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Abstract

In this paper, we obtain asymptotic approximations to the squared error

of the least squares estimator of the common component in large approximate

factor models with possibly misspecified number of factors. The approxima-

tions are derived under both strong and weak factors asymptotics assuming

that the cross-sectional and temporal dimensions of the data are comparable.

We develop consistent estimators of these approximations and propose to use

them for model comparison and for selection of the number of factors. We

show that the estimators of the number of factors that minimize these loss

estimators are asymptotically loss effi cient in the sense of Shibata (1980), Li

(1987), and Shao (1997).
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1 Introduction

Empirical analyses of high-dimensional economic data often rely on approximate

factor models estimated by the principal components method (see Stock and Watson

(2011) for a recent survey of related literature). Many of these analyses intend to

accurately estimate a low-dimensional common component of the data. For example,

the interest may lie in the part of multi-national data that can be attributed to a

common business cycle, as in Forni and Reichlin (2001), or in the decomposition of

sectoral output growth rates into the common and idiosyncratic parts, as in Foerster

et al (2011). Unfortunately, the estimation problem is complicated by the fact that

the number of factors is typically unknown and is likely to be misspecified. This paper

studies consequences of the misspecification for the squared error of the estimated

common component.

Assuming that the cross-sectional and temporal dimensions of the data, n and

T , are comparable, we derive asymptotic approximations to the squared error loss

through the order n−1 ∼ T−1. We consider both strong and weak factors asymptotics.

Under the latter, the asymptotic loss turns out to be minimized not necessarily at

the true number of factors.

We develop estimators of the loss which are consistent under strong and under

weak factors asymptotics, and propose to use them for model comparison and for

selection of the number of factors. We show that estimators of the number of factors

that minimize the proposed loss estimates are asymptotically loss effi cient in the

sense of Shibata (1980), Li (1987), and Shao (1997). The majority of recently pro-

posed estimators of the number of factors, including the popular Bai and Ng (2002)
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estimators, are asymptotically loss effi cient under the strong factors asymptotics, but

not under the weak factors one.

The basic framework of our analysis is standard. We consider an approximate

factor model

X = ΛF ′ + e, (1)

where X is an n× T matrix of data, Λ is an n× r matrix of factor loadings, F is a

T × r matrix of factors and e is an n×T matrix of idiosyncratic terms. Throughout

the paper, we will treat Λ and F as unknown parameters. Equivalently, our results

can be thought of as conditional on the unobserved realizations of random Λ and F .

Suppose that we estimate the first p of the factors and the corresponding loadings

by the least squares, and let us denote the estimates as F̂1:p and Λ̂1:p, respectively. As

is well known, F̂1:p and Λ̂1:p can equivalently be obtained by the principal components

(PC) method. That is, the columns of F̂1:p/
√
T are unit-length eigenvectors of X ′X,

and Λ̂1:p = XF̂1:p/T . In the special case where the idiosyncratic terms are i.i.d.

N(0, 1), these are the maximum likelihood estimates subject to the normalization.

Since we do not know the true value of r, p may be smaller, equal, or larger than r.

We will say that the number of factors is misspecified if p 6= r.

We are interested in the effect of the misspecification on the quality of the PC

estimate Λ̂1:pF̂
′
1:p of the common component ΛF ′ of the data. This quality is measured

by the average (over time and cross-section) squared error

Lp = tr
[
(Λ̂1:pF̂

′
1:p − ΛF ′)(Λ̂1:pF̂

′
1:p − ΛF ′)′

]
/ (nT ) . (2)

3



Our interest in Lp is motivated by several reasons. First, accurate extraction of the

common component is important in many applications. Second, in the special case

where the idiosyncratic terms are i.i.d. N (0, 1), Lp is proportional to the Kullback-

Leibler distance between the true model (1) and the factor model with factors F̂1:p

and loadings Λ̂1:p. Recall that the expected value of such a distance is usually ap-

proximated by Akaike’s (1973) information criterion (AIC). In Section 3, we show

that the AIC approximation does not hold in the large factor model setting, and

propose a valid alternative.

Finally, loss functions similar to Lp are widely used in the context of linear regres-

sion models. For example, Mallows’(1973) “measure of adequacy for prediction”of

linear regression model Y = Z1:pβ1:p + ε when the true model is Y = Zβ+u is given

by (Ẑ1:pβ̂1:p−Zβ)′(Ẑ1:pβ̂1:p−Zβ). The problems of prediction, model selection, and

model averaging with this loss function were extensively studied by Phillips (1979),

Kunitomo and Yamamoto (1985), Shao (1997), and Hansen (2007), to name just a

few studies.

Since ΛF ′ is unobserved, Lp can not be evaluated directly. In Section 2, we derive

asymptotic approximations for Lp that are easy to analyze and estimate. Subsection

2.1 considers the standard strong factors asymptotic regime (Bai and Ng (2008)).

The strong factors asymptotics has been criticized by Boivin and Ng (2006),

Heaton and Solo (2006), DeMol et al (2008), Onatski (2010, 2012), Kapetanios and

Marcellino (2010), and Chudik et al (2011) for not providing accurate finite sample

approximations in applications where the factors are moderately or weakly influen-

tial. Therefore, in Subsection 2.2 we derive asymptotic approximations for Lp using
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Onatski’s (2012) weak factors assumptions.

Using the derived asymptotic approximations, Section 3 develops four different

estimators of Lp. All these estimators use a preliminary estimator r̂ of the true num-

ber of factors r. Under the strong factors asymptotics, if r̂
p→ r, all the corresponding

loss estimators are consistent for Lp after a shift by a constant that does not depend

on p.

Under the weak factors asymptotics, in general, no preliminary estimator r̂ can

consistently estimate r. As explained in Onatski (2012, p. 250), one can, instead,

estimate the number q of theoretically detectable, or “effective”, factors. If r̂
p→ q,

then two of the corresponding proposed loss estimators provide the asymptotic upper

and lower bounds on the shifted loss. We show that the minimizers of these estimators

bracket the actual loss minimizer with probability approaching one as n and T go to

infinity. The other two loss estimators are consistent for the shifted loss when there

is either no cross-sectional or no temporal correlation in the idiosyncratic terms. In

these special cases, the number of factors that minimizes the corresponding estimator

of the loss is consistent for the number of factors that minimizes the actual loss. The

latter is not necessarily equal to the true number of factors r or to the “effective”

number of factors q.

All the proposed loss estimators are simple functions of the eigenvalues of the

sample covariance matrix. Monte Carlo exercises in Section 4 show that their qual-

ity is excellent when simulated factors are relatively strong. When the factors become

weaker, the quality gradually deteriorates, but remains reasonably good in interme-

diate cases.
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In Section 5, we provide an empirical example of model comparison based on our

loss estimators. We compare a two- and a three-factor model of excess stock returns,

and find that estimating the third factor leads to a loss deterioration for the monthly

data covering the period from 2001 to 2012. That is, a PC estimate of the three-

factor model provides a worse description of the undiversifiable risk portion of the

excess returns than a PC estimate of the two-factor model. Interestingly, this loss-

based ordering is reversed when we use the data from 1989 to 2000, which suggests

a decrease in the signal-to-noise ratio in the more recent excess returns data.

Section 6 discusses possible extensions, establishes a connection with the litera-

ture on sparse models (see, for example, Belloni et al (2012)), and concludes. All

proofs are given in the Appendix.

2 Asymptotic approximation for the loss

2.1 Strong factors asymptotics

In what follows, µi (M) denotes the i-th largest eigenvalue of a Hermitian matrixM .

Further, A·j and Aj· denote the j-th column and j-th row of a matrix A, respectively.

We make the following assumptions.

A1 There exists a diagonal matrix Dn with elements d1n ≥ d2n ≥ ... ≥ drn > 0

along the diagonal, such that F ′F/T = Ir and Λ′Λ/n = Dn.

This assumption is a convenient normalization. The only non-trivial constraint it

implies is the requirement that rankF = r and rank Λ = r.
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A2 As n→∞, Λ′Λ/n→ D, where D is a diagonal matrix with decreasing elements

d1 > d2 > ... > dr > 0 along the diagonal.

Assumption A2 is sometimes called the factor pervasiveness assumption. It requires

that the cumulative explanatory power of factors, measured by the diagonal elements

of Λ′Λ, increases proportionally to n. The assumption is standard, but may be too

strong in some applications. In Subsection 2.2, we consider an alternative assumption

that allows Λ′Λ to remain bounded as n→∞.

Let n, T →c ∞ denote the situation where both n and T diverge to infinity

so that n/T → c ∈ (0,∞). This asymptotic regime is particularly useful for the

analysis of data with comparable cross-sectional and temporal dimensions, such as

many financial and macroeconomic datasets. It also does not preclude situations

where n/T is small or large as long as n/T does not go to zero or to infinity.

A3 As n, T →c ∞, (i) there exists ε > 0 such that Pr (tr[ee′]/(nT ) > ε)→ 1; (ii) for

any j, k ≤ r, Λ′·jeF·k/
√
nT = OP (1); (iii) µ1 (ee′/T ) = OP(1).

Part (i) of A3 rules out uninteresting cases where the idiosyncratic terms eit are zero

or very close to zero for most of i and t. Part (ii) of A3 is in the spirit of assumptions

E (d,e) in Bai and Ng (2008). Validity of the central limit theorem for sequences

{ΛijeitFtk; i, t ∈ N} with j, k ≤ r is suffi cient but not necessary for A3 (ii). Part (iii)

of A3 further bounds the amount of dependence in the idiosyncratic terms.

Assumption A3 (iii) is technically very convenient and has been previously used

by Moon and Weidner (2010). They provide several examples of primitive conditions

implying A3 (iii). Proposition 6, which we formulate and prove in the Appendix,

shows that A3 (iii) holds for very wide classes of stationary processes {e·t, t ∈ Z}.
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Proposition 1 Let Pi:j be a T × T matrix of projection on the space spanned by

F·i, ..., F·j, and let Qi:j be an n × n matrix of projection on the space spanned by

Λ·i, ...,Λ·j. Under assumptions A1-A3, as n, T →c ∞, Lp = L
(1)
p + oP (1/T ) , where

L(1)
p =


∑r

j=p+1 djn + tr [eP1:pe
′ + e′Q1:pe] / (nT ) if p ≤ r

L
(1)
r +

∑p
j=r+1 µj (X ′X) / (nT ) if p > r

. (3)

It is instructive to compare (3) to the loss in the case of known factors. This case

is similar to the standard OLS regression with factor loadings playing the role of

the regression coeffi cients. If the known factors satisfy A1, then a simple regression

algebra shows that

Lknownp =


∑r

j=p+1 djn + tr [eP1:pe
′] / (nT ) if p ≤ r

Lknownr + tr [XPr+1:pX
′] / (nT ) if p > r

,

where the superscript ‘known’is introduced to distinguish the case of known factors

from that of latent factors.

Comparing Lknownp to L(1)
p , we see that L

(1)
p contains an extra term tr [e′Q1:pe] / (nT ).

The reason is that, in Proposition 1, not only loadings, but also factors are estimated.

Hence, the expression for the loss becomes symmetric with respect to interchanging

factors and factor loadings. More important, for p > r, the term tr [XPr+1:pX
′] / (nT )

in Lknownp is replaced by the term
∑p

j=r+1 µj (X ′X) / (nT ) in L(1)
p . It is because when

the over-specified factors are not known, they are chosen so as to explain as much

variation as possible. In other words, the projection Pr+1:p in tr [XPr+1:pX
′] / (nT )

is replaced by the projection on the space spanned by the r + 1, ..., p-th principal
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eigenvectors of X ′X.

If we further assume homoscedasticity, E (e′e) = nσ2IT , then we can write

ELknownp =


∑r

j=p+1 djn + σ2p/T if p ≤ r

σ2p/T if p > r
. (4)

Hence, the expected loss, or risk, consists of the bias term
∑r

j=p+1 djn and the vari-

ance term σ2p/T, with the bias term disappearing under correct or over-specification.

In the case of latent factors, we have

Corollary 1 Suppose that the elements of e are i.i.d. zero mean random variables

with variance σ2 and a finite fourth moment. Then, under assumptions A1-A2, as

n, T →c ∞, Lp = L
(1)
p + oP (1/T ) , where

EL(1)
p =


∑r

j=p+1 djn + σ2p (1/T + 1/n) if p ≤ r

σ2 (p− r) (1/
√
T + 1/

√
n)2 + σ2r (1/T + 1/n) if p > r

.

Comparing EL(1)
p to ELknownp , we see that the variance term of EL(1)

p is symmetric

with respect to interchanging n and T . More important, in contrast to the case of

known factors, the marginal effect on the variance term of EL(1)
p from adding p-th

factor depends on whether the model is under- or over-specified. It is σ2 (1/T + 1/n)

in the under-specified, but σ2(1/
√
T + 1/

√
n)2 in the over-specified case.

The unusual form of the term σ2(1/
√
T + 1/

√
n)2 can be linked to the a.s.

convergence µ1 (ee′/T ) → σ2 (1 +
√
c)

2 as n, T →c ∞ (Yin et al, 1988). Replac-

ing c in σ2 (1 +
√
c)

2 by n/T, and dividing the obtained expression by n, we get
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σ2(1/
√
T + 1/

√
n)2 (see the proof of Corollary 1 in the Appendix for more details on

the link).

2.2 Weak factors asymptotics

In this subsection we derive an asymptotic approximation to Lp using alternative

weak factor assumptions proposed and discussed in detail in Onatski (2012).

A1w There exists a diagonal matrix ∆n with elements δ1n ≥ δ2n ≥ ... ≥ δrn > 0

along the diagonal, such that F ′F/T = Ir and Λ′Λ = ∆n. As n→∞, ∆n → ∆,

where ∆ is a diagonal matrix with decreasing elements δ1 > δ2 > ... > δr > 0

along the diagonal.

