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Abstract

We propose several multivariate variance ratio statistics for "testing" the weak form Effi -

cient Market Hypothesis and for measuring the direction and magnitude of departures from this

hypothesis. We derive the asymptotic distribution of the statistics and scalar functions thereof

under the null hypothesis that returns are unpredictable after a constant mean adjustment. We

propose asymptotic standard errors that are robust to departures from the "no leverage" as-

sumption of Lo and MacKinlay (1988), but are relatively simple and in particular do not require

the selection of a bandwidth parameter. We show the limiting behaviour of the statistic under

a multivariate fads model and under a moderately explosive bubble process: these alternative

hypotheses give opposite predictions with regards to the long run value of the statistics. We

apply the methodology to weekly returns for CRSP size-sorted portfolios from 1962 to 2013 in

three subperiods. We find evidence of a reduction of linear predictability in the most recent

period, for small and medium cap stocks, but we still reject the multivariate null hypothesis

in the most recent period. The main findings are not substantially affected by allowing for a

common factor time varying risk premium.
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1 Introduction

It is fair to say that the profession is divided on the evidence regarding the Effi cient Markets Hy-

pothesis (henceforth for simplicity EMH). Authors like Fama (1970, 2013), Malkiel (2015), and Ross

(2002) argue that rejections of the EMH are: small, not scalable, fleeting, statistically suspect, and

not realizable profit opportunities. Furthermore, Fama has emphasized the joint hypothesis problem

whereby one must measure abnormal returns relative to a market equilibrium return that provides

compensation for bearing risk, so that statistical rejections of the hypothesis are potentially due

instead to rejection of the assumed market equilibrium return. On the other hand, authors like

Shiller (2013), Kahneman and Tversky (2000) and others have argued that market participants are

irrational, behave irrationally, and that their interaction produces excess volatility in asset returns

relative to fundamentals. Grossman and Stiglitz (1980) argue that even if market participants are

fully rational, if information acquisition is costly, then prices cannot perfectly reflect the information

which is available, since if it did, those who spent resources to obtain it would receive no compen-

sation, leading to the conclusion that an informationally effi cient market is impossible. King (2016)

emphasizes the "radical uncertainty" issue, whereby the future states of the world are not perfectly

knowable and formal concepts such as probability distributions and expectations that are core to

EMH are of limited use. These are just some of the many varied and nuanced points of view on this

subject. Our purpose is not to provide definitive evidence on this hypothesis one way or another,

this is beyond our pay grade. Instead we focus on some methodological issues. As Robert Shiller

says in his Nobel lecture: "Ultimately, the question in reconciling the apparently conflicting views

comes down to that of constructing the right statistical tests." We contribute to this by investigating

a celebrated class of tests of this hypothesis, which we think have been wrongly applied, and mak-

ing some modest proposals to improve best practice with regard to their use. Halbert White made

many fundamental contributions to the statistical underpinnings of hypothesis testing as applied

in economics and finance, and his (2000) seminal contribution provides a formal insight as to how

common applications of statistical methodology can lead to faulty conclusions regarding for example

the EMH.

Variance ratio statistics (Lo and MacKinlay (1988) and Poterba and Summers (1988)) are widely

used in empirical finance as a way of testing the EMH and to measure the degree and (cumulative)

direction of departures from this hypothesis in financial time series. Indeed, this work has been

extremely influential in understanding predictability in asset prices and in measuring market quality.
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A key advantage of this methodology relative to say Box-Pierce statistics is that variance ratios

give information about the direction of departures from the null hypothesis that can be interpreted

in meaningful economic terms (i.e., momentum versus contrarian), so that the analysis does not

reduce to yes/no decision-making on an uninformative test statistic. A lot of empirical work followed

immediately after the seminal contributions. Lo and MacKinlay (1988) presented evidence regarding

predictability of the US stock market. They concluded that the EMH was soundly rejected in weekly

US stock market returns based on their standard errors. The graduate textbook Campbell, Lo, and

MacKinlay (1997), henceforth CLM, presents variance ratios for weekly value weighted and equal

weighted CRSP indexes and five size sorted portfolios over the period 1962-1994; they argue that

the EMH is strongly rejected based on their standard errors, although they find that the magnitude

of the violation is less in the later subperiod 1978-1994. On the other hand, Cochrane (2001, p388)

writing only four years later argues that: "daily, weekly, and monthly stock returns are close to

unpredictable".1 One important recent direction for this methodology is in "high frequency" settings,

i.e., intraday, where it has informed the debate on the evolution of "market quality" in the US stock

market. Castura, Litzenberger, Gorelick, and Dwivedi (2010) investigate trends in market effi ciency

in Russell 1000/2000 stocks over the period 1 January 2006 to 31 December 2009. Based on evidence

from intraday variance ratios (they look at 10:1 second variance ratios as well as 60:10 and 600:60

second ratios), they argue that markets have become more effi cient at the high frequency over time.

Chordia, Roll, and Subrahmanian (2011) compared intraday variance ratios over the period 1993-

2000 with the period 2000-2008 and found that the hourly to daily variance ratios of NYSE listed

stocks came closer to the EMH predicted values on average in the second period.2 One interpretation

of these studies is that the computerized trading systems that now dominate equity markets have

improved the functioning of those markets. Hasbrouck (2015) has recently used variance ratios to

measure high frequency volatility in quoted prices, which also relates to this question. Finally, given

that variance ratios are a standard measure of market quality, they are often used in cross sectional

or panel data regressions as dependent variables, see for example O’Hara and Ye (2009). In short,

variance ratios are the de facto measure of predictability/market effi ciency that is adopted universally

by financial empiricists. It is important therefore that this class of tests be given a firm foundation.

There have been some criticisms of the univariate variance ratio methodology as a test of uncor-

relatedness. Specifically, it is not consistent against all (fixed of given order) alternatives unlike the

Box-Pierce statistics. It is a linear functional of the autocorrelation function and so provides no new

information relative to that. It seems like a redundant test. Faust (1992) provides some intellectual

1He then emphasized the more recent work that had shown that low frequency returns (business cycle and longer)

are predictable from dividend price ratio and term premium variables.
2See also Sheppard (2013) for some theoretical results using a continuous time framework.
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credibility: he shows that they can be given a likelihood ratio test interpretation and are optimal

against certain alternatives of the mean reverting type. In that sense they are similar to the Durbin-

Watson test. The advantage of the variance ratio over the Box-Pierce statistic is that it gives some

sense of the direction of predictability, which is lost in the Box-Pierce or other portmanteau tests.

Hillman and Salmon (2007) have argued that the variance ratio (actually the related variogram) is

better suited to irregularly spaced data and some kinds of nonstationarity than correlogram tests.

Finally, there is a lot of work on improving the finite sample performance (size and power) of both

Box-Pierce statistics and variance ratio statistics, see for example Kim, Nelson, and Startz (1991)

and Kan and Wang (2010). See Charles and Darné (2009) for a recent review of this methodology

and its application.

We make several contributions. First, we develop a multivariate methodology. Many tests of

the EMH have been carried out using the univariate variance ratio approach, that is, conducted

one asset at a time. This paper proposes a methodology for multivariate variance ratio tests. The

rationale for the test is roughly the following. Suppose that the EMH hypothesis is not rejected for

asset i based on univariate variance ratio tests. Suppose however that returns on i are predicted

by lags of some other variable. A univariate test could fail to detect this violation of the EMH,

although a multivariate test could detect it. This generic argument about the effi cacy of multivariate

versus univariate methods is widely accepted. There is a lot of work on multivariate portmanteau

statistics, i.e., generalizations of the Box-Pierce statistic to multivariate time series, see for example

Chitturi (1974) and Hosking (1981). The variance ratio statistics convey directional information

about cross-autocorrelations beyond that contained in the portmanteau statistics, that is, in the case

of a violation of the hypothesis they give some sense of the direction of departure. The univariate

variance ratios describe the behaviour of the asset variances, whereas the multivariate statistics

also measure the behaviour of the cross correlations and their cumulative direction. This could be

important for momentum based portfolio trading strategies, for example.

Second, we propose an alternative distribution theory and standard errors (heteroskedasticity and

leverage consistent HLCM ) than are usually adopted (i.e., in the univariate case). The limiting

distribution established in Lo and MacKinlay (1988, Theorem 3) and repeated in CLM (and so used

in most empirical studies) for the univariate variance ratio statistics is incorrect under their stated

assumptions H1-H4 (i.e., RW3).3 The correct distribution would be much more complicated and

would depend on a long run variance that may be hard to estimate well. Either one makes additional

assumptions to ensure that the variance is as claimed, which is what we propose below, or one has

to use more complicated inference methods based on long run variance estimation, Newey and West

(1987), or self normalization, Lobato (2001). In fact, the omitted condition appears quite innocu-

3It makes use of the CLT developed by White and Domowitz (1984) and used by many others.
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ous, so their essential approach seems correct. However, we think that the no-leverage assumption

(Lo and MacKinlay’s H4) is untenable, empirically. Although this latter condition is satisfied by

GARCH volatility processes with symmetrically distributed innovations, it is not satisfied by volatil-

ity processes that allow for leverage effects such as the GJRGARCH process or the Nelson’s EGARCH

process, and it is not even satisfied by standard GARCH volatility processes where the innovation is

asymmetric. The statistical value of the restriction is that it simplifies the standard error calculation,

although, as we show, the standard errors that allow for violations of this condition do not entail an

inordinate increase in computation or complexity. Essentially, Lo and MacKinlay (1988) imposed an

unnecessary assumption but fail to impose a necessary one. We propose modified assumptions that

still preserve the possibility of simple inference methods but allow for leverage effects. Specifically,

we establish the asymptotic distribution of our statistics under two sets of assumptions: (a) a sta-

tionary martingale difference hypothesis with fourth unconditional moments; (b) uncorrelatedness

as in Lo and MacKinlay (1988) and with an additional uncorrelatedness condition on the products

of returns but without the additional no-leverage condition. The asymptotic variance is the same

under our two different sets of assumptions but is different from that contained in Theorem 3 of Lo

and MacKinlay (1988) (and used in much subsequent empirical work). We remark that their theory

essentially imposes that the sample autocorrelations are asymptotically uncorrelated, which can lead

to inappropriate standard errors and p-values. This fact has been long appreciated in the time series

literature, see for example Dufour and Roy (1985); Francq, Roy, and Zakoian (2005) have provided

a comprehensive theory for Box-Pierce statistics under stationarity and mixing conditions.

We propose a simple analogue method for conducting inference that does not require the selection

of a bandwidth parameter. We note that the evidence about predictability of asset returns in a large

number of papers has been based on the Lo and MacKinlay (1988) standard errors, which we argue

should be replaced by standard errors that rely on weaker and more plausible assumptions.4 We

show that in practice the standard errors can make a difference, especially when the time series is

short (such as when stationarity is of concern).

Third, we extend our null hypothesis limit theory to the long horizon and large dimension cases.

We derive the null limiting distribution of the studentized statistics under the increasing horizon

framework, and show that asymptotic normality holds albeit with a slower rate of convergence,

extending the univariate results of Chen and Deo (2006). We also establish the same result for the

average scalar variance ratio statistic in the case where the horizon is fixed but the dimensions of

the vector time series increase with sample size.

Fourth, we also establish the asymptotic properties of our statistic under several plausible alter-

native models including a multivariate Muth (1960) fads model and the recently developed bubble

4At the current count there were 3756 google citations of that paper.
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process of Phillips and Yu (2011). These alternatives yield quite different predictions regarding the

long run value of the variance ratio statistics.

Finally, we apply our methods to weekly returns for CRSP size-sorted portfolios from 1962 to 2013

in three subperiods 1962-1978, 1978-1994 and 1994-2013; the first two subperiods correspond to the

data used in CLM. We show that the degree of ineffi ciency has reduced over the most recent period,

and in some cases this improvement is statistically significant. Specifically, the univariate tests do

not reject the null hypothesis for medium or large stocks in the most recent period. However, the

multivariate tests do reject, albeit with a lower significance level. We have also extended our analysis

to allow for a time varying risk premium, but find that the main empirical results are sustained,

and we omit these results here.5 This evidence is presented based on our HLCM standard errors

that are robust to leverage effects as well as heteroskedasticity. We also show that the degree of

asymmetry in the dependence structure has reduced, although it is still statistically significant. We

further investigate the variance ratios at the long horizon. Simulation experiments indicate that our

variance ratio tests are reliable, and powerful against some alternatives.

There is a substantial literature on testing for nonlinear predictability using information beyond

the simple autocorrelations, see for example Hong (2000), Hong and Lee (2005), Escanciano and

Velasco (2006), and Phillips and Jin (2014). There is also a literature that emphasizes structural

breaks and rolling window analysis, see for example Lo (2005) and Pesaran and Timmermann (2007).

Finally, there is a large literature on "predictive regressions" using long horizons and covariates such

as dividend price ratios, see Phillips (2015). Our methodology and application hopefully complements

this vast body of research.

In section 2 we introduce the multivariate ratio population statistics in various forms. In section

3 we introduce the estimators, while in section 4 we present the main central limit theorem and

inference methods. In section 5 we consider a number of alternative hypotheses, while in section 6

we discuss the large dimensional case. We perform a small simulation study in section 7. In section

8 we present our application, while Section 9 concludes. The appendix contains the proofs of all

results.
5In the working paper version of this paper, we extend the theory to allow for a time varying risk premium in two

ways. One approach is to fit an observable common factor regression and compute our statistics from the residuals.

The second approach is to fit explicitly a nonparametric trend model, which we also allow to vary across different

"regimes" (such as days of the week), to each series, and then to compute our statistics from the residuals. We show

that with minor additional conditions our distribution theory and inference method carry over to this case.
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2 Multivariate Variance Ratios

For expositional purposes we shall suppose in this section that we have a vector stationary ergodic

discrete time series Xt ∈ Rd; formal assumptions regarding the data are given below in section 3.
Let X̃t = Xt − µ, where µ = E(Xt) for all t. We are interested in testing the (weak form) Effi cient

Markets Hypothesis and quantifying and signing departures from this hypothesis. According to Fama

(1970), this is that "risk adjusted stock returns are unforecastable using past prices". "Prices" are

usually taken to mean just a sequence of past prices for the asset in question, but the spirit of this

hypothesis should allow the past history of other assets not to matter either. Regarding the risk

adjustment, we shall assume that the risk premium is constant, unknown, and is denoted by µ. In

the working paper version we have extended the theory to the case where µt is time varying and

depends on multiple unknown quantities.

One interpretation of the EMH is to assume that the risk adjusted return process satisfies

E(X̃t|Ft−1) = 0, (1)

where Ft denotes the past history of the prices of all the assets. This is a stronger assumption than
that returns are uncorrelated with the past of all prices, i.e.,

E(X̃itX̃jt−k) = 0 (2)

for all i, j = 1, . . . , d and for all k 6= 0, which itself is a stronger assumption6 than that returns are

uncorrelated with their own past, i.e.,

E(X̃itX̃it−k) = 0 (3)

for all i and for all k 6= 0, which is what is adopted in Lo and MacKinlay (1988) (and referred to as

RW3 in Campbell, Lo, and MacKinlay (1997) and in much subsequent work). RW3 has the advantage

that if one rejects it, then one rejects the martingale hypothesis; on the other hand, if one does not

reject RW3 then one can’t conclude that the martingale hypothesis is valid.7 Throughout we work

with at least the multivariate uncorrelatedness hypothesis (2). We also develop a theory based on

the stronger martingale difference assumption (1), because the additional regularity conditions can

be stated very simply.

