiting distribution of f̂ l in Theo-
rem 1 below. The limiting distribution is not pivotal, depending on the binding constraints
whose Lagrangian multipliers are not zero. Our main theoretical result will follow from the
next constraint qualification condition for Hadamard directional differentiability.

Assumption 3 (i) There exists s0 ∈ S such that R(β̄(s0)) ≤ 0; (ii) R(β) is linear in β.

The optimization literature, e.g., Theorem 4.25 in Bonnans and Shapiro (2013), has pro-
vided general results for optimization problems with nonlinear nonconvex objective functions
and constraints.9 Assumption 3 gives the low-level constraint qualification conditions un-
der our setup; see more technical detail in the Appendix. Assumption 3(i) implies that
the constrained space defined by the shape restriction from Bmodel is not a strict subset of
Bdata,µ, meaning that the data provides informative bounds. Assumption 3(i) is potentially
testable given the asymptotic theory of the support function estimator in Chandrasekhar,
Chernozhukov, Molinari, and Schrimpf (2012). We choose the fixed direction s0 in our esti-
mands (f l, fu) to satisfy Assumption 3(i). So for each s ∈ S, there exists t ∈ [0, 1] such that
R(β(s, t)) ≤ 0 and the optimal solution exists.

7In the presence of discrete covariates, we could apply the approach in Chandrasekhar, Chernozhukov, Molinari,
and Schrimpf (2012) and introduce a conservative distortion to our inference method. It is known that when
X contains discrete covariates, there are exposed faces on Bdata,µ and β̄(s) is not everywhere differentiable in
s ∈ S (Bontemps, Magnac, and Maurin, 2012). Consequently, the estimator of β̄(s) does not weakly converge to
a Gaussian process as in Assumption 2(ii). Chandrasekhar, Chernozhukov, Molinari, and Schrimpf (2012) propose
a jittered estimation by adding a small noise to discrete covariates. Heuristically, they construct a super-set of
Bdata,µ and obtain a uniform limiting distribution of the corresponding support function estimator.

8Alternatively, we might use a kernel estimator as in Lee (2018). It is known that
√
n( ˆ̄β(s)− β̄(s)) can be shown

to converge to a Gaussian process by controlling the bias of the nonparametric preliminary estimators.
9We thank one anonymous referee for the reference.
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For each s ∈ S, let the set of the optimal solutions be denoted by T̄ (s) ≡ arg mint∈T f(β(s, t))

subject to R(β(s, t)) ≤ 0 and t ∈ [0, 1]. Define the Lagrangian L(s, t, λ) ≡ f(β(s, t)) +

λ>r R(β(s, t)) − λ0t + λ1(t − 1) for the Lagrangian multiplier λ = (λ>r , λ0, λ1)>. For each
s ∈ S and t̄ ∈ T̄ (s), let the corresponding set of the Lagrangian multipliers be Λ(s, t̄) ≡ {λ ∈
RdR+2 : L(s, t̄, λ) = mint∈T L(s, t, λ), λ ≥ 0, λ>r R(β(s, t̄)) = 0, λ0t̄ = 0, and λ1(t̄ − 1) = 0}.
Let the set of the optimal solutions be denoted by S̄ ≡ arg mins∈S mint∈T̄ (s) f(β(s, t)).

The following definition is adapted from Fang and Santos (2019).

Definition 1 (Hadamard directional differentiability) Let D and E be Banach spaces,
and φ : Dφ ⊆ D→ E. The map φ is said to be Hadamard directionally differentiable at θ ∈ Dφ
tangentially to a set D0 ⊂ D, if there is a continuous map φ′θ : D0 → E such that:

lim
n→∞

∥∥∥∥φ(θ + εnhn)− φ(θ)

εn
− φ′θ(h)

∥∥∥∥
E

= 0,

for all sequence {hn} ⊂ D and {εn} ⊂ R+ such that εn ↓ 0, hn → h ∈ D0 as n → ∞ and
θ + εnhn ∈ Dφ for all n.

When φ′θ is linear for all sequences {εn} ⊂ R such that εn → 0, the map φ is Hadamard
differentiable at θ ∈ Dφ tangentially to a set D0 ⊂ D.

Theorem 1 (Asymptotic distribution) Suppose Assumptions 2 and 3 hold. Then

√
n
(
f̂ l − f l

)
=
√
nmin
s∈S̄

min
t∈T̄ (s)

max
(λ>r ,λ0,λ1)>∈Λ(s,t)

(
f(β̂(s, t))− f(β(s, t))

+ λ>r

(
R
(
β̂(s, t)

)
−R (β(s, t))

))
+ op(1)

L−→ φ′θ0 (G0) ,

where the Hadamard directional derivative in the direction h =
(
h(1), h(2)>)> ∈ Dφ at θ0 is

φ′θ0(h) = mins∈S̄ mint∈T̄ (s) maxλ∈Λ(s,t)

(
h(1)(s, t) + λ>r h

(2)(s, t)
)
.

When the optimal solution is unique (S̄ and T̄ (s) for any s ∈ S̄ are singletons), the
Hadamard directional derivative of the mapping φ(θ) in the direction h is linear in h, i.e., the
mapping φ is Hadamard differentiable. So f̂ l = φ(θ̂) is a regular estimator and is asymptoti-
cally normal. When the optimal solution is not unique, the Hadamard directional derivative
φ′θ0(h) is not linear in h, i.e., the mapping is not differentiable. Consequently the estimator
is not regular and the limiting distribution is not pivotal. The non-unique optimal solutions
could occur when there is an inequality restriction imposed directly on the objective function,
i.e., f ∈ R. Figure 3 illustrates one example when S̄ is not a singleton.

Inference by directly estimating or simulating the asymptotic distribution is difficult. This
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Figure 3: Consider the income coefficient f(β) = (0, 0, 1)β = βY and the lower endpoint of its
identified set arg minβ∈Bµ βY = 0. The dashed line indicates the set of the optimal solutions S̄ =

arg mins∈S(0, 0, 1)β(s, t̄(s)).

is because we need to consistently estimate the Lagrangian multipliers, which depend on
whether the constraints bind and might not be unique. But the Hadamard directional differ-
entiability serves for the bootstrap procedure recently developed by Fang and Santos (2019)
and Hong and Li (2018). Using the bootstrap in the next section, we will not need to estimate
the optimal solution and Lagrangian multipliers.

4.2 Bootstrap

When the optimal solution is unique and hence φ is Hadamard differentiable, Fang and San-
tos (2019) show that the estimator is regular and the standard bootstrap is valid. When
the optimal solutions are not unique and φ is only Hadamard directionally differentiable,
the conventional bootstrap fails. They propose an alternative bootstrap using a consistently
estimated Hadamard directional derivative. Specifically, suppose there is a valid bootstrap
procedure for θ̂ such that the bootstrap sample

√
n
(
θ̂∗− θ̂

)
consistently estimates the limiting

distribution of
√
n
(
θ̂ − θ

)
conditional on the data. Fang and Santos (2019) show that the

standard bootstrap using
√
n
(
φ(θ̂∗)− φ(θ̂)

)
is not valid when φ is not Hadamard differen-

tiable. They propose an alternative bootstrap method: given a consistent estimator φ̂′θ0(·)
for the Hadamard directional derivative, φ̂′θ0

(√
n(θ̂∗ − θ̂)

)
consistently estimates the limiting

distribution of
√
n
(
φ(θ̂)− φ(θ)

)
.

However in our case, it is hard to estimate the Hadamard directional derivative consistently
since it involves estimating the Lagrangian multipliers and which constraint binds. Hong
and Li (2018) propose the direct analog estimator of numerical differentiation: φ̂′θ0(h) =

(φ(θ̂ + hεn) − φ(θ̂))/εn, for a sequence εn ↓ 0 and εn
√
n → ∞. Then the Fang-Santos
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alternative bootstrap uses

φ̂′θ0

(√
n(θ̂∗ − θ̂)

)
=
φ
(
θ̂ + εn

√
n(θ̂∗ − θ̂)

)
− φ(θ̂)

εn
,

which is the rescaled bootstrap in Dümbgen (1993). We choose εn = c(log n)−1/2 for some
constant c and assess the choice of c via simulation. Hong and Li (2018) show that their pro-
posed estimator is consistent for φ′θ0(h) when φ is Lipschitz continuous. Theorem 2 formalizes
this statement in our context.

Theorem 2 Assume θ(2) is convex in t. Then φ as defined in (15) is Lipschitz continuous
and its Hadamard directional derivative is consistently estimated by φ̂′θ0(h) = (φ(θ̂ + hεn) −
φ(θ̂))/εn, for h ∈ C(S × [0, 1]), εn ↓ 0 and εn

√
n→∞.

Now we outline the numerical delta method bootstrap procedure following the estimation
procedure in Section 3.