By definition, δjn equals the cross-sectional sum of the squared loadings of the j-th

factor. Hence, δjn measures the cumulative explanatory power, or strength, of factor

j. The convergence δjn → δj stays in contrast to assumption A2, which implies that

δjn = ndjn → ∞. As explained in detail in Onatski (2012), the asymptotic regime

described by A1w is meant to provide an adequate approximation to empirically

relevant finite sample situations where a few of the largest eigenvalues of the sample

covariance matrix are not overwhelmingly larger than the rest of the eigenvalues.

A2w There exist n× n and T × T deterministic matrices An and BT such that e =

AnεBT , where (i) ε is an n×T matrix with i.i.d. N (0, σ2) entries; (ii) An is such

that tr (AnA
′
n) = n and (AnA

′
n) Λ = Λ; (iii) BT is such that tr (B′TBT ) = T

and (B′TBT )F = F .
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The idiosyncratic matrices of the form e = AnεBT were previously considered in

Bai and Ng (2006), Onatski (2010, 2012), and Ahn and Horenstein (2013). When An

and BT are not identity matrices, the idiosyncratic terms are both cross-sectionally

and serially correlated. The assumption restricts the covariance matrix of the vector-

ized e to be of the Kronecker product form σ2B′TBT ⊗AnA′n. This can be viewed as

an approximation to more realistic covariance structures. For a general discussion of

the quality of approximations with Kronecker products see Van Loan and Pitsianis

(1993).

As explained in Onatski (2012, p. 247), A2w (ii), (iii) are simplifying technical

assumptions. They allow Onatski (2012, Theorem 1) to obtain explicit expressions

for the bias of the PC estimator under the weak factors asymptotics. The analysis

below will rely on these explicit expressions. The Monte Carlo exercises in Section 4

show that the quality of the loss approximation L
(1)
p derived under A2w remains

good if A2w (ii) and (iii) are relaxed. A theoretical investigation of this phenomenon

requires a substantial additional technical effort. We leave such an investigation for

future research.

The Gaussianity assumption made in A2w (i) is certainly very strong. We can

relax this assumption to a non-Gaussian (nG) version at the expense of making

matrices An and BT more special. Let UA and VB be, respectively, n × n and

T × T orthogonal matrices such that the matrix of the first r columns of UA equals

(Λ′Λ)−1/2 Λ and that of the first r columns of V ′B equals (F ′F )−1/2 F . Further, let

A0 = diag (a1, ..., an) , where ai ≥ 0 for all i, ai = 1 for i ≤ r, and
∑n

i=1 a
2
i = n.

Similarly, let B0 = diag (b1, ..., bT ), where bi ≥ 0 for all i, bi = 1 for i ≤ r, and
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∑n
i=1 b

2
i = T .

A2w (nG) There exist n × n and T × T deterministic matrices An and BT such

that e = AnεBT , where (i) ε is an n×T matrix with i.i.d. entries εit, such that

Eεit = 0, Eε2
it = σ2, and Eε4

it <∞; (ii) An = UAA0; (iii) BT = B0VB.

Part (i) of assumption A2w (nG) requires only the existence of the fourth mo-

ments of εit, which is much less demanding than the Gaussianity. Although ma-

trices An and BT in parts (ii) and (iii) are more special than their counterparts

in assumption A2w, their special form is not constraining the covariance matrix

σ2B′TBT ⊗ AnA′n of the vectorized e. Indeed, any An and BT that satisfy A2w (ii)

and (iii) must have singular value decompositions of the form An = UAA0VA and

BT = UBB0VB, where VA and UB are, respectively, n × n and T × T orthogonal

matrices. Therefore, AnA′n = UAA2
0U
′
A and B

′
TBT = V ′BB2

0VB, which is the same as

for An and BT that satisfy A2w (nG) (ii) and (iii).

Our last assumption describes the asymptotic behavior of matrices An and BT .

LetGA(x) = 1
n

∑n
i=1 1 [µi (AnA

′
n) ≤ x] andGB(x) = 1

T

∑T
i=1 1 [µi (B

′
TBT ) ≤ x], where

1 [·] denotes the indicator function. Hence, GA(x) and GB(x) are the empirical dis-

tribution functions of the eigenvalues of AnA′n and B
′
TBT , respectively.

A3w There exist probability distributions GA and GB with bounded supports [xA, x̄A]

and [xB, x̄B], cumulative distribution functions GA(x) and GB(x), and densi-

ties d
dx
GA(x) and d

dx
GB(x) at every interior point of support x ∈ (xA, x̄A) and

x ∈ (xB, x̄B), respectively, such that, as n, T →c ∞: (i) GA(x) → GA(x) and

GB(x)→ GB(x) for all x ∈ R, (ii) µ1 (AnA
′
n)→ x̄A and µ1 (B′TBT )→ x̄B, and

(iii) infx∈(xA,x̄A)
d
dx
GA(x) > 0 and infx∈(xB ,x̄B)

d
dx
GB(x) > 0.
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Assumption A3w holds for a broad range of matrices AnA′n and B′TBT . For

example, it is satisfied for large classes of widely used Toeplitz matrices.

Onatski (2012) shows that, under assumptions A1w-A3w, there is an asymptotic

relationship between the true strength of the j-th factor, δj, and the j-th sample

covariance eigenvalue. Precisely, as n, T →c ∞,

µj (XX ′/T )
p→ σ2f

(
δj/σ

2
)
, j ≤ r, (5)

where function f (·) depends only on GA and GB and can be evaluated numerically.

In contrast, under the strong factor assumptions A1-A3, the r largest eigenvalues of

XX ′/T, which are sometimes referred to as “factor eigenvalues”, diverge to infinity.

Function f (·) plays an important role in the analysis below. Its salient features are

summarized in the following lemma.

Lemma 1 Suppose that assumptions A1w, A2w or A2w (nG), and A3w hold. Then,

(i) there exists δ̄ > 0, that depends on GA and GB, such that σ2f (δ/σ2) = plimµ1 (ee′/T )

for any δ ∈
[
0, δ̄
]
; (ii) As a function of z, f (z) is non-decreasing and continuous,

and larger than z on z ≥ 0. Furthermore, it is differentiable on z < δ̄/σ2 and on

z > δ̄/σ2, and is such that f(z)/z → 1 as z →∞; (iii) the elasticity d ln f(z)/d ln z

increases on z > δ̄/σ2 and converges to one as z →∞.

Proposition 2 Suppose that assumptions A1w, A2w or A2w (nG), and A3w hold.

Furthermore, suppose that δj 6= δ̄ for j = 1, ..., r and let q be the largest p ∈

{0, 1, ..., r} such that δp > δ̄, where δ0 = ∞. Then, as n, T →c ∞, Lp = L
(1)
p +
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oP (1/T ) , where

L(1)
p =


∑r

j=1 δjn/n+
∑p

j=1 µj (XX ′) / (nT )− 2
∑p

j=1 δjnf
′ (δjn/σ

2) /n for p ≤ q

L
(1)
q +

∑p
j=q+1 µj (XX ′) / (nT ) for p > q

.

(6)

Here f ′(z) denotes the derivative of f (z) .

For p > r ≥ q, the increment to L(1)
p due to over-specifying p factors relative to p−

1 factors is approximated by µp (XX ′) / (nT ) . As can be seen from (3), this coincides

with the increment to L(1)
p due to the marginal increase in the over-specification under

the strong factors asymptotics.

For p ≤ r, the weak and strong factors asymptotic approximations to the loss

are substantially different. Under the weak factors asymptotics, the increment

L
(1)
p − L

(1)
p−1 remains µp (XX ′) / (nT ) for p > q. In such cases, the p-th factor is

so weak that limn→∞ δpn ≤ δ̄. For p ≤ q, the increment becomes µp (XX ′) / (nT ) −

2δpnf
′ (δpn/σ

2) /n.As formula (5) shows, this equals σ2f (δp/σ
2) /n−2δpf

′ (δp/σ
2) /n+

oP (1/T ) , which becomes negative for suffi ciently large n and T if and only if

d ln f(z)/d ln z > 1/2 at z = δp/σ
2. (7)

By Lemma 1 (iii), the elasticity d ln f(z)/d ln z increases with z. Thus, asymptoti-

cally, the loss is minimized for the largest p such that (7) holds.

Note that δp/σ2 is large for relatively strong factors. Therefore, according to

Lemma 1 (iii), d ln f (z) /dlnz ≈ 1 at z = δp/σ
2, so that (7) is satisfied. In other

words, including very strong factors to the model always leads to a decrease in the
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loss Lp. For very weak factors, d ln f (z) /dlnz = 0 at z = δp/σ
2 because f (δ/σ2)

is constant for δ ≤ δ̄ by Lemma 1 (i), so that (7) is violated, and including such

factors to the model leads to an increase in the loss. Inequality (7) tells us exactly

how strong the factors should be so that including them to the model improves the

prediction of the common component.

For special cases of GA and GB, it is possible to obtain explicit formulae for f (·)

in (5). For example, if An = In and BT = IT so that the idiosyncratic terms are

i.i.d., we have (see Onatski (2006, Theorem 5)1),

f
(
δ/σ2

)
=

 (1 +
√
c)

2 for 0 ≤ δ/σ2 ≤
√
c

(δ/σ2 + 1) (δ/σ2 + c) / (δ/σ2) for δ/σ2 >
√
c

. (8)

Then, the asymptotic approximation (6) given in Proposition 2 simplifies.

Corollary 2 Suppose that assumption A1w holds, and let the elements of e be i.i.d.

with zero mean, variance σ2, and finite fourth moment. Further, suppose that δj 6=

σ2
√
c for j = 1, ..., r, and let q be maximum p ∈ {0, 1, ..., r} such that δp > σ2

√
c,

where δ0 =∞. Then, Lp = L
(1)
p + oP (1/T ) , where

L(1)
p =


∑r

j=p+1 δjn/n+ pσ2 (1/n+ 1/T ) + 3
∑p

j=1 σ
4/ (Tδjn) for p ≤ q

L
(1)
q + (p− q)σ2

(
1/
√
n+ 1/

√
T
)2

for p > q
.

Note that, under the weak factors asymptotics, the minimum of L(1)
p is achieved

not necessarily at p = r, as is the case under the strong factors asymptotics. In-

1In that paper, Theorem 5 is proven under the Gaussianity of ε. However, as follows from the
proof of Lemma 1, f (·) does not depend on the Gaussianity assumption.
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stead, it is achieved at the maximum of p ∈ {0, 1, 2, ..., q} such that δpn/n >

σ2 (1/n+ 1/T )+3σ4/ (Tδpn). The optimal p trades off the bias introduced by not es-

timating all factors with the reduction in variance that comes from excluding factors

that are too weak to be accurately estimated.

3 Loss estimation

In this section, we develop statistics L̂p that approximate Lp. As mentioned in the

introduction, although AIC is a natural candidate for L̂p, it fails in our setting. Let

us explore this in more detail. In the simplest special case where the idiosyncratic

terms are i.i.d. N (0, 1), the log-likelihood equals

lnL (X|Λ, F ) = −nT
2

ln 2π − 1

2
tr
[
(X − ΛF ′) (X − ΛF ′)

′]
,

so that the Kullback-Leibler distance between the true model (1) and the model with

parameters F̃ , Λ̃ is

KL
(
F,Λ; F̃ , Λ̃

)
= E ln

L (X|Λ, F )

L
(
X|Λ̃, F̃

) =
1

2
tr

[(
ΛF ′ − Λ̃F̃ ′

)(
ΛF ′ − Λ̃F̃ ′

)′]
.

Hence, Lp equals 2KL
(
F,Λ; F̃ , Λ̃

)
/ (nT ) , evaluated at F̃ = F̂1:p and Λ̃ = Λ̂1:p,

which is the exact analog for the factor models of the loss used by Akaike (1973)

to derive AIC (see also deLeeuw (1992), which explains Akaike’s (1973) innovative

ideas in much detail).

The loss Lp depends on p only through −2E lnL
(
X|Λ̃, F̃

)
/ (nT ), evaluated at
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Λ̃ = Λ̂1:p and F̃ = F̂1:p. In our setting, the Akaike’s (1973) idea is to approximate this

part of Lp by −2 lnL
(
X|Λ̂1:p, F̂1:p

)
/ (nT ) and correct for the bias. The correction

term, at least for the over-specified models, should be two times the parameter

dimensionality divided by the sample size. Unfortunately, this simple rule does not

hold here.

For the sake of illustration, let there be no factors in the data (r = 0). Then,

− 2

nT
E lnL

(
X|Λ̃, F̃

)∣∣∣
Λ̃,F̃=Λ̂1:p,F̂1:p

= ln 2π + 1 +
1

nT
tr
[
Λ̂1:pF̂

′
1:pF̂1:pΛ̂1:p

]
= ln 2π + 1 +

1

n

p∑
j=1

µj,

where µj is a shorthand notation for µj (XX ′/T ). Furthermore,

− 2

nT
lnL

(
X|Λ̂1:p, F̂1:p

)
= ln 2π +

1

n

n∑
j=1

µj −
1

n

p∑
j=1

µj. (9)

Combining these two equalities, we obtain

− 2

nT

[
E lnL

(
X|Λ̃, F̃

)∣∣∣
Λ̃,F̃=Λ̂1:p,F̂1:p

− lnL
(
X|Λ̂1:p, F̂1:p

)]
= 1− 1

n

n∑
j=1

µj +
2

n

p∑
j=1

µj.

(10)

As shown in Onatski et al (2013, Lemma 12), n
(

1− 1
n

∑n
j=1 µj

)
d→ N (0, 2c)

as n, T →c ∞. Hence, the term 1 − 1
n

∑n
j=1 µj in the latter equality does not con-

tribute to the bias correction through the order 1/n. Further, by Yin et al’s (1988)

result, 2
∑p

j=1 µj
a.s.→ 2p (1 +

√
c)

2. Replacing c by n/T, we see that 2
n

∑p
j=1 µj can

be approximated through the order 1/n by 2p
nT

(
√
n +
√
T )2. In the factor model
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setting, the sample size is nT. Thus, had the Akaike’s (1973) rule for the bias cor-

rection worked, we would have had p(
√
n +
√
T )2 as the parameter dimensionality.

