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Abstract—In this paper, we discuss a machine learning based
approach to jointly estimating both linear and nonlinear noise
contributions in an optical fiber communication link. We will
expound the rational for utilizing machine learning for this
problem, before discussing current progress and then concluding
with future research directions.

I. INTRODUCTION

The capacity of an optical fiber communication system is
fundamentally limited by noise and nonlinearity. For these
systems there is an optimal intensity of light to launch into
the optical fiber with operatation at this optimal requiring
both the noise and nonlinearity to be estimated. In a typical
optical fiber communication system the amplified sponteneous
emission (ASE) from the in line erbrium doped fiber amplifiers
(EDFA) dominates and while Possionian in nature can be
modeled as an additive white Gaussian noise (AWGN)[1]. In
order to increase the signal to noise ratio (SNR), the launch
power into the fiber is increased until nonlinear phenomena
are observed. Since the nonlinear effects degrade the SNR an
optimum launch power exists at which the maximum available
SNR is observed.

The dominant nonlinear phenomena for optical fiber com-
munication systems is the Kerr effect which causes the refrac-
tive index to change with intensity. Even though the change
in the refractive index is small (less than one part in a
billion) for a 100 GbE channel the Kerr effect limits the
performace at milliwatt power levels being commensurate with
the power available from a semiconductor laser diode. Owing
to the chromatic dispersion present in the fiber, the signal
can be spread over hundreds of symbol periods resulting in
the signal having a Gaussian like property. This allows the
fiber nonlinearity to be modeled as a second AWGN with
a variance that varies as the cube of the input power[2].
While this simplification allows for approximate calculations
of performance, in practice the noise is neither Gaussian nor
white, depending on the modulation format, the spectral shape
of the waveform and the interaction between the nonlinearity
and the chromatic dispersion in the fiber. Nonetheless for
the optical fiber communication channel in principle it is
possible to computationally solve the vector nonlinear partial
differential equations to calculate the expected performance
and the associated optimal launch power.

In simulation the situation is idealized, with all of the
fiber parameters known with the optical amplifiers giving

uniform gain and hence noise for all wavelength channels.
In practice however amplifiers have gain ripple and gain tilt
such that different channels experience different gain and
noise such that there is uncertainty in the linear AWGN.
Likewise even if the fiber parameters were known exactly
(which in general they are not), there is uncertaintly in the
power levels, resulting in uncertainty in the nonlinear noise
contribution to the performance. Furthermore in an optical
network wavelength channels are routed in the optical domain
such that the nonlinear interaction with other channels varies
spatially throughout the network as different channels are
added or dropped along a path within the network. The
final complication is that the transceiver itself adds noise,
ranging from quantization noise in the data converters to noise
from tracking errors in the various digital signal processing
algorithms in the receiver. From this we observe that the
estimation of noise in a practical optical fiber communication
network is hindered by uncertainty relating to the channel
and as such a framework for estimation in the presence of
uncertainty is required.

II. WHY USE MACHINE LEARNING?

As outlined in the introduction, the estimation of noise
for the purpose of determining the signal to noise ratio is
hindered by the presence of uncertainty. We propose to use
machine learning as a means of estimation in the presence of
uncertainty, initially focusing on neural networks as a means of
obtaining the nonlinear relationship between the SNR and the
various input parameters (such as the auto-correlation function,
total accumulated chromatic dispersion etc.).

Optical performance monitoring is a well established re-
search area that attempts to monitor optical transmission
systems with a view to assessing the quality of a transmission
link[3], albeit herein we focus on the estimation of linear and
nonlinear noise contributions. Classical approaches include
fitting a three parameter model[4] to separate the nonlinear
and linear noise contributions or estimating the ASE noise
component from an optical spectrum analyzer[5].

Recently machine learning techniques have emerged for
robust estimation of the linear and nonlinear contributions to
SNR based on neural network based regression[6], [7], [8],
[9]. Herein we focus on neural networks, providing a basis
for robust joint estimation of the linear and nonlinear noise
contributions building on our previous work[9].
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Fig. 1: 16-QAM signal including t and n components.

III. EXAMPLE APPLICATION: DP-16QAM
By way of an introduction to joint estimation of linear

and nonlinear estimation we consider a dual polarization (DP)
16-ary quadrature amplitude modulation (QAM) format. As
illustrated in Fig. 1 in one polarization the 16 uniformly
distributed points become slightly elliptical due to nonlinear
phase noise[10]. We exploit this feature in order to estimate
and distinguish the linear and nonlinear noise contributions.

In Fig 1, we show a 16-QAM constellation with the subdi-
vision of its noise variance into its normal, n, and tangential,
t, components, noting that the nonlinear phase noise affects
only the tangential component. The SNR can be expressed as:

SNR =
1

〈n〉 + 〈t〉
(1)

where 〈n〉 = (N1+2N2+N3)/4 and 〈t〉 = (T1+2T2+T3)/4
where Ni and Ti are the averages for each power ring
(i = {1, 2, 3}). Additionally, we exploit the correlation of non-
linearities through the use of the amplitude noise covariance
(ANC) and its accumulated logarithm version (ALANC):

ANCij(m) = cov(∆sk,i,∆sk+m,j),

ALANCij = 10 log10(1/

6∑
m=1

|ANCij(m)|), i, j ∈ {x, y}

(2)

where ∆sk,i is defined as the difference between received and
expected symbols |sk,i|-|ŝk,i| in the i-polarization.

A small neural network (one hidden layer consisting of
7 neurons) is trained to find the relationship between the
parameters. A hyperbolic tangent sigmoid is used as the
nonlinear transfer function for the hidden neurons. The in-
put to the neural networks are {N1, N2, N3, T1, T2, T3}, the
accumulated chromatic dispersion, ALANCxx, ALANCxy ,
and the number of WDM channels. The outputs of the neural
network are SNRLIN and SNRNLI .

The transmission realizations consist of 2160 datasets, in-
volving different types of fibers, number of spans, number
of WDM channels, and different amounts of linear noise
loaded in the receiver[9]. Neural network based regression
gave a standard deviation of 0.23 dB for both SNRLIN and
SNRNLI demonstrating the efficacy of the technique.

As the transmission distance increases, the eccentricity
of the nonlinearities decreases, consequently the difference
between the normal and tangential components becomes
marginal and the noise estimation inference will suffer greater
uncertainty for longer distances. Lower order modulation
formats present similar limitations since the nonlinear phase
noise is not a dominant nonlinear contribution[10].

IV. CONCLUSION AND FUTURE DIRECTIONS

In this paper we introduced the use of machine learning for
the joint estimation of linear and nonlinear noise and discussed
its limitations. While neural networks provide a basis for
initial investigations, other machine learning techniques may
provide more insight when dealing with uncertainties. This
is of particular interest as we move towards metrics capable
of distinguishing between various linear and nonlinear noise
components for any modulation format and reach. Ultimately
classical approaches based on regression, machine learning
and deep learning will need to be compared in terms of their
complexity, accuracy and training data required but also the
information conveyed to a network operating system as we
move towards a cognitive optical network.
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