We next define the population versions of the multivariate variance ratios. Let Xt(K) = Xt +

Xt−1 + . . .+Xt−K+1 for each K, and define the following population quantities:

Σ = var(Xt) = E(X̃tX̃
ᵀ
t ) (4)

6This is not quite correct, since the martingale hypothesis only requires E|Xt| < ∞, whereas the autocovariance
of a stationary process requires EX2

t <∞ in order to be well defined in general.
7We note that there are many tests of the martingale hypothesis that make use of more information, Hong and Lee

(2005) and Escanciano and Velasco (2006), and thereby obtain power against a larger class of alternatives.
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D = diag
{
E(X̃2

1t), . . . , E(X̃2
dt)
}

(5)

Σ(K) = var(Xt(K)) = E((Xt(K)−KE(Xt)) (Xt(K)−KE(Xt))
ᵀ
) (6)

Γ(j) = cov(Xt, Xt−j) = E(X̃tX̃
ᵀ
t−j) (7)

R(j) = Σ−1/2Γ(j)Σ−1/2 (8)

RL(j) = Γ(j)Σ−1 ; RR(j) = Σ−1Γ(j) (9)

Rd(j) = D−1/2Γ(j)D−1/2 (10)

for j = 0,±1, . . . . Here, A1/2 denotes a symmetric square root of a symmetric matrix A. We shall

assume that Σ is strictly positive definite.

2.1 Two Sided Variance Ratios

Under condition (2), the variance covariance matrices obey the scaling law var(Xt(K)) = Kvar(Xt),

where K is some positive integer, from which we may obtain a number of different variance ratio

statistics. These will have different merits and drawbacks depending on the purpose to which the

estimation/testing is directed.

We define the two sided matrix normalized multivariate ratio (population) statistic as

VR(K) = var(Xt)
−1/2var(Xt(K))var(Xt)

−1/2/K. (11)

Clearly, under the null hypothesis (2) we should have VR(K) = Id. Under the generic (stationary)

alternative hypothesis we have

VR(K) = I +
K−1∑
j=1

(
1− j

K

)
(R(j) +R(j)

ᵀ
), (12)

which is a symmetric matrix. The off-diagonal elements should be zero under the null hypothesis of

no predictability. Both representations (11) and (12) can be used as the basis for estimation.8

An alternative multivariate normalization is given by

VRa(K) = var(Xt(K))var(Xt)
−1/K,

which can likewise generically be written

VRa(K) = I +
K−1∑
j=1

(
1− j

K

)(
RL(j) +RR(j)

ᵀ)
. (13)

8One can interpret the variance ratio matrix as a (scalar) affi ne transformation of the least squares closest value of

R in an approximating model for the autocorrelations of the form: R(j) =
(
1− j

K

)
R, j = 1, . . . ,K and R(j) = 0 for

j > K.
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This has a regression interpretation, see Chitturi (1974) andWang (2003, p62). Note that VR(K) = I

if and only if VRa(K) = I. We shall not say anything further about this quantity VRa(K). Some

discussion is given in the working paper version of the paper.

A third quantity is the diagonally normalized variance ratio

VRd(K) = D−1/2var(Xt(K))D−1/2/K (14)

= Rd(0) +

K−1∑
j=1

(
1− j

K

)
(Rd(j) +Rd(j)

ᵀ
), (15)

where Rd(0) = D−1/2Γ(0)D−1/2 is the d × d contemporaneous correlation matrix. Under the null

hypothesis that the series is uncorrelated, we should have VRd(K) = Rd(0) the contemporaneous

correlation matrix, whose off-diagonal elements are unrestricted by the null hypothesis. The diagonal

elements of VRd(K) correspond to the univariate variance ratio statistics, while the off-diagonal

elements provide information about the cumulative cross-dynamics between the assets. Note that

if VR(K) = I, then VRd(K)ii = 1 for all i, but not vice versa. This suggests that if one rejects a

univariate test then one would reject the multivariate test but not necessarily vice versa. Specifically,

suppose that Xt are iid but X1t = X2,t−1 then the univariate tests would fail but the multivariate

one would not.

2.2 One Sided Variance Ratios

In the univariate case, the variance ratio process and the autocorrelation function contain the same

information and one can recover the autocorrelation function from the variance ratio function. This

is not so in the multivariate case because VR(K) and VRd(K) are both symmetric matrices whereas

the autocorrelation function Rd(j) is not necessarily symmetric. In fact, one can only recover

Rd(·) + Rd(·)ᵀ or R(·) + R(·)ᵀ from the variance ratio functions VRd(·) and VR(·). This means
that information about lead lag relations are eliminated. Instead we propose the following quanti-

ties:

VR+(K) = I + 2

K−1∑
j=1

(
1− j

K

)
R(j) ; VRd+(K) = Rd(0) + 2

K−1∑
j=1

(
1− j

K

)
Rd(j),

and the negative counterparts VR−(K) = VR
ᵀ

+(K) and VRd−(K) = VRdᵀ+(K), which have the

property that: VR(K) = (VR+(K) + VRᵀ
+(K))/2 and VRd(K) = (VRd+(K) + VRdᵀ+(K))/2. One

can compare the two statistics, VRd+(K), VRd−(K), to quantify the asymmetry in lead lag effects.
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2.3 Univariate Parameters of Interest

We discuss here some univariate parameters of interest both for statistical purposes and economic

interpretability.

2.3.1 Trace and Determinant

The determinant and trace are commonly used univariate functions of covariance matrices that

feature in a lot of likelihood ratio testing literature, see for example Szroeter (1978). The trace

statistic is widely used to capture the average effect of many individual variance ratios, see for

example Table 2.3 in Lo and MacKinlay (1999), and Castura et al. (2010). The Generalized Variance

Ratio (Anderson (2003)) statistic would be

det (VR(K)) =
det (Σ(K)/K)

det (Σ)
=

det (Σ(K))

Kd det (Σ)
.

Cho and White (2014) Lemma 1 says that VR(K) = I if and only if det (VR(K)) = 1 and

tr (VR(K)) = d, so from a statistical point of view these quantities capture the meaning of the

null hypothesis.

2.3.2 Eigenvalues

Let λ1(K) = λmax(K) ≥ . . . ≥ λd(K) = λmin(K) denote the eigenvalues of VR(K)) arranged in

decreasing order. Under the null hypothesis, λj(K) = 1, j = 1, . . . , d, but under the alternative

hypothesis they can take any non-negative values. These quantities give univariate measures of the

predictability obtainable within the series as we next show. Consider a portfolio of assets with fixed

weights w ∈ Rd. Denoting VRK(zt) by the univariate variance ratio of the scalar series zt, and letting

w̃ = Σ1/2w and Yt = Σ−1/2Xt, we have

VRK(w
ᵀ
Xt) = VRK(w

ᵀ
Σ1/2Σ−1/2Xt) = VRK(w̃

ᵀ
Yt) =

w̃
ᵀ
VR(K;Yt)w̃

w̃
ᵀ
w̃

=
w̃
ᵀVR(K;Xt)w̃

w̃
ᵀ
w̃

≤ λ1(VR(K;Xt)).

This follows because VR(K;Xt) = VR(K; Σ−1/2Xt) = VR(K;Yt). This says that the largest eigen-

value of the variance ratio matrix is an upper bound on the univariate variance ratio of any portfolio

with fixed ex-post weights. Likewise, the smallest eigenvalue of the variance ratio matrix provides

a lower bound on the variance ratio of any portfolio with fixed weights. The weights that achieve

it are given by the corresponding rescaled eigenvectors of the variance ratio matrix. Compare with

Lo and MacKinlay (1999, p258). The portfolio that gives minimal predictability corresponds to the

eigenvalue λj(K) that is closest to one.
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2.3.3 Global Minimum Variance

The variance ratio matrix can also tell us about other portfolios constructed from the underlying

assets. The variance of the portfolio w
ᵀ
Xt(K) is w

ᵀ
Σ(K)w. The global minimum variance portfolio

weights are wmv(K) = Σ(K)−1i/i
ᵀ
Σ(K)−1i, which results in global minimum variance 1/i

ᵀ
Σ(K)−1i.

By plotting this as a function of K one sees the variation of the least risk portfolio by horizon. This

comparison does not depend on the matrix Σ so if we consider the normalized returns Yt(K) =

K−1/2Σ−1/2(Xt(K) − Kµ) then the variance of w
ᵀ
Yt(K) is w

ᵀ
Σ−1/2Σ(K)Σ−1/2w/K = w

ᵀVR(K)w

and the best portfolio is wmv(K) = VR(K)−1i/i
ᵀVR(K)−1i with resulting variance

GMV (K) =
1

iᵀVR(K)−1i
. (16)

Under the null hypothesis this should be equal to 1/d for all K.

2.3.4 Off-Diagonal Elements

We are also interested in several other univariate parameters based on VRd+(K). First, the diagonal

elements of VRd+(K) correspond to the univariate variance ratio statistics. Second, the off-diagonal

elements of VRd+(K) provide the information about the directional lead lag pattern between the

assets. Third, the differences between two corresponding off-diagonal elements of VRd+(K) indicate

the asymmetry in the lead lag relationships between the assets. If one of the assets is a common

factor portfolio, the corresponding off-diagonal elements of VRd+(K) and VRd−(K) give an idea

of the dynamic comovement of the asset with the common factor portfolio, which could be used in

cross-sectional regression analysis.

Another parameter of interest is the average of the off diagonal elements of VRd(K), which is

CS(K) =
2

d(d− 1)

d−1∑
i=1

d∑
j=i+1

VRdij(K) =
1

d(d− 1)
{i

ᵀ
VRd(K)i− tr(VRd(K))}, (17)

see Solnik (1991) and Bailey, Kapetanios, and Pesaran (2012) who consider the case of K = 0 and

large d. Under the null hypothesis CS(K) = CS(1) for all K. This measures in some average sense

the cross dependence at different lags.

2.3.5 Dynamic Momentum/Contrarian Portfolio Profit

We consider a generalization of the Lo and MacKinlay (1990) type arbitrage portfolio contrarian

strategies. Specifically, consider the following portfolio weights applied to the normalized investments

Zt = D−1/2(Xt − µ)

w̃it(K) = ± 2

d(K − 1)

K−1∑
j=1

(
1− j

K

)(
Zi,t−j − Zt−j

)
(18)
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where Zs =
∑d

i=1 Zis/d = i
ᵀ
Zs/d so that

∑d
i=1 w̃it(K) = 0. This strategy considers all the "signals":

Zi,t−1 − Zt−1, . . . , Zi,t+1−K − Zt+1−K , and combines them with weights according to their lag. If

the ± factor is positive, this can be considered a momentum strategy, while if it is negative, this

can be considered a contrarian strategy. The total investment of the strategy at time t is It(K) =∑d
i=1 |w̃it(K)|/2. The expected profit of this strategy is

π±(K) = Ew̃
ᵀ
t (K)Zt = ± 2

d(K − 1)

K−1∑
j=1

(
1− j

K

)
E
[(
Zt−j − Zt−ji

)ᵀ
Zt

]
= ± 2

d2(K − 1)

K−1∑
j=1

(
1− j

K

)
E
[
i
ᵀ
Zt−jZ

ᵀ
t i
]
−
[
± 2

d(K − 1)

K−1∑
j=1

(
1− j

K

)
E
[
Z
ᵀ
t−jZt

]]

= ± 2

d2(K − 1)
i
ᵀ
K−1∑
j=1

(
1− j

K

)
R(j)

ᵀ
i−
[
± 2

d(K − 1)
tr

(
K−1∑
j=1

(
1− j

K

)
R(j)

)]

= ± 1

d2(K − 1)
i
ᵀVRd(K)i−

[
± 1

d(K − 1)
tr (VRd(K))

]
± 1

K − 1

(
1− 1

d2
i
ᵀ
R(0)i

)
= ± 2

d2(K − 1)

d−1∑
i=1

d∑
j=i+1

[
VRdij(K)− ρij

]
± d− 1

d2(K − 1)
tr (I − VRd(K)) .

Under the martingale hypothesis, π±(K) = 0 for all K. This quantity weights diagonal departures

and off diagonal departures similarly. If π±(K) > 0, then the strategy should make money (in the

absence of transaction costs).

3 Estimation of Variance Ratio Matrices

Suppose that we observe the return vectors {Xt, t = 1, . . . , T} equally spaced in discrete time. We
may estimate the variance ratios in several ways, for example by estimating the sample covariance

matrix of the K frequency data and the original observations and then forming the ratio.9 We can

alternatively explicitly use the population connection with the autocorrelation matrix process in (12)

for example.

We estimate the population quantities by sample averages:

X =
1

T

T∑
t=1

Xt ; Γ̂(j) =
1

T

T∑
t=j+1

(
Xt −X

) (
Xt−j −X

)ᵀ
, j = 0, 1, 2, . . .

Σ̂(K) =
1

T

T∑
t=K

(
Xt(K)−KX

) (
Xt(K)−KX

)ᵀ
9As pointed out by Hillman and Salmon (2007) with unequally spaced data, this approach can yield a "natural"

variance ratio by classifying observations on the duration since the previous trade.
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Σ̂ = Γ̂(0) ; D̂ = diag[Γ̂(0)] ; R̂(j) = Σ̂−1/2Γ̂(j)Σ̂−1/2; R̂d(j) = D̂−1/2Γ̂(j)D̂−1/2 ;

V̂R(K) = I +

K−1∑
j=1

(
1− j

K

)
(R̂(j) + R̂(j)

ᵀ
) ; V̂Rd(K) = I +

K−1∑
j=1

(
1− j

K

)
(R̂d(j) + R̂d(j)

ᵀ
)

V̂R
&

(K) = Σ̂−1/2Σ̂(K)Σ̂−1/2/K ; V̂R+(K) = I + 2
K−1∑
j=1

(
1− j

K

)
R̂(j).

Note that by construction V̂R(K), V̂Rd(K), and V̂R
&

(K) are symmetric and positive semidefinite.

We may also calculate the univariate quantities by analogy. For example, define the estimated

ordered eigenvalues λ̂1(K) ≥ . . . ≥ λ̂d(K) of V̂R(K).

4 Asymptotic Theory and Inference

4.1 Regularity Conditions

We present two alternative non-nested sets of sampling assumptions, which we denote by A and

MH∗. Assumptions A center on the martingale difference assumption and require stationarity and

ergodicity. The theory makes use of arguments presented in Hall and Heyde (1980), and applied in

Phillips and Guo (2001); see Escanciano and Lobato (2009) for a review of the literature surrounding

martingale based testing. Assumptions MH∗ are modified versions of the assumptions in Lo and

MacKinlay (1988) adapted to the multivariate case and corrected for what appears to be an error;

these conditions do not require stationarity although certain averages need to converge. Most treat-

ments of variance ratios employ the Lo and MacKinlay (1988) assumption H, which includes a mixing

condition and some further restriction on the structure of the higher moments (their condition H4),

which purportedly implies that the sample autocorrelations are asymptotically independent.10 In the

multivariate context, their assumption H4 would be that

E[X̃itX̃jtX̃krX̃ls] = 0 for all i, j, k, l, t, and r, s with r < s < t. (19)

This assumption rules out leverage type effects, e.g., E[X̃2
it|X̃irX̃is] 6= 0, which may be important for

some assets, see Nelson (1991). This assumption is not necessary for the distribution theory; imposing

it (along with other conditions) would simplify the asymptotic variance to be single finite sums rather

than double finite sums, but in practice this is not a big issue. We shall dispense with this assumption

below, but we shall make a further assumption that appears to have been omitted by mistake from

Lo and MacKinlay (1988). Namely, implicit in their analysis is that X̃tX̃t−j is uncorrelated with

10Some papers including Whang and Kim (2003) dispense with this latter assumption but maintain the mixing and

moment assumption.
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X̃sX̃s−j, but this does not follow from X̃t being an uncorrelated sequence (although it does follow if

X̃t were a martingale difference sequence).