Step B1. Suppose a valid bootstrap procedure for β̂(s, t). Generate a bootstrap sample {X∗i } and
follow Step 1 to 2 to calculate β̂∗(s, t). Repeat B times to obtain the bootstrap estima-
tors {β̂∗b (s, t)}Bb=1 such that

√
n
(
β̂∗(s, t) − β̂(s, t)

)
estimate the limiting distribution of

√
n
(
β̂(s, t)− β(s, t)

)
consistently, conditional on the data.10

Step B2. Choose εn satisfying εn ↓ 0 and εn
√
n→∞. Compute the bootstrap samples of

Z l∗ =
φ
(
θ̂ + εn

√
n(θ̂∗ − θ̂)

)
− φ(θ̂)

εn
,

where φ(θ̂) = f̂ l and

φ
(
θ̂ + εn

√
n(θ̂∗ − θ̂)

)
≡ min

s∈S,t∈[0,1]
f
(
β̂(s, t)

)
+ εn
√
n
(
f
(
β̂∗(s, t)

)
− f

(
β̂(s, t)

))
subject to

R
(
β̂(s, t)

)
+ εn
√
n
(
R
(
β̂∗(s, t)

)
−R

(
β̂(s, t)

))
≤ 0.

The bootstrap samples for the upper endpoint Zu∗ are computed analogously by chang-
ing min to max.

Step B3. A (1− α)-level confidence interval

10Fang and Santos (2019) formally provide conditions for the bootstrap estimator in their Assumption 3. The
nonparametric, Bayesian, block, score, and weighted bootstrap are included. Chandrasekhar, Chernozhukov, Moli-
nari, and Schrimpf (2012) propose a Bayesian bootstrap.
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– for f(β) is
[
f̂ l − ĉlα/

√
n, f̂u + ĉuα/

√
n
]
, where the critical values ĉlα and ĉuα are de-

fined by Pr
(
Z l∗ ≤ ĉlα

)
= 1− α and Pr (Zu∗ ≥ −ĉuα) = 1− α.

– for the identified set
[
f l, fu

]
is
[
f̂ l − Ĉ lα/

√
n, f̂u + Ĉuα/

√
n
]
, where the critical

values Ĉ lα and Ĉuα are defined by Pr
(
Z l∗ ≤ Ĉ lα, Zu∗ ≥ −Ĉuα

)
= 1− α.

An asymptotically valid pointwise 1 − α confidence interval for f(β) is the intersection
of one-sided confidence interval for f̂u and f̂ l. The confidence interval for the identified set[
f l, fu

]
might be of interest when we allow mis-specification and do not assume there is a

unique true f(β) = f̄(g) in
[
f l, fu

]
(Tamer, 2010). Notice that the limiting distribution

of f l and fu are not independent of one another and the bootstrap procedure consistently
estimates the joint asymptotic distribution. The construction of the confidence intervals is
based on Imbens and Manski (2004), Stoye (2009), Chandrasekhar, Chernozhukov, Molinari,
and Schrimpf (2012), and Freyberger and Horowitz (2015).

5 Endogeneity

In this section, we first provide some discussion of welfare analysis under endogeneity. We first
consider the case where income is both endogenous and interval censored, and we have access
to an instrumental variable Z that is correlated with income but independent of unobserved
preference heterogeneity. The identified set for the structural choice probability can now be
constructed as follows.

Let the outcome variable Q = g(P, Y, η), where g is an unknown structural function of
the observed variables (P, Y ) and the unobserved heterogeneity η. For the binary choice
model in Section 2.1, Q = 1{U1(Y − P, η) − U0(Y, η) ≥ 0}. We now state a proposition
that shows how to obtain a set that contains the true structural choice probability (SCP)
q(p, y) =

∫
g(p, y, η)dFη(η) at a hypothetical price and income. To state this proposition, let

Z denote the excluded exogenous variables and P be the included exogenous variables. We
assume that the good under consideration is normal, and allow Y to be endogenous in the
sense that Fη|Y 6= Fη. Assumption 4 formally states the conditions.

Assumption 4 (Instrumental variable) (i) The function g(p, y, η) is increasing in y for
each p and η; (ii) The instrumental vector Z is excluded from the function g; (iii) η is
independent of P and Z; (iv) There exist (y, z) such that FY |Z(y|z) 6= FY (y).

The conditions in the above assumption can be used to derive bounds for the SCP. For
ease of exposition, we suppress P in the following discussion. Recall that Y is observed in
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intervals of the form Yk ≡ [yk, yk+1) for k = 0, 1, ...,K−1, and YK is the interval [yK , yK+1].11

By the monotonicity condition (i), the conditional choice probability given income interval,
i.e., E[Q|Y ∈ Yk] can be consistently estimated from the data and satisfies

E[Q|Y ∈ Yk] ≡
∫
Yk

E[g(Y, η)|Y = y]dFY (y)/Pr(Y ∈ Yk) (16)

≤
∫ yk+1

yk
E[g(yk+1, η)|Y = y]dFY (y)/Pr(Y ∈ Yk)

≤ E[g(y, η)|Y ∈ Yk] for y ≥ yk+1,

which is the conditional SCP at y ≥ yk+1 for the subpopulation whose income lies in the inter-
val Yk. When Y is endogenous, the conditional SCP would be different from the unconditional
SCP E[g(y, η)]. So the conditional choice probability given income interval E[Q|Y ∈ Yk]
bounds only the conditional SCP given Yk rather than the unconditional SCP, which is our
object of interest. Figure 4 illustrates this idea. This is in contrast to the exogenous income
case where we only need the monotonicity Assumption 1(ii) on the structural choice proba-
bility q(p, y) = E[g(p, y, η)] = E[g(P, Y, η)|P = p, Y = y]. Note that the last equality does
not hold for the endogenous income. When the income variable is endogenous, we assume the
good to be normal for everyone, i.e., the binary choice g(p, y, η) = 1{U1(y− p, η) > U0(y, η)}
is increasing in y for any η and p in Assumption 4(i).

Interestingly, however, a bound for the unconditional SCP can be obtained by averaging
over all income intervals:

q(yj) =
K∑
k=0

E[g(yj , η)|Y ∈ Yk]Pr(Y ∈ Yk) ≥
from (16)

j−1∑
k=0

E[Q|Y ∈ Yk]Pr(Y ∈ Yk).

Furthermore, by the exogeneity condition Assumption 4(iii), the instrumental variable Z
satisfies q(yj) = E[g(yj , η)] = E[g(yj , η)|Z]. So the inequalities in (16) hold when Z is
included in the conditioning covariates. Thus, by taking intersection over values of Z, we
obtain a tighter identified set for q in the presence of both interval-censored and endogenous
income. This is formally stated in the following proposition.

Proposition 2 Suppose Assumption 4 holds. Then for j = 1, .2, ...,K and y ∈ Yj ≡

11A control function approach is occasionally used to account for endogeneity in nonlinear models, e.g., Blundell
and Powell (2003), Imbens and Newey (2009), Petrin and Train (2010). However, when Y is only observed in
intervals, the control function is not point-identified, making this approach infeasible.
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Figure 4: The curve is the true conditional structural choice probability (SCP) for the subpopulation
whose income lies in the interval Y1, E[g(p, y, η)|Y ∈ Y1] at a price p. The horizontal axis is the income
variable y, whose support is partitioned to four intervals by a set of grid points {y1, y2, y3}. The blue
dashed line is the upper bounding function and the green solid line is the lower bounding function. When
income Y is endogenous, the conditional choice probability given income interval Y1, π(p,Y1) ≡ E[Q|P =

p, Y ∈ Y1], provides bounds for only the conditional SCP given Y1 rather than the unconditional SCP.

[yj , yj+1), the structural choice probability q(p, y) satisfies

sup
z

E
[
Q
∣∣P = p, Z = z, Y ∈

[
y0, yj

) ]
Pr
(
Y ∈

[
y0, yj

) ∣∣P = p, Z = z
)

≤ q(p, yj) ≤ q(p, y) ≤ q(p, yj+1)

≤ inf
z
E
[
Q
∣∣P = p, Z = z, Y ∈ [yj+1, yK+1)

]
Pr
(
Y ∈ [yj+1, yK+1)

∣∣P = p, Z = z
)

+ Pr
(
Y ≤ yj+1

∣∣P = p, Z = z
)
.

One can easily extend this approach to include other covariates along with the included
exogenous P , and to obtain bounds on welfare estimates from the identified set of choice
probabilities.12 If Z does not determine Y , i.e., the instrument relevance Assumption 4(iv)
is violated, then E[Q|P = p, Z = z, Y ∈

[
y0, yj

)
]Pr(Y ∈

[
y0, yj

)
|P = p, Z = z) =

E
[
Q|P = p, Y ∈

[
y0, yj

)]
Pr
(
Y ∈

[
y0, yj

)
|P = p

)
. Proposition 2 still provides the identified

set, but the tightening obtained via intersections over Z is no longer viable.

12Substantively similar ideas are discussed in Manski (1994) and, at a somewhat abstract level, in the generalized
instrumental variable model in Chesher and Rosen (2017).
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Price Endogeneity When we have individual level data, endogeneity of price is typically
of lesser concern, because an individual’s choice or her omitted characteristics are unlikely
to affect the market price she faces. If price is suspected of being endogenous (e.g., due to
omitted product quality), and one has a potential IV13, then a control-function methods used
in the first step of our estimation. In particular, suppose there exists a control variable V
such that P is independent of η conditional on V . For example, Blundell and Powell (2003)
assume price P = E[P |W ]+e, where the IVW is independent of (η, e) and the disturbance e is
continuously distributed with C.D.F. strictly increasing on the support of e. Then the residual
V = P −E[P |W ] is a valid control variable. By the conditional independence assumption and
the normal good Assumption 4(i), the conditional choice probability given income interval,
price, and the control variable provides a bound for the conditional SCP,

E[Q|Y ∈ Yk, P = p, V = v] ≤ E[g(yk+1, p, η)|Y ∈ Yk, P = p, V = v] = E[g(yk+1, p, η)|Y ∈ Yk, V = v]

≤ E[g(y, p, η)|Y ∈ Yk, V = v] for y ≥ yk+1.