However, to the order n, the number of free parameters in the p-factor model is

p (n+ T ) 6= p(
√
n+
√
T )2.

Akaike’s (1973) derivations of his bias correction rule is based on the quadratic

approximations to the log-likelihood and on the standard properties of the maximum

likelihood estimates. There are at least two reasons why this standard machinery

does not work in the setting of large factor models. First, the number of parameters

is increasing with the sample size. Second, parameters of an over-specified model

are not identified (when the true loadings of a factor are identically zero, the factor

may correspond to any point on the sphere of radius
√
T in RT ). These problems

are related to the well-known incidental parameters problem (Lancaster, 2000) and

the non-standard inference in cases where some parameters are not identified under

the null (Hansen, 1996).

Although the AIC’s bias correction rule does not work, equation (10) shows that

the bias can be corrected simply by adding 2
∑p

j=1 µj/n to−2 lnL
(
X|Λ̂1:p, F̂1:p

)
/ (nT ).

Even though under the general assumptions A1-A3 or A1w-A3w and their non-

Gaussian version, the Kullback-Leibler interpretation of Lp is lost, Propositions 1

and 2 suggest that, up to a quantity that does not depend on p, Lp is still well ap-

proximated by the right hand side of (9) after a bias correction which is a function

of µj. Specifically, at least for p > r, adding 2
∑p

j=r+1 µj/n to the right hand side of

(9) will perfectly match L(1)
p , after a shift by a quantity that does not depend on p.

Below we propose several estimators of the loss Lp, shifted by a quantity that
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does not depend on p. All our estimators utilize a preliminary estimator r̂ of the

number of factors. Under the strong factors asymptotics, there exist many r̂ that are

consistent for r (see, for example, Bai and Ng (2002) and Ahn and Horenstein (2013)).

Under the weak factors asymptotics, consistent estimation of r may not be possible

if the strength of some of the factors does not exceed the threshold δ̄. However, it is

possible to consistently estimate q. Onatski (2012) calls q the “effective”number of

factors and points out that estimator

r̂ (ε) = max
{
i ≤ rmax : µj − µj+1 > ε

}
, (11)

where rmax is a fixed maximum possible number of factors and ε > 0 is a small

tuning parameter2, is consistent for q as long as f (δq/σ
2) − f

(
δ̄/σ2

)
> ε/σ2. The

latter condition is violated only if the strength δq of the q-th strongest factor is

suffi ciently close to the threshold δ̄ below which the consistent detection of factors is

theoretically impossible.

Consider estimators of the shifted loss Lp that have form

L̂p =


∑p

j=1

(
1− 2ρ̂j

)
µj/n for p ≤ r̂

L̂r̂ +
∑p

j=r̂+1 µj/n for p > r̂
, (12)

where ρ̂j with j = 1, ..., p are data dependent quantities. The following choices of ρ̂j
2Onatski (2010) proposes a data-dependent calibration procedure of ε, which we will use in the

Monte Carlo section of this paper.
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give us two special cases of L̂p:

Lp = L̂p with ρ̂j = 1, and (13)

L̄p = L̂p with ρ̂j = 1/(µ2
j max{m̂′

(
µj
)
, m̃′

(
µj
)
}). (14)

Here

m̂′ (x) =
d

dx
m̂ (x) with m̂ (x) = (n− r̂)−1

∑n

i=r̂+1
(µi − x)−1 ,

and

m̃′ (x) =
d

dx
m̃ (x) with m̃ (x) = (T − r̂)−1

∑T

i=r̂+1
(µi − x)−1 ,

where, for j > n, µj is defined as zero.

Proposition 3 (i) Let L̃p = Lp or L̃p = L̄p. Then, under assumptions A1-A3, if

r̂
p→ r as n, T →c ∞, then

max
0≤p<r

∣∣∣Lp − L̃p − (Lr − L̃r)
∣∣∣ = oP(1) and (15)

max
r≤p≤rmax

∣∣∣Lp − L̃p − (Lr − L̃r)
∣∣∣ = oP(1/T ). (16)

(ii) Under assumptions A1w, A2w or A2w (nG), and A3w, if r̂
p→ q as n, T →c ∞,

then for any ε > 0,

Pr[ min
0≤p≤rmax

(
(Lp − L0)− Lp

)
≥ −ε/n]→ 1 and (17)

Pr[ max
0≤p≤rmax

(
(Lp − L0)− L̄p

)
≤ ε/n]→ 1. (18)

Part (i) of Proposition 3 shows that both Lp and L̄p can be thought of as as-
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ymptotic approximations to a shifted version of Lp. As follows from Proposition 1,

min0≤p<r Lp is bounded away from zero with probability approaching one. Hence,

the approximation error in (15) is asymptotically negligible relative to the size of the

loss. The portion of the loss Lp that corresponds to r ≤ p ≤ rmax converges to zero.

It can be shown (see the proof of Proposition 5) that, for r < p ≤ rmax, the rate

of such convergence is 1/T , and the approximation error in (16) is also negligible

relative to the size of the loss.

The reason why both Lp and L̄p approximate Lp well asymptotically is that, under

the strong factors asymptotics, the difference Lp−L̄p converges to zero. Indeed, with

probability approaching one, µj → ∞ for any j ≤ r̂, and µr̂+1 = OP (1). Therefore,

ρ̂j with j ≤ r̂ defined in (14) converge in probability to one, which coincides with

the value of ρ̂j in (13).

Part (ii) of Proposition 3 shows that, under the weak factors asymptotics, Lp and

L̄p can be thought of as asymptotic lower and upper bounds on a shifted version of

Lp. According to Proposition 2, an estimator L̂p that would approximate Lp well

under the weak factors asymptotics must have plim ρ̂j = d ln f (δj/σ
2) /dln(δj/σ

2).

We were able to develop such ρ̂j only in the special cases where either A = In or

B = IT , that is where there is either no cross-sectional or no temporal correlation in

the idiosyncratic terms.

Let L̂(A=I)
p and L̂(B=I)

p be the estimators L̂p with ρ̂j = ρ̂
(A=I)
j and ρ̂j = ρ̂

(B=I)
j ,
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respectively, where

ρ̂
(A=I)
j = −(1 + m̂(µj)σ̂

2n/T )m̂(µj)/(µjm̂
′(µj)), and (19)

ρ̂
(B=I)
j = −(1 + m̃(µj)σ̃

2T/n)m̃(µj)/(µjm̃
′(µj)). (20)

In the above expressions, σ̂2 = (n− r̂)−1∑n
i=r̂+1 µi, and σ̃

2 = (T − r̂)−1∑T
i=r̂+1 µi.

Proposition 4 (i) Let L̃p = L̂
(A=I)
p or L̃p = L̂

(B=I)
p . Then, under assumptions

A1-A3, if r̂
p→ r as n, T →c ∞, then

max
0≤p<r

∣∣∣Lp − L̃p − (Lr − L̃r)
∣∣∣ = oP(1) and

max
r≤p≤rmax

∣∣∣Lp − L̃p − (Lr − L̃r)
∣∣∣ = oP(1/T ).

(ii) Suppose that assumptions A1w, A2w or A2w (nG), and A3w hold. If r̂
p→ q as

n, T →c ∞, and A = In or B = IT , respectively,

max
0≤p≤rmax

∣∣∣Lp−L̂(A=I)
p − (Lq−L̂(A=I)

q )
∣∣∣ = oP(1/T ) or

max
0≤p≤rmax

∣∣∣Lp−L̂(B=I)
p − (Lq−L̂(B=I)

q )
∣∣∣ = oP(1/T ).

As can be seen from part (i) of Proposition 4, both L̂(A=I)
p and L̂(B=I)

p approximate

a shifted loss Lp under the strong factors asymptotics. This result is similar to part (i)

of Proposition 3. It holds because both ρ̂(A=I)
j and ρ̂(B=I)

j converge in probability to

one under the strong factors asymptotics. For the weak factors asymptotics, L̂(A=I)
p

approximates a shifted loss Lp when A = In, whereas L̂
(B=I)
p approximates a shifted

loss Lp when B = IT . These approximations improve upon the asymptotic bounds
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Lp and L̄p from part (ii) of Proposition 3.

The approximations to the shifted loss given in Propositions 3 and 4 can be used

to assess changes in the loss that result from different specifications of the number

of factors. Alternatively, they can be used to select an asymptotically loss effi cient

number of factors. The concept of asymptotic loss effi ciency of model selection

procedures was studied in detail by Shibata (1980), Li (1987), and Shao (1997),

among others. In the context of factor models and loss Lp, it can be described as

follows. Let p̂ be an estimator of the number of factors that may or may not coincide

with the preliminary estimator r̂. Estimator p̂ is called asymptotically loss effi cient

if
Lp̂

min0≤p≤rmax Lp

p→ 1. (21)

Shao (1997) points out that a suffi cient but not necessary condition for the as-

ymptotic loss effi ciency is

Pr (p̂ = p∗)→ 1, (22)

where p∗ = arg min0≤p≤rmax Lp. He calls this stronger property of p̂ consistency. Since

the minimizer p∗ of the loss Lp does not necessarily coincide with the true number

of factors r, we will call the property (22) optimal loss consistency instead.

Proposition 5 Let p, p̄, p̂(A=I), and p̂(B=I) be the minimizers of Lp, L̄p, L̂
(A=I)
p , and

L̂
(B=I)
p on 0 ≤ p ≤ rmax, respectively.

(i) Suppose that assumptions A1-A3 hold. Then any estimator consistent for r is

optimal loss consistent. Furthermore, if the preliminary estimator r̂ is consistent for

r, then estimators p, p̄, p̂(A=I), and p̂(B=I) are also consistent for r, and thus, are

23



also optimal loss consistent.

(ii) Suppose that assumptions A1w, A2w or A2w (nG), and A3w hold, and let r̂
p→ q

as n, T →c ∞. Then, r̂ is not, in general, optimal loss consistent. For any optimal

loss consistent estimator p̂, Pr
(
p ≤ p̂ ≤ p̄

)
→ 1. Moreover, Lp̄ − Lp∗ ≤ L̄p̄ − Lp +

oP (1/T ) and Lp − Lp∗ ≤ L̄p − L̄p̄ + oP (1/T ).

(iii) If, in addition to the assumptions of (ii), we have A = In or B = IT , then

estimators p̂(A=I) or p̂(B=I), respectively, are optimal loss consistent.

Parts (ii) and (iii) of Proposition 5 imply that, when factors are weak, the under-

estimation of the number of factors r may lead to improvements in the loss, even in

large samples. The optimal loss consistent estimator will tend to be smaller than the

preliminary estimator r̂. Such an optimal estimator is asymptotically bracketed by

the estimators p and p̄.

Note that the quality of estimator L̂p of the shifted loss depends on the quality of

the corresponding preliminary estimator r̂ under particular asymptotic regime. For

example, choosing r̂ equal to an IC or a PC estimator of Bai and Ng (2002) will insure

the asymptotic accuracy of L̂p under strong but not under weak factors asymptotics,

because all estimators that satisfy conditions of Theorem 2 of Bai and Ng (2002),

although consistent for r under strong factors asymptotics, must converge to zero

when factors are weak. Similarly, choosing r̂ equal to Onatski’s (2010) estimator (11)

may result in poor asymptotic behavior of L̂p under the strong factors asymptotics,

because this estimator is, in general, not consistent for r under assumptions A1-A3.

To guarantee the consistency of this estimator under the strong factors asymptotics

we need to require that µ1 (ee′/T )− µrmax+1 (ee′/T ) converges to zero in probability
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as n, T →c ∞. Assumptions A2w (nG) (i) and A3w would be suffi cient, but not

necessary, for such a convergence.

In this paper, we do not address the problem of finding standard errors of our loss

estimates. Since the estimates can be interpreted as sample analogs of the asymptotic

loss approximation L(1)
p , it would be relatively straightforward to analyze statistical

properties of the differences between the estimates and L
(1)
p (as opposed to Lp).

However, the order of these differences will be the same as that of L(1)
p −Lp. Hence,

to derive the standard errors, we need to engage in a higher-order asymptotic analysis.

Onatski (2012) does develop some higher-order asymptotic results. However, these

results are insuffi cient to obtain the standard errors of our loss estimates, unless the

idiosyncratic terms are i.i.d. Gaussian random variables. We, therefore, leave the

standard error analysis for future research.

4 Monte Carlo Experiments

In this section, we use Monte Carlo experiments to assess the finite sample quality of

the asymptotic loss approximations L(1)
p and estimators Lp, L̄p, L̂

(A=I)
p , and L̂(B=I)

p .

Our simulation setting is similar to that used in many previous studies, including

Bai and Ng (2002), Onatski (2010), and Ahn and Horenstein (2013). The data are

generated from

Xit = Cit +
√
θeit,

where the common component Cit is independent from the the idiosyncratic com-

ponent eit, both components are normalized to have variance one, and parameter θ
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measures the inverse of the signal-to-noise ratio.

The common component is generated by process Cit =
∑r

j=1 λijFtj/
√
r, where

r = 3, and λij and Ftj are i.i.d. N (0, 1). Dividing by
√
r insures that the variance

of Cit equals one. The idiosyncratic component eit is generated by the process

eit = ρei,t−1 + vit +
∑J

j 6=0,j=−J
βvi−j,t,

where vit, i, t ∈ Z are i.i.d. random variables with mean zero and variance σ2
v =

(1 − ρ2)/(1 + 2Jβ2) with J = min (n/20, 10). We consider two distributions for

vit : the Gaussian and Student’s t(5), the latter having only four finite moments.