Define for j, k = 0, 1, 2, . . . :

Ξjk = lim
T→∞

1

T

T∑
t=1

E
[(
X̃t−jX̃

ᵀ
t−k ⊗ X̃tX̃

ᵀ
t

)]
; cj,K = 2

(
1− j

K

)

Q(K) =

K−1∑
j=1

K−1∑
k=1

cj,Kck,K
(
Σ−1/2 ⊗ Σ−1/2

)
Ξjk

(
Σ−1/2 ⊗ Σ−1/2

)
Qd(K) =

K−1∑
j=1

K−1∑
k=1

cj,Kck,K
(
D−1/2 ⊗D−1/2

)
Ξjk

(
D−1/2 ⊗D−1/2

)
.

We shall assume that the matrices Σ, Q(K) and Qd(K) are strictly positive definite. We consider

the following sets of alternative assumptions:

Assumption A.

A1. The process X̃t is a stationary ergodic Martingale Difference sequence;

A2. The process X̃t has finite fourth moments, i.e., for all i, j, k, l, E[|X̃itX̃jtX̃ktX̃lt|] ≤ C <∞.

Assumption MH*.

MH1. (i) For all t, X̃t satisfies EX̃t = 0, E
[
X̃tX̃

ᵀ

t−j
]

= 0 for all j 6= 0; (ii) for all t, s with s 6= t and

all j, k = 1, . . . , K, E
[
X̃tX̃

ᵀ

t−j ⊗ X̃sX̃
ᵀ

s−k
]

= 0.

MH2. X̃t is α-mixing with coeffi cient α(m) of size r/(r − 1), where r > 1, such that for all t and

for any j ≥ 0, there exists some δ > 0 for which suptE|X̃itX̃k,t−j|2(r+δ) < ∆ < ∞ for all

i, k = 1, . . . , d;

MH3. For all j, k, the following limits exist: limT→∞
1
T

∑T
t=1E[X̃tX̃

ᵀ
t ] =: Σ <∞ and

limT→∞ T
−1∑T

t=1E
[
X̃t−jX̃

ᵀ

t−k ⊗ X̃tX̃
ᵀ
t

]
=: Ξjk <∞.

Chen and Deo (2006) work with martingale difference sequences but also assume a no leverage

condition. Francq, Roy, and Zakoian (2005) assume both stationarity and mixing in their analysis of

Box-Pierce statistics. In MH∗ we include the additional condition (ii) E[X̃tX̃
ᵀ

t−j ⊗ X̃sX̃
ᵀ

s−k] = 0, for

all s 6= t and all j, k = 1, . . . , K; this is not a consequence of (2) in general. Without this additional

assumption the asymptotic variance of the variance ratio statistics are much more complicated and

hard to estimate, involving the selection of a bandwidth parameter. Condition MH1(ii) is satisfied
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automatically under the martingale hypothesis, which itself is consistent with any kind of nonlinear

multivariate ("semi-strong") GARCH process. In assumption A, we have assumed strict stationarity,

whereas this is not required in MH∗ (although certain sums have to converge in MH3, which would

rule out explosive nonstationarity). In MH∗ we have assumed higher moments depending on the

mixing decay rate, whereas for assumption A only four moments are required and no explicit mixing

conditions are employed. It should be noted therefore that the conditions A and MH∗ are non-

nested. We further note that under the assumption that returns are i.i.d. (referred to as RW1 in

Campbell, Lo, and MacKinlay (1997)), the univariate version of the CLT’s below are valid under only

second moments, Brockwell and Davis (1991, Theorem 7.2.2), due to the self normalization present

in the sample autocorrelations. For similar reasons, condition MH3 may not be strictly necessary in

that mildly trending moments may still permit a CLT at the same rate due to the cancellation of

numerator by denominator.

We remark that this theory is predicated on the existence of fourth moments, which may be

problematic for some financial time series. Provided only the population variance exists, the matrix

normalized variance ratio converges in probability to the identity, but may have a non-standard

limiting distribution and a slower rate of convergence to it, Phillips and Solo (1992) and Mikosch

and Stărică (2000).11 Even if the population variance does not exist, the sample variance ratio may

converge, due to the self-normalization, but one can expect a different scaling law. For example, if

the return process is iid with a symmetric stable distribution with parameter α ∈ [1, 2], then the

sample variances scale according to K2/α, that is, as T →∞, V̂R(K)→ K(2−α)/α for all K. This is

similar asymptotic behaviour to what is found under the bubble process of section 5.2 below when

α = 1. Wright (2000) has proposed variance ratios based on signs and ranks that are robust to heavy

tailed distributions, although require stronger assumptions elsewhere.

4.2 Finite/fixed horizon Limiting Distribution Theory

We next present our main results. In this subsection we consider the finite K framework.

Theorem 1. Suppose that either Assumption A or MH ∗ holds. Then, as T →∞:
√
Tvec

(
V̂R+(K)− Id

)
=⇒ N

(
0, Q(K)

)
√
Tvec

(
V̂Rd+(K)− R̂d(0)

)
=⇒ N

(
0, Qd(K)

)
.

It follows that for any vector ω, ω
ᵀ
vec(V̂R+(K) − Id) is asymptotically normal with mean zero

11For stationary univariate linear processes, the sample autocorrelations can be root-T consistent and asymptotically

normal under only second moment assumptions, Brockwell and Davis (1991, Theorem 7.2.2), but this result does not

hold for nonlinear processes like GARCH, nor for multivariate linear processes.
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and variance ω
ᵀ
Q(K)ω/T. Limiting distributions for smooth functions of the variance ratio matrices

can be obtained by the delta method.

For the ordered eigenvalues, we employ a different approach, as they are not smooth functions

of the variance ratio matrix under the null hypothesis. Specifically, we use Eaton and Tyler (1991,

Theorem 3.2) where it is shown that if the random symmetric matrix
√
T (V̂R(K)− Id) converges in

distribution to a matrix random variable, denoted U, then with id = (1, 1, . . . , 1)
ᵀ

√
T
(
ϕ(V̂R(K))− id

)
=⇒ ϕ(U), (20)

where ϕ(V̂R(K)) and ϕ(U) are d× 1 vectors of ordered eigenvalues λ̂j ∈ ϕ(V̂R(K)) and λ∗j ∈ ϕ(U),

respectively. It follows for example that

√
T
(
λ̂max − 1

)
=⇒ λ∗max(U),

whose distribution can be computed by simulation.

4.3 Standard Errors and Test Statistics

From the expressions in Theorem 1 we can obtain pointwise confidence intervals for scalar functions

of the matrices V̂R(K) or V̂Rd(K)− R̂d(0) or V̂Ra(K). Let:

Ξ̂jk =
1

T

T∑
t=max{j,k}+1

(
Xt−j −X

) (
Xt−k −X

)ᵀ
⊗
(
Xt −X

) (
Xt −X

)ᵀ
(21)

Q̂(K) =
K−1∑
j=1

K−1∑
k=1

cj,Kck,K

(
Σ̂−1/2 ⊗ Σ̂−1/2

)
Ξ̂jk

(
Σ̂−1/2 ⊗ Σ̂−1/2

)
(22)

Q̂d(K) =

K−1∑
j=1

K−1∑
k=1

cj,Kck,K

(
D̂−1/2 ⊗ D̂−1/2

)
Ξ̂jk

(
D̂−1/2 ⊗ D̂−1/2

)
,

and Ŝ(K) = D+
n Q̂(K)D+

ᵀ

n and Ŝd(K) = D+
n Q̂d(K)D+

ᵀ

n , where D+
n is the Moore-Penrose pseudoin-

verse of the duplication matrix, Magnus and Neudecker (1980). Specifically, the asymptotic variance

of V̂Rdii(K) can be estimated by

Q̂diiii(K) =
1

σ̂2ii

K−1∑
j=1

K−1∑
k=1

cj,Kck,KΞ̂jk;iiii (23)

Ξ̂jk;iiii =
1

T

T∑
t=max{j,k}+1

(
Xit−j −X i

) (
Xit−k −X i

) (
Xit −X i

)2
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σ̂ii =
1

T

T∑
t=1

(
Xit −X i

)2
.

Note that under the Lo and MacKinlay (1988) condition H4 (i.e. (19)) we have Ξjk = 0 for j 6= k,

so that the asymptotic variance in Theorem 1 simplifies, a little. The commonly used asymptotic

variance matrix is

Q̂dLM(K) =

K−1∑
j=1

c2j,K

(
D̂−1/2 ⊗ D̂−1/2

)
Ξ̂jj

(
D̂−1/2 ⊗ D̂−1/2

)
, (24)

whose diagonal elements can be compared with (23): they are the same except that Ξ̂jk;iiii = 0 for

j 6= k. In the iid case, we further have Ξjj = Σ⊗ Σ and:

Qiid(K) =

K−1∑
j=1

c2j,KId2 ; Q̂diid(K) =

K−1∑
j=1

c2j,K(R̂d (0)⊗ R̂d (0)). (25)

In the scalar case both these quantities are nuisance parameter free.

As we show in the application, the standard errors derived from (22), (24), and (25) can be quite

different; although there is no necessary ordering, generally speaking the standard errors from Q̂(K)

are larger than the standard errors from Q̂LM(K), which in turn are larger than the standard errors

from the i.i.d special case Q̂iid(K).

The standard errors for univariate quantities of interest can be obtained from (22). Let τ f =

f(vec(VR+(K))) and τdf = f(vec(VRd+(K))) be scalar parameters of interest, where f is a con-

tinuously differentiable function with non-zero gradient, and let ef = ∇f(vec(VR+(K))), edf =

∇f(vec(VRd+(K))) ∈ Rd2 denote the gradients of the functions at the true value. Let Qf (K) =

e
ᵀ
fQ(K)ef and Qdf (K) = e

ᵀ
fQd(K)ef . Then Q̂f (K) = e

ᵀ
fQ̂(K)ef and Q̂df (K) = e

ᵀ
fQ̂d(K)ef are con-

sistent asymptotic variance estimators for τ̂ f and τ̂ df respectively. For example, define the column

vectors: b that is 0 at the ((l − 1)(d+ 1) + 1)th entries (l = 1, . . . , d) and 1 otherwise; i is a con-

formable column vector of ones; c is a column vector that is (1−d)/(d2(K−1)) at ((l−1)(d+1)+1)th

entries, and is 1/(d2(K − 1)) at other entries; and δ = vech(Id). Then, specifically, let:

Q̂CS(K) =
1

d2(d− 1)2
bᵀQ̂d (K) b

Q̂GMV (K) = d−4iᵀŜ(K)i,

Q̂π(K) = cᵀQ̂d(K)c

Q̂tr(K) = δᵀŜ (K) δ = Q̂det(K).

We next define some test statistics. Let f be any continuously differentiable function with nonzero

gradient (for example CS, det, GM, tr, or π), and let
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Zf (K) =
√
T
(
Q̂f (K)

)−1/2 [
f(vec(V̂R+(K)))− f(vec(VR+(K)))

]
(26)

Zdf (K) =
√
T
(
Q̂df (K)

)−1/2 [
f(vec(V̂Rd+(K)))− f(vec(R̂d(0)))

]
(27)

WF (K) = Tvech
(
V̂R(K)− I

)ᵀ
Ŝ(K)−1vech

(
V̂R(K)− I

)
(28)

WdF (K) = Tvech
(
V̂Rd(K)− R̂d(0)

)ᵀ
Ŝd(K)−1vech

(
V̂Rd(K)− R̂d(0)

)
. (29)

Corollary 1. Suppose that either Assumption A or MH ∗ holds. Then (for each fixed K) the

estimator Q̂(K) is weakly consistent for Q(K) (likewise, Q̂d(K) are weakly consistent for Qd(K)),

i.e., as T →∞,
Q̂(K)

P−→ Q(K)

Zf (K), Zdf (K) =⇒ N(0, 1)

WF (K),WdF (K) =⇒ χ2(d(d+ 1)/2).

In the application we make use of a bias correction method based on asymptotic expansions (under

the iid assumption), which may give better performance for long lags. A number of alternative infer-

ence methods such as self-normalization, or block bootstrap and subsampling have been suggested to

accommodate the more general uncorrelatedness assumption that allows E
[
X̃tX̃

ᵀ

t−j ⊗ X̃sX̃
ᵀ

s−k
]
6= 0

for some s 6= t. The readers are directed to Lobato (2001) and Whang and Kim (2003) for description

of these methods.

4.4 Increasing horizon Limiting Distribution Theory

It has been reported in the literature that inferences based on the asymptotic theory of the variance

ratio statistic become unreliable in finite samples when the horizon K is large relative to the sample

size T , see Lo and MacKinlay (1989). In view of this practical issue, Richardson and Stock (1989)

considered the framework in which K = K(T ) and K/T → δ < 1, and showed that the limiting

distribution is a function of Brownian motion. However, Deo and Richardson (2003) pointed out

the inconsistency of the univariate variance ratio test under this particular restriction against some

important mean reverting alternatives. Consequently, Chen and Deo (2006) studied an alternative

setting whereK is set to increase slower so thatK/T tends to zero. Along with the ergodic martingale

difference assumption, they imposed a set of strong conditions on cross-moments (Assumption A3)

including the no-leverage condition, and some mixing-type conditions (Assumption A5 and A6) that

imply asymptotic independence of the process.
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In this section we investigate the increasing K asymptotics in the multivariate framework. Al-

though a d-dimensional analogue of the conditions assumed in Chen and Deo (2006) can be adopted,

we shall consider a different set of conditions including stationarity in Assumption A1 (but with a

slightly higher moment condition). This is to be consistent with the previous fixed K theory, and to

allow simple derivations under mild assumptions.

Assumption A′. The process X̃t is a stationary ergodic Martingale Difference sequence having

finite 4 + δ moments, i.e. E|X̃it|4+δ ≤ C <∞ for some δ > 0 for all i.

Assumption T. The horizon K →∞ as T →∞ and K/T → 0.

Assumption S. The following double sum is finite:
∑∞

a=−∞
∑∞

b=−∞ |κpqrl(a, b, 0, 0)| <∞ for all

p, q, r, l ≤ d, where κpqrl(t1, t2, t3, t4) is the cumulant of 4th order between (X̃pt1 , X̃qt2 , X̃rt3 , X̃lt4).

Along with stationarity, Assumption S guarantees the existence and positive definiteness of the

matrix limits Q(∞) = limK→∞K
−1Q(K) and Qd(∞) = limK→∞K

−1Qd(K), both of which will turn

out to have simple forms as we will see below. Indeed, summability of the cumulants is a common

assumption in the time series literature, see Rosenblatt (1985). The weak condition regulates the

dependence structure of the process, and is implied by a mild α-mixing and moment condition

(strictly higher than 4 as we shall assume below) as shown in Andrews (1991, Lemma 1), although

it is stronger than ergodicity. For example, Assumption MH2 with size of mixing strengthened to

3r/(r − 1) is suffi cient for summability of cumulants under stationarity. Some relevant discussions

can be found in the recent paper Shao and Wu (2007), where an alternative suffi cient condition is

given in terms of the notion of geometric moment contraction (GMC).

We derive the limiting distribution under the stationary ergodic martingale difference assumption.