Next, an average taken over the marginal distribution of V in the income interval Yk under
the standard common support assumption yields

πV (p,Yk) ≡
∫

E[Q|Y ∈ Yk, P = p, V = v]dFV |Y ∈Yk(v)

≤ E[g(y, p, η)|Y ∈ Yk] for y ≥ yk+1.

We therefore obtain a lower bound for the conditional structural choice probability given Yk,
which is the unconditional SCP q(y, p) for the exogenous income case.

6 Mis-specification and best parametric approxima-

tion

Going back to the original problem of estimating the endpoints of the identified set in (2),
notice that the parameter space Q of the optimization problem is, in general, nonparametric
and infinite-dimensional. Our parametric model can be viewed as an approximation, designed
to make this constrained stochastic optimization problem tractable. We now provide a brief
interpretation of our parametric estimates and related inference with reference in terms of
a best parametric approximation. In particular, for our binary choice model, the unobserved
heterogeneity may not have a normal or logistic C.D.F., but the corresponding inference

13Typical examples used in the literature include cost-shifters on the supply side, size of the market and average
price of the same alternative in other markets (Hausman, 1997; Petrin and Train, 2010).
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theory presented in Section 4 also works under the weaker assumption that the parameter
belonging to Bµ in (10) simply provides a best parametric fit. In other words, the parametric
model may be mis-specified in the sense that there is no β ∈ Rdx such that q(X) = Φ(X>β)

almost surely, so there might not be a β satisfying the conditional moment inequalities in
(7). Since the random utility model with unrestricted heterogeneity in Section 2.1 does
not specify a parametric structural choice probability, our estimand may be interpreted as
arising from a parametric approximation. That is, the parameter β is a best parametric
approximation to the choice probability q in the sense that it minimizes a quadratic loss
function Eµ

[(
Φ−1(q(X))−X>β

)2], where µ is a continuous measure on the support of X,
with respect to which "best approximation" is to be defined and interpreted. Parameters of
this type have been studied, for example, in Horowitz and Manski (2006), where Φ is a logistic
C.D.F. and Φ(X>β) is the best logit predictor under square loss of the conditional log-odds
of a binary random variable. Other examples discussed in Chandrasekhar, Chernozhukov,
Molinari, and Schrimpf (2012) include distribution and duration regressions with an interval-
valued dependent variable. Therefore each parameter in Bdata,µ provides an approximation to
a function q that is partially identified by a bounded convex set Qdata in (6). Consequently,
the problem of calculating bounds for f̄(q) is approximated by bounds for f(β) in (11).

One may compare this to mis-specification in point-identified models. Indeed, in the
point-identification literature, a pseudo-true parameter is often defined as some approxima-
tion to the truth, e.g., Chamberlain (1994). For example, the OLS coefficient estimates
arg minb E[(g(X) − X>b)2], where the conditional mean function g(x) = E[Y |X = x] is
point-identified. We can define an alternative pseudo-true parameter as the best linear
approximation to g(x) by βµ ≡ arg minb Eµ[(g(X) − X>b)2], where the loss function is∫
X (g(x) − x>b)2fµ(x)dx = E[(g(X) − X>b)2fµ(X)/f(X)] by a different measure µ of X
with density function fµ(·) rather than the true density function f(·). If the conditional
mean function is correctly specified by a linear model g(x) = x>β∗, then β∗ = βµ for any
measure µ. Analogously in the partially identified setting, when the parametric model is
correctly specified, the identified set Bdata ≡ {β : (7) holds} is a subset of Bdata,µ defined in
(10), for any measure µ, i.e., we estimate min /maxβ∈Bµ f(β) in (11) that is a superset of
the identified set min /maxβ∈B f(β) in (8). Indeed, as pointed out by a referee, a practically
appealing feature of our best parametric approximation approach is that Bdata,µ is in gen-
eral non-empty, non-singleton, and interpretable, even if the model for the structural choice
probability is mis-specified.14

Our inference procedure applies to specifications that can include higher order terms.
Theoretically speaking, including higher order terms would result in an infinite number of

14As such, the caveat that under mis-specification, the estimated identified set assuming a parametric model
could be too small (c.f. Ponomareva and Tamer (2011) and Kline and Santos (2013)) also applies to our analysis.
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inequality restrictions. For example, for a quadratic approximation Φ−1 (q(p, y)) ≈ β0+βP1p+

βP2p
2 + βY y, the Slutsky-type restriction ∂q/∂p+ ∂q/∂y ≤ 0 implies βP1 + 2βP2p+ βY ≤ 0

for all p. Operationally, one can evaluate the restrictions at a finite number of grid points
over the support of the regressors, and apply our our inference method, which would lead to
conservative but valid inference.

When the parametric model is mis-specified, the parameter βµ that provides a best para-
metric approximation to a q ∈ Q might not satisfy the shape restrictions βY ≥ 0 and
βY + βP ≤ 0, i.e., βµ /∈ Bmodel. On the other hand, imposing and not imposing the shape
restrictions on βµ provide different approximations to Q. It seems debatable as to whether
one should impose shape restrictions for the best parametric approximation, i.e., whether one
should use the sets Bµ = Bdata,µ ∩ Bmodel and Bdata,µ. So we also provide inference theory
for the case when we do not impose the shape restrictions in Corollary 1. Now the endpoints
of the identified set are the solutions to min /max(s,t)∈S×[0,1] f(β(s, t)). We present a for-
mal statement of this result, which is an application of Lemma S.4.7 in the Supplemental
Appendix of Fang and Santos (2019).

Corollary 1 (Asymptotic distribution without shape restriction) Suppose Assump-
tion 2 holds. Let the set of the optimal solutions be denoted by A ≡ arg mins∈S,t∈[0.1] f(β(s, t)).

Then
√
n
(
f̂ l − f l

)
=
√
nmin(s,t)∈A f(β̂(s, t)) − f(β(s, t)) + op(1)

L−→ φ′θ0 (G0) , where the
Hadamard directional derivative φ′θ0(h) = min(s,t)∈A h(s, t) for h ∈ C(S × [0, 1]).

7 Application to welfare analysis of tuition subsidy

In this section, we examine the empirical efficacy of our methods through a simulation exercise
using data from a large-scale household survey, conducted by the Indian National Sample
Survey Organization in 2004-5. The context is to estimate average welfare effects resulting
from a hypothetical price subsidy toward school attendance of teenagers. In the dataset,
individual wealth, proxied by monthly per capita household expenditure (as is standard in
household surveys from developing countries) is actually measured, and thus we can point-
estimate the average welfare effects of price changes. In order to see how our estimates work
for the interval-censored income, we artificially generate the problem by dividing the real
income variables into intervals. We can then compare our set-estimates using interval-valued
income with point estimates using the actual income variable and midpoint imputations. This
strategy also enables us to check how our estimates perform under greater or lesser degrees
of censoring. The empirical results from this exercise suggest that in real settings (i) shape
restrictions on choice probabilities, implied by the economic theory, can substantially tighten
the identified set of welfare effects, and (ii) point estimates using midpoint imputations can
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be imprecise and potentially misleading in a substantive sense.

Data The data are drawn from a random sample of nearly 25000 households with exactly
one teenage child. Each household makes the binary decision of whether to send the child to
school or not, which we denote by Q; the income (i.e., the monthly per capita expenditure) is
denoted by Y . The price P faced by a household in relation to school attendance is observed
for those attending school. For those not attending, the potential price is taken to be the
median tuition-related expense (divided by 12) per school-going child across all households in
the same income stratum in the village or urban block where the household resides.15 This
enables us to get around the problem that in any village/block, the relatively wealthy would
typically choose a high-fee private school while the poor would choose a cheaper state-school.
Furthermore, when deciding whether school-attendance is affordable, a family is likely to
ask around their neighbors to get an estimate of the potential costs. Therefore using the
median tuition seems to us to be a reasonable proxy for the "potential" fees as envisaged by
households who are not sending their children to school.

The following analysis uses a subsample of households that have a single female child of
secondary-school age (15-18 years), belong to the Hindu religious group, do not belong to
the historically disadvantaged Hindu castes, have household size between 4 and 6, and have
adult literacy rate larger than 55%. We restrict attention to 647 observations with income
smaller than Rs 6250 (74 percentile) and price between Rs 67 (8.5 percentile) and Rs 712 (78.8
percentile).16 In what follows, all money amounts are expressed as Indian rupees per month
(Rs), with 1 Indian rupee = 0.02 US dollars in 2004. Table 1 presents some descriptive
statistics.