Following Ahn and Horenstein (2013), we consider (ρ, β) = (0, 0) , (0.7, 0) , (0, 0.5) ,

or (0.5, 0.2). The signal-to-noise ratio θ−1 takes on five possible values: 4, 2, 1,

1/2, or 1/4. The sample sizes are (n, T ) = (50, 200) , (100, 100) and (200, 50). The

maximum possible number of factors rmax is set to 8.

To give the reader an idea on how the loss function in our MC experiments looks

like, Figure 1 shows two particular realizations of Lp for (n, T ) = (100, 100), (ρ, β) =

(0.7, 0), and the Gaussian distribution for the idiosyncratic terms. These realizations

are superimposed with the strong factors (dashed lines) and weak factors (dotted

lines) asymptotic approximations L(1)
p , derived in Propositions 1 and 2. Function f(·)

that appears in the weak factors asymptotic approximation is computed numerically

using the MATLAB code developed in Onatski (2012, p. 248).

The left and right panels of the figure correspond to the lowest and the highest

signal-to-noise ratio, respectively. In practice, the relative strength of the signal is

often assessed using the scree plot. Hence, we also provide graphs (dots with abscissa
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Figure 1: Particular realizations of the loss Lp (solid lines) and the corresponding
asymptotic approximations L(1)

p (dotted lines —weak factors approximation, dashed
lines —strong factors approximation). n = T = 100, (ρ, β) = (0.7, 0).

9) of the sorted eigenvalues of the sample covariance matrix, scaled to fit the picture.

For the low signal-to-noise ratio (θ = 4), the first three eigenvalues do not clearly

separate from the smaller eigenvalues, whereas for the large signal-to-noise ratio

(θ = 1/4) the separation is obvious.

We see that when θ = 1/4, so that the factors are relatively strong, Lp is mini-

mized at the true number of factors p = r = 3, and both approximations to the loss

are very close to the actual realization.

When θ = 4, so that the factors are relatively weak, Lp is no longer necessar-

ily minimized at p = 3. For the particular realization shown at the picture, the

loss is minimized at p = 2, but the minimum is relatively large. Its value is 0.69,

which means, roughly, that 69% of the variation of the PC estimator of the common

component that uses the optimal number of factors is due to the error (recall that
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the common component is normalized to have variance one). In this diffi cult case,

the weak factors asymptotic approximation is better than the strong factors one for

p ≤ r.

Figure 2 shows the root mean squared errors (RMSE) of the strong factors (dashed

lines) and weak factors (dotted lines) asymptotic approximations of Lp, the mean

being taken over 1000 MC replications. The figure corresponds to (ρ, β) = (0.7, 0)

and Student’s t(5) distribution for the idiosyncratic innovations. The other cases

provide qualitatively similar information. The corresponding results are reported in

the Supplementary Appendix.3 For relatively strong factors, the quality of the strong

factors asymptotic approximation is uniformly better than that of the weak factors

approximation. However, the scale of the difference between the qualities of the two

approximations is very small (both approximations work very well). For relatively

weak factors, the scale of the difference between the qualities of the approximations

increases, and the weak factors asymptotic approximation become preferable, espe-

cially for p ≤ r.

We now turn to the analysis of the proposed loss estimators L̂p. Since L̂p estimate

Lp only up to a shift that does not depend on p, it is natural to compare L̂p − L̂p−1

and Lp − Lp−1 rather than L̂p and Lp. Figure 3 establishes a benchmark for such a

comparison, by showing RMSE of L(1)
p − L(1)

p−1, where L
(1)
p correspond to the strong

factors (solid line) and weak factors (dotted line) asymptotic approximations to the

loss. The MC setting is the same as that of Figure 2. The solid and dotted curves

3For the remaining MC experiments, the results for all the considered settings were qualitatively
similar. Therefore, we report only the results for t(5) distribution and (ρ, β) = (0.7, 0). The results
for all other cases are reported in the Supplementary Appendix.
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Figure 2: The root mean (over 1000 MC replications) squared errors of the strong
(solid lines) and weak (dotted lines) factors asymptotic approximations of Lp. The
dots with abscissa p=9 show the MC average values of the sorted eigenvalues of
the sample covariance matrix. The idiosyncratic innovations have Student’s t(5)
distribution. Parameters ρ, β are set to (ρ, β) = (0.7, 0) . The left, central, and right
panels correspond to, respectively, (n, T ) = (50, 200), (100, 100) and (200, 50). The
strength of the factors increases from top panel (the weakest factors) to bottom panel
(the strongest factors).

29



coincide for p ≥ 4 because the strong and weak factors asymptotic approximations

have the same increments µp (XX ′) / (nT ) for p > r = 3.

Since our estimators L̂p are constructed as sample analogs of the weak factors

asymptotic approximation L(1)
p , we expect the RMSE of L̂p − L̂p−1 to be, at best, of

the same magnitude as the levels of the dotted lines on Figure 3. Figure 4 shows these

RMSE for L̂p = L̄p (solid lines), L̂p = Lp (dotted lines), L̂p = L̂
(A=I)
p (dashed lines),

and L̂p = L̂
(B=I)
p (dash-dotted lines). The MC setting is, again, the same as that of

Figure 2. As a preliminary estimator r̂, we use Onatski’s (2010) ED estimator, given

by (11) with the tuning parameter ε calibrated as in Onatski (2010, p. 1008).

Our simplest estimator, Lp, is dominated by L̄p, L̂
(A=I)
p , and L̂(B=I)

p . The per-

formances of the latter three estimators are virtually the same for n = T = 100.

For n 6= T, L̂
(A=I)
p and L̂(B=I)

p perform very similarly, and better than L̄p. For rel-

atively strong factors (θ = 1/4 and θ = 1/2), the accuracy of L̂(A=I)
p − L̂(A=I)

p−1 and

L̂
(B=I)
p − L̂(B=I)

p−1 as estimators of Lp − Lp−1 is comparable to that of the infeasible

estimator L(1)
p − L(1)

p−1, represented by dotted lines on Figure 3. For relatively weak

factors (θ = 2 and θ = 4), the accuracy of L̂(A=I)
p − L̂(A=I)

p−1 and L̂(B=I)
p − L̂(B=I)

p−1 is

substantially worse than that of L(1)
p − L(1)

p−1, at least for p ≤ r.

It turns out that the main reason behind this quality deterioration is the inability

of our preliminary estimator r̂ to accurately estimate q when factors are relatively

weak. Figure 5 illustrates this finding. It shows the same realization of Lp as on the

left panel of Figure 1 (solid line) superimposed with L̂(A=I)
p (dashed line), shifted to

match the value of Lp at p = 0. For the corresponding data replication, we have

q = 2. However, our preliminary estimator r̂ = 1 < q. The dotted line shows what
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Figure 3: The root mean squared errors of L(1)
p − L(1)

p−1 (as approximations of Lp −
Lp−1). Solid and dotted lines correspond, respectively, to the strong and weak factors
asymptotic approximations L(1)

p . The idiosyncratic innovations have Student’s t(5)
distribution. Parameters ρ, β are set to (ρ, β) = (0.7, 0) .
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Figure 4: The root mean squared errors of L̂p − L̂p−1 (as approximations of Lp −
Lp−1). Solid, dotted, dashed and dash-dotted lines correspond, respectively, to L̂p =

L̄p, L̂p = Lp, L̂p = L̂
(A=I)
p , and L̂p = L̂

(B=I)
p . The idiosyncratic innovations have

Student’s t(5) distribution. Parameters ρ, β are set to (ρ, β) = (0.7, 0) .
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Figure 5: A realization of Lp (solid line) and L̂
(A=I)
p (dashed line). Dotted line

corresponds to L̂(A=I)
p based on the counterfactual r̂ = q. (ρ, β) = (0.7, 0) , n = T =

100.

the value of L̂(A=I)
p would have been, had r̂ been equal to q = 2. Clearly, the accurate

estimation of q leads to much more accurate estimation of Lp.

Accurate estimation of q is diffi cult when factors are weak. The diffi culty is well

illustrated by the relative position of the eigenvalues shown on Figure 5. All methods

of the number of factors estimation explicitly or implicitly look for a separation

between r largest eigenvalues and the rest of the eigenvalues. For weak factors, the

separation theoretically cannot occur in large samples for more than q eigenvalues,

hence the focus on the estimation of q when the factors are weak. The eigenvalues

reported in Figure 5 do not show any visible separation, except, perhaps, between

the first eigenvalue and the rest, which is captured by the fact that r̂ = 1 < q = 2.

Under the weak factors asymptotics, only Onatski’s (2010) ED estimator has

been formally shown to be consistent for q (under the additional assumption that
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f (δq/σ
2)−f

(
δ̄/σ2

)
> ε/σ2). However, in principle, other estimators may accurately

estimate q in finite samples. Therefore, below, we compare the quality of the loss

estimates based on various preliminary estimators r̂. In addition to ED, we consider

Bai and Ng’s (2002) estimators based on their criteria BIC3, PCpj, and ICpj with

j = 1, 2, estimators ER and GR developed by Ahn and Horenstein (2013), and Alessi

et al’s (2010) ABC estimator.

Table 1 reports average (over p = 1, ..., rmax) RMSE of L̂
(A=I)
p − L̂(A=I)

p−1 , for L̂(A=I)
p

based on different versions of r̂. Precisely, we compute

100

rmax

∑rmax

j=1

√
EMC

(
L̂

(A=I)
j − L̂(A=I)

j−1 − (Lj − Lj−1)
)2

,

where EMC denotes the operator of taking mean over MC replications. The MC

setting is the same as that for Figures 2-4. We focus on the performance of L̂(A=I)
j

because, as shown in Figure 4, it is similar to that of L̂(B=I)
j and better than the

performance of the other estimators, at least, in our MC setting.

Since the common component has variance one in all MC experiments, the units

of the quality measure reported in Table 1 can be interpreted, roughly, as percents of

the standard deviation of the common component. We see that for relatively strong

factors all estimators fare very well. For weak factors, the quality substantially

deteriorates, especially for relatively small T . Overall, ED, ER, GR, ABC, and

BIC show more robust performance. However, none of these estimators clearly

dominates.

Another basis for comparison of different estimators of the loss is related to the

quality of the corresponding loss effi cient estimators of the number of factors. Let
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n T θ ED ER GR ABC BIC PC1 PC2 IC1 IC2
4 17.6 25.3 25.0 16.4 22.9 7.6 6.6 8.2 10.8
2 3.3 6.9 5.0 3.8 7.0 3.5 2.9 1.7 1.6

50 200 1 0.9 0.9 0.8 1.0 0.8 1.8 1.5 0.9 0.9
1/2 0.6 0.4 0.4 0.6 0.4 1.0 0.8 0.5 0.5
1/4 0.3 0.2 0.2 0.3 0.2 0.5 0.5 0.3 0.3
4 22.9 25.3 25.2 20.2 17.8 23.1 17.2 23.3 11.4
2 7.3 7.2 5.5 5.7 3.1 11.1 8.0 11.4 4.4

100 100 1 1.0 0.9 0.8 1.5 0.7 5.4 3.9 5.6 2.1
1/2 0.7 0.6 0.5 1.3 0.5 2.8 2.0 2.9 1.1
1/4 0.3 0.2 0.2 0.4 0.3 1.4 1.1 1.5 0.6
4 25.9 26.2 26.2 27.5 23.2 45.6 45.4 45.6 45.6
2 21.4 19.8 18.8 15.5 7.2 21.5 21.4 21.5 21.5

200 50 1 5.0 3.6 2.9 4.7 2.5 10.5 10.5 10.5 10.5
1/2 0.7 0.8 0.6 2.2 1.1 5.2 5.2 5.2 5.2
1/4 0.3 0.3 0.3 1.1 0.6 2.6 2.6 2.6 2.6

Table 1: Values of 100
rmax

∑rmax
j=1

√
EMC

(
L̂

(A=I)
j − L̂(A=I)

j−1 − (Lj − Lj−1)
)2

correspond-

ing to different preliminary estimators of q. The idiosyncratic innovations have Stu-
dent’s t(5) distribution. Parameters ρ, β are set to (ρ, β) = (0.7, 0).

p̂ = arg min0≤p≤rmax L̂
(A=I)
p and p∗ = arg min0≤p≤rmax Lp. Then, a natural measure of

quality of L̂(A=I)
p is EMC (Lp̂/Lp∗). Table 2 reports this quality measure for L̂

(A=I)
p

based on different versions of r̂, when (ρ, β) = (0.7, 0) and the idiosyncratic inno-

vations are Student’s t(5). Loss estimates L̂(A=I)
p based on ED, ER, GR, ABC,

and BIC work reasonably well, and better than those based on the other prelimi-

nary estimators. However, the choice between ED, ER, GR, ABC, and BIC is not

obvious.
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n T θ ED ER GR ABC BIC PC1 PC2 IC1 IC2
4 1.44 2.01 1.99 1.36 1.81 1.11 1.07 1.07 1.14
2 1.06 1.32 1.15 1.09 1.59 1.15 1.08 1.02 1.01

50 200 1 1.02 1.01 1.01 1.04 1.00 1.19 1.11 1.02 1.01
1/2 1.03 1.00 1.00 1.04 1.00 1.22 1.13 1.03 1.02
1/4 1.02 1.00 1.00 1.04 1.00 1.22 1.12 1.02 1.01
4 1.50 1.66 1.65 1.36 1.26 2.20 1.69 2.20 1.14
2 1.29 1.33 1.18 1.23 1.06 3.27 2.40 3.35 1.38

100 100 1 1.02 1.01 1.00 1.18 1.00 4.05 2.86 4.13 1.50
1/2 1.03 1.00 1.00 1.23 1.01 4.49 3.10 4.61 1.60
1/4 1.04 1.00 1.00 1.19 1.01 4.68 3.30 4.81 1.69
4 1.10 1.10 1.10 1.24 1.27 2.54 2.54 2.55 2.55
2 2.23 2.02 1.85 1.57 1.10 3.04 3.04 3.04 3.04

200 50 1 1.27 1.21 1.12 1.61 1.23 4.73 4.73 4.73 4.73
1/2 1.01 1.02 1.00 1.81 1.31 5.83 5.83 5.83 5.83
1/4 1.01 1.00 1.00 1.88 1.38 6.40 6.40 6.40 6.40

Table 2: Values of EMCLp̂/Lp∗ corresponding to different preliminary estimators of
q. The idiosyncratic innovations have Student’s t(5) distribution. Parameters ρ, β
are set to (ρ, β) = (0.7, 0).