Note that one could alternatively work with mixing (Assumption MH∗) or near epoch dependence,

for example, to obtain a similar result, but we shall not proceed to this direction in this paper.
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Theorem 2. Suppose that Assumptions A′, T and S hold. Then, as T →∞ :√
T

K
vec
(
V̂R(K)+ − Id

)
=⇒ N

(
0,

4

3
J

)
√
T

K
vec
(
V̂R(K)+ − Id

)
=⇒ N

(
0,

4

3
Jd

)
,

and

Zf (K), Zdf (K) =⇒ N (0, 1)

WF (K),WdF (K) =⇒ χ2(d(d+ 1)/2),

where J is the idendty matrix of dimension d2×d2, and Jd = (D−1/2⊗D−1/2)(Σ⊗Σ)(D−1/2⊗D−1/2)
is the matrix whose diagonal entries are one.

This says that the inference methods we apply in the finite K case can be carried over to the

increasing K case, at least where K is not too large relative to the sample size.

5 Alternative Hypotheses

There are many plausible alternative hypotheses to the null hypothesis (2), and it is not possible in

general to have power against all such departures. We can understand a little bit better the type

of alternatives against which the variance ratio has power by looking at equation (12). We have

VR(K) = I if and only if
K−1∑
j=1

cj,K
(
R(j) +R(j)

ᵀ)
= 0.

This says that the test will have power against alternatives for which the Bartlett weighted autocor-

relations do not sum identically to zero. This seems like a reasonable class of alternative, because

if the autocorrelations change sign enough that they cancel out, this hardly seems like a propitious

setting to make excess returns from a trading strategy that treats these autocorrelations as signals.

One wants not just departures from zero but some kind of reliable direction of dependence on which

to bet. By contrast, the Box-Pierce statistic will also pick up highly oscillatory variation in the

autocorrelations, which one might prefer to exclude from consideration.

We look in detail at several alternative models in this section. In general they yield a prediction

of the form

ΣT (K) = KΣ + ∆(K,T ), (30)

where ∆(K,T ) is a symmetric matrix such that ΣT (K) > 0.
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5.1 Local Alternatives

We first extend the arguments presented by Faust (1992) to the multivariate case and show that a

trace test will be optimal against a certain class of alternatives. The type of mean reversion that

the test is best at detecting will be shown to be a special case of vector autoregressive processes of

order K − 1. The main idea is to find a statistic that is asymptotically equivalent to the likelihood

ratio statistic, since in such a case the test based on that statistic will possess the same local large-

sample optimality properties of LR tests, see Engle (1984). Below we show that the statistic based

on tr(V̂R(K)) (defined formally below) is optimal (under normality) for testing the null hypothesis

of no predictability/serial correlation, against the alternative hypothesis that each marginal process

{Xjt}t, j = 1, . . . , d belongs to what is called the φ−best class proposed by Faust (1992). The
φ−best class is a particular class of AR(K − 1) models, and is defined as the set of those having AR

polynomials ρq(L) that satisfy

ρq
(
z
)
ρq
(
z−1
)

= α
(
1 + qφ(z)φ(z−1)

)
(31)

for some constants q and α > 0, and z inside the unit circle; the coeffi cients for the moving average

filter φ(L) are φj = +1 for all j = 0, . . . , K−1. From the definition we see that under the alternative

hypothesis, {Xt} essentially belongs to a (particular) class of vector autoregressive process V AR(K−
1). We note that when q = 0 the process is a white noise. Denote by X the T × d matrix of sample
observations. Then formally, the null and alternative hypotheses can be written as

H0 : X ∼ N T
d

(
iµ

ᵀ
, IT ⊗ Σ

)
[Uncorrelatedness]

H1 : X ∼ N T
d

(
iµ

ᵀ
,Σq∗ ⊗ Σ

)
[‘φ− best’temporal dependence]

where Σq∗ refers to the variance-covariance matrix of the φ− best class process with the index of the
process q = q∗ > 0. The notation N T

d stands for a matrix normal variable; each matrix (separated by

the Kronecker product) in the variance represents the contribution from cross-sectional and temporal

sides, respectively. So essentially, this is a one-sided test of the index q being zero versus q being a

strictly positive constant. Examination of the local large-sample optimality is done by letting the

index q∗ = q∗(T ) = δ/
√
T in the alternatives, where δ determines the direction to which the test

departs from the null hypothesis.

Theorem 3. Suppose that the data are normally distributed. Then, the trace test is locally most

powerful invariant against alternatives in the φ−best class of the form q∗T = δ/
√
T .

It may be possible to characterize the class of alternatives against which other tests, such as the

determinant test, are optimal, but we leave this for future research.

The trace test, while optimal against the specific class above, may have zero power against some
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alternatives, as we next discuss. Suppose that ∆(K,T ) = ∆(K)/
√
T , then

√
T (VR(K)− I) =

1

K
Σ−1/2∆(K)Σ−1/2 ;

√
T (VRd(K)−Rd(0)) =

1

K
D−1/2∆(K)D−1/2.

Provided∆(K) is strictly definite, some tests based on these matrices will have positive power against

this alternative. On the other hand, in some cases, the power may be zero. Specifically, suppose

we take the trace test applied to the diagonally normalized variance ratio matrix, i.e., compare

tr(V̂Rd(K)) − d (c.f. Castura et al. (2010)) with the critical values from its normal limit given

above, then if ∆(K) is of the form

∆ij(K) =

{
δ(K) if i 6= j

0 if i = j

for some nonzero δ(K), then this particular test will have zero power.

5.2 Multivariate Fads Model

We consider an alternative to the effi cient market hypothesis (2), which allows for temporary mis-

spricing through fads but assures that the rational price dominates in the long run. Consider the

multivariate fads model for log prices:

p∗t = µ+ p∗t−1 + εt (32)

pt = p∗t + ηt, (33)

where εt is iid with mean zero and variance matrix Ωε, while ηt is a stationary weakly dependent

process with unconditional variance matrix Ωη, and the two processes are mutually independent. It

follows that the observed return satisfies

Xt = pt − pt−1 = µ+ εt + ηt − ηt−1. (34)

This is a multivariate generalization of the scalar Muth (1960) model, which was also adopted in

Poterba and Summers (1988). It allows actual prices p to deviate from fundamental prices p∗ but

only in the short run through the fad process ηt. This process is a plausible alternative to the effi cient

markets hypothesis. If ηt were i.i.d., then Xt would be (to second order) an MA(1) process, which is

a structure implied by a number of market microstructure issues (Hasbrouck (2007)). In this case,

VR(K) = I + (1− 1

K
)(R(1) +R(1)

ᵀ
) = I − 2(1− 1

K
) (Ωε + 2Ωη)

−1/2 Ωη (Ωε + 2Ωη)
−1/2 ,

and likewise for VRd(K). In general, however, ηt might have any type of weak dependence structure.
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We next derive a restriction on the long run variance ratio statistic that reflects the presence of

fads. We do not restrict the fads process, and so can only obtain long run implications.

Theorem 4. Suppose that the multivariate fads model (32)-(33) holds and suppose that cov(ηt+j, ηt)→
0 as j → ∞. Then, VR(∞) = limK→∞ VR(K) = I +

∑∞
j=1(R(j) + R(j)

ᵀ
) exists. Further suppose

that Ωη(1) > 0. Then,

VR(∞) < Id

in the matrix partial order sense. Likewise, VRd(∞) = limK→∞ VRd(K) exists, and

VRd(∞) < Rd(0).

This result generalizes the existing results for the scalar fads process, which amount to VRdii(∞) ≤
Rdii(0) for i = 1, . . . , d. In Theorem 4, we obtain stronger constraints on the off diagonal elements

of VRd(∞) and VR(∞). Note that we also obtain GMV (K)→ GMV (∞) > 1/d as a corollary.

We consider what happens to the long horizon sample variance ratio statistic under the fads

model. We will consider the case where K →∞ as T →∞ such that K/T → 0 (in contrast with the

framework of Richardson and Stock (1989)). The consistency follows from the theory for the long run

variance ratio, Parzen (1957), Andrews (1991), and Liu and Wu (2010). We adopt the framework of

Liu and Wu (2010) and suppose that

Xt = Ψ (. . . , et−1, et) ,

where et are i.i.d random vectors of length p ≥ d, and Ψ : Rp ×Rp × · · · → Rd. This includes a wide
range of linear and nonlinear processes for ηt, εt. Then define

δt = E [‖(Ψ (. . . , e0, . . . , et−1, et)−Ψ (. . . , e′0, . . . , et−1, et))‖] ,

where e′t is an i.i.d. copy of et and ||.|| denotes the Euclidean norm.
Assumption B. The vector process Xt is stationary with finite fourth moments and weakly

dependent in the sense that
∑∞

t=1 δt <∞.
Theorem 5. Suppose that the multivariate fads model (32)-(33) holds along with Assumption B,

and suppose that K →∞ as T →∞ such that K/T → 0. Then,

V̂R(K)
P−→ VR(∞).

Likewise, V̂Rd(K) consistently estimates VRd(∞). More generally, we could obtain the limiting

distribution of V̂R(K) − VR(K) under either fixed K or K increasing asymptotics applying the

methods of Liu andWu (2010), but the limiting variance in either case is going to be very complicated.
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5.3 Bubble Process

Several authors argue that the frequently observed excessive volatility in stock prices may be at-

tributed to the presence of speculative bubbles. Blanchard and Watson (1982) and Flood and Ho-

drick (1986), inter alia, demonstrate in a theoretical framework that bubble components potentially

generate excessive volatility. There is some debate about whether these constitute rational adjust-

ment to fundamental pricing rules or arise from more behavioural reasons. Recently, Phillips and Yu

(2011), and Phillips, Shi, and Yu (2012) have considered the following class of "bubble processes"

for (log) prices pt

pt = µ+ pt−11 (t < τ e) + δT1 (τ e ≤ t ≤ τ f ) pt−1 +

 t∑
s=τf+1

εs + p∗τf

 1 (t > τ f ) + εt1 (t ≤ τ f ) , (35)

where p∗τf represents the restarting price after the bubble collapses at time τ f , and δT = 1 + c/Tα for

α ∈ (0, 1) and c > 0. The process is consistent with the effi cient markets hypothesis during [1, τ e] and

[τ f , T ] but has an explosive "irrational" moment in the middle. They propose econometric techniques

to test for the presence of a bubble and indeed multiple bubbles. One can imagine this model also

holding for a vector of asset prices caught up in the same bubble, so that εt is a vector of shocks, the

indicator function is applied coordinatewise, and the coeffi cient δT is replaced by a diagonal matrix.

In the appendix we show that in the univariate bubble process with nontrivial bubble epoch (i.e.,

(τ f − τ e)/T → τ 0 > 0), that, as T →∞

V̂R(K)
P−→ K (36)

for all K, so that the variance ratio statistic is greater than one for all K and gets larger with

horizon. Essentially, the bubble period dominates all the sample statistics, and all return autocor-

relations converge to one inside the bubble period, thereby making the ratio equal to the maximum

it can achieve. In the multivariate case, Magdalinos (2014) has shown that in some special cases,

λmax(V̂R(K))
P−→ K. However, the multivariate case is more complicated because other eigenvalues

may not behave in the same way.

In practice, rolling window versions of the variance ratio statistics can detect the bubble period in

a similar way to the Phillips, Shi and Yu (2012) statistics (although they are not explicitly designed

for this purpose and are not optimal for it). Our point here is just that these two different alternative

models generate opposite predictions with regard to the variance ratio. We will check this empirically

below.
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5.4 Time Varying Expected Return

We briefly consider a simple statistical model for time varying expected return. This model could

be consistent with rational pricing where the risk premium evolves slowly over time and has small

variation relative to the shocks to risk adjusted returns. Specifically, suppose that observed returns

are composed of a slowly varying risk premium µt and an iid shock εt, i.e.,

Xt = µ+ µt + εt, (37)

µt = µt−1 + ηt, (38)

where µ0 = (0, 0, . . . , 0)
ᵀ
and ηt is an iid mean zero shock that is "small" relative to εt. In this case

observed returns are nonstationary so we must index populations by T. This specification is similar

to that of equation 7.1.30 of CLM. We establish the following result.

Theorem 6. Suppose that the model (37)-(38) holds with ηt iid mean zero with Eηtη
ᵀ
t = Ση/T >

0 and εt iid mean zero with Eεtε
ᵀ
t = Σε > 0. Then

lim
K→∞

K−1 lim
T→∞

VRT (K)→
(

Ση
1

2
+ Σε

)−1/2
1

2
Ση

(
Ση

1

2
+ Σε

)−1/2
< Id.

This model gives a similar prediction to the bubble model, except it says that all eigenvalues should

grow linearly with the horizon with a slope less than one.

In the working paper version of this paper we consider several alternative approaches to capturing

time varying expected returns including nonparametric mean model and linear factor models.

5.5 Locally Stationary Alternatives

Suppose that Xt = Xt,T can be approximated by a family of locally stationary processes {Xt(u),

u ∈ [0, 1]}, Dahlhaus (1997). For example, suppose that Xt = εt + Θ(t/T )εt−1, where Θ(·) is a
matrix of smooth functions and εt is iid. This allows for zones of departure from the null hypothesis,

say for u ∈ U, where U is a subinterval of [0, 1], e.g., Θ(u) 6= 0 for u ∈ U . For example, during

recessions the dependence structure may change and depart from effi cient markets, but return to

effi ciency during normal times. This is consistent with the Adaptive Markets Hypothesis of Lo

(2004, 2005) whereby the amount of ineffi ciency can change over time depending on " the number of

competitors in the market, the magnitude of profit opportunities available, and the adaptability of

the market participants".

Let X̃t(u) = Xt(u)− EXt(u) and:

Σ(u) = var(Xt(u)) = E(X̃t(u)X̃
ᵀ
t (u))
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D(u) = diag
{
E(X̃2

1t(u)), . . . , E(X̃2
dt(u))

}
Γ(j;u) = E(X̃t(u)X̃

ᵀ
t−j(u)).

The sample autocovariances converge, under some conditions, to the integrals of the autocovariances,

e.g., Γ̂(j)→
∫ 1
0

Γ(j;u)du. Then, define

R(j) =

(∫ 1

0

Σ(u)du

)−1/2 ∫ 1

0

Γ(j;u)du

(∫ 1

0

Σ(u)du

)−1/2
.

It follows that under local stationarity

V̂R(K)
P−→ VR(K) = I +

K−1∑
j=1

(
1− j

K

)
(R(j) +R(j)

ᵀ
).

The test will have power against some alternatives where Γu(j) 6= 0 for u ∈ U and Γu(j) = 0 for

u ∈ U c. The test will not detect alternatives where VR(K) = I but V R(K;u) = I +
∑K−1

j=1 (1 −
j
K

)(R(j;u) +R(j;u)
ᵀ
) 6= 0, where R(j;u) = Σ(u)−1/2Γ(j;u)Σ(u)−1/2.

5.6 Nonlinear Processes

In general, the class of statistics we consider will not have power against all nonlinear alternatives. In

that case, one may work with nonlinear transformations Yt = τ(Xt) such as the quantile hit process,

Han et al. (2014), and then calculate the "variance ratio" equivalent through (12)-(14). Wright

(2000) has proposed variance ratios based on signs and ranks that have similar objectives.