We consider a hypothetical price subsidy of 500 causing the price of schooling to decrease
from p1 = 600 to p0 = 100 (73.8 to 15.6 percentile). We focus on the equivalent variation (EV)
that measures how much income needs to be given to households so that their maximized
utility at the high price Rs 600 is the same as at the low price Rs 100. Since we are dealing with
a price reduction, our previous formulae for compensating variation of a price rise become
the formulae for the Equivalent Variation; in particular, for a price decrease from p1 to p0,
the average EV is f̄(q) =

∫ p1−p0
0 q(p0 + a, y0 + a)da.

Since we observe the actual income data in this sample, we can calculate average EV
exactly, and this will serve as our benchmark result. We will contrast this with results

15The NSS stratifies each village/block by income, and samples independently from each stratum. This design
makes sure that for each household observed in the sample, there is also included in the sample a set of households
from the same village/block with similar income levels.

16The price range [67, 712] constitutes the common support of price for each artifically created income interval
(see below). Specifically, the conditional choice probabilities π(p,Yk−1) and π(p,Yk+1) are valid bounds for the
structural choice probability q(p, y) = E[Q|P = p, Y = y] for y ∈ Yk and p lying in the common support of P given
Yj for j = k − 1, k, k + 1.

29

 Electronic copy available at: https://ssrn.com/abstract=3167071 



obtained by artificially generating interval-censored income, using six intervals constructed
by five equidistant intervals between Rs 2500 (10 percentile) and Rs 6250 (74 percentile):{

[0, 2500), [2500, 3250), [3250, 4000), ..., [5500, 6250)
}
, and then applying the methods devel-

oped in this paper to produce bounds on the average EV. These results will be contrasted
with those obtained using coarser partitioning of income, and those obtained via midpoint
imputations.

Calculations and Results To calculate the average EV for a range of incomes y0, we
follow the methods described in Section 2.3 and 5.1. The details are as follows. 0.6cm0cm

Step 1. The conditional choice probability given price p and for each income interval Yk is
estimated by a Nadaraya-Watson kernel estimator π̂(p,Yk). We use a second-order
Gaussian kernel and the Silverman’s Rule-of-Thumb bandwidth n−0.2× std.dev(P )×C
calculated using observations in the income interval Yk; the constant C is varied over
a range from 0.1 to 10 for robustness check. We then obtain the bounding functions
for the transformation of the inverse link function of the structural choice probability
Φ−1 (q(p, y)):

l̂(x) ≡ Φ−1 (π̂(p,Yk−1)) ≤ Φ−1 (q(p, y)) ≤ Φ−1 (π̂(p,Yk+1)) ≡ û(x)

for y ∈ Yk, k = 1, ...,K − 1, and x ≡ (1, p, y)>. For our design of income intervals,
Y0 = [0, 2500) and YK = [6250,∞) with K = 6.

Step 2. We define x>β = β0 + βP p+ βY y to be the best linear approximation to Φ−1(q(p, y)),
so the boundary point of the identified set of β is estimated by an OLS-type estimator,
where the dependent variables are the bounding functions l̂(x), û(x) from Step 1. That
is, for a direction s on the unit sphere S = {s ∈ R3 : ‖s‖ = 1}, the boundary point of
the identified set of β is estimated by

ˆ̄β(s) = Σ−1Eµ[X γ̂s(X)],where Σ = Eµ
[
XX>

]
and

γ̂s(X) = û(X)1{s>Σ−1X ≥ 0}+ l̂(X)1{s>Σ−1X < 0},

The measure µ (denoted µ1 for later reference) uses the empirical distribution of the price
and interval-valued income and assigns uniform density within each income interval. So
for a known function g(X), Eµ [g(X)] = n−1

∑n
i=1 g

(
(1, Pi, Ỹi)

)
, where Ỹi is drawn

from Uniform[yk, yk+1] if the interval-censored income of the observation i lies in Yk =

[yk, yk+1).

Step 3. Fixing one direction s0 ∈ S, define a convex combination β̂(s, t) ≡ t ˆ̄β(s) + (1 −
t) ˆ̄β(s0) for t ∈ [0, 1] and s ∈ S to characterize the identified set of β. Let θ̂ =
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(
f(β̂(s, t), R(β̂(s, t)))

)>
, where f(β) is the average EV given by

∫ 500
0 Φ(β0 + βP (100 +

a) + βY (y0 + a))da, and R(β) incorporates the normal-good and Slutsky-type shape

restrictions, viz. R(β) ≡
(

0 0 −1

0 1 1

)
β = (−βY , βY + βP )> ≤ 0. The lower endpoint

of the identified set for f(β) is estimated by the mapping

f̂ l = φ(θ̂) ≡ min
s∈S,t∈[0,1]

f(β̂(s, t)) subject to R(β̂(s, t)) ≤ 0.

The minimum is searched over a grid of values s on S by a polar coordinate and a grid
of values t on [0, 1]. The upper endpoint f̂u is estimated in the same way by changing
min to max.

Step 4. For constructing the confidence region, we obtain the critical values by the numerical
delta method bootstrap procedure outlined in Section 5.1. We generate five hundred
bootstrap samples {X∗i } and follow the above Steps to obtain a bootstrap sample for θ̂,
denoted by θ̂∗. As increment for the numeric derivative, we use εn = 0.1/

√
log n = 0.038.

We then compute the bootstrap samples of

Z l∗ =
φ
(
θ̂ + εn

√
n(θ̂∗ − θ̂)

)
− φ(θ̂)

εn
.

The bootstrap samples for the upper endpoint Zu∗ are computed analogously. A (1−α)-
level confidence interval for f(β) is

[
f̂ l − ĉlα/

√
n, f̂u + ĉuα/

√
n
]
, where the critical values

ĉlα and ĉuα are defined by Pr
(
Z l∗ ≤ ĉlα

)
= 1− α and Pr (Zu∗ ≥ −ĉuα) = 1− α.

Results In Figure 5, the solid lines present the estimated identified set for the average EV
over a range of income y0. The dashed lines are the 90% pointwise confidence region for the
average EV. For ease of interpreting the results, Table 2 reports the estimated identified set
and 90% confidence region for the average EV at the 25th percentile and the median incomes
using the constant C = 5 for the bandwidth. In particular, at the median income (Rs 3732)
of our subsample, a tuition subsidy of Rs 500 is equivalent to increasing income on average
by an amount ranging between Rs 413.18 to Rs 453.00, i.e., 11.07% to 12.14% of the median
income, at a 90% confidence level.17 In general, the average EV rises with income, reflecting
the fact that school-attendance is more prevalent at higher incomes, so that the subsidy is
more fully utilized.

17We find that the least-squares cross-validation suggests a very large bandwidth for some income interval, which
implies the conditional probability might not vary with price. Moreover in Step 1, the nonparametric estimation of
the conditional choice probability π(p,Yk) requires undersmoothing (Chandrasekhar, Chernozhukov, Molinari, and
Schrimpf, 2012). So we choose the bandwidth by n−0.2 × std.dev(P ) × C and vary the constant C for robustness
check. For C over a range from 3 to 10, the lower bound estimate varies between 419.37 and 423.95 and the upper
bound estimate varies between 439.58 and 445.95.
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Next, we consider a coarser partition of two intervals {[0, 3750), [3750, 6250)}, where 3750
is the 38th percentile of actual income. In Figure 6, we compare our set estimators obtained by
the probit maximum likelihood (ML) estimators using the actual incomes and the midpoint
imputations. Our set estimate for the two-interval case shows that at the median income
(Rs 3732) of our subsample, a tuition subsidy of Rs 500 is equivalent to increasing income on
average by an amount ranging between Rs 384.41 to Rs 484.62, i.e., 10.3% to 12.99% of the
median income, at a 90% confidence level. For the two-interval case, we see that the Midpoint
estimates are different from the Actual-income estimates. In particular, the confidence region
by the Actual-income estimates does not cover the estimated identified set and confidence
region by the Midpoint estimates. So depending on the pattern of interval data measurement,
inference using the midpoint imputations could be misleading. To check the robustness of
our substantive results to the inclusion of higher-order terms, Figure 7 presents probit ML
estimates using the actual incomes under different specifications of choice probabilities. It is
evident that the average EV is substantively unaffected by the inclusion of higher order terms
of price and income in the regression.

To see how the shape restrictions βY ≥ 0 and βP + βY ≤ 0 tighten the identified set, we
compare our estimates with the those obtained without the restriction. In the top panel of
Figure 8 for the two-interval case, the estimated identified set with restrictions are smaller
than those without restrictions, so the restrictions bind at low incomes. The upper endpoint
estimates with and without restrictions give the same values at high incomes, i.e., the re-
strictions do not bind in estimating the upper endpoints. For the two-interval case, our set
estimate under these shape restrictions shows that at the median income (Rs 3732) of the
subsample, a tuition subsidy of Rs 500 is equivalent to increasing income on average by an
amount ranging between Rs 317.98 to Rs 483.24, at a 90% confidence level. In contrast, our set
estimate without restrictions shows that at the median income, a tuition subsidy of Rs 500
is equivalent to increasing income on average by an amount ranging between Rs 328.19 to
Rs 499.59, at a 90% confidence level, that is, the shape restrictions lead to a shrinking of the
identified set by about 100×6.14/500 = 1.23% of the subsidy amount. When the true param-
eter satisfies the constraints with strict inequalities, the constrained estimator would entail
additional noise resulting from the implicit testing involved in its construction. Therefore the
restrictions do not necessary tighten the confidence regions.