5 Empirical illustration

In this section we illustrate our loss estimation methodology by an analysis of excess

return data. A fundamental assumption of the Arbitrage Pricing Theory is that

excess returns admit an approximate factor structure. Statistical and fundamental

factor models (Connor, 1995) use factors estimated from the excess return data itself

or constructed using additional information, such as the book-to-price and market

value, respectively. The popular Fama-French three factor model is an example of a

fundamental model.

Many studies of statistical factor models, including Connor and Korajczyk (1993),

Huang and Jo (1995), Bai and Ng (2002), and Onatski (2010) find only two factors
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in the excess returns data. If both the Fama-French model and the statistical factor

model are correct, the number of factors in the two models must be the same. As-

suming that there are indeed three factors in the data, as the Fama-French model

postulates, what is the loss from not estimating the third factor in the statistical

factor model? This is a question that we can answer using our loss estimator.

We use monthly excess return data constructed from the stock price CRSP data

and the historical data on the 3-month T-bill rate. Our data set consists of 284

stocks listed on NYSE selected as follows. First, we selected all stocks for which the

price data were available for the entire period from Jan2001 to Dec2012. For each

of these stocks, we computed the transaction volume (the product of the share price

and the share volume), and sorted the stocks according to the value of the cumulative

transaction volume for the entire period. We selected the relatively more actively

traded stocks that together constituted 90% of the entire transaction volume. Finally,

we eliminated all remaining stocks with standard deviations above three times the

median standard deviation. This left us with 284 stocks.

Assuming that these data have three factors, and that the PC method does not

break down for the third factor so that q = 3, we can estimate the loss function

Lp by L̄p, Lp, L̂
(A=I)
p , and L̂

(B=I)
p with the preliminary estimator r̂ equal to the

postulated q = 3. Since the stock return data are poorly predictable, but have non-

trivial idiosyncratic cross-sectional correlation, the assumption B = IT is plausible,

whereas A = In is not. Further, since Lp does not perform well in our MC exercises,

we restrict attention to estimators L̄p and L̂
(B=I)
p .

The left panel of Figure 6 reports L̄p (solid line) and L̂
(B=I)
p (dotted line) nor-
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Figure 6: Estimated loss of the PC estimator of a factor model of excess returns. L̄p
—solid lines, L̂(B=I)

p —dotted lines. r̂ is set to 3.

malized to the units of the sample variance of the pooled excess return data, and

shifted so that L̄0 = L̂
(B=I)
0 = 0. Both estimates of the loss function are minimized

at p = 2, despite our forcing r̂ = 3. Moreover, estimating three instead of two factors

wipes out all the benefit obtained from estimating two rather than one factor. In

fact, according to L̄p estimate, the marginal gain from estimating two rather than

one factors is less than half the marginal loss from estimating three rather than two

factors. Of course, the reason why estimating three factors is undesirable in these

data, even after assuming that q = 3, is that the PC estimator of the third factor is

too noisy to be useful. Note, however, that since we do not have standard errors of

our loss estimates, these conclusions should be taken with a grain of salt.

Interestingly, the entire exercise repeated for the Jan1989-Dec2000 data yields

different results. As the right panel of Figure 6 shows, for that time period, estimating
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three factors would have been beneficial from the point of view of minimizing the

loss. Note that the gap between the first three and the fourth sample covariance

eigenvalues (shown as dots with abscissas 9) in the Jan1989-Dec2000 period was

much larger than that in the Jan2001-Dec2012 period. This can be interpreted as

lower signal-to-noise ratio in the more recent period, which hurts the precision of the

PC estimator and makes estimating the third factor useless.

6 Conclusion

In this paper, we study the effect of misspecification of the number of factors in

approximate factor models on the quadratic loss from the estimation of the common

component. We derive asymptotic approximations for the quadratic loss through the

terms of order OP (1/T ) ∼ OP (1/n) under both weak and strong factors asymptotics.

We develop several estimators of the loss, all of which are consistent under the

strong factors asymptotics. The consistency under the weak factors asymptotics re-

quires either no cross-sectional or no temporal correlation in the idiosyncratic terms.

The estimators of the number of factors that minimize the proposed estimators are

shown to be asymptotically loss effi cient. When the idiosyncratic terms exhibit both

cross-sectional and temporal correlation and factors are weak, we derive upper and

lower bounds on the loss. The minimizers of these bounds bracket the loss-minimizing

number of factors with asymptotic probability one.

Many important issues are not considered in this paper. As explained in Bai

and Ng (2008, p. 95), static factor models are suffi ciently flexible to accommodate
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dynamic factor models with loadings represented by lag polynomials of fixed finite

order. However, the generalized dynamic factor models introduced by Forni et al

(2000) cannot be represented in the form (1), and their study is left for future re-

search.

Further, this paper does not derive the standard errors of the proposed loss es-

timators. Finding these standard errors and proposing methods of their estimation

remains an important task for future studies.

Finally, the quadratic loss from the estimation of the common component is

not the only interesting loss that can be considered in the factor models context.

Many applications of factor models are related to diffusion index forecasts (Stock

and Watson, 2006). From the point of view of these applications, a natural and

interesting loss to consider is the squared forecast error.

Another interesting loss to consider would be the mean squared error loss of an

IV estimator based on factors selected from a large dataset, as in Bai and Ng (2010).

We speculate that weak factors asymptotic techniques developed in this paper may

be useful for optimal selection of potentially weak instruments from a large number

of possibly endogenous variables. Recently, Belloni et al (2012) showed that Lasso is

successful in this context when instruments are strong. This raises a broader question

of whether Lasso or similar sparsity-based methods can be useful to select factors in

weak factor models.

Under strong factors, Caner and Han (2014) has shown how to use group bridge

estimator to consistently estimate factor loadings and the true number of factors.

Note that the strong factor assumptions imply that the model is approximately
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sparse in the principal components space. Precisely, the average explanatory power

of the first r principal components, measured by µi (XX
′) / (nT ) , i = 1, ..., r, is

bounded away from zero, whereas that of the further principal components, mea-

sured by µi (XX
′) / (nT ) , i = r + 1, ..., n, converges to zero asymptotically. Under

weak factors, this approximate sparsity does not hold. The identification of the

weak factors is based not on the relative negligibility of “idiosyncratic” eigenval-

ues, but on the clustering of this eigenvalues in a tightly packed group, so that

µr+1 (XX ′/T ) − µr+k (XX ′/T )
p→ 0 for any fixed k. Hence, the “sparsity” in the

weak factor models is related to the negligibility of the gaps between the adjacent

“idiosyncratic”eigenvalues rather than to the negligibility of the normalized levels of

these eigenvalues. In the future research it would be interesting to see whether and

how the eigenvalue gap sparsity of weak factor models can be utilized by Lasso-type

techniques.

7 Appendix

For any matrix A, let ‖A‖ denote the spectral norm of A, that is ‖A‖ equals the

maximum singular value of A.

7.1 Primitive conditions for A3 (iii)

Proposition 6 Let εt = (ε1t, ..., εnt)
′ , where εit with i ∈ N and t ∈ Z are indepen-

dent zero mean random variables with uniformly bounded fourth moments. Assump-
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tion A3 (iii) is satisfied for e = [e1, ..., eT ] with

et =
∑∞

j=0
Ψnjεt−j,

where Ψnj are n× n matrices such that
∑∞

j=0 j ‖Ψnj‖2 < M, and
∑∞

j=0 ‖Ψnj‖ < M

for an M <∞ that does not depend on n.

Proof: Our proof is similar to Moon and Weidner’s (2010a) proof of their example

(ii). We have

(µ1 (ee′/T ))
1/2

= ‖e‖ /
√
T ≤

∑T

j=0
‖Ψnj‖ ‖ε−j‖ /

√
T + ‖rn,T‖ ,

where ε−j = [ε1−j, ..., εT−j] and rn,T =
∑∞

j=T+1 Ψnjε−j/
√
T . Obviously, for any

j = 0, ..., T, ‖ε−j‖ ≤ ‖ε‖ , where ε = [ε1−T , ..., εT ] . As explained by Moon and

Weidner (2010a), ‖ε‖ /
√
T = OP (1). Therefore,

(µ1 (ee′/T ))
1/2 ≤ OP (1)

∑T

j=0
‖Ψnj‖+ ‖rn,T‖ = OP (1) + ‖rn,T‖ . (23)

Next, since the fourth moments of εit are uniformly bounded, and Eε2
it ≤ (Eε4

it)
1/2
,

the second moments of εit are uniformly bounded too. Let us denote the uniform

bound on the second moments of εit as B. We have

E ‖rn,T‖2 ≤
n∑
i=1

T∑
t=1

E
(
(rn,T )2

it

)
=

1

T

n∑
i=1

T∑
t=1

E

( ∞∑
j=T+1

n∑
s=1

(Ψnj)is εs,t−j

)2

≤ B
∞∑

j=T+1

‖Ψnj‖2
F ≤

B

T

∞∑
j=T+1

j ‖Ψnj‖2
F ,
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where ‖M‖F denotes the Frobenius norm of matrix M . Since ‖Ψnj‖2
F ≤ n ‖Ψnj‖2

(see Horn and Johnson (1985), p. 314), we have

E ‖rn,T‖2 ≤ Bn

T

∞∑
j=T+1

j ‖Ψnj‖2 = o (1) .

Hence, ‖rn,T‖2 = oP (1) , and ‖rn,T‖ = oP (1) too. Combining this with (23), we

obtain µ1 (ee′/T ) = OP (1).�

7.2 Two auxiliary Lemmas

In this subsection, we state and prove two auxiliary lemmas that will be used below.

Let e(j,k) = Λ′·jeF·k/
√
djnnT .

Lemma 2 Under assumptions A1-A3, for j ≤ r, as n, T →c ∞,

µj(X
′X)/ (nT ) = djn + 2

√
djn/ (nT )e(j,j) + F ′·je

′eF·j/
(
nT 2

)
+Λ′·jee

′Λ·j/
(
djnn

2T
)

+ oP (1/T ) .

Proof: Consider a decomposition

X ′X/ (nT ) = M +M (1)/
√
T +M (2)/T, (24)

where

M = FDnF
′/T, M (1) = (FΛ′e+ e′ΛF ′) /(n

√
T ), and M (2) = e′e/n.

We use Kato’s (1980) theory to characterize the eigenvalues and eigenprojections of

X ′X/ (nT ) as perturbations of those of M . Similar techniques were recently used in
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the analysis of the quasi maximum likelihood estimator in panel data models with

interactive fixed effects by Moon and Weidner (2010). Let R (z) = (M − zIT )−1 ,

z ∈ C. Then, according to Kato (1980, p.78-79), for 1 ≤ j ≤ r,

µj(X
′X)/ (nT ) = µj (M) +

∑∞

s=1
µ

(s)
j T−s/2 = djn +

∑∞

s=1
µ

(s)
j T−s/2, (25)

where

µ
(s)
j =

∑
ν1+...+νp=s

(−1)p

2πpi
tr

∫
Γ

M (ν1)R (z) ...M (νp)R (z) dz

with νk, k = 1, ..., p, taking on only values one or two; i ∈ C being the imaginary unit;

and Γ being the circle inC with center at djn and radius rj = min
i=0,1
{dj+i−1,n − dj+i,n} /2.

Here, we define d0,n as +∞ and dr+1,n as 0.

As explained by Kato (1980, p.88), the series in (25) are absolutely converg-

ing as long as supz∈Γ

∑2
i=1 T

−i/2
∥∥M (i)R (z)

∥∥ < 1. By definition of Γ and R (z) ,

supz∈Γ ‖R (z)‖ = r−1
j . Therefore, a suffi cient condition for the convergence is

max
i=1,2

{∥∥M (i)
∥∥} < Trj/2. We have

∥∥∥FΛ′e/(n
√
T )
∥∥∥ ≤ ‖Λ‖ ‖F‖ ‖e‖ /(n

√
T )

= ‖Λ′Λ/n‖1/2 ‖F ′F/T‖1/2 ‖e′e/n‖1/2
= d

1/2
1n ‖e′e/n‖

1/2
.