6 Large Dimensional Data

We briefly consider some issues that arise when the dimensions d are large. In this case, the covariance

matrices Σ and Σ(K) may be ill conditioned, and so forming the ratio (11) may not be practically

feasible or theoretically valid; likewise for any functions derived thereof such as the smallest eigenval-

ues. The diagonal variance ratio matrix and simple univariate quantities derived from it like CS(K)

may fare better in this situation, since the marginal variances should be bounded away from zero.

We remark that Castura, Litzenberger, Gorelick, and Dwivedi (2010) report the average variance

ratio of the Russell 1000 and Russell 2000 stocks, which amounts to
∑d

i=1 V̂Rdii(K)/d. They do not

report standard errors for this quantity, perhaps on the grounds that d is large ( since d = 3000).

However, when the individual stocks are contemporaneously correlated, which they typically are12,

the averaging will not reduce the order of magnitude of the standard error. Specifically, under the iid

12Although for very high frequency data, the correlation maybe quite small, Sheppard (2013).
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assumption, the correlation between V̂Rdii(K) and V̂Rdjj(K) will be proportional to ρ2ij, where ρij
is the contemporaneous correlation between the returns on stock i and stock j. We show below how

to calculate the standard errors for
∑d

i=1 V̂Rdii(K)/d in the large d, T case. However, for nonlinear

functions of VRd(K) such as its eigenvalues, or for quantities derived from VR(K), the large d theory

is more complicated.

We present a simple result for the average trace statistic in the case where d grows but at a rate

slower than T . We suppose that Assumption A′ holds for the d-dimensional vector process X̃t, and

impose Assumption Sd below to ensure that the limiting variance is well-defined.

Assumption Td. The dimension d = d(T )→∞ in such a way that d/T → 0 as T →∞.

Assumption Sd. The limit of the quadruple sum qd(∞)∗ ∈ (0,∞) exists, where

qd(∞)∗ := lim
d→∞

1

d2

d∑
i=1

d∑
r=1

(
K−1∑
j=1

K−1∑
k=1

cj,Kck,K
σiiσrr

E
[
X̃itX̃rtX̃i,t−jX̃r,t−k

])
, (39)

where σii are the diagonal elements of Σ.

Under these conditions, we can derive the following asymptotic normality result:

Theorem 7. Suppose that Assumptions A′, S, Td, and Sd hold. Then:

Zdtr(K) =⇒ N(0, 1).

We remark that the cross-sectional standard deviation of the individual variance ratios, a quantity

that is often reported along with the average variance ratio, see for example CLM Table 2.7, is not

necessarily related in any simple way to the true asymptotic standard deviation of the estimator that

we report here.

An alternative strategy in the large d case may be to calculate scalar ratios from the matrix scaling

law Σ(K) = KΣ. Specifically, we may look at quantities like λmax(K)/Kλmax(1) whose properties

may follow from generalizations of results in Jin, Wang, Bai, Krishnan, and Harding (2014). However,

when d is comparable with T, one must use some sparsity structure or shrinkage method to obtain

reasonable performance for complicated nonlinear functions of the covariance matrices. Johnstone

and Onatski (2015) develop a comprehensive theory for multivariate testing in large dimensional

situations.
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7 Simulation Study

We perform a small simulation study to assess the reliability of our multivariate variance ratio test

statistics (the earlier version of this paper contains additional results not reported here for brevity). In

particular we examine two multivariate variance ratio tests: the trace (Ztr (K)) and the determinant

(Zdet (K)) tests.

We first simulate empirical size of nominal 5% multivariate variance ratio tests based on Ztr (K)

and Zdet (K) statistics for the null hypothesis H0 : Xt = (X1,t, X2,t)
ᵀ
is m.d.s. specified by the

following bivariate constant conditional correlation (CCC)-GARCH (1,1) model:

X1,t =
√
h1,tε1,t, X2,t =

√
h2,tε2,t

h1,t = 0.2 + 0.05X2
1,t−1 + 0.9h1,t−1

h2,t = 0.1 + 0.08X2
2,t−1 + 0.9h2,t−1(

ε1,t

ε2,t

)
∼ N

(
0,

(
1 ρ

ρ 1

))
, ρ = 0.5.

Based on 10000 replications, we have the following results.

Table 7-1: Empirical size of nominal 5% multivariate variance ratio tests

[using Ztr (K) and Zdet (K) statistics]
Size of 5 percent test

Sample size K Ztr (K) Zdet (K)

1024 2 0.0488 0.0481

1024 4 0.0478 0.0455

1024 8 0.0467 0.0437

1024 16 0.0507 0.0422

Table 7-1 shows that the empirical sizes of variance ratio tests using Ztr (K) and Zdet (K) statistics

are all close to the nominal value 5%. We then examine the power of multivariate variance ratio tests

based on Z(iid)tr (K) and Z(iid)det (K) statistics, at a 5% nominal level, against the alternative hypotheses

H1 : bivariate fads model for log prices, specified as (32) and (33) with µ = 0 and ηt = βηt−1 + ξt,

where εt ∼ i.i.d.N(0,Ωε), ξt ∼ i.i.d.N(0, Id), εt and ηt are mutually independent, β =

[
0.95 0.02

0.05 0.9

]
.

We consider three cases: Ωε = 2Id, Ωε = Id and Ωε = 1
2
Id, so that the conditional variability of

the random walk relative to the stationary component is two, one and one-half, respectively. We

consider Z(iid)tr (K) and Z(iid)det (K) statistics which are similarly defined as Ztr (K) and Zdet (K) but

using Q̂iid (K) . Based on 10000 replications, we have the following results.
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Table 7-2: Power of multivariate variance ratio tests at a 5% nominal level

[using Z(iid)tr (K) and Z
(iid)
det (K) statistics]

Ωε = 1
2
Id Ωε = Id Ωε = 2Id

Sample size K Z
(iid)
tr (K) Z

(iid)
det (K) Z

(iid)
tr (K) Z

(iid)
det (K) Z

(iid)
tr (K) Z

(iid)
det (K)

1024 2 0.2021 0.1971 0.1357 0.1324 0.0844 0.0813

1024 4 0.3933 0.3806 0.2399 0.2273 0.1317 0.1216

1024 8 0.6334 0.6183 0.3932 0.3658 0.1980 0.1728

1024 16 0.8229 0.8009 0.5331 0.4716 0.2653 0.2061

Table 7-2 shows that the power of the tests increases with K. In addition, as the conditional

variability of the random walk relative to the stationary component decreases, the power of tests

increases, for example, when Ωε = 1
2
Id and K = 16, the power of tests is very high which goes

beyond 80%. Furthermore, we found the tests based on Z(iid)tr (K) statistics are more powerful than

those based on Z(iid)det (K) statistics across all cases.

8 Application

We apply our methodology to U.S. stock return data. In particular, we use weekly size-sorted equal-

weighted portfolio returns from the Center for Research in Security Prices (CRSP) from 06/07/1962

to 27/12/2013.13 Essentially we are using the extension of the same data that were used in Lo and

MacKinlay (1988) and Campbell, Lo and Mackinlay (1997), which allows us to make comparison

with their results, and to extend it to the more recent period. In the following parts, we first test

the linear predictability for size-sorted CRSP portfolio returns at short to medium horizon; then we

investigate the long-run behavior of variance ratio statistics.

8.1 Short to Medium Horizon

8.1.1 Evidence on Linear Predictability

Consider weekly returns for three size-sorted CRSP portfolios Xt = (X1t, X2t, X3t)
ᵀ
, where X1t is for

the portfolio of small-size firms (first quintile), X2t is for the portfolio of medium-size firms (third

quintile), and X3t is for the portfolio of large-size firms (fifth quintile). V̂Rd+(K) and R̂d (0) of Xt

can be estimated based on the method in Section 3.
13The data are obtained from Kenneth French’s Data Library. It was created by CMPT_ME_RETS using the

2013/12 CRSP database. We compute weekly returns of portfolios by linearly adding up Monday to Friday’s daily

returns.
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We first test the absence of serial correlation in each of these three weekly size-sorted portfolio

returns. As we stated above, the diagonal elements of VRd+(K) correspond to the univariate variance

ratio statistics, for example, [VRd+(K)]11 is the variance ratio of small-size portfolio returns. For

each i = 1, 2, 3, we test the hypotheses of H0 : [VRd+(K)]ii = 1 against H1 : [VRd+(K)]ii 6= 1. To

compare with the results reported in Campbell, Lo and Mackinlay (1997, P71, Table 2.6), we report[
V̂Rd+(K)

]
ii
at K = 2, 4, 8, 16 and the corresponding Zd(K), ZdLM(K) and Zdiid(K) statistics14 in

three subsamples: 62:07:06-78:09:29 (848 weeks), 78:10:06-94:12:23 (847 weeks) and 94:12:30-13:12:27

(992 weeks). Subsamples are considered to see if there has been changes in variance ratio over time.

Table 8-1A reports the results for small-size portfolio, Table 8-1B reports the results for medium-size

portfolio, and Table 8-1C reports the results for large-size portfolio.

Table 8-1A: Variance ratios for weekly small-size portfolio returns

Lags

Sample period # of obs K = 2 K = 4 K = 8 K = 16

62:07:06– 78:09:29 848 1.43 1.93 2.46 2.77

(8.82)∗ (8.49)∗ (7.00)∗ (5.59)∗

(8.82)∗ (10.81)∗ (11.00)∗ (9.33)∗

(12.46)∗ (14.47)∗ (14.39)∗ (11.70)∗

78:10:06– 94:12:23 847 1.43 1.98 2.65 3.19

(6.20)∗ (7.07)∗ (7.37)∗ (6.48)∗

(6.20)∗ (8.62)∗ (10.69)∗ (10.70)∗

(12.52)∗ (15.25)∗ (16.26)∗ (14.45)∗

94:12:30– 13:12:27 992 1.21 1.47 1.7 1.82

(3.30)∗ (3.58)∗ (3.35)∗ (2.50)∗

(3.30)∗ (4.13)∗ (4.15)∗ (3.44)∗

(6.59)∗ (7.91)∗ (7.43)∗ (5.82)∗

Table 8-1B: Variance ratios for weekly medium-size portfolio returns
14For testing [VRd+(K)]ii = 1, the Zd(K), ZdLM (K) and Zdiid(K) statistics are calculated by setting ef as a

column vector that is 1 at the d(i− 1) + i entry and 0 otherwise.
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Lags

Sample period # of obs K = 2 K = 4 K = 8 K = 16

62:07:06– 78:09:29 848 1.25 1.54 1.79 1.91

(5.41)∗ (5.55)∗ (4.35)∗ (3.22)∗

(5.41)∗ (6.41)∗ (5.93)∗ (4.69)∗

(7.37)∗ (8.42)∗ (7.78)∗ (6.05)∗

78:10:06– 94:12:23 847 1.20 1.37 1.54 1.56

(3.29)∗ (3.35)∗ (3.18)∗ (2.14)∗

(3.29)∗ (3.72)∗ (3.90)∗ (2.93)∗

(5.73)∗ (5.80)∗ (5.36)∗ (3.74)∗

94:12:30– 13:12:27 992 0.99 1.05 1.02 0.89

(−0.02) (0.38) (0.10) (−0.38)

(−0.02) (0.43) (0.11) (−0.48)

(−0.04) (0.78) (0.20) (−0.78)

Table 8-1C: Variance ratios for weekly large-size portfolio returns

Lags

Sample period # of obs K = 2 K = 4 K = 8 K = 16

62:07:06– 78:09:29 848 1.05 1.15 1.21 1.19

(1.05) (1.64) (1.23) (0.68)

(1.05) (1.54) (1.32) (0.84)

(1.59) (2.33)∗ (2.06)∗ (1.29)

78:10:06– 94:12:23 847 1.03 1.06 1.08 1.01

(0.63) (0.61) (0.54) (0.03)

(0.63) (0.65) (0.59) (0.04)

(0.95) (0.91) (0.75) (0.04)

94:12:30– 13:12:27 992 0.93 0.94 0.89 0.81

(−0.99) (−0.46) (−0.53) (−0.62)

(−0.99) (−0.52) (−0.61) (−0.77)

(−2.05)∗ (−1.01) (−1.14) (−1.35)[
V̂Rd+(K)

]
ii
for i = 1, 2, 3 are reported in the main rows. Test statistics (Zd(K), ZdLM(K) and Zdiid(K))

in parentheses marked with asterisks indicate that the variance ratios are statistically different from one at 5% level

of significance.

The results for the earlier sample periods are broadly similar to those in Campbell, Lo and

Mackinlay (1997, P71, Table 2.6) who compared the period 1962-1978 with the period 1978-1994
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as well as the combined period 1962-1994. The variance ratios are greater than one and deviate

further from one as the horizon lengthens. The departure from the random walk model is strongly

statistically significant for the small and medium sized firms, but not so for the larger firms.

When we turn to the later period 1994-2013 we see that the variance ratios all reduce in magnitude.

For the smallest stocks the statistics are still significantly greater than one and increase with horizon.

However, they are much closer to one at all horizons and the statistical significance of the departures

is substantially reduced. For medium sized firms, the variance ratios are reduced. They are in some

cases below one and also no longer increasing with horizon. They are insignificantly different from

one. For the largest firms, the ratios are all below one but are statistically inseparable from this

value. One interpretation of these results is that the stock market (at the level of these portfolios)

has become closer to the effi cient benchmark. This is consistent with the evidence presented in

Castura, Litzenberger, Gorelick, and Dwivedi (2010) for high frequency stock returns. The biggest

improvements seem to come in the most recent period, especially for the small stocks.

The test statistics change quite a lot depending on which covariance matrix Q̂(K), Q̂LM(K) or

Q̂iid(K) one uses, and in some cases this could affect one’s conclusions, for instance, for large-size

portfolio, test statistics based on Q̂iid(K) in some periods are statistically significant. Our sample

size is relatively large, and for smaller samples, the differences could matter a lot more.

We test whether the variance ratio has "improved" significantly from one period (A) to the next

(B). For this purpose we consider statistics of the form

τAB = f
(
V̂Rd

A

+(K)
)
− f

(
R̂d

A
(0)
)
− f

(
V̂Rd

B

+(K)
)

+ f
(
R̂d

B
(0)
)
, (40)

where V̂Rd
j

+(K) and R̂d
j
(0) denote the variance ratio statistic and the sample correlation matrix

computed in period j = A,B, while f is some scalar valued smooth function such as the trace or

determinant. Under the martingale null hypothesis (and assuming each subsample is large), the two

subsample variance ratio statistics are asymptotically independent and the asymptotic variance of
√
Tvec(τAB) is just the sum of the subperiod covariance matrices QdAf (K) +QdBf (K). For example,

we may consider the single element of statistic [V̂Rd
A

+(K)]ii − [V̂Rd
B

+(K)]ii and compare it with

the square root of the sum of the square of the associated standard errors to obtain a test of the

hypothesis that the effi ciency has not improved across subperiods. For example, in Table 1-A, the

change of the variance ratio for small stocks of 1.43 in the period 78:10:06-94:12:23 to 1.21 during

94:12:30-13:12:27 is statistically significant according to this calculation.