To see how the measure µ affects the corresponding identified set, we perform our calcula-
tions using a different measure µ2, viz. one that assigns equal weight over a range of income
and price. Specifically, in Step 2 of the estimation procedure, we use a simulated sample of
size 10000 from a uniform distribution of income in [2500, 9000] and price in [83.33, 625.67]

after trimming 10% of the observations at the tails. Figure 9 shows the estimates correspond-
ing to these two different measures µ1 and µ2 which provide two different approximations.
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The estimated identified sets and 90% confidence regions using these two measures are both
seen to contain the actual-income estimates. It is also evident from the Figure that our best-
probit-approximation methodology is not sensitive to these two measures in this empirical
application. If one believes the parametric model is correctly specified, one could take the
intersection of the estimated identified set and confidence regions using various measures.

Finally we consider potential endogeneity of income, i.e., income might depend on unob-
served heterogeneity. We use land_owned as an instrumental variable for income, and obtain
the identified set of the structural choice probability characterized in Proposition 2. The idea
is that a household’s taste for education would likely be correlated with income but not on
its breakdown into sources; that is, the only way land holding could be correlated with taste
for schooling is through its impact on total income. One potential concern is that households
owning more land might benefit more from sending their children to work in agriculture as
opposed to schooling. But regressing working on age and land-holding, controlling for income,
yields a t-stat of 0.08, suggesting that this concern is not empirically relevant in our data. On
the other hand, the F-statistic from regressing income on land-holding (i.e., the first stage) is
1129.4, suggesting a strong instrument.

The results from using the IV technique (described in Proposition 2) are reported in
Figure 10. The red dashed lines present the estimated identified set for the average EV using
the instrumental variable. Comparing with the previous estimation under the exogenous
income assumption, the solid lines in Figure 10 represent the estimated identified set, which
had previously appeared in Figure 5. We see that imposing a stronger exogenous income
assumption results in a tighter identified set. In particular, the estimated identified set under
the exogenous income assumption suggests that at the median income, a tuition subsidy of
Rs 600 is equivalent to increasing income on average by an amount ranging between Rs 423.73
to Rs 445.68, i.e., 11.4% to 11.9% of the median income. On the other hand, upon dispensing
with the exogenous income assumption, our set estimate using the IV produces a different and
wider identified set for average EV, suggesting that a tuition subsidy of Rs 600 is equivalent
to increasing income on average by an amount ranging between Rs 266.92 to Rs 401.77, i.e.,
7.15% to 10.77% of the median income.

8 Conclusion

In this paper, we have investigated the problem of empirical welfare analysis in a binary
choice setting when income values are interval-censored. In this case, money-metric welfare
effects of price changes, such as the average equivalent and compensating variation, cannot
be point-identified. We show how to obtain bounds on these quantities under the assumption
of a normal good, and subject to choice probabilities satisfying a set of theory-consistent
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Slutsky-like restrictions. These restrictions are linear in choice probabilities, as opposed to
the standard nonlinear Slutsky conditions for continuous choice.

Starting with a parametric approach, we develop the theory of inference for the endpoints
of the resulting identified set under shape restrictions which lead to non-differentiability of
the estimand, and make the inference theory nonstandard. Nonetheless, we can show that
our estimator is directionally differentiable, so that confidence intervals can be constructed
by applying recently developed bootstrap methods for such cases. The inference theory is de-
veloped without assuming that the probit/logit model is a correct specification for the binary
choice model, so that the corresponding estimates have a “best parametric approximation”
type interpretation. Finally, in a simulation exercise using real survey data from India, our
methods yield promising results, in that they provide ranges of estimates for average welfare
that are consistent with the true point-identified estimates.

The methods proposed here have wider applicability beyond interval data in binary choice
models. In particular, our analysis applies to a general function q(x) that (i) is partially
identified by a convex compact set of the form [L(x), U(x)], and (ii) is subject to shape
restrictions. More generally in applications, one may use our methods to conduct inference
on the identified set for other functionals subject to the shape restrictions, e.g., the average
price derivative f̄(q) =

∫
(∂q(p, y)/∂p) dF (p, y).

Table 1: Descriptive statistics

min max mean std.dev

Binary outcome (Q) 0 1 0.85 0.36
Price (P ) 69.17 708.33 278.19 156.47

Actual-income (Y ) 1, 247 6, 238 3, 835.71 1, 127.48

Land_owned (Z) 0 12, 468 694.27 1483.90

Notes: Summary statistics for 647 households that have a single female child aged 15-18, belong to the
Hindu religious group, do not belong to the historically disadvantaged Hindu castes, have household size
between 4 and 6, have adult literacy rate larger than 55%, have income smaller than Rs 6250, and have
price between Rs 67 and Rs 712.
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Table 2: Average EV in Rupees (6 intervals)

Income (y0) Rs 2,997 (25th percentile) Rs 3,732 (median)

Estimated Identified Set [390.73, 435.38] [423.73, 445.68]
(90% Confidence Region) (379.16, 447.26) ( 413.18, 453.00))

Probit Point Estimate (Actual-income) 414.32 433.93
(90% Confidence Region) (397.85, 430.30) (420.66, 446.55)

Notes: Estimates and 90% confidence regions for the average EV resulting from a tuition subsidy of
Rs 500 causing a fall in price from Rs 600 to Rs 100. The average EV is computed for individuals at the
25th percentile and the median income, respectively.
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Figure 5: The average EV resulting from a tuition subsidy causing a fall in price from Rs 600 to
Rs 100, for a range of income, when the income is observed in 8 intervals. The solid lines are the
estimated identified sets and the dashed lines are the pointwise 90% confidence regions for the
average EV. The average EV measures how much income needs to be given to the household so
that the maximized utility at the higher income and the original high price of Rs 600 is the same
as that at the original income and new lower price of Rs 100. Note that the average EV of a price
decrease equals the average CV of a reverse price increase.
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Figure 6: The average EV resulting from a Rs 500 price-subsidy, calculated over a range of income.
The left panels present the estimates of our set estimator using Interval-income under normal-
good and Slutsky-type shape restrictions, the probit ML point estimators using Actual-income,
and using Midpoint. The right panels present the pointwise 90% confidence regions for the average
EV. The top panels are for the coaser partition of two intervals and the bottom panels are for the
finer partition of six intervals.
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Figure 7: The average EV resulting from a Rs 500 price-subsidy, calculated over a range of income.
The left panel presents the estimates of probit ML estimator using Actual-income for different
specifications: linear, quadratic, and with an interaction term. The right panel presents the
pointwise 90% confidence regions for the average EV.

9 Appendix

The Appendix is organized as follows. Section 9.1 is the proof of Proposition 1 in Section 2. Section 9.2
presents the proofs of the asymptotic theorems in Section 4. We prove the Hadamard directional dif-
ferentiability of a mapping that minimizes a nonconvex objective function subject to convex inequality
constraints in Lemma 1. Lemma 1 serves as a preliminary result and can be of independent interest.

9.1 Proof of Proposition 1
The proof contains two parts. The first part derives the revealed preference inequality (3). The second
part shows the first result is equivalent to the monotonicity conditions of the C.D.F.s of the CV/EV.

1. Consider a type-η individual under the price p0 and income y0. If U0(y0, η) > U1(y0 − p0, η),
she chooses option 0, i.e., Q(p0, y0, η) = 0. Consider a price increase to p1 and an income
compensation smaller than the price change, i.e., under the high price p1, she has a higher
income y1 ≤ y0 + p1 − p0 and y1 ≥ y0.
The assumption that the utility functions U0(W, η) and U1(W, η) are strictly increasing in W
implies U0(y1, η) > U0(y0, η) and U1(y0 − p0, η) > U1(y1 − p1, η). So the event {Q(p0, y0, η) =

0} = {U0(y0, η) > U1(y0 − p0, η)} ⊆ {U0(y1, η) > U1(y1 − p1, η)} = {Q(p1, y1, η) = 0}. That is
to say if she does not choose option 1 at the low price, she will not choose option 1 at the high
price under an income compensation smaller than the price increase.
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Figure 8: The average EV resulting from a Rs 500 price-subsidy, calculated under normal-good
and Slutsky-type shape restrictions, and then without these restrictions. The left panel shows the
estimates of the identified sets. The right panel shows the pointwise 90% confidence regions for
the average EV. The top panels are for the coaser partition of two intervals. The bottom panels
are for the finer partition of six intervals.
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Figure 9: The average EV resulting from a Rs 500 price-subsidy, calculated over a range of income
by our set esimator using two measures µ: Empirical measure uses the empirical distribution of the
price and interval-valued income and assigns uniform density within each income interval; Uniform
measure uses a simulated sample of size 10000 from a uniform distribution of price and income.
The left panel shows the estimates of the identified sets. The right panel shows the pointwise 90%
confidence regions for the average EV.
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Figure 10: The average EV resulting from a Rs 500 price-subsidy for a range of income, by our
set esimator under exogenous income assumption and then allowing for endogenous income. The
instrumental variable is land_owned.
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On the other hand, if Q(p0, y0, η) = 1, the same argument implies Q(p1, y1, η) can be 0 or 1.