Therefore, by A3 (iii),
∥∥M (1)

∥∥ = OP (1) and
∥∥M (2)

∥∥ = OP (1). In particular, for any

ε > 0 and any sequence {n, T} such that n, T →c ∞, there exists T̄ > 0 such that

Pr
(
maxi=1,2

{∥∥M (i)
∥∥} < T̄rj/2

)
> 1 − ε for all T > T̄ . That is, with probability

larger than 1− ε, the convergence in (25) takes place for all T > T̄ . Furthermore, by

Kato’s (1980, p.89) formula (3.6), with the same probability, for all T > T̄ ,
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∣∣∣µj (X ′X/ (nT ))− djn − µ(1)
j /T 1/2 − µ(2)

j /T
∣∣∣ ≤ rjT

−3/2

T̄−1
(
T̄−1/2 − T−1/2

) ,
which implies that

µj (X ′X/ (nT )) = djn + µ
(1)
j /T 1/2 + µ

(2)
j /T + oP (1/T ) . (26)

Let Pj = F·j
(
F ′·jF·j

)−1
F ′·j = F·jF

′
·j/T be the eigenprojection corresponding to

the j-th eigenvalue ofM, µj (M) = djn, and let P0 be the projection on the subspace

of RT orthogonal to all columns of F. Kato (1980, p. 79) gives the following explicit

formulae for µ(1)
j and µ(2)

j :

µ
(1)
j = tr

[
M (1)Pj

]
and µ(2)

j = tr
[
M (2)Pj −M (1)SjM

(1)Pj
]
, (27)

where

Sj =
∑r

k 6=j,k=1
Pk/ (dkn − djn)− P0/djn. (28)

Using (27) and the definition of M (1), we have

µ
(1)
j = 2 tr

[
FΛ′eF·jF

′
·j
]
/
(
nT 3/2

)
= 2Λ′·jeF·j/

(
nT 1/2

)
= 2
√
djne

(j,j)/
√
n. (29)

Further, straightforward algebra that employs (28), shows that

tr
[
M (1)SjM

(1)Pj
]

=
r∑

k 6=j,k=1

(√
djne

(j,k) +
√
dkne

(k,j)
)2

n (dkn − djn)
− Λ′·jeP0e

′Λ·j/
(
djnn

2
)

=
r∑

k 6=j,k=1

(√
djne

(j,k) +
√
dkne

(k,j)
)2

n (dkn − djn)
− Λ′·jee

′Λ·j/
(
djnn

2
)

+
r∑

k=1

(
e(j,k)

)2
/n.
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By A3 (ii), e(j,k) = OP(1) and e(k,j) = OP(1). Therefore, recalling that n and T are

of the same order when n, T →c ∞, we get

tr
[
M (1)SjM

(1)Pj
]

= −Λ′·jee
′Λ·j/

(
djnn

2
)

+OP (1/T ) .

Since tr
[
M (2)Pj

]
= F ′·je

′eF·j/nT, we obtain

µ
(2)
j = F ′·je

′eF·j/nT + Λ′·jee
′Λ·j/

(
djnn

2
)

+OP (1/T ) . (30)

Equalities (26), (29), and (30) imply the lemma.�

Similarly to Pj and P0, defined in the above proof, let Qj = Λ·j
(
Λ′·jΛ·j

)−1
Λ′·j

be the projection on the space spanned by Λ·j, and let Q0 be the projection on the

subspace of Rn orthogonal to all columns of Λ. Further, let Q̂j = Λ̂·j

(
Λ̂′·jΛ̂·j

)−1

Λ̂′·j

and let P̂j = F̂·j

(
F̂ ′·jF̂·j

)−1

F̂ ′·j.

Lemma 3 Let k and j be integers such that 0 < k, j ≤ r. Then, under assumptions

A1-A3, as n, T →c ∞,

(i) tr
[
PkP̂j

]
=

 1− Λ′·jee
′Λ·j/

(
d2
jnTn

2
)

+ oP (1/T ) if k = j

oP (1/T ) if k 6= j
, and

(ii) tr
[
QkQ̂j

]
=

 1− F ′·je′eF·j/ (djnnT
2) + oP (1/T ) if k = j

oP (1/T ) if k 6= j
.

Proof: Consider decomposition (24). According to Kato (1980, p.68),

P̂j = Pj +
∑∞

s=1
P

(s)
j /T s/2, (31)
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where

P
(s)
j = −

∑
ν1+...+νp=s

(−1)p

2πi

∫
Γ

R (z)M (ν1)R (z)M (ν2)...M (νp)R (z) dz (32)

with νk, k = 1, ..., p, R(z), and Γ defined as in the proof of Lemma 2. As in

that proof, for any ε > 0 and any sequence {n, T} such that n, T →c ∞, let T̄

be such that Pr
(
maxi=1,2

{∥∥M (i)
∥∥} < T̄rj/2

)
> 1 − ε for all T > T̄ . Then, since

supz∈Γ |R (z)| = 1/rj, with probability larger than 1− ε,

∥∥∥P (s)
j

∥∥∥ ≤∑
ν1+...+νp=s

1

2π

∫
Γ

(1/rj)
p+1 (T̄ rj/2)p |dz| = ∑

ν1+...+νp=s

(
T̄ /2

)p
.

Since νi may only be equal to one or two, there are no more than 2s summands in

the latter sum. Therefore, with probability larger than 1− ε,
∥∥∥P (s)

j

∥∥∥ ≤ (2T̄)s for all
s = 1, 2, ... and all T > T̄ . Hence, by (31), with probability larger than 1− ε, for all

T >
(
2T̄
)2
,

∥∥∥P̂j − Pj − P (1)
j /
√
T − P (2)

j /T
∥∥∥ ≤ (2T̄ /

√
T
)3

/
(

1− 2T̄ /
√
T
)
,

which implies that

P̂j = Pj + P
(1)
j /
√
T + P

(2)
j /T + oP (1/T ) , (33)

where ToP (1/T ) converges to zero in probability in spectral norm.

Kato (1980, p.77) gives the following explicit formulae for P (1)
j and P (2)

j :

P
(1)
j = −PjM (1)Sj − SjM (1)Pj, and (34)
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P
(2)
j = −PjM (2)Sj − SjM (2)Pj + PjM

(1)SjM
(1)Sj (35)

+SjM
(1)PjM

(1)Sj + SjM
(1)SjM

(1)Pj − PjM (1)PjM
(1)S2

j

−PjM (1)S2
jM

(1)Pj − S2
jM

(1)PjM
(1)Pj.

Using (33)-(35) and the fact that PjSj = 0, we obtain, for j ≤ r,

tr
[
PjP̂j

]
= 1− tr

[
PjM

(1)S2
jM

(1)Pj
]
/T + oP (1/T ) .

From the latter formula and definition (28) of Sj, we have

tr
[
PjP̂j

]
= 1−

r∑
k 6=j,k=1

(√
dkne

(k,j) +
√
djne

(j,k)
)2

(dkn − djn)2 nT

−Λ′·jeP0e
′Λ·j/(d

2
jnn

2T ) + oP (1/T ) .

Assumption A3 (ii) implies that the second summand on the right hand side of the

above equation is oP (1/T ) , and hence,

tr
[
PjP̂j

]
= 1− Λ′·jeP0e

′Λ·j/(d
2
jnn

2T ) + oP (1/T ) .

Since P0 = IT −
∑r

k=1
Pk, we have

tr
[
PjP̂j

]
= 1− Λ′·jee

′Λ·j/(d
2
jnn

2T ) +
r∑

k=1

Λ′·jePke
′Λ·j/(d

2
jnTn

2) + oP (1/T ) .

Noting that Λ′·jePke
′Λ·j = djnn

(
e(j,k)

)2
and using A3 (ii) one more time, we get

tr
[
PjP̂j

]
= 1− Λ′·jee

′Λ·j/(d
2
jnn

2T ) + oP (1/T ) . (A13)
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For k 6= j, using (33)-(35) and (28), we have

tr
[
PkP̂j

]
=

1

nT

(√
djne

(j,k) +
√
dkne

(k,j)
)2

/ (dkn − djn)2 + oP (1/T ) .

By A3 (ii), the first term in the above sum is oP (T−1) , and thus, for k 6= j,

tr
[
PkP̂j

]
= oP

(
T−1

)
. (A14)

Lemma 3 (ii) follows from the symmetry of our model with respect to interchang-

ing temporal and cross-sectional dimensions. The symmetry holds up to different

normalizations of Λ′Λ and F ′F, which explains the “extra djn”in the denominator

of the formula for tr
[
PkP̂j

]
relative to that for tr

[
QkQ̂j

]
.�

7.3 Proof of Proposition 1.

Opening brackets in (2) and using the definition of Λ̂1:p and F̂1:p and assumption A1,

we obtain

Lp = tr[Λ̂′1:pΛ̂1:p]/n+ tr [Λ′Λ] /n− 2 tr[Λ̂1:pF̂
′
1:pFΛ′]/ (nT )

=

p∑
j=1

µj (X ′X/ (nT )) +
r∑
j=1

djn − 2
r∑

k=1

p∑
j=1

(Λ′·kΛ̂·j)(F
′
·kF̂·j)/ (nT ) . (36)

Let us consider the last term of (36). Since

tr[QkQ̂j] = tr[Λ·k (Λ′·kΛ·k)
−1

Λ′·kΛ̂·j

(
Λ̂′·jΛ̂·j

)−1

Λ̂′·j]

=
(

Λ′·kΛ̂·j

)2

/
[
(Λ′·kΛ·k)

(
Λ̂′·jΛ̂·j

)]
=
(

Λ′·kΛ̂·j

)2

/
[
‖Λ·k‖2 ||Λ̂·j||2

]
,
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and since

tr[PkP̂j] = tr[F·k (F ′·kF·k)
−1
F ′·kF̂·j

(
F̂ ′·jF̂·j

)−1

F̂ ′·j]

=
(
F ′·kF̂·j

)2

/
[
(F ′·kF·k)

(
F̂ ′·jF̂·j

)]
=
(
F ′·kF̂·j

)2

/T 2,

we have

∣∣∣(Λ′·kΛ̂·j)(F ′·kF̂·j)∣∣∣2 = ‖Λ·k‖2 ||Λ̂·j||2T 2 tr[QkQ̂j] tr[PkP̂j]

= dknnT
2µj (X ′X/T ) tr[QkQ̂j] tr[PkP̂j]. (37)

The latter equality holds because ‖Λ·k‖2 = dknn by assumption, and

||Λ̂·j||2 = F̂ ′·jX
′XF̂·j/T

2 =
(
F̂ ′·j/
√
T
)

(X ′X/T )
(
F̂·j/
√
T
)

= µj (X ′X/T )

by definition of the principal components estimators F̂1:p and Λ̂1:p given in the intro-

duction. For j ≤ r and j 6= k, by Lemmas 2 and 3, µj (X ′X/T ) tr[QkQ̂j] tr[PkP̂j] =

oP (1/T ). Therefore

(Λ′·kΛ̂·j)(F
′
·kF̂·j)/ (nT ) = oP (1/T ) . (38)

This equality holds also for j > r. Indeed, according to a singular value analog of

Weyl’s eigenvalue inequalities (see Theorem 3.3.16 of Horn and Johnson (1991)), for

any n× T matrices A and B,

µ
1/2
i+s−1

(
(A+B) (A+B)′

)
≤ µ

1/2
i (AA′) + µ1/2

s (BB′) , (39)
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where 1 ≤ i, s ≤ min {n, T} . Setting A = FΛ′/
√
nT , B = e′/

√
nT , i = r + 1, and

s = j − r, and noting that µr+1 (FΛ′ΛF ′/(nT )) = 0, we get

µj(X
′X)/ (nT ) ≤ µj−r(e

′e)/ (nT ) . (40)

Similarly, setting A = −FΛ′/
√
nT , B = X ′/

√
nT , i = r + 1, and s = j, we get

µj(X
′X)/ (nT ) ≥ µj+r(e

′e)/ (nT ) . (41)

Further, for j > r, we have 0 ≤ tr[PkP̂j] ≤ tr[PkP̂j] + tr[Pk(IT − P̂j − P̂k)] =

1 − tr[PkP̂k]. Hence, by Lemma 3, tr[PkP̂j] = OP (1/T ). Similarly, tr[QkQ̂j] =

OP (1/T ). The latter two equalities together with (37) and the fact that, by (40),

µj (X ′X/T ) ≤ µ1 (e′e/T ) = OP (1) imply (38).

Using (38) together with (36), we obtain

Lp =

p∑
j=1

µj (X ′X/ (nT ))+
r∑
j=1

djn−2

min{p,r}∑
k=1

(Λ′·kΛ̂·k)(F
′
·kF̂·k)/ (nT )+oP (1/T ) . (42)

Now, by (37), (Λ′·kΛ̂·k)(F
′
·kF̂·k) = ±(dknnT

2µk (X ′X/T ) tr[QkQ̂k] tr[PkP̂k])
1/2. On the

other hand,

Λ′·kΛ̂·k = Λ′·kXF̂·k/T = dknnF
′
·kF̂·k/T + Λ′·keF̂·k/T = dknnF

′
·kF̂·k/T +OP (1) . (43)

To see that the latter equality holds, note that

∥∥∥F̂·k − F·k(F ′·kF̂·k/T )
∥∥∥2

= T
(

1− tr[PkP̂k]
)

= OP (1) ,
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by Lemma 3. Therefore, Λ′·keF̂·k/T = Λ′·keF·k(F
′
·kF̂·k/T )/T +OP(1) = OP (1), where

the last equality follows from A3 (ii) and the fact that
∣∣∣F ′·kF̂·k/T ∣∣∣ = (tr[PkP̂k])

1/2 =

OP (1) , by Lemma 3. Equality (43) implies that (Λ′·kΛ̂·k)(F
′
·kF̂·k) is positive with

probability approaching one as n, T →c ∞. Hence,

(Λ′·kΛ̂·k)(F
′
·kF̂·k) = (dknnT

2µk (X ′X/T ) tr[QkQ̂k] tr[PkP̂k])
1/2. (44)

Using (42), (44), and Lemmas 2 and 3, we obtain

Lp =

p∑
j=1

µj (X ′X/ (nT )) +
r∑
j=1

djn −

2

min{p,r}∑
k=1

dkn

(
1 +

e(k,k)

√
dknnT

+
F ′·ke

′eF·k
2dknnT 2

+
Λ′·kee

′Λ·k
2d2

knn
2T

)
×(

1− F ′·ke′eF·k/
(
2dknnT

2
)) (

1− Λ′·kee
′Λ·k/

(
2d2

knTn
2
))

+ oP (1/T )

=

p∑
j=1

µj (X ′X/ (nT )) +
r∑
j=1

djn − 2

min{p,r}∑
k=1

(
dkn +

√
dkn
nT

e(k,k)

)
+ oP (1/T )

From this and Lemma 2, we conclude that Lp = L
(1)
p + oP (1/T ) , where

L(1)
p =


r∑

j=p+1

djn +
p∑
j=1

(
F ′·je

′eF·j/ (nT 2) + Λ′·jee
′Λ·j/ (djnn

2T )
)
if p ≤ r

L
(1)
r +

p∑
j=r+1

µj (X ′X/ (nT )) if p > r
.