We have carried out this calculation using the Friday to Friday weekly returns as the base series,

but we have also done it for other days of the week and for the two parameter statistic. Qualitatively

the results are similar. Results are available from the authors upon request.
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8.1.2 Lead Lag Relationships

In addition to the autocorrelation for each asset, the predictability can also come from the cross-

autocorrelation (lead-lag relationship) between the assets. As we stated earlier, the off-diagonal

elements of VRd+(K) − Rd(0) provide information about the cumulative cross-dynamics between

the assets. We test the hypothesis of [VRd+(K)−Rd(0)]ij = 0, for i, j = 1, 2, 3, i 6= j, using the

test statistics Zd(K).15 The results are reported in Table 8-2.16

Table 8-2: Lead-lag patterns between weekly size-sorted portfolio returns
15For testing [VRd+(K) − Rd(0)]ij = 0, the Zd(K) statistics are calculated by setting ef as a column vector that

is 1 at the d(j − 1) + i entry and 0 otherwise.
16In this examination, we divide the whole sample into two sub-samples: 62:07:06-94:12:23 and 94:12:30-13:12:27.
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V̂Rd+(K)− R̂d(0) To

Lags Sample period From small medium large

K = 2 62:07:06– 94:12:23 small 0.20 (5.74)∗ 0.04 (1.15)

medium 0.39 (9.61)∗ 0.05 (1.47)

large 0.32 (8.21)∗ 0.21 (5.42)∗

94:12:30– 13:12:27 small −0.02 (−0.33) −0.07 (−1.01)

medium 0.20 (3.32)∗ −0.05 (−0.83)

large 0.17 (2.74)∗ −0.01 (−0.08)

K = 4 62:07:06– 94:12:23 small 0.406 (5.42)∗ 0.08 (1.14)

medium 0.84 (10.39)∗ 0.12 (1.756)

large 0.67 (9.03)∗ 0.41 (5.75)∗

94:12:30– 13:12:27 small −0.00 (−0.00) −0.09 (−0.63)

medium 0.43 (3.54)∗ −0.05 (−0.38)

large 0.34 (2.93)∗ 0.04 (0.38)

K = 8 62:07:06– 94:12:23 small 0.57 (4.11)∗ 0.10 (0.73)

medium 1.38 (10.21)∗ 0.18 (1.53)

large 1.07 (9.29)∗ 0.59 (5.24)∗

94:12:30– 13:12:27 small −0.05 (−0.25) −0.16 (−0.72)

medium 0.60 (3.28)∗ −0.13 (−0.61)

large 0.51 (2.81)∗ 0.05 (0.27)

K = 16 62:07:06– 94:12:23 small 0.54 (2.39)∗ −0.03 (−0.11)

medium 1.77 (9.11)∗ 0.13 (0.68)

large 1.36 (8.42)∗ 0.64 (3.80)∗

94:12:30– 13:12:27 small −0.21 (−0.62) −0.28 (−0.83)

medium 0.67 (2.45)∗ −0.26 (−0.86)

large 0.61 (2.22)∗ −0.03 (−0.10)

Test statistics in parentheses marked with asterisks indicate that null hypothesis is rejected at 5% level of

significance.

The results suggest there are strong lead-lag relationships, where medium and large firms lead and

small firms lag for all horizons for both sample periods, although the evidence attenuates in the later

period, especially at the longer horizon. Nevertheless, there is statistical significance at the 5% level

in all such cases. The sign of these terms are all positive and increase with horizon. Also, the size of

the coeffi cients decreases substantially in the later sample period. The evidence is weaker for cross-

autocorrelation between current returns of medium sized firms and past returns of small and large
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ones. We do find that there is evidence of such relationships in the earlier sample period. However,

in the later period none of these effects is significant. Finally, with regard to cross-autocorrelation

between current returns of large firms and past returns of small and medium sized ones, in no

period do we find evidence of this.17 These results may be interpreted as being consistent with the

explanations given in Campbell, Lo and Mackinlay (1997). This is also inconsistent with the random

walk hypothesis, but the declining statistical significance may be consistent with improvements in

the effi ciency/reduction in microstructure effects of these markets.

We also check if the lead-lag patterns are asymmetric. We test the null hypotheses that [VRd+(K)−
Rd(0)]ij −[VRd+(K) − Rd(0)]ji = 0, for i, j = 1, 2, 3, i > j, using the test statistics Zd(K).18 The

results are reported in Table 8-3.

Table 8-3: Asymmetry of lead-lag patterns[
V̂Rd+(K)− R̂d(0)

]
ij
−
[
V̂Rd+(K)− R̂d(0)

]
ji

Lags Sample period (S →M)− (M → S) (S → L)− (L→ S) (M → L)− (L→M)

K = 2 62:07:06– 94:12:23 −0.19 (−8.75)∗ −0.28 (−8.58)∗ −0.16 (−8.10)∗

94:12:30– 13:12:27 −0.22 (−6.62)∗ −0.23 (−6.38)∗ −0.05 (−2.31)∗

K = 4 62:07:06– 94:12:23 −0.44 (−9.63)∗ −0.59 (−8.68)∗ −0.29 (−7.46)∗

94:12:30– 13:12:27 −0.43 (−7.15)∗ −0.43 (−6.32)∗ −0.09 (−2.37)∗

K = 8 62:07:06– 94:12:23 −0.81 (−10.58)∗ −0.97 (−8.98)∗ −0.40 (−7.02)∗

94:12:30– 13:12:27 −0.68 (−7.19)∗ −0.67 (−5.79)∗ −0.17 (−3.00)∗

K = 16 62:07:06– 94:12:23 −1.23 (−10.16)∗ −1.38 (−8.18)∗ −0.51 (−6.05)∗

94:12:30– 13:12:27 −0.88 (−6.26)∗ −0.89 (−5.27)∗ −0.23 (−3.03)∗

S is for small-size portfolio,M is for medium-size portfolio, and L is for large-size portfolio. Test statistics marked

with asterisks indicate that the lead-lag relationship is statistically asymmetric at 5% level of significance.

These results can be compared with Campbell, Lo and Mackinlay (1997, P71, Table 2.9) who look

at the asymmetry of the cross-autocorrelation matrices. We find the same direction of asymmetry

consistent with their results. The statistical significance does decline in the second period, but is

still quite strong.

17This test is related to the Granger noncausality test proposed in Pierce and Haugh (1977), where the series are

prewhitened before testing zero cross-autocorrelation.
18For testing [VRd+(K) − Rd(0)]ij − [VRd+(K) − Rd(0)]ji = 0, the Zd(K) statistics are calculated by setting ef

as a column vector that is 1 at the d(j − 1) + i entry, −1 at the d(i− 1) + j entry and 0 otherwise.
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8.1.3 Multivariate Tests

The above univariate variance ratio tests (Table 8-1A,B,C) provide evidence of linear predictability

in returns for small and medium-size portfolios. We next test for the absence of serial correlation

in the whole return vector of three size-sorted portfolios, based on univariate parameters derived

from the variance ratio matrices VR(K) and VRd(K) of Xt. Specifically, we consider the trace and

determinant of these matrices, as well as CS(K), GMV (K), and π+(K). Test results based on these

statistics are reported in the following table.

Table 8-4: Multivariate variance ratio tests for weekly size-sorted portfolio returns
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Lags

K = 2 K = 4 K = 8 K = 16

First period: 62:07:06-78:09:29

ĈS(K)− ĈS(1) 0.21 0.46 0.69 0.81

(5.04)∗ (5.23)∗ (4.15)∗ (3.09)∗

ĜMV (K) 0.39 0.42 0.43 0.41

(4.30)∗ (3.53)∗ (2.08)∗ (1.01)

π̂(K) 0.0209 0.0180 0.0124 0.0065

(5.20)∗ (7.10)∗ (6.59)∗ (5.01)∗

tr(V̂R(K)) 3.61 4.16 5.22 5.44

(6.59)∗ (7.79)∗ (6.89)∗ (4.90)∗

det(V̂R(K)) 1.62 2.67 3.61 3.57

(6.72)∗ (8.95)∗ (8.10)∗ (5.15)∗

WF (K) 128.51∗ 122.06∗ 86.39∗ 52.06∗

Second period: 78:10:06-94:12:23

ĈS(K)− ĈS(1) 0.19 0.38 0.59 0.65

(3.49)∗ (3.72)∗ (3.68)∗ (2.64)∗

ĜMV (K) 0.39 0.42 0.41 0.37

(4.24)∗ (3.19)∗ (1.87) (0.49)

π̂(K) 0.0210 0.0197 0.0162 0.0119

(4.05)∗ (5.99)∗ (7.17)∗ (6.94)∗

tr(V̂R(K)) 3.46 4.27 5.33 6.45

(5.08)∗ (7.31)∗ (8.06)∗ (7.57)∗

det(V̂R(K)) 1.37 1.94 2.48 2.82

(4.03)∗ (5.38)∗ (5.11)∗ (3.99)∗

WF (K) 114.27∗ 124.62∗ 123.80∗ 103.19∗
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Third period: 94:12:30-13:12:27

ĈS(K)− ĈS(1) 0.04 0.11 0.14 0.08

(0.63) (0.91) (0.71) (0.29)

ĜMV (K) 0.34 0.35 0.33 0.27

(0.42) (0.47) (−0.14) (−0.77)

π̂(K) 0.0067 0.0090 0.0065 0.0039

(2.19)∗ (3.89)∗ (3.36)∗ (2.53)∗

tr(V̂R(K)) 3.09 3.46 3.79 4.08

(0.87) (2.30)∗ (2.36)∗ (2.03)∗

det(V̂R(K)) 1.03 1.28 1.38 1.36

(0.31) (1.39) (1.12) (0.69)

WF (K) 67.28∗ 73.23∗ 61.90∗ 48.20∗

The estimates of statistics are reported in the main rows. Test statistics

[ZdCS(K), ZGMV (K), Zdπ(K), Ztr(K), Zdet(K) as defined in (26-27)] in parentheses marked with asterisks

indicate statistically significant at 5% level. WF (K) [defined in (28)] is marked with asterisks if it is larger than

12.592, the 5% critical value of χ2(6).

There are some differences of opinion between the measures in the most recent period. Specifically,

the momentum profit measure is statistically significant at all horizons, and the trace statistic is

significant at horizonsK = 4, 8, and 16, while the other univariate quantities such as the determinant

are not significantly different from their null values. In most cases, the univariate statistics are above

their predicted values consistent with the earlier results. Although the momentum profit measure is

significant in all three periods, the magnitude of the parameter has reduced substantially. The joint

test of all the restrictions is strongly significant in all three periods and for all horizons.

We next check whether our results are driven by the choice of subsamples, which we have chosen

to match the choices made by CLM for the purpose of replication and comparison. We carry out a

rolling window analysis with a (trailing) window of 500 weeks from the beginning of the sample to

the end. Below we show the time series of (standard normal) test statistics ZdCS(K), ZGMV (K) and

Zdπ(K) for K = 4. This shows that for ĜMV (K) and ĈS(K) the sustained decline in statistical

significance happened in the decade ending in 2008, although there was an earlier dip in significance

in the decade ending in 1999. The profits measure π̂(K) has shown a slower but equally sustained

drop in statistical significance. There are some sudden jumps (both up and down) to the level of this

statistic in particular, which may be a cause for concern in practice. The ĜMV (K) statistic seems

less affected by such movements.

38



10/1976 03/1982 09/1987 03/1993 09/1998 02/2004 08/2009 12/2013
­1

0

1

2

3

4

5

6

7

8

Figure 1: Trends of test statistics based on 10 year rolling windows.

8.2 Long Horizon

We further investigate the variance ratios at longer horizons. We still use the weekly returns for three

size-sorted CRSP portfolios (first, third and fifth quintiles). Here, we work with the bias-corrected

estimators

V̂R
bc

(K) = V̂R(K)

{
1 +

K − 1

T

}
; V̂Rd

bc
(K) = V̂Rd(K)

{
1 +

K − 1

T

}
. (41)

The ordered eigenvalues may suffer an even larger bias under the null hypothesis, because their

limiting distribution is not centred at zero, and so we propose to modify the estimated eigenvalues

by

λ̂
bc

j (K) = λ̂j

(
V̂R

bc
(K)

)
− 1√

T
Eλ∗j(UK),

where UK is the limiting matrix distribution of
√
T (V̂R(K)−I).We calculate Eλ∗j(UK) by simulation.

First, we show below the three eigenvalues λ̂
bc

j (K) of V̂R
bc

(K) against K for the three sub-

samples: the first panel is for λ̂
bc

j (K) in the first sub-sample (62:07:06-78:09:29), the second panel

shows λ̂
bc

j (K) in the second sub-sample (78:10:06-94:12:23) and the third panel shows λ̂
bc

j (K) in the

third sub-sample (94:12:30-13:12:27). We also use the dashed lines to indicate the 95% pointwise

confidence intervals of the largest eigenvalues for each period centred at the null hypothesis. We
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show out to two years (100 lags), which is quite a long horizon relative to the sample size, and we

urge caution in interpreting the results.
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Figure 2: The bias corrected eigenvalues of the bias corrected variance ratio matrix in three

sub-samples as a function of lags.
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We see that the largest eigenvalue increases steadily out to the two year horizon we consider in

all three subperiods. In fact, the increase appears to be linear in lag, although the slope is far less

than one. The last subperiod has the lowest values throughout, while surprisingly, the second period

1978-1994 seems to have the largest amount of potential linear predictability that could have been

exploited during this period. In all cases, the eigenvalues are statistically significant. The apparent

increase in predictability at long horizons that this indicates is consistent with the results discussed

in the predictive regression literature, see Phillips (2015), in which Xt(K) is regressed on covariates

such as (annual) dividend price ratio dated t− 1.The second and third eigenvalues are quite flat and

close to one throughout. This evidence does not seem to be consistent with the fads model, or even

the bubble process, although the confidence intervals are quite wide at the longer lags.

We next evaluate the long run behaviour of the CS(K) statistics. Specifically, we consider two

one sided statistics:

ĈS±(K) =
2

d(d− 1)

d−1∑
i=1

d∑
j=i+1

[
V̂Rd

bc

±(K)

]
ij

These statistics measure in some average sense the cross dependence for certain directions. We

show below the ĈS+(K) and ĈS_(K) statistics for three weekly size-sorted CRSP portfolio returns

against lagK in three sub-samples: the dark solid line is for ĈS+(K) in the first sub-sample (62:07:06-

78:09:29), the dark dashed line is for ĈS+(K) in the second sub-sample (78:10:06-94:12:23), the dark

marked line is for ĈS+(K) in the third sub-sample (94:12:30-13:12:27); the gray solid line is for

ĈS−(K) in the first sub-sample, the gray dashed line is for ĈS−(K) in the second sub-sample, and

the gray marked line is for ĈS−(K) in the third sub-sample.
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Figure 3: ĈS+(K) and ĈS_(K) statistics in three sub-samples as a function of lags.

In each subperiod, the ĈS+(K) measures all exceed the ĈS−(K) measures over all lags, which

means that the average directional cross dependence from larger-size portfolios to smaller-size port-

folios are stronger than those in the opposite directions, up to two years. The ĈS+(K) mea-

sures decrease in the recent period over the long horizon. Also the shape of the term structure

is quite flat in the most recent period, whereas in the second period, and to a lesser extent in

the first period, there seems to be a hump shaped curve suggesting this dependence reaches a

maximum somewhere between 10 and 30 weeks. We can further detect that the average statis-

tic, ĈS(K) =
[
ĈS+(K) + ĈS−(K)

]
/2, measuring the average cross dependence for both directions

between three size-sorted CRSP portfolios, becomes weaker (more effi cient) in recent periods at the

long horizon.

We then examine the long run GMV (K) statistics. We show below ĜMV against K in the

three sub-samples: the solid line is for ĜMV (K) in the first sub-sample (62:07:06-78:09:29) and

the dashed line is for ĜMV (K) in the second sub-sample (78:10:06-94:12:23), and the marked line

is for ĜMV (K) in the third sub-sample (94:12:30-13:12:27). For readability we have omitted the

confidence intervals, which are quite wide in this case and show that mostly this statistic is consistent

with the null hypothesis in the most recent period. In this most recent period there is a quite steep

fall off in the statistic out to about 3 months followed by a slower rate of decrease thereafter.
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Figure 4: ĜMV (K) statistics in three sub-samples as a function of lags.