In sum, for any y1 ∈ [0, y0 + p1 − p0], we obtain Q(p1, y1, η) ≤ Q(p0, y0, η). Calculating the
expected demand by integrating with respect to the marginal distribution of η, we obtain
q(p1, y1) ≤ q(p0, y0). Letting y1 = y0 + c and p1 = p0 + b, we obtain the inequality (3).
An alternative proof is to decompose the total change in demand

Q(p1, y0, η)−Q(p0, y0, η) =
(
Q(p1, y0, η)−Q(p1, y1, η)

)
+
(
Q(p1, y1, η)−Q(p0, y0, η)

)
for y1 ∈ [y0, y0 + p1 − p0]. The first difference Q(p1, y0, η) − Q(p1, y1, η) is the income effect.
From the above argument of revealed preference, we know the second difference Q(p1, y1, η) −
Q(p0, y0, η) is negative. So we obtain the same inequality

Q(p1, y0, η)−Q(p0, y0, η) ≤ Q(p1, y0, η)−Q(p1, y1, η).

Notice that for y1 = y0 + p1 − p0, we can interpret Q(p1, y1, η) as the Slutsky compensated
demand function if this individual had enough income to afford her original choice.

2. The C.D.F.s of CV and EV are monotone if and only if (iff ) q(p, y) ∈ [0, 1],

q(p+ a, y + a) ≤ q(p, y) and (17)
q(p+ a, y) ≤ q(p, y), (18)

for any p, y, a ≥ 0. (3) implies (17) by setting b = c. Setting c = 0 implies (3) iff (18). For the
other direction, (17) and (18) implies q(p, y) ≥ q(p+ c, y + c) ≥ q(p+ b, y + c), which is (3).

When q is differentiable, the result is a trivial application of calculus. Proving (18) iff the
second object in (4) is immediate. To see (17) implies the first object in (4), lima→0 a

−1
(
q(p+

a, y + a) − q(p + a, y)
)
≤ lima→0 a

−1
(
q(p, y) − q(p + a, y)

)
. To show the reverse direction,

q(p+ a, y + a)− q(p, y) =
∫ a

0
∂q(p+ s, y + s)/∂p+ ∂q(p+ s, y + s)/∂yds ≤ 0. �

9.2 Proofs in Section 4
We first give an overview of the proof of Theorem 1 and discuss some technical aspects.
Consider the mapping φ(θ0) = (ϕ ◦ ψ)(θ0), where the inner mapping ψ : Dφ → C(S) is
defined by ψ(θ(s, ·)) ≡ mint∈[0,1] θ

(1)(s, t) subject to θ(2)(s, t) ≤ 0. And the outer mapping
ϕ : C(S)→ R is defined by ϕ(ϑ) ≡ mins∈S ϑ(s), for any ϑ ∈ C(S). As ϕ is an unconstrained
optimization problem, showing ϕ is Hadamard directionally differentiable is known in the
literature, e.g., Lemma S.4.7 in the Supplemental Appendix of Fang and Santos (2019). We
show the inner mapping ψ is Hadamard directionally differentiable in Lemma 1 below.

The complication occurs in the inner mapping ψ when multiple constraints bind. In such
a case, the Lagrangian multipliers could have multiple solutions satisfying the first order
necessary conditions described in Λ(s, t). To derive the Hadamard directional derivative, we
need to consider sequences of constraints that nearly bind. Thus the directional derivative
of the mapping can be well defined for all sequences; see Lemma 2 below. Under our setup,
we provide low-level conditions for the high-level conditions in Theorem 4.25 in Bonnans
and Shapiro (2013) for general results with nonlinear nonconvex objective functions and
constraints.18

18In particular, Lemma 2 verifies the conditions (iii) and (iv) of Theorem 4.25 in Bonnans and Shapiro (2013).
Assumption 3(i) implies the condition (ii) of Theorem 4.25 in Bonnans and Shapiro (2013). By Assumption 3(ii)
and t ∈ [0, 1], the directional regularity condition (ii) of Theorem 4.25 in Bonnans and Shapiro (2013) holds.
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Let θ′(t) be a vector of the first order derivatives of the elements of the vector θ(t). Let l∞(X ) be
a space of bounded functions on X endowed with the sup-norm ‖f‖∞ = supx∈X |f(x)|.

Lemma 1 (Hadamard directional differentiability) Consider ψ(θ) = mint∈T θ
(1)(t) sub-

ject to θ(2)(t) ≤ 0, where (i) θ = (θ(1), θ(2)>)> ∈ Dψ ≡ C(T ) × · · · × C(T ) ⊂ Rdr+1 for a convex
compact set T ⊂ R. Assume (ii) θ(2)

0 : T → Rdr is linear; (iii) There is an interior point t ∈ T
satisfying θ(2)

0 (t) < 0; (iv) There exists a set of optimal solutions T̄ in the interior of T such that
ψ(θ0) = θ

(1)
0 (t̄) for t̄ ∈ T̄ ; (v) θ(1)

0 is continuously differentiable on T . For t̄ ∈ T̄ , the Lagrangian
multiplier λ ∈ Λ(t̄) ≡ {λ ∈ Rdr : θ

(1)′
0 (t̄) + λ>θ

(2)′
0 (t̄) = 0, λ ≥ 0, λ>θ

(2)
0 (t̄) = 0}.

Then ψ(θ0) is Hadamard directionally differentiable at θ0 tangentially to Dψ and for h ∈ Dψ,
ψ′θ0(h) = mint∈T̄ maxλ∈Λ(t) h

(1)(t) + λ>h(2)(t).

Lemma 2 Let the conditions in Lemma 1 hold. Consider a sequence of functions θn = (fn, R
>
n )> ≡

θ0 + εnhn ∈ Dψ, where θ0 =
(
f,R>

)> ∈ Dψ, for εn ↓ 0, {hn} ∈ Dψ, and hn → h ∈ Dψ uniformly on
T . Assume J+ ≡

{
j : R(j)(t̄) = 0

}
to be non-empty. Define a sequence {vn} by Πj∈J+R

(j)
n (vn) = 0

and Rn(vn) ≤ 0. Then (i) for n large enough, maxλ∈Λ(t̄) λ
>Rn(vn) = 0; (ii) |vn − t̄| = O(εn); (iii)

for any λ ∈ Λ(t̄), L(vn, λ, θ0)− L(t̄, λ, θ0) = o(εn), where L(t, λ, θ) ≡ θ(1)(t) + λ>θ(2)(t).

Proof of Lemma 1 Let θ0 =
(
θ

(1)
0 , θ

(2)>
0

)>
≡
(
f,R>

)> ∈ Dψ, for notational simplicity. Consider

any t̄ ∈ T̄ . Then ψ(θ0) = θ
(1)
0 (t̄) = f(t̄) ≤ f(t),∀t : R(t) ≤ 0. Condition (iii) implies Λ(t̄) is non-empty

and compact.
Consider a sequence of approximating functions θn ≡ (fn, R

>
n )> = θ0 + εnhn ∈ Dψ for εn ↓ 0,

{hn} ∈ Dψ, and hn → h ∈ Dψ uniformly on T . Let c denote a generic positive constant. So for
any c ∈ Rdr+1

+ and n large enough, supt∈T |θn(t) − θ0(t)| ≤ cεn. Let a sequence of optimal solution
tn ≡ arg mint∈T fn(t) subject to Rn(t) ≤ 0. So ψ(θn) = fn(tn) and the set of Lagrangian multiplier
is

Λn ≡
{
λ ∈ Rdr : L(tn, λ, θn) = min

t∈T
L(t, λ, θn), λ ≥ 0, λ>θ(2)

n (tn) = 0

}
,

where L(t, λ, θ) ≡ θ(1)(t) + λ>θ(2)(t).19
The proof is made up of three steps by showing (I) |tn − t̄| = o(1) and the following inequalities

(II) and (III):

min
t̄∈T̄

max
λ∈Λ(t̄)

L(t̄, λ, h)
(II)

≤ lim inf
n→∞

ψ(θn)− ψ(θ0)

εn
≤ lim sup

n→∞

ψ(θn)− ψ(θ0)

εn

(III)

≤ min
t̄∈T̄

max
λ∈Λ(t̄)

L(t̄, λ, h).

We start with a preliminary result. Claim 1 and the compactness of T ensure that tn exists and
Λn is non-empty.