The statement of Proposition 1 follows from the latter equality and the observation

that
p∑
j=1

(
F ′·je

′eF·j/T + Λ′·jee
′Λ·j/ (djnn)

)
= tr [eP1:pe

′ + e′Q1:pe] .�
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7.4 Proof of Corollary 1.

As shown by Yin et al (1988), the assumption that the elements of e are i.i.d. zero

mean random variables with variance σ2 and a finite fourth moment implies that

plimµ1 (ee′) /T
a.s.→ σ2 (1 +

√
c)

2 as n, T →c ∞. On the other hand, the empiri-

cal distribution of the eigenvalues of ee′/T almost surely weakly converges to the

Marchenko-Pastur distribution (see Bai, 1999, Theorem 2.5), which has σ2 (1 +
√
c)

2

as the upper boundary of its support. These two facts imply that, for any fixed j,

plimµj (ee′) /T
a.s.→ σ2 (1 +

√
c)

2 as n, T →c ∞. Therefore, inequalities (40) and (41)

allow us to conclude that, for any fixed j > r, µj (X ′X) /T = σ2
(

1 +
√
n/T

)2

+

oP (1) . The rest of the proof is elementary, and we omit it to save space.�

7.5 Proof of Lemma 1.

Our proof of Lemma 1 relies on Theorem 1 of Onatski (2012), which is established

in Onatski (2012a) under assumptions A1w-A3w. In Onatski’s (2012a) proof, the

Gaussianity of ε is used solely to show that X̃ = U ′AXV
′
B has the form

X̃ =
∑r

i=1
Λ̃·iF̃·i +A0ηB0, (45)

where

Λ̃·i = e
(n)
i δ

1/2
in and F̃·i = e

(T )
i

√
T (46)

with e(n)
i and e(T )

i being the i-th columns of In and IT , respectively, and η being an

n× T matrix with i.i.d. N (0, σ2) elements. However, the rest of that proof remains

valid as long as η has i.i.d. elements ηit such that Eηit = 0, Eη2
it = σ2, and Eη4

it <∞.
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But (45) and (46) are automatically satisfied under A1w, A2w (nG), and A3w with

η = ε. Hence, Onatski’s (2012) Theorem 1 valid not only under A1w-A3w but also

under A1w, A2w (nG), and A3w.

For any x ≥ 0, consider a system of equations in u > x̄A and v > x̄B v = xg1 (u)

u = xg2 (v)
, (47)

where g1 (u) = (c
∫
λu/ (u− λ) dGA (λ))−1 and g2 (v) = (

∫
λv/ (v − λ) dGB (λ))−1.

Direct differentiation shows that g1 (u) is strictly increasing and concave on u > x̄A.

Moreover, by assumption A3w, limu↓x̄A g1 (u) = 0 and limu→∞ g1 (u) = 1/c (here,

notation u ↓ x̄A means that u converge to x̄A from above). Similarly, g2 (v) is strictly

increasing and concave on v > x̄B with limv↓x̄B g2 (v) = 0 and limv→∞ g2 (v) =

1. These facts imply that there exists x̄ > 0 such that the curves defined by the

equations of (47) do not intersect in the domain {u > x̄A, v > x̄B} for any x < x̄, the

curves touch each other at one point (ū, v̄) when x = x̄, and intersect at two points

(u1x, v1x) and (u2x, v2x) , where u2x > u1x and v2x > v1x, when x > x̄. As x ↓ x̄,

(u2x, v2x)→ (ū, v̄) , and as x→∞, u2x and v2x diverge to ∞.

Theorem 1 (iii) of Onatski (2012) links solutions of system (47) to function f(z),

defined by f (δj/σ
2) = plimµj (X ′X) / (σ2T ) = plim Λ̂′·jΛ̂·j/σ

2, as follows. For z >

z̄, where z̄ = x̄ (1− ū−1) (1− v̄−1), f (z) equals the unique x > x̄ such that z =

x
(
1− u−1

2x

) (
1− v−1

2x

)
. Further, for 0 ≤ z ≤ z̄, f (z) is fixed at x̄ = plimµ1 (ee′) /T,

and the latter probability limit is well defined. Statement (i) of Lemma 1, where

δ̄ = z̄σ2, follows immediately.
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To establish the rest of Lemma 1, we study the function

g (x) = x
(
1− u−1

2x

) (
1− v−1

2x

)
, for x > x̄.

Since (u2x, v2x) is the “larger” of the two intersection points of the graphs of

concave functions xg1 (u) and xg2 (v) (in the coordinate plane (u, v)), we must have

∂
∂u

[xg1 (u)] < 1/ ∂
∂v

[xg2 (v)] at (u, v) = (u2x, v2x). This condition implies that

det

 ∂
∂u

(v − xg1(u)) ∂
∂v

(v − xg1(u))

∂
∂u

(u− xg2(v)) ∂
∂v

(u− xg2(v))

 = ∆ < 0

at (u, v) = (u2x, v2x). Therefore, the implicit function theorem (see Krantz (1992),

Theorem 1.4.11) applies, and u2x and v2x are analytic functions of x on x > x̄.

Differentiating both sides of the identities v2x−xg1(u2x) = 0 and u2x−xg2(v2x) = 0

with respect to x and solving for du2x/dx and dv2x/dx, we get

d

dx
u2x = (−∆)−1 (g2(u2x) + xg1(v2x)g

′
2(v2x)) > 0,

d

dx
v2x = (−∆)−1 (g1(v2x) + xg2(u2x)g

′
1(u2x)) > 0.

Therefore, g (x) is strictly increasing and differentiable on x > x̄. Since f(z), z > z̄,

is the inverse function of g (x), x > x̄, we conclude that f(z) is strictly increasing

and differentiable on z > z̄. Statement (ii) of Lemma 1 follows because g(x) < x,

limx↓x̄ g (x) = z̄, and limx→∞ g (x) /x = 1.

Note that d ln f(z)/dlnz = 1/ [d ln g(x)/d lnx] , where z = x
(
1− u−1

2x

) (
1− v−1

2x

)
.

Therefore, to establish (iii), it is enough to prove that d ln g(x)/dlnx is decreasing
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on x > x̄ and d ln g(x)/dlnx→ 1 as x→∞. From the definition of g(x), we get

d ln g(x)/d lnx = 1 +
1

u2x − 1
d lnu2x/d lnx+

1

v2x − 1
d ln v2x/d lnx. (48)

Since u2x and v2x are increasing functions of x, and since they diverge to infinity

as x → ∞, it is enough to prove that d lnu2x/dlnx and d ln v2x/dlnx are decreasing

functions on x > x̄.

Straightforward algebra shows that

d lnu2x/d lnx = (1 + V (x)) / (1− U (x)V (x)) , and (49)

d ln v2x/d lnx = (1 + U (x)) / (1− U (x)V (x)) , (50)

where

V (x) =

∫
λ2

(v2x − λ)2 dGB (λ) /

∫
λ

v2x − λ
dGB (λ) , and (51)

U (x) =

∫
λ2

(u2x − λ)2 dGA (λ) /

∫
λ

u2x − λ
dGA (λ) . (52)

Hence, it is enough to prove that V (x) and U (x) are decreasing functions on x > x̄.

Furthermore, since v2x and u2x are increasing functions of x on x > x̄ it is enough to

prove that

d

dv
ln

∫
λ2

(v − λ)2 dGB (λ)− d

dv
ln

∫
λ

v − λdGB (λ) < 0 for v > v̄, and (53)

d

du
ln

∫
λ2

(u− λ)2 dGA (λ)− d

du
ln

∫
λ

u− λdGA (λ) < 0 for u > ū. (54)
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Below, we will establish (53). The proof of (54) is the same after v is replaced by u

and GB (λ) is replaced by GA (λ).

For any v > v̄, consider a function

h (λ) =
1

c1

λ

v − λ −
1

c2

λ2

(v − λ)2 ,

where λ ∈ (−∞, v), c1 =
∫

λ
v−λdGB (λ), and c2 =

∫
λ2

(v−λ)2
dGB (λ). We have

d

dλ
h (λ) =

v

(v − λ)2

(
1

c1

− 1

c2

2λ

v − λ

)

so that d
dλ
h (λ) is positive for λ ∈ [0, vc2/ (2c1 + c2)) and negative for λ ∈ (vc2/ (2c1 + c2) , v).

Since h (0) = 0 and
∫
h (λ) dGB (λ) = 0, there must therefore exist λ̃ ∈ [xB, x̄B] such

that h (λ) ≥ 0 for λ ∈ [xB, λ̃] and h (λ) ≤ 0 for λ ∈ [λ̃, x̄B]. Hence, since v > v̄ > x̄B,

we have

∫
h (λ)

1

v − λdGB (λ) =

∫ λ̃

xB

h (λ)
1

v − λdGB (λ) +

∫ x̄B

λ̃

h (λ)
1

v − λdGB (λ)

≤
∫ λ̃

xB

h (λ)
1

v − λ̃
dGB (λ) +

∫ x̄B

λ̃

h (λ)
1

v − λ̃
dGB (λ)

=
1

v − λ̃

∫
h (λ) dGB (λ) = 0.

On the other hand,

∫
h (λ)

1

v − λdGB (λ) =
1

2

d

dv
ln

∫
λ2

(v − λ)2 dGB (λ)− d

dv
ln

∫
λ

v − λdGB (λ)

>
d

dv
ln

∫
λ2

(v − λ)2 dGB (λ)− d

dv
ln

∫
λ

v − λdGB (λ) .
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Therefore, (53) holds.�

7.6 Proof of Proposition 2.

Similarly to the proof of Proposition 1, we start from the identity

Lp =

p∑
j=1

µj (X ′X/ (nT )) +

r∑
j=1

djn − 2

r∑
k=1

p∑
j=1

(Λ′·kΛ̂·j)(F
′
·kF̂·j)/ (nT )

=

p∑
j=1

µj (X ′X/ (nT )) +

r∑
j=1

δjn/n− 2

r∑
k=1

p∑
j=1

√
δknΛ̂′·jΛ̂·jα̂kjβ̂kj/n,

where α̂kj = Λ′·kΛ̂·j/(‖Λ·k‖ ||Λ̂·j||) and β̂kj = F ′·kF̂·j/(‖F·k‖ ||F̂·j||). By Theorem 1 of

Onatski (2012) (which, as shown in the above proof of Lemma 1, is valid not only

under A1w-A3w, but also under A1w, A2w (nG), and A3w), for k 6= j, plim α̂kj = 0,

plim β̂kj = 0, and Λ̂′·jΛ̂·j = OP (1) . Therefore, we have

Lp =

p∑
j=1

µj (X ′X/ (nT )) +
r∑
j=1

δjn/n− 2

p∑
j=1

√
δjnΛ̂′·jΛ̂·jα̂jjβ̂jj/n+ oP (1/T ) . (55)

Let q be the largest p ∈ {0, 1, ..., r} such that δp > δ̄. For j ≤ q, by Theorem 1

of Onatski (2012),

plim(
√
δjnΛ̂′·jΛ̂·jα̂jjβ̂jj) =

√
δjσ2f (δj/σ2)(

1 + ψjθj
) (

1 + ψjωj
) , (56)

where

ψj = u−1
2x v

−1
2x (d ln (u2xv2x) /d lnx− 1) ,

θj = u2x −
∫
λ/ (u2x − λ) dGA (λ)∫
λ/ (u2x − λ)2 dGA (λ)

u2x − v2x

u2x − 1
,
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ωj = v2x −
∫
λ/ (v2x − λ) dGB (λ)∫
λ/ (v2x − λ)2 dGB (λ)

v2x − u2x

v2x − 1
,

x = f (δj/σ
2) , and u2x and v2x are as defined in the proof of Lemma 1. The above

definitions of ψj, θj and ωj are equivalent to those given in Onatski (2012), which

can be shown using system of equations (7) in that paper.

From definitions (51) and (52) of V (x) and U(x), we have∫
λ/ (u2x − λ) dGA (λ)∫
λ/ (u2x − λ)2 dGA (λ)

=
u2x

1 + U(x)
and

∫
λ/ (v2x − λ) dGB (λ)∫
λ/ (v2x − λ)2 dGB (λ)

=
v2x

1 + V (x)
.

Using these equalities, the above definitions of ψj, θj, ωj, x, and equalities (48), (49)

and (50), we obtain

(
1 + ψjθj

) (
1 + ψjωj

)
= x−1g(x) (d ln g(x)/d lnx)2 ,

where g(x) is the inverse function of f(z). Together with (56) and the fact that

g (x) = δj/σ
2, this implies that

plim(
√
δjnΛ̂′·jΛ̂·jα̂jjβ̂jj) =

√
δjσ2x2

g(x) (d ln g(x)/d lnx)2

= σ2f
(
δj/σ

2
)

d ln f(δj/σ
2)/d ln

(
δj/σ

2
)

= δjf
′ (δj/σ2

)
.

Therefore, since zf ′ (z) is an analytic function of z on z > z̄ = δ̄/σ2,

plim(
√
δjnΛ̂′·jΛ̂·jα̂jjβ̂jj) = δjnf

′ (δjn/σ2
)

+ oP (1) .

For p ≤ q, the statement of Proposition 2 follows from the latter equality and (55).
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For j > q, by Theorem 1 of Onatski (2012), plim(
√
δjnΛ̂′·jΛ̂·jα̂jjβ̂jj) = 0. Hence,

for p > q, the statement of Proposition 2 follows from (55) as well. �

7.7 Proof of Corollary 2.

As in the proof of Corollary 1, for any fixed j > r, µj (X ′X) /T = σ2
(

1 +
√
n/T

)2

+

oP (1). This fact, equation (8), and Proposition 2 imply Corollary 2.�

7.8 Proof of Proposition 3.

First, we prove (i). By Proposition 1, for p > r,

Lp − Lr =

p∑
j=r+1

µj/n+ oP (1/T ) . (57)

On the other hand, by (12), L̃p−L̃r̂ =
∑p

j=r̂+1 µj/n. Since by assumption, Pr (r = r̂)→

1, we must have

L̃p − L̃r =

p∑
j=r+1

µj/n+ oP (1/T ) . (58)

Equation (16) follows from equations (57) and (58), and from the trivial observation

that Lp − L̃p −
(
Lr − L̃r

)
= 0 when p = r.