We lastly investigate the π(K) statistics. We show below π+ against K in three sub-samples: the

solid line is for π̂(K) in the first sub-sample (62:07:06-78:09:29) and the dashed line is for π̂(K) in

the second sub-sample (78:10:06-94:12:23), and the marked line is for π̂(K) in the third sub-sample

(94:12:30-13:12:27). Figure 5 shows that the profit measures π̂(K) are positive across all horizons

and subsamples we considered (and are also statistically significant for much of the time). We also

see that the measures decrease with the lags till around 40 weeks, and then keep at a relatively stable

level. In addition, we found the second period 1978-1994 has the largest measures that could have

been exploited during this period.
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Figure 5: π̂(K) statistics in three sub-samples as a function of lags.

9 Conclusions

The first methodological point we make is to propose confidence intervals that are consistent under

uncorrelatedness conditions alone and do not require an additional no leverage/symmetric distrib-

ution assumption such as maintained in Lo and MacKinlay (1988), CLM, and in much subsequent

work. Our confidence intervals are often (although not necessarily so) larger than those used else-

where, and therefore reduce the significance of any associated test. We believe our theory is more

credible with regard to the data generating process we expect for daily or even lower frequency stock

returns. The second contribution is about embedding this theory in a multivariate framework. The

multivariate variance ratios provides a basis for aggregating the cross correlation behaviour of asset

returns and providing tests of the multivariate null hypothesis. It implies many more restrictions

on the data than the univariate ratios. We present our theory for a single K and for sequences of

K growing. One can also present result for the joint distribution of our test statistics over different

horizons, which would provide some control against multiple testing. However, in practice, it is

common to consider just a few horizons that have a specific practical meaning, and so there is no

real danger of K-snooping here, although this does again add caution to prevent over interpretation.

Our empirical work reports that the US size sorted stock portfolios seem to have come closer to the

effi cient markets prediction, although there remains some statistically significant linear predictability

at the 2 weeks to 16 weeks horizon. Although many of the individual variance ratio statistics do

44



not reject the null hypothesis with our standard errors, the joint tests of the multivariate hypothesis

reject at the 1% level in all cases, meaning for all horizons. This is despite the fact that our standard

errors are always larger than those of Lo and MacKinlay (1988), which are themselves a lot larger

than those based on the iid assumption, which is the world where most applied studies still inhabit.

Typically, three competing explanations are advanced for the predictability in short horizon re-

turns based on past prices (Boudoukh, Richardson, and Whitelaw (1994)): First, microstructure

effects such as nonsynchronous trading and bid ask bounce. Second, time varying risk premia re-

flecting rational behaviour. Third, the irrational behaviour of market participants. It would seem

that there is a lot of evidence that microstructure effects have reduced considerably over time. For

example, it is hard to find even small cap stocks that do not trade now many times during a day.

The microstructure explanation would imply that the long horizon daily or weekly variance ratios

should return to unity, but this is not the case in our data even for the most recent period. There

is also some evidence that the level (and perhaps therefore the local time variation) of the market

risk premium has reduced in recent years, see for example Hertzberg (2010). In the working paper

version of this paper we provided a test of whether the autocorrelations could be explained by time

varying risk premia inside a Fama French factor model. We found that this approach could not

capture all the linear dependency in the data even in the earlier periods, where the violations were

strongest. Therefore, the first two explanations do not seem to be able to match the magnitude of

the effects in the earlier periods, although both may make some contribution.19 On the other hand,

the magnitude of the predictability has reduced in the most recent period according to the statistical

metrics we have presented here. The long horizon analysis suggests that the largest eigenvalue of

the variance ratio matrix grows linearly with horizon, although the slope is far less than the unit

slope predicted by the bubble process of section 5.3, which may in principle be consistent with very

short bubbly episodes dominated by longer calmer periods.20 Alternatively, this may be consistent

with a very persistent time varying risk premium of the sort outlined in section 5.4. In any case,

19There is a literature that provides bounds on the implied magnitude of autocorrelations caused by specific mi-

crostructure imperfections such as nontrading and a similar literature that provides bounds on the implied magnitude

of autocorrelations caused by rational time varying risk premia alone. In both cases strong assumptions are made, see

for example Kirby (1998) and Anderson (2011), and Boudoukh, Richardson and Whitelaw (1994), and one "cause" is

investigated at a time.
20Timmerman (2008) investigates the forecasting performance of a number of linear and nonlinear models and

says: "Most of the time the forecasting models perform rather poorly, but there is evidence of relatively short-lived

periods with modest return predictability. The short duration of the episodes where return predictability appears

to be present and the relatively weak degree of predictability even during such periods makes predicting returns an

extraordinarily challenging task". Our (multivariate) evidence does not substantially contradict that; certainly using

linear multivariate methods the amount of predictability we have found and its durability is limited and has reduced

over time even through the recent financial crisis.
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the trajectory is flatter (and not statistically significant) in the more recent period, again supporting

the claim that market ineffi ciency has reduced. Although the statistical magnitudes seem to have

reduced, it is not clear whether the potential profit from exploiting linear predictability across the

whole market has reduced, since the number of tradeable assets has increased and the transactions

costs associated with any given trade seem to have reduced, Malkiel (2015).

10 Appendix

10.1 Proof of Main Results

Proof of Theorem 1. We first present the proof under Assumption A. For each j = 1, . . . , K,

√
T · vec

(
Γ̂(j)

)
=

1√
T

T∑
t=j+1

(
X̃t−j ⊗ X̃t

)
− 1√

T

T∑
t=j+1

X̃t−j ⊗
(
X − µ

)
−
(
X − µ

)
⊗ 1√

T

T∑
t=j+1

X̃t +
T − j√
T

(
X − µ

)
⊗
(
X − µ

)
(42)

=
1√
T

T∑
t=j+1

(
X̃t−j ⊗ X̃t

)
+ op(1) (43)

because
∑T

t=j+1 X̃t = Op(
√
T ) by the CLT for stationary ergodic martingale difference.

Since X̃tX̃
ᵀ
t is stationary ergodic, the Ergodic theorem and continuous mapping on T

−1∑T
t=1 X̃tX̃

ᵀ
t

yields Σ̂−1/2 − Σ−1/2 = op(1). Consequently, we have

vec(R̂(j)) = vec
([

Σ̂−1/2 − Σ−1/2 + Σ−1/2
]

Γ̂(j)
[
Σ̂−1/2 − Σ−1/2 + Σ−1/2

])
=
(
Σ−1/2 ⊗ Σ−1/2

)
vec(Γ̂(j)) + op(1) (44)

for each j, and therefore

√
Tvec

(
V̂R+(K)− Id

)
=
√
T ·

K−1∑
j=1

2

(
1− j

K

)
· vec

(
R̂(j)

)
=
(
Σ−1/2 ⊗ Σ−1/2

)
·
K−1∑
j=1

cj
1√
T

T∑
t=j+1

X̃t−j ⊗ X̃t + op(1)

=
(
Σ−1/2 ⊗ Σ−1/2

)
· 1√

T

T∑
t=K

[
K−1∑
j=1

cj

(
X̃t−j ⊗ X̃t

)]
+ op(1)

=:
(
Σ−1/2 ⊗ Σ−1/2

)
· 1√

T

T∑
t=K

Zt + op(1). (45)
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It now suffi ces to derive the limiting distribution of Zt. Take any d2-dimensional real constant vector

a = (a1, . . . , ad2)
ᵀ
, and note that a

ᵀ
Zt is a martingale difference sequence. Then, since by A2

E(a
ᵀ
Zt)

2 = a
ᵀ
var(Zt)a = a

ᵀ

[
K−1∑
j=1

K−1∑
k=1

cjckΞjk

]
a <∞,

where Ξjk = E[X̃t−j ⊗ X̃t][X̃t−k ⊗ X̃t]
ᵀ
, the CLT for stationary ergodic martingale difference gives

a
ᵀ

(
1√
T

T∑
t=1

Zt

)
=⇒ N

(
0, a

ᵀ

[
K−1∑
j=1

K−1∑
k=1

cjckΞjk

]
a

)
. (46)

completing the proof in view of the Cramér-Wold device, continuous mapping and Slutsky’s theorem.

Similar arguments apply when we work with Assumption MH*. We note that the expansion (43)

for
√
T · vec(Γ̂(j)) is still valid because the summations in the second, third and fourth terms in (42)

still converge in probability to zero due to the CLT for mixing sequence, Herrndorf (1985, Theorem

0) whose regularity conditions are satisfied by MH1-MH3. Finally, condition MH2 and MH3 allow

for the LLN for mixing variables, White (1984, Corollary 3.48), yielding (44) and (45) as before.

Now we are only left with verifying (46). For any d2-dimensional constant vector a, a
ᵀ
Zt preserves

the mixing property of X̃t with the same rate, so by Herrndorf’s CLT we have

a
ᵀ

(
1√
T

T∑
t=1

Zt

)
=⇒ N

(
0, a

ᵀ

[
K−1∑
j=1

K−1∑
k=1

cjckΞjk

]
a

)
,

where Ξjk = limT→∞ T
−1∑T

t=1E[X̃t−j⊗X̃t][X̃t−k⊗X̃t]
ᵀ
. The CLT above holds provided the following

regularity conditions are ensured: E(aᵀZtj) = 0, suptE|aᵀZt|β <∞ for some β > 2, and finally

lim
T→∞

1

T
E

(
T∑
t=1

a
ᵀ
Zt

)2
= lim

T→∞

1

T

T∑
t=1

var
(
a
ᵀ
Zt
)

= a
ᵀ

[
K−1∑
j=1

K−1∑
k=1

cjckΞjk

]
a

is positive and finite. The first condition is trivial by MH1, and the second and third conditions

are satisfied by MH2, MH3 and positive definiteness of Q(K). The desired result readily fol-

lows. The arguments for the diagonally normalized is identical everywhere except that we have

vec(R̂d(j)) =
(
D−1/2 ⊗D−1/2

)
vec(Γ̂(j)) + op(T

−1/2) instead of (44). The entire proof is now com-

plete.

Proof of Corollary 1. It suffi ces to show consistency of Ξ̂jk for each j and k. Writing

Ξ̂jk =
1

T

T∑
t=max{j,k}+1

[(
X̃t−j ⊗ X̃t

)(
X̃t−k ⊗ X̃t

)ᵀ]
+ op(1).
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we see that the desired result follows by applying either the Ergodic theorem or the Law of Large

Numbers for mixing variables depending upon the set of assumption being imposed. The regularity

conditions for each theorem are ensured by Assumption A2 and MH3, respectively.

Proof of Theorem 2. For later reference, we first derive the limiting distribution of

1√
T

T∑
t=K

[
1√
K

K−1∑
j=1

cj(X̃t−j ⊗ X̃t)

]
=:

1√
T

T∑
t=K

ZTt. (47)

The asymptotic normality is established by applying the central limit theorem for triangular arrays

of martingale difference in Pollard (1984, page 171) on {ZTt,FTt}, where FTt = Ft = σ(X̃s; s ≤ t).

Specifically, for some arbitrary non-zero constant vector a = (a1, a2, . . . , ad2)
ᵀ
we check the following

conditions:

(i) T−1
∑

tE((aᵀZTt)
2|Ft−1)

P→ aᵀηa > 0

(ii) ∀ε > 0, T−1
∑

tE((aᵀZTt)
21{|aᵀZTt| > ε

√
T}|Ft−1)

P→ 0

under which (via the Cramér-Wold Theorem) it will follow that

1√
T

T∑
t=K

ZTt =⇒ N
(
0, η
)
. (48)

As for the first condition (i), it suffi ces to show

1

T

T∑
t=K

E(aᵀZTt)
2 → aᵀηa (49)

1

T

T∑
t=K

E
(
(aᵀZTt)

2|Ft−1
)
− E(aᵀZTt)

2 P→ 0. (50)

Denoting by X̃it the ith element of the d-vector X̃t, the moment-cumulant relationship formula (see

e.g. Hannan (1970, page 23)) suggests that for any q, w, e, u = 1, . . . , d

1

K

K−1∑
j=1

K−1∑
r=1

cjcrE
(
X̃q,t−jX̃w,t−rX̃etX̃ut

)
=

1

K

K−1∑
j=1

K−1∑
r=1

cjcr

[
γqw(j − r)γeu(0) + γqe(j)γwu(r) + γqu(j)γwe(r) + κqweu(−j,−r, 0, 0)

]
= γqw(0)γeu(0)

1

K

K−1∑
p=1

4
(

1− p

K

)2
+

1

K

K−1∑
j=1

K−1∑
r=1

κqweu(−j,−r, 0, 0) → 4

3
· γqw(0)γeu(0)
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where γqw(u) = E(X̃qtX̃w,t−u). This is due to uncorrelatedness of X̃t and double summability of the

fourth order cumulant κ (Assumption S). Consequently,

1

T

T∑
t=K

E
[
(aᵀZTt)

]2
=

1

T

T∑
t=K

E

[
1√
K

K−1∑
j=1

aᵀcj(X̃t−j ⊗ X̃t)

]2

=

(
T −K
T

)
aᵀ

[
1

K

K−1∑
j=1

K−1∑
r=1

cjcrE
(
X̃t−jX̃

ᵀ
t−r ⊗ X̃tX̃

ᵀ
t

)]
a

=
4

3
aᵀ(Σ⊗ Σ)a+O

(
K

T

)
→ aᵀηa

which is strictly positive by the assumption that Σ is positive definite. This finite limit also implies

(50) as a consequence of the ergodic theorem in view of the inherited stationary ergodicity through

a measurable mapping, see for example Karlin and Taylor (1975, page 487-488).

It remains to check the conditional Lindeberg condition (ii). By stationarity, law of total expecta-

tions, the moment condition E|X̃t|4+δ ≤ C (where δ is as in Assumption A′), Minkowski’s inequality,

and Burkholder’s inequality for martingale difference (e.g. Gut (2005, page 506-507)) we have for

any ε > 0

P

(∣∣∣∣∣ 1

T

T∑
t=1

E
(

(aᵀZTt)
21{|aᵀZTt|>ε

√
T}|Ft−1

)∣∣∣∣∣ > ε

)
≤ 1

ε
E

∣∣∣∣∣ 1

T

T∑
t=1

E
(

(aᵀZTt)
21{|aᵀZTt|>ε

√
T}|Ft−1

)∣∣∣∣∣
≤ 1

ε

(
1

ε
√
T

) δ
2

E
(

(aᵀZTt)
2+ δ

2

)
≤ 1

ε

(
1

ε
√
T

) δ
2

E

(
d2∑
i=1

1√
K

K−1∑
j=1

cjaiX̃di/de,0X̃i−d(di/de−1),j

)2+ δ
2

≤ 1

ε

(
1

ε
√
T

) δ
2

 1√
K

d2∑
i=1

∣∣ai∣∣
E∣∣∣∣∣

K−1∑
j=1

X̃i−d(di/de−1),jX̃di/de,0

∣∣∣∣∣
2+δ/2

1/(2+δ/2)

2+ δ

2

=
C

T δ/4

(
1√
K

)2+δ/2
max{K1+δ/4, K} = O

(
1

T δ/4

)

where d·e is the ceiling function.
Now, starting from the decomposition (42) in the proof of Theorem 1, we can easily see using
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Chebyshev’s inequality, some results from Theorem 1 and elementary calculations that√
T

K
vec
(
V̂R(K)+ − Id

)
=

√
T√
K
·
K−1∑
j=1

2

(
1− j

K

)
· vec

(
R̂(j)

)
= (Σ̂−1/2 ⊗ Σ̂−1/2)

1√
K

K−1∑
j=1

cj

{[
1√
T

T∑
t=j+1

X̃t−j ⊗ X̃t

]

−
[

1√
T

T∑
t=j+1

X̃t−j ⊗
(
X − µ

)]
−
[(
X − µ

)
⊗ 1√

T

T∑
t=j+1

X̃t

]

+

[
T − j√
T

(
X − µ

)
⊗
(
X − µ

)]}

= (Σ̂−1/2 ⊗ Σ̂−1/2)
1√
T

T∑
t=K

[
1√
K

K−1∑
j=1

cj(X̃t−j ⊗ X̃t)

]
+OP

(√
K

T

)
+ op

(√
K

T

)

= (Σ−1/2 ⊗ Σ−1/2)
1√
T

T∑
t=K

ZTt + oP (1) (51)

Now the desired asymptotic distribution holds in view of the results above and consistency of stan-

dard error via the ergodic theorem, completing the proof.