Claim 1: The constrained set {t ∈ T : Rn(t) ≤ 0} is non-empty for n large enough.
Proof. By condition (iii), there exists a point v ∈ T such that R(v) < −η for some η > 0. By
condition (ii), R(t̄+ ζ(v − t̄)) = (1− ζ)R(t̄) + ζR(v) ≤ −ηζ for all ζ ∈ [0, 1]. There exists a sequence
ζn → 0+ and vn = t̄+ζn(v−t̄)→ t̄ such that for n large enough, Rn(vn) ≤ R(vn)+cεn ≤ −ηζn+cεn ≤
0 by choosing c = η/2 and ζn = εn. �

19In Section 4, we suppress θ0 in the Lagrangian function L(s, t, λ) with an abuse of notation without loss of
clarity.
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When some constraint binds, we need to control the sequence of constraints {Rn(tn)} that nearly
binds and {Rn(t̄)} that has positive elements. Define J+ ≡

{
j : R(j)(t̄) = 0

}
that collects the binding

constraints. Consider the case when some constraint binds R(b)(t̄) = 0 for b ∈ J+ 6= ∅ and Λ(t̄) might
not be a singleton. For any positive integer M , there exists some n > M , such that Case A:R(b)

n (t̄) is
positive or Case B:Rn(tn) is negative, i.e., all constraints are slack. To account for these two cases,
we define an auxiliary sequence {vn} by Πj∈J+R

(j)
n (vn) = 0 and Rn(vn) ≤ 0. By Claim 1, vn exists

for n large enough. The properties of {vn} in Lemma 2 are key to the proof.20

For the rest of the proof, all arguments hold for n large enough, unless noted otherwise. We do
not repeat the statement “for n large enough” for ease of exposition and without loss of clarity. Now
we show (I), (II), and (III).

(I) We first consider the case when some constraints bind, i.e., J+ 6= ∅.
Claim 2: f(tn)− f(t̄) ≥ −o(1).
Proof. To see if tn is a feasible solution to solve ψ(θ0), observe that Rn(tn) − cεn ≤ R(tn) ≤
Rn(tn) + cεn ≤ cεn.

– Case 1:R(tn) ≤ 0. It must be that f(t̄) ≤ f(tn).

– Case 2:R(tn) ∈ (0, cεn]. For any b ∈ J+, without loss of generality, let R(b)′ > 0.
R(b)(tn) ∈ (R(b)(t̄), cεn] implies tn − t̄ ∈ (0, cεn/R

(b)′]. By the mean value theorem and
condition (v), f(tn) = f(t̄)+f ′(t̃n)(tn− t̄), where t̃ ∈ [t̄, tn]. When f ′(t̃n) ≥ 0, f(tn) ≥ f(t̄).
When f ′(t̃n) ≤ 0, f(tn) ≥ f(t̄) + f ′(t̃n)cεn/R

(b)′ = f(t̄)− o(1).

Combining the two cases, we obtain f(tn)− f(t̄) ≥ −o(1). �

Claim 3: fn(tn) ≤ fn(t̄) + o(1).
Proof. By Rn(vn) ≤ 0 and Lemma 2(ii), fn(tn) ≤ fn(vn) = fn(t̄) + o(1). We use vn to account
for Case A where fn(tn) might be larger than fn(t̄). �

By Claim2 and Claim 3, −o(1) ≤ f(tn)− f(t̄) ≤ fn(tn)− fn(t̄) + f(tn)− fn(tn) + fn(t̄)− f(t̄) ≤
o(1). So |tn − t̄| = o(1).

Now we consider the case when all the constraints are slack R(t̄) < 0, i.e., J+ = ∅. Since f ∈
C(T ) and R is linear, there exists a constant η > 0 such that f(t̄) < f(t) for all t 6= t̄ satisfying
R(t) ≤ η. Since Rn(tn) ≤ 0, there exists a positive constant c such that R(tn) ≤ cεn ≤ η. So
f(tn) ≥ f(t̄), as Claim 2 above.

For any positive constant c, εn ≤ min{−R(t̄)/c} and Rn(t̄) ≤ R(t̄)+cεn ≤ 0. So fn(tn) ≤ fn(t̄),
as Claim 3 above.

By the same argument for the case J+ 6= ∅, |tn − t̄| = o(1).

(II) Claim 4: For any λ ∈ Λ(t̄), L(tn, λ, θ0)− L(t̄, λ, θ0) = o(εn).
Proof. For any λn ∈ Λn,

0 ≥ L(tn, λn, θn)− L(t̄, λn, θn) = fn(tn)− fn(t̄) + λ>n (Rn(tn)−Rn(t̄))

≥ f(tn)− f(t̄) + λ>n (R(tn)−R(t̄))− cεn = o(1) (19)

20Because of the linear constraints in Assumption 3(i), we can explicitly construct {vn} that has the properties
in Lemma 2. With nonconvex constraints, Shapiro (1991) assumes a unique Lagrangian multiplier and uses a
constraint qualification.
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by ‖θn − θ0‖∞ = O(εn) and (I). For any λ ∈ Λ(t̄), by (I),

0 ≥ L(t̄, λ, θ0)− L(tn, λ, θ0) = f(t̄)− f(tn) + λ> (R(t̄)−R(tn)) = o(1). (20)

The summation of (19) and (20) yields (λn − λ)
>

(R(tn)−R(t̄)) = O(εn). Together with
condition (ii), |tn − t̄| = O(εn).21 For any λ ∈ Λ(t̄), L(tn, λ, θ0) − L(t̄, λ, θ0) = f(tn) − f(t̄) +

λ> (R(tn)−R(t̄)) =
(
f ′(t̄) + λ>R′(t̄)

)
(tn − t̄) + o(|tn − t̄|) = o(εn). �

For any λ ∈ Λ(t̄), ψ(θn)−ψ(θ0) ≥ fn(tn)+λ>Rn(tn)−f(t̄)−λ>R(t̄) = L(tn, λ, θn)−L(tn, λ, θ0)+

L(tn, λ, θ0) − L(t̄, λ, θ0) = εnL(tn, λ, hn) + o(εn) by Claim 4. Therefore lim infn→∞(ψ(θn) −
ψ(θ0))/εn ≥ lim infn→∞ L(tn, λ, hn) + o(εn) ≥ mint̄∈T̄ L(t̄, λ, h). The inequalities hold for any
arbitrary λ ∈ Λ(t̄), so we prove (II).

(III) When all the constraints are slack, Λ(t̄) = {0 ∈ Rdr} is a singleton. Since R(t̄) < 0, Rn(t̄) ≤
R(t̄) + cεn ≤ 0 by choosing c such that εn ≤ min{−R(t̄)/c} for n large enough. So ψ(θn) −
ψ(θ0) ≤ fn(t̄)− f(t̄) = L(t̄, λ, θn)− L(t̄, λ, θ0) = εnL(t̄, λ, hn). So (III) holds.
Now for the case when some constraint binds R(b)(t̄) = 0 for b ∈ J+. When 0 /∈ Λ(t̄),
maxλ∈Λ(t̄) λ

>Rn(tn) can be negative due to Case B above. So we use {vn} and Lemma 2(i)
to derive ψ(θn) = fn(tn) ≤ fn(vn) ≤ fn(vn) + maxλ∈Λ(t̄) λ

>Rn(vn) = maxλ∈Λ(t̄) L(vn, λ, θn).
Then

ψ(θn)− ψ(θ0) ≤ max
λ∈Λ(t̄)

L(vn, λ, θ0) + εn max
λ∈Λ(t̄)

L(vn, λ, hn)− max
λ∈Λ(t̄)

L(t̄, λ, θ0)

≤ εn max
λ∈Λ(t̄)

L(vn, λ, hn) + max
λ∈Λ(t̄)

{L(vn, λ, θ0)− L(t̄, λ, θ0)} .

By Lemma 2(iii), continuity of L, and t̄ being an arbitrary point of T̄ , we prove (III).

�

Proof of Lemma 2 By Claim 1 in the proof of Lemma 1, vn exists for n large enough.

(i) For any j ∈ J+, define λj ∈ Rdr by letting its jth element be −f ′(t̄)/R(j)′ and its kth element be
0 for k 6= j. To show λj ∈ Λ(t̄), it suffices to show −f ′(t̄)/R(j)′ ≥ 0. Without loss of generality,
suppose R(j)′ > 0. R(j)(t̄) = 0 implies R(j)(t̄ − η) ≤ 0 for any small η > 0. f(t̄) ≤ f(t̄ − η)

implies f ′(t̄) ≤ 0. So λj ∈ Λ(t̄) for any j ∈ J+.

If R(j)
n (vn) = 0 and R(k)

n (vn) ≤ 0 for k 6= j, then maxλ∈Λ(t̄) λ
>Rn(vn) = λj>Rn(vn) = 0.

(ii) By the mean value theorem, 0 = Πj∈J+R
(j)
n (vn)−Πj∈J+R

(j)(vn)+Πj∈J+R
(j)(vn)−Πj∈J+R

(j)(t̄) =

O(εn)+(vn− t̄)d
(
Πj∈J+R

(j)(t̃jn)
)
/dt, where t̃jn is between t̄ and vn. (vn− t̄)

∑
j∈J+ R

(j)′ ·Πk 6=j ·
R(k)(t̃kn) = O(εn) implies |vn − t̄|dim(J+) = O(εn). So |vn − t̄| = O(εn).

(iii) For any λ ∈ Λ(t̄), L(vn, λ, θ0) − L(t̄, λ, θ0) = f(vn) − f(t̄) + λ> (R(vn)−R(t̄)) =
(
f ′(t̄) +

λ>R′(t̄)
)

(vn − t̄) + o(|vn − t̄|) = o(εn).

�

21First note that we do not assume fn to be continuously differentiable at tn. So the necessary condition of λn
only implies the first inequality in (19). Second, because the Lagrangian multiplier might not be unique, |λn − λ|
might not be o(1).
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Proof of Theorem 1 We transform the original problem to φ(θ0) ≡ (ϕ ◦ ψ)(θ0) and show ϕ and
ψ are two Hadamard directionally differentiable functions. Then the proof is completed by the chain
rule for the Hadamard directionally differentiable maps and the delta method.