For p ≤ r, since Pr (r = r̂) → 1, Lp +
∑p

j=1 µj/n = oP (1). By Lemma 2,∑p
j=1 µj/n =

∑p
j=1 dj + oP (1), and hence, Lp − Lr =

∑r
j=p+1 dj + oP (1). On the

other hand, by Proposition 1, Lp − Lr =
∑r

j=p+1 dj + oP (1). Therefore, (15) holds

for L̃p = Lp. For L̃p = L̄p, equality (15) can be proven similarly, using the fact that,

under the strong factors asymptotics, ρ̂j
p→ 1.

Now, let us prove (ii). By Proposition 2 and by (5), for p ≤ q, Lp − L0 =

60



∑p
j=1

(
1− 2ρj

)
µj/n + oP (1/n) , where ρj = d ln f (z) /dln(z) evaluated at z =

δjn/σ
2. On the other hand, by Lemma 1 (iii), d ln f (z) /dln(z) at z = δjn/σ

2 is

smaller than one, and hence,
∑p

j=1

(
1− 2ρj

)
µj/n ≥ Lp for p ≤ min {r̂, q}. Since by

assumption, Pr (r̂ = q)→ 1, we have, for any ε > 0, Pr[min0≤p≤q
(
(Lp − L0)− Lp

)
≥

−ε/n] → 1. To establish (17), it remains to note that, by Proposition 2, for p > q,

Lp−L0 = Lq−L0 +
∑p

j=q+1 µj/n+ oP (1/n) and, by (12), Lp = Lq +
∑p

j=q+1 µj/n+

oP (1/n).

The convergence (18) can be proven similarly using the following fact. As shown

in Lemma 4 below, plim ρj ≥ plim ρ̂j for j ≤ q, where ρ̂j = 1/(µ2
j max{m̂′

(
µj
)
, m̃′

(
µj
)
})

as in the definition (14) of L̄p.�

Lemma 4 Suppose that assumptions A1w, A2w or A2w (nG), and A3w hold. Let

ρj = d ln f (z) /dlnz evaluated at z = δjn/σ
2, and ρ̂j = 1/(µ2

j max{m̂′
(
µj
)
, m̃′

(
µj
)
}).

Then, for any j ≤ q,

plim ρj ≥ plim ρ̂j. (59)

Furthermore, let ρ̂(A=I)
j and ρ̂(B=I)

j be as defined in (19-20). Then, if A = In or

B = IT , for any j ≤ q, we have, respectively,

plim ρj = plim ρ̂
(A=I)
j , and (60)

plim ρj = plim ρ̂
(B=I)
j . (61)

Proof: Let us denote d ln f (z) /dlnz evaluated at z = zj = δj/σ
2 as d ln f (zj) /dlnz.

By Lemma 1, plim ρj = d ln f (zj) /dlnz. Further, using notation of the proof of

Lemma 1, d ln f (zj) /dlnz = 1/ (d ln g (xj) /d lnx) , where xj = f (zj), and, for x > x̄,
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d ln g (x)

d lnx
= 1 +

1

u2x − 1

d lnu2x

d lnx
+

1

v2x − 1

d ln v2x

d lnx

≤ 1 + max

{
1

u2x − 1
,

1

v2x − 1

}(
d lnu2x

d lnx
+

d ln v2x

d lnx

)
. (62)

The system of equations (7) in Onatski (2012) implies that
−xm(x)− 1 = −u2x

∫
(λ− u2x)

−1 dGA (λ)− 1

−xm(x)− 1 = c−1
(
−v2x

∫
(λ− v2x)

−1 dGB (λ)− 1
)

−xm(x)− 1 = x (cu2xv2x)
−1

, (63)

wherem(x) =
∫

(λ− x)−1 dG (λ) and G (λ) is the cumulative distribution function of

the limit of the empirical distribution of the eigenvalues of ee′/(σ2T ) as n, T →c ∞.

Therefore,
d lnu2x

d lnx
+

d ln v2x

d lnx
= 1− d ln (−xm(x)− 1)

d lnx
. (64)

Moreover, using Jensen’s inequality and the normalizations
∫

dGA (λ) =
∫

dGB (λ) =

1 in the first two equations of system (63), we obtain

1

u2x − 1
≤ −xm(x)− 1 and

1

v2x − 1
≤ c (−xm(x)− 1) . (65)

From (62), (64), and (65), we get

d ln g (x) /d lnx ≤ 1 + max {c, 1}
(
−1 + x2m′(x)

)
. (66)

Let m(x) = cm(x)− (1− c) /x. That is, m(x) =
∫

(λ− x)−1 dG (λ) , where G (λ)

is the cdf of the limit of the empirical distribution of the eigenvalues of e′e/(σ2T ) (as

opposed to ee′/(σ2T )) as n, T →c ∞. We have m′(x) = cm′(x) + (1− c) /x2 so that
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x2m′(x) = c−1x2m′(x)− c−1 + 1. Using this equality in (66) when c ≥ 1, we obtain

d ln g (x) /dlnx ≤ x2m′(x).When c < 1, (66) simplifies to d ln g (x) /dlnx ≤ x2m′(x).

Therefore, we have d ln g (x) /dlnx ≤ x2 max {m′(x),m′(x)} for x > x̄, and thus

d ln f (zj) /d lnz ≥ 1/
(
x2
j max {m′(xj),m′(xj)}

)
. (67)

From (40) and (41) and the definitions of q and r̂, we see that G (λ) and G (λ)

are the cdf’s of the limits of the empirical distributions of µr̂+1/σ
2, ..., µn/σ

2 and of

µr̂+1/σ
2, ..., µT/σ

2, respectively. Hence,

x2
jm
′(xj)−

1

n− r̂
∑n

i=r̂+1

(
σ2xj

)2
/
(
σ2xj − µi

)2 p→ 0, and

x2
jm
′(xj)−

1

T − r̂
∑T

i=r̂+1

(
σ2xj

)2
/
(
σ2xj − µi

)2 p→ 0.

Since σ2xj = plimσ2f (zjn) = plimµj, the latter two convergences imply that

x2
jm
′(xj)− µ2

jm̂
′ (µj) p→ 0 and x2

jm
′(xj)− µ2

jm̃
′ (µj) p→ 0. (68)

Finally, (67) and (68) imply (59).

Now, assume that A = In. Then the first equation of (63) can be written as

−xm(x)− 1 = 1/ (u2x − 1). Therefore,

1

u2x − 1
d lnu2x/d lnx = −1− xm′ (x) /m (x) . (69)

Furthermore, from the third equation of (63), we have 1/ (u2x − 1) = x (cu2xv2x)
−1

so that v2x = x (u2x − 1) / (cu2x) . Therefore, after some algebra, we get
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1

v2x − 1
d ln v2x/d lnx = cxm′ (x) / (1 + cm(x)) . (70)

Combining (69) and (70), we obtain d ln g (x) /dlnx = −xm′ (x) / (m(x) (1 + cm(x))) ,

and therefore,

plim d ln f (zjn) /d ln (z) = −m(xj) (1 + cm(xj))

xm′ (xj)
. (71)

On the other hand, similarly to (68),

m(xj)

xm′ (xj)
−

m̂(µj)

µjm̂
′(µj)

p→ 0 and cm(xj)− (n/T )σ̂2m̂(µj)
p→ 0,

where σ̂2 = (n− r̂)−1∑n
i=r̂+1 µi. Thus,

plim ρ̂
(A=I)
j = −m(xj) (1 + cm(xj))

xm′ (xj)
, (72)

and (71) and (72) imply (60).

The equality (61) can be proven similarly to (60) after −xm(x) − 1 in (63) is

replaced by (−xm(x)− 1) /c.We omit details of such a similar proof to save space.�

7.9 Proof of Proposition 4

The proof of part (i) is similar to the proof of Proposition 3 (i), and we therefore

omit it. For part (ii), since Pr (r̂ = q) → 1, Proposition 2 and equalities (60) and

(61) of Lemma 4 imply that
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max
0≤p≤rmax

∣∣∣L(1)
p − L̂(A=I)

p − (L(1)
q −L̂(A=I)

q )
∣∣∣ = oP(1/T ), or

max
0≤p≤rmax

∣∣∣L(1)
p − L̂(B=I)

p − (L(1)
q −L̂(B=I)

q )
∣∣∣ = oP(1/T ),

if A = In, or B = IT , respectively. Part (ii) now follows from Proposition 2.�

7.10 Proof of Proposition 5.

First, let us prove (i). Let p∗0 = arg min0≤p≤rmax L
(1)
p , where L

(1)
p is as defined in

Proposition 1. From (3), using assumptions A1-A3, we have Pr (p∗0 = r) → 1 as

n, T →c ∞. Since Lp−L(1)
p = oP(1/T ) and minp<r L

(1)
p is positive and bounded away

from zero with probability approaching one (w.p.a.1), we have Pr (p∗ ≥ r)→ 1, where

p∗ = arg min0≤p≤rmax Lp. To establish the optimal loss consistency of any estimator

that is consistent for r, it remains to show that Pr (p∗ > r)→ 0.

In view of (3) and equality Lp−L(1)
p = oP(1/T ), it is suffi cient to prove that µr+1

is positive and bounded away from zero w.p.a.1. By (41), µr+1 > µ2r+1(e′e/T ). On

the other hand, there must exist ε > 0 such that Pr
(
µ2r+1(e′e/T ) ≥ ε

)
→ 1. This

follows from Assumption A3 (i) and the fact that tr (e′e) /(nT ) ≤ 2rµ1(e′e)/(nT ) +

nµ2r+1(e′e)/(nT ) = µ2r+1(e′e/T ) + oP (1), where the last equality holds by A3 (iii).

Therefore, under the strong factors asymptotics, any estimator that is consistent for

r is optimal loss consistent.

Now, let p̂ be one of the following estimators: p, p̄, p̂(A=I), or p̂(B=I). From

parts (i) of Propositions 3 and 4, we have Pr (p̂ ≥ r) → 1 because min0≤p<r Lp

is positive and stays away from zero w.p.a.1, whereas maxr≤p≤rmax Lp
p→ 0. On

the other hand, Pr (p̂ > r) → 0, which is established similarly to Pr (p∗ > r) → 0.
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Hence, p̂ is consistent for r, and thus, optimal loss consistent under the strong factors

asymptotics.

Turning to the proof of part (ii), let p∗0 = arg min0≤p≤rmax L
(1)
p , where now L

(1)
p is

as defined in Proposition 2. Let us show that Pr (p∗0 = p∗) → 1. By Proposition 2,

L
(1)
p − Lp = oP (1/T ) = oP (1/n) . Therefore, it is suffi cient to show that there exists

ε > 0 such that

Pr

(
min

0≤p≤rmax,p 6=p∗0
L(1)
p − L

(1)
p∗0
> ε/n

)
→ 1. (73)

If p∗0 < q, this follows from (6) and Lemma 1. If p∗0 = q, this follows from (6), Lemma

1, and the fact that µq+1 is bounded away from zero w.p.a.1, which we will now

establish. Note that p∗0 cannot be larger than q by (6).

By (41), µq+1 > µ2q+1(e′e/T ). Onatski (2010) proves that under assumptions

A1w, A2w or A2w (nG), A3w, the empirical distribution of the eigenvalues of e′e/T

converges to a fixed distribution, and that µ1 (ee′/T ) converges to the finite upper

boundary of the support of this limiting distribution. This implies that, for any

fixed k, µk(e
′e/T ) converges to the same finite value. Taking k = 2q+ 1, we see that

µ2q+1(e′e/T ) is bounded away from zero w.p.a.1.

To summarize, we have just established the fact that Pr (p∗0 = p∗) → 1 under

the weak factors asymptotics. Now note that by an appropriate choice of A,B, and

of δ1, ..., δr, we can make p∗0 converge to any integer between 0 and q. Indeed, the

minimum of L(1)
p is asymptotically achieved at the largest p ≤ q such that inequality

(7) holds. For the special case where A = In and B = IT , f(z) is given by (8), and

the value of such a largest p can be set to an arbitrary integer between zero and q by

an appropriate choice of δ1, ..., δr. Hence r̂, which is consistent for q under the weak
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factors asymptotics, is not, in general, optimal loss consistent.

Next, by the definitions of L(1)
p , L̄p, and Lp, and by Lemma 4, we have for any p

such that 1 ≤ p ≤ min {r̂, q},

L̄p−1 − L̄p ≤ L
(1)
p−1 − L(1)

p + oP (1/T ) and (74)

Lp−1 − Lp ≥ L
(1)
p−1 − L(1)

p + oP (1/T ) . (75)

Furthermore, for any p ≥ max {r̂, q},

L̄p+1 − L̄p = L
(1)
p+1 − L(1)

p and (76)

Lp+1 − Lp = L
(1)
p+1 − L(1)

p . (77)

Since r̂ is consistent for q, inequalities (74)-(75), equalities (76)-(77), and the conver-

gence (73) imply that Pr
(
p ≤ p∗0 ≤ p̄

)
→ 1, that L(1)

p̄ − L
(1)
p∗0
≤ L̄p̄ − Lp + oP (1/T ) ,

and that L(1)
p − L(1)

p∗0
≤ L̄p − L̄p̄ + oP (1/T ). Part (ii) of Proposition 5 now follows

from the facts that Pr (p∗0 = p∗)→ 1 and L(1)
p −Lp = oP (1/T ). The latter two facts,

together with (73) and Proposition 4 (ii) also imply part (iii).�
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