Proof of Theorem 3. The proof proceeds by showing asymptotic equivalence of the trace (of

the multivariate variance ratio) test and the likelihood ratio (LR) test under the null and alternative

hypotheses. That is,

f
(

tr
(
V̂R(K)

))
− LR P−→ 0 (52)

for some function f , in which case the tests based on two statistics will possess the same large sample

properties.

Recall the alternative estimator V̂R
&

(K). From the definitions it can be readily shown that

V̂R(K)− V̂R
&

(K) =
1

K

K−2∑
r=1

{
Σ̂−1/2

[
(K − r) 1

T

K−1∑
t=r+1

(
Xt −X

) (
Xt−r −X

)ᵀ]
Σ̂−1/2

}

+
1

K

K−2∑
r=1

{
Σ̂−1/2

[
(K − r) 1

T

K−1∑
t=2

(
Xt−r −X

) (
Xt −X

)ᵀ]
Σ̂−1/2

}
+ op(1) (53)

converges in probability to zero because each term in square brackets is op(1) by Chebyshev’s in-

equality and Σ̂−1/2−Σ−1/2 = op(1). Now that we have f(tr(V̂R(K)))− f(tr(V̂R
&

(K))) = op(1) due

to linearity of trace, it remains to show that

f
(

tr
(
V̂R

&
(K)

))
− LR P−→ 0.
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Let the ‘coeffi cient matrix’Φ be the matrix of ones except for the (T − K) × (T − K) triangular

blocks in the northeast and southwest corners where the entries are all zero. Then denoting by i a

conformable column vector of ones, we have

Σ̂(K) =
1

T

(
ΦX − ΦiX

ᵀ)ᵀ (
ΦX − ΦiX

ᵀ)
=

1

T

(
X − iX

ᵀ)ᵀ
Φ
ᵀ
Φ
(
X − iX

ᵀ)
from which it follows that

V̂R
&

(K) =
1

K
[(A

ᵀ
A)−1/2] · [Aᵀ

Φ
ᵀ
ΦA] · [(Aᵀ

A)−1/2]

where A :=
(
X − iXᵀ)

.

The rejection region based on the likelihood ratio statistic is given by

LR = log

det
[ (
X − iµ̂ᵀ1

)ᵀ
Σ−1q∗

(
X − iµ̂ᵀ1

) ]
det
[ (
X − iX

ᵀ)ᵀ (
X − iX

ᵀ) ]
 < k

for some positive threshold constant k, where µ̂1 ≡ X̃ is the maximum likelihood estimate of the

mean µ = EXt under the alternative hypotheses. Using a standard property of the logarithmic

determinant we see that

LR = log

(
det

{[(
X − iX

ᵀ)ᵀ (
X − iX

ᵀ) ]−1[ (
X − iX̃ᵀ

)ᵀ
Σ−1q∗

(
X − iX̃ᵀ

) ]})
≤ tr

([(
X − iX

ᵀ)ᵀ (
X − iX

ᵀ) ]−1[ (
X − iX̃ᵀ

)ᵀ
Σ−1q∗

(
X − iX̃ᵀ

) ]
− I
)

≤ tr

(
Σ̂−1 · 1

T

[ (
X − iX̃ᵀ

)ᵀ
Σ−1q∗

(
X − iX̃ᵀ

) ])
. (54)

Besides, it follows by the cyclic property of the trace operator that

tr
(
V̂R

&
(K)

)
=

1

K
tr
(

[(A
ᵀ
A)−1] · [Aᵀ

Φ
ᵀ
ΦA]

)
=

1

K
tr

(
T

[(
X − iX

ᵀ)ᵀ (
X − iX

ᵀ)]−1
· 1

T

[(
X − iX

ᵀ)ᵀ
Φ
ᵀ
Φ
(
X − iX

ᵀ)])
=

1

K
tr

(
Σ̂−1 · 1

T

[(
X − iX̃ᵀ

+ i
(
X̃

ᵀ −X
ᵀ))ᵀ

Φ
ᵀ
Φ
(
X − iX̃ᵀ

+ i
(
X̃

ᵀ −X
ᵀ))])

.

Now multiplying the last quantity by the horizon K, q > 0, adding d = tr(Id), and then lastly

multiplying by some constant α > 0 give

tr

(
Σ̂−1 · 1

T

[(
X − iX̃ᵀ

+ i
(
X̃

ᵀ −X
ᵀ))ᵀ

·
{
α(I + qΦ

ᵀ
Φ)
}
·
(
X − iX̃ᵀ

+ i
(
X̃

ᵀ −X
ᵀ))])

= tr

(
Σ̂−1 · 1

T

[(
X − iX̃ᵀ

+ i
(
X̃

ᵀ −X
ᵀ))ᵀ {

Σ−1q + 0∗
}(

X − iX̃ᵀ
+ i
(
X̃

ᵀ −X
ᵀ))])

(55)
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where 0∗ is the matrix of zeros except for the (K−1)×(K−1) blocks in the northwest and southeast

corners. The reader is directed to Faust (1992, Lemma 1) for the proof of the equivalence relationship

α(I + qΦ
ᵀ
Φ) ≡ Σ−1q + 0∗. Now replacing the sample estimator for the cross-sectional variance by

its population version (with some negligible error), we see that the difference between (55) and (54)

multiplied by
√
T is given by

√
T · tr

(
Σ−1 · 1

T

[(
i
(
X̃

ᵀ −X
ᵀ))ᵀ

· Σ−1q ·
(
i
(
X̃

ᵀ −X
ᵀ))])

+ op(1)

= tr

(
Σ−1 ·

[√
T
(
X̃

ᵀ −X
ᵀ)ᵀ {iᵀ · Σ−1q · i

T

}(
X̃

ᵀ −X
ᵀ)])

+ op(1)

because the trace is a linear mapping. It is trivial to show that the term inside {·} is bounded in
probability. Further, the proof of Proposition 2 in Faust (1992) suggests that the individual entries

of the squared bracket converges in probability to zero (hence so does the entire matrix), yielding

√
T

∣∣∣∣α{d+ qK · tr
(
V̂R

&
(K)

)}
− LR

∣∣∣∣ p−→ 0. (56)

This suggests that there exist some α and q for which the trace test has the same large sample

properties of the LR test against the φ−best class alternatives. Since the sequence of the LR tests
with q∗ = δ/

√
T is locally most powerful invariant, e.g. Engle (1984), the proof is complete.

Proof of Theorem 4. Consider the K period returns Xt(K) = Kµ+pt−pt−K =
∑t

s=t−K εs+∑t
s=t−K(ηs − ηs−1) = Kµ+

∑t
s=t−K εs + ηt − ηt−K . These have variance

ΣK = var(Xt(K)) = var

(
t∑

s=t−K
εs

)
+ var

(
ηt − ηt−K

)
= KEεsε

ᵀ
s + E

(
(ηt − ηt−K)(ηt − ηt−K)

ᵀ)
= KΩε + Ωη(K),

where Ωη(k) = var
(
ηt − ηt−k

)
≥ 0, k = 1, 2, . . . . Therefore, VR(K) = Σ

−1/2
1 ΣKΣ

−1/2
1 /K and

VRd(K) = D
−1/2
1 ΣKD

−1/2
1 /K. Note that as K → ∞, Ωη(K) → 2Ωη = 2var (ηt) . It follows that

as K →∞

VR(K) = K−1Σ
−1/2
1 ΣKΣ

−1/2
1 = K−1Σ

−1/2
1 (KΩε + Ωη(K)) Σ

−1/2
1

−→ Σ
−1/2
1 ΩεΣ

−1/2
1 = Σ

−1/2
1 [Σ1 − Ωη(1)] Σ

−1/2
1

= I − Σ
−1/2
1 Ωη(1)Σ

−1/2
1 ≤ I,

since Σ1 and Ωη(1) are positive semidefinite. The strict inequality holds since Ωη(1) is assumed
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strictly positive definite. By similar arguments,

VRd(K) = K−1D
−1/2
1 ΣKD

−1/2
1 = K−1D

−1/2
1 (KΩε + Ωη(k))D

−1/2
1

−→ D
−1/2
1 ΩεD

−1/2
1 = D

−1/2
1 (Σ1 − Ωη(1))D

−1/2
1

= D
−1/2
1 Σ1D

−1/2
1 −D−1/21 Ωη(1)D

−1/2
1

= Rd (0)−D−1/21 Ωη(1)D
−1/2
1 ≤ Rd (0)

which is the instantaneous correlation matrix of the return process.

Proof of Theorem 5. This follows from the multivariate extension of Theorem 1 of Liu and Wu

(2010) applied to the frequency θ = 0. The weighting scheme automatically satisfies their condition

1. See also Andrews (1991).

Proof of (36). For simplicity we suppose that pt = δTpt−1 + εt with εt iid with variance σ2ε and

δT = 1 + c
kT
, where kT = Tα, α ∈ (0, 1/2) and some positive constant c. According to Phillips and

Magdalinos (2007, Theorem 4.3) we have(
(δ−TT /kT )

T∑
t=1

pt−1εt, (δ
−2T
T /k2T )

T∑
t=1

p2t−1

)
=⇒ (XY, Y 2),

where X, Y are iid copies of a N(0, σ2ε/2c) distribution.

Since the observed returnXt is the difference of the log prices we haveXt = pt−pt−1 = c
kT
pt−1+εt,

and consequently the sum of the squared return is

T∑
t=1

X2
t =

c2

k2T

T∑
t=1

p2t−1 +
2c

kT

T∑
t=1

pt−1εt +
T∑
t=1

ε2t

⇒ c2

k2T
k2T δ

2T
T Y

2 +
2c

kT
kT δ

T
TXY + Tσ2ε

= c2δ2TT Y
2 +R,

where R is a generic remainder term that contains smaller order terms. The first term dominates

the others because δ2TT = (1 + c
kT

)2T →∞ very fast. Therefore, we have

δ−2TT

T∑
t=1

X2
t =⇒ c2Y 2. (57)

Likewise,

Xt(2) = pt − pt−2 = (δ2T − 1)pt−2 + εt + δT εt−1 '
2c

kT
pt−2 + εt + δT εt−1,
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by the Binomial approximation because c/kT = c/Tα becomes negligible as T gets bigger. Therefore,

δ−2TT

T∑
t=1

Xt(2)2 =⇒ 4c2Y 2.

Similarly for general K, as T →∞ we have:

Xt(K) =
(
δKT − 1

)
pt−K +

K−1∑
j=0

δjT εt−j

δ−2TT

T∑
t=1

Xt(K)2 =⇒ K2c2Y 2. (58)

In fact, using Cramér-Wold device it can be shown that the convergence in (57) and (58) is joint.

Therefore, by the continuous mapping theorem

V̂R(K) ∼
∑T

t=1Xt(K)2

K
∑T

t=1X
2
t

P−→ K,

as required.

Proof of Theorem 6. From (37) and (38) it is straightforward to see that

Xt+i = (t+ i)µ+ µ0 +
t+i∑
j=1

ηj + εt+i

var(Xt+i) = Σε +
t+ i

T
Ση and cov(Xt+i, Xt+k) =

t+ i

T
Ση

for i, k = 0, 1, . . . , K − 1 and i < k. Consequently we have

var(Xt +Xt+1 + · · ·+Xt+K−1) = K2Ση

T

(
t+

K−1∑
j=1

(
1− j

K

)2)
+KΣε

VRT (K) =

(
Ση
T + 1

2T
+ Σε

)−1/2 [
KΣη

(
T + 1

2T
+

1

T

K−1∑
j=1

(
1− j

K

)2)
+ Σε

](
Ση
T + 1

2T
+ Σε

)−1/2
so that

1
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1

2
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1

2
+ Σε

)−1/2
as K →∞, completing the proof.
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Proof of Theorem 7. It is straightforward to see that

√
T

[
1

d

d∑
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(
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)]
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√
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d
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γ̂ii(j)
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)

=
1

d

d∑
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j=1
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T

T∑
t=j+1

X̃itX̃i,t−j −
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(X i − µi)
]
·
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d
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t=1+j
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(X i − µi)
]
·
{

1

d

d∑
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K−1∑
j=1

cj
σii

1√
T

T∑
t=1+j

X̃i,t−j

}
+

1

d

d∑
i=1

K−1∑
j=1

cj
σii

T − j − 1√
T

(X i − µi)2 + op(1)

=
1√
T

T∑
t=K

(
1

d

d∑
i=1

[
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cjX̃itX̃i,t−j

σii

])
+ op(1) (59)

because by uncorrelatedness of X̃t

P

(∣∣∣∣max
1≤i≤d

(X i − µi)
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)
≤
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1
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T 2
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X̃2
it

)
= O

(
d

T

)
,

and by the moment-cumulant relationship formula and Assumption S we have

P

(
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T

T∑
t=1

X̃2
it − E

(
X̃2
it

)∣∣∣∣∣ > ε

)
≤ 1

ε2

d∑
i=1

1

T 2

T∑
t=1

T∑
s=1

Cov
(
X̃2
it, X̃

2
is

)
≤ 1

ε2
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1

T 2
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2
(
γii(t− s)
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+ κiiii(s, s, 0, 0)

]
= O

(
d

T

)
,

from which it follows that maxi |σ̂ii−σii| = op(1). The {.} terms can be easily shown to be bounded
in probability using Chebyshev’s inequality and uncorrelatedness of X̃t.

It now suffi ces to derive the limiting distribution of (59). We will only briefly sketch the proof as

the main arguments closely follow those of proof of Theorem 2. Since the asymptotic variance

qd(∞)∗ = lim
d→∞

1

d2
τᵀQd(K)τ = lim

d→∞

1

d2

d∑
i=1

d∑
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[
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j=1

K−1∑
k=1

cjck
σiiσrr

E(X̃itX̃rtX̃i,t−jX̃r,t−k)

]
, (60)

where τ = vec(Id), is finite by Assumption Sd, we see that upon checking the required conditions

the central limit theorem for martingale difference applies, yielding

1√
T

T∑
t=K

(
1

d

d∑
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[
K−1∑
j=1

cjX̃itX̃i,t−j

σii

])
=⇒ N

(
0, qd(∞)∗

)
.
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Note that the conditional Lindeberg condition can be shown to hold by repeatedly using Minkowski’s

inequality and by Assumption A′. The remaining consistency result follows by the ergodic theorem

and Assumption Sd, completing the proof.
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