For the inner optimization, define ψ : Dψ → C(S) by ψ(θ(s, ·)) ≡ mint∈[0,1] θ
(1)(s, t) subject to

θ(2)(s, t) ≤ 0, for any θ(s, t) =
(
θ(1)(s, t), θ(2)(s, t)>

)> ∈ Dψ. Let θ0(s, t) ≡
(
f (β(s, t)) , R(β(s, t))>

)>.
To apply Lemma 1, for any s ∈ S, let θ(2)(s, ·) : T → C(T ) × · · · × C(T ) ⊂ RdR+2 include the
deterministic constraints t − 1 ≤ 0 and −t ≤ 0. Lemma 1 implies for any s ∈ S, ψ′θ0(h(s, ·)) =

mint̄∈T̄ (s) maxλ∈Λ(s) h
(1)(s, t̄) + λ>h(2)(s, t̄).

For the outer optimization, define ϕ : C(S) → R by ϕ(ϑ) ≡ mins∈S ϑ(s), for any ϑ ∈ C(S). Let
ϑ0(s) ≡ mint∈[0,1] f(β(s, t)) subject to R(β(s, t)) ≤ 0. We show ϑ0(s) at the end of the proof. Then we
apply the result in Lemma S.4.7 in the Supplemental Appendix of Fang and Santos (2019) to obtain
the Hadamard directional derivative of ϕ at ϑ0 tangentially to C(S) to be ϕ′ϑ0

(h) = mins∈S̄ h(s) for
h ∈ C(S).

By Proposition 3.6 in Shapiro (1990), the chain rule gives the Hadamard directional derivative of
φ(θ0): φ′θ0(h) = (ϕ ◦ ψ)′θ0(h) = (ϕ′ϑ0

◦ ψ′θ0)(h) = mins∈S̄ mint̄∈T̄ (s) maxλ∈Λ(s,t̄) h
(1)(s, t̄) + λh(2)(s, t̄).

By the delta method in Theorem 2.1 in Fang and Santos (2019),

√
n
(
φ(θ̂)− φ(θ0)

)
= φ′θ0

(√
n(θ̂ − θ0)

)
+ op(1)

L−→ φ′θ0 (G0) .

Proof of ϑ0(s) ∈ C(S). For s1, s2 ∈ S, consider any t̄1 ≡ t̄(s1) ∈ T̄ (s1) and t̄2 ≡ t̄(s2) ∈ T̄ (s2). We
will show that for any δ > 0, there exists ε > 0 such that |s1 − s2| ≤ ε implies f(β(s2, t̄2)) − δ <
f(β(s1, t̄1)) < f(β(s2, t̄2)) + δ in the following three cases that exhaust all possible situations.

Note that for each s the linear constraint R(β(s, t)) ≤ 0 has an equivalent expression t ∈
[l(s), u(s)] ⊆ [0, 1] for l, u ∈ C(S).

• Case 1: Consider the case when u(s1) = t̄1 and u(s2) = t̄2. By u ∈ C(S), |t̄1 − t̄2| = |u(s1) −
u(s2)| = o(s1−s2). By f(β(s, t)) ∈ C(S×[0, 1]), f(β(s2, t̄2))−δ ≤ f(β(s1, t̄1)) ≤ f(β(s2, t̄2))+δ.

• Case 2: Consider the case when u(s2) = t̄2 > u(s1) > t̄1 or u(s1) > u(s2) = t̄2 > t̄1. By
f(β(s, t)) ∈ C(S × [0, 1]), u ∈ C(S), and the unique optimal solution, for any δ > 0 there exists
ε > 0 such that max{|s1 − s2|, |u(s1)− u(s2)|} ≤ ε implies

f(β(s2, t̄2))− δ < f(β(s2, t̄1))− δ ≤ f(β(s1, t̄1))

< f(β(s1, u(s1))) ≤ f(β(s1, u(s2))) + δ/2 ≤ f(β(s2, t̄2)) + δ.

• Case 3: Consider the case when the constraints are slack R(β(s, t̄(s))) < 0. By f(β(s, t)) ∈
C(S × [0, 1]), linear R, and the unique optimal solution t̄(s) for each s, there exists a constant
η > 0 such that f(β(s, t̄(s))) < f(β(s, t)) for all t 6= t̄(s) satisfying R(β(s, t)) ≤ η. There exists
ε > 0 such that |s1 − s2| ≤ ε impliesR(β(s1, t̄2)) ≤ R(β(s2, t̄2)) + η ≤ η. So f(β(s1, t̄1)) <

f(β(s1, t̄2)). The same argument yields f(β(s2, t̄2)) < f(β(s2, t̄1)).

By continuity of f(β(s, t)) in s, |s1 − s2| ≤ ε implies f(β(s1, t̄2))) ≤ f(β(s2, t̄2)) + δ and
f(β(s2, t̄1))− δ ≤ f(β(s1, t̄1)).

Combining the above inequalities yields f(β(s2, t̄2))− δ < f(β(s1, t̄1)) < f(β(s2, t̄2)) + δ.

The case when the solution is at the lower bound is included in Case 1 and Case 2. �
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Proof of Theorem 2 As in the proof of Lemma 1, we first suppress the notation s for the inner
optimization. Define T ≡ [0, 1] ∩ {t : θ(2)(t) ≤ 0} and T † ≡ [0, 1] ∩ {t : θ(2)†(t) ≤ 0}. Since
θ(2)(t) = R(β(s, t)) is convex in t, we can write T = [t, t̄] and T † = [t†, t̄†]. Without loss of generality,
we consider the case when t̄ < t̄†, θ(2)(t̄) = 0, θ(2)†(t̄†) = 0, and dR = 1.

By the Mean Value Theorem, θ(2)(t̄†) − θ(2)(t̄) = θ(2)′(t)(t̄† − t̄) + θ(2)′′(t̃)(t̄† − t̄)2/2, where
t̃ ∈ [t̄, t̄†]. For any δ ≥ 0, θ(2)′′(t̃)(t̄† − t̄)2/2 + θ(2)′(t)(t̄† − t̄) +

(
θ(2)†(t̄†) − θ(2)(t̄†)

)
≤ δ. Notice

that θ(2)†(t̄†) − θ(2)(t̄†) is negative. Convexity of θ(2) implies θ(2)′′(t) ≥ 0 for all t ∈ [0, 1]. So
|t̄† − t̄| ≤ C|θ(2)†(t̄†) − θ(2)(t̄†) − δ| = C

(
− θ(2)†(t̄†) + θ(2)(t̄†) + δ

)
. Since δ is chosen arbitrarily, we

obtain |t̄† − t̄| ≤ C‖θ(2)† − θ(2)‖∞. This result is trivial when θ(2) is linear.
Then the Hausdorff distance is

dH(T , T †) ≤ max
{∣∣t̄− t̄†∣∣ , ∣∣t− t†∣∣} ≤ C‖θ(2) − θ(2)†‖∞.

Now we can prove Lipschitz continuity of ψ:

∣∣ψ(θ)− ψ(θ†)
∣∣ =

∣∣∣∣min
t∈T

θ(1)(t)− min
t∈T †

θ(1)†(t)

∣∣∣∣
≤
∣∣∣∣min
t∈T

θ(1)(t)− min
t∈T †

θ(1)(t)

∣∣∣∣+

∣∣∣∣min
t∈T †

θ(1)(t)− min
t∈T †

θ(1)†(t)

∣∣∣∣
≤ C‖θ(1)‖∞ dH(T , T †) + C‖θ(1) − θ(1)†‖∞ ≤ C‖θ − θ†‖∞.

For the outer optimization, the Lipschitz continuity of ϕ(ϑ) ≡ mins∈S ϑ(s) follows the above proof.
Therefore, φ(θ) = (ϑ ◦ ψ)(θ) is Lipschitz continuous.

By Definition 1, consider any hn → h and any εn ↓ 0 for φ̂′θ0(h).∣∣∣φ̂′θ0(h)− φ′θ0(h)
∣∣∣ =

∣∣∣∣ 1

εn

(
φ(θ̂ + hεn)− φ(θ̂)

)
− lim
n→∞

1

εn
(φ(θ0 + hnεn)− φ(θ0))

∣∣∣∣
≤
∣∣∣∣ √n√nεn

(
φ(θ̂ + hεn)− φ(θ0 + hnεn)

)∣∣∣∣+

∣∣∣∣ √n√nεn
(
φ(θ̂)− φ(θ0)

)∣∣∣∣
+

∣∣∣∣ 1

εn
φ(θ0 + hnεn)− lim

n→∞

1

εn
φ(θ0 + hnεn)

∣∣∣∣+

∣∣∣∣φ(θ0)

εn
− lim
n→∞

φ(θ0)

εn

∣∣∣∣
≤ C 1√

nεn

∥∥∥√n(θ̂ − θ0

)
+
√
n (h− hn) εn

∥∥∥
∞

+ op(1) = op(1)

by choosing εn ↓ 0 and
√
nεn →∞. �
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