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Abstract 
Reinforcement Learning describes a general method for trial-and-error learning, and has 

emerged as a dominant framework both for optimal control in autonomous robots, and 

understanding decision-making in the brain. Despite their common roots, however, these two 

fields have evolved largely independently. In this perspective we consider how each now face 

problems that could potentially be addressed by insights from the other, and argue that an 

interdisciplinary approach could greatly accelerate progress in both. 

 



Introduction 
Humans and autonomous robots share a common problem: how to survive in a complex, 

changing and dangerous world with little a priori knowledge, but with the requirement to 

continuously satisfy their appetites and avoid damage over long lifetimes. The key to survival is 

learning, and using what is learned to guide further decisions in as safe and efficient way as 

possible. But this is a difficult problem, with numerous challenges related to the practicalities of 

behaving in real physical environments full of noise and unpredictability. In recent years, 

Reinforcement Learning (RL) has emerged as a dominant theoretical framework to understand 

decision-making through an interaction with the world [1], and has underpinned research in both 

neuroscience and robotics. But despite a shared problem, the strategies which engineering 

science has developed differ in many respects with those in which brain appears to adopt. This 

raises the question as to whether brain-like algorithms can be shown to work in real control 

problems far beyond the highly controlled experiments from which the models were derived. In 

turn, it is also possible that brain-inspired solutions might be capable of improving aspects of 

robot control. In this perspective, we outline a series of areas where an interdisciplinary approach 

may have particular promise. 

 

Reinforcement Learning.  The goal of RL is to learn how to make decisions in a way that 

maximises future returns or minimises cost given an uncertain, but at least partly predictable, 

environment. In particular, RL addresses the credit assignment problem, which is ubiquitous in 

real-world decision-making problems. This credit assignment problem arises from the fact that 

many prediction and control situations (‘Markov Decision Processes’) involve complex 

sequences of states that precede an important outcome (i.e. a reward or punishment), making 

it difficult to know at what point the state or action took a turn for the better or worse. RL solves 

this by continually holding a prediction of the expected sum of future outcomes (i.e. the value), 

and updating this value as one moves through time (more formally, it solves the Bellman 

equation) [1]. If this new information changes the predicted value, then a prediction error is 

generated, and propagated back to earlier states to update their predictions so as to be more 

accurate in the future. In this way, RL algorithms can deal with sequential (higher-order) learning 

in a way that classic psychological learning models (such as the Rescorla-Wagner model) 



cannot. Due to its ability to develop a control policy with minimal supervision, RL seemingly offers 

a practical tool for many optimal control problems [2].  

 

Applications of RL to robotics in earlier days of research focused on simple robot control tasks, 

such as playing the game of backgammon in a simulation environment [3], repetitive pick-and-

place [1], recycling pushing boxes with a wheeled mobile robot [4], positioning and inserting a 

peg [5], or learning frying pan skills with a robot arm [6]. Subsequently, advanced RL techniques 

have been applied to solve more challenging issues, including humanoid robot control [7], 

autonomous car driving [8], learning a control policy in highly complex environments [9]–[11], 

learning large repertoires of skills with robot arms [12], autonomous helicopter control [13], drone 

control [14], and robot swarm control [15]. This illustrates how the broad application of RL has 

extended from motor control to action control (i.e. decision-making). 

 

Although RL’s roots lie in early models of associative learning [16], the overt application to 

neuroscience emerged somewhat later, in terms of models of classical (Pavlovian) conditioning 

[1]. The idea that the brain might be physically implementing RL algorithms [17], [18] eventually 

found evidence in primate experiments showing what appeared to be direct encoding of a reward 

prediction error by dopamine neurons [19]. Evidence in humans subsequently came from 

functional neuroimaging experiments, where RL prediction errors were found for both reward 

and punishment learning [20], [21]. This stimulated enormous interest in RL models of human 

decision-making, and led to a number of key findings, including of distinct circuits for learning to 

make predictions and actions (Pavlovian and instrumental conditioning, respectively) [22], 

multiple circuits for action learning involving encoding state and action space with different levels 

of complexity [23], and of different strategies used to balance exploration with exploitation [24], 

[25].  

 

But for many engineering applications, the practical utility of RL was limited in the face of the 

high dimensionality of sensors and actuators, and created a need for effective techniques at 

encoding state and action representations. A key breakthrough was the application of deep 

learning to approximate value functions, and this rapidly demonstrated success with agents 

operating in a high dimensional input space [9]–[11], as well as in a continuous action space 



[12], [26], [27]. Notably, RL agents were subsequently shown to outperform humans [9], [10], 

and to learn without expert knowledge [11]. This provided a dramatic leap in both performance 

and efficiency across a wide range of real-world problems: from highly complex simulated games 

[9], [11] to robot manipulation [12], [28]. 

 

Although understanding autonomous control in robotics and neuroscience have proceeded 

somewhat independently, they may often be dealing with the same control problem (e.g. 

navigation, collision avoidance), especially since a common aspired to application of robotics is 

to support humans in their natural environment. With this convergence comes a number of areas 

where cross-fertilization of knowledge between the two might provide valuable new insights, as 

we describe below (also see Figure 1). 

 

 

 
 
Figure 1. Overview of neuroscience - robotics approach for decision-making. The figure details 

key areas for interdisciplinary study.   

 

 



Why decision neuroscience needs robotics 
Despite significant progress in resolving the sophistication of computational models of brain-

based learning and decision circuits, there is still a gulf between what they can currently explain 

and what they need to. Below we outline 3 key challenges:  

 

Learning in real environments. Many models of human/animal decision-making are applied to 

experiment data that involves highly controlled environments, but as they become more complex, 

their validity outside of these contexts becomes more difficult to assume for several interacting 

reasons. First, almost all current models are discrete-state/time models, and extending them to 

continuous space is non-trivial [29]. This is because they require some way of dealing with the 

potential huge dimensional state- and action space, for example by partitioning or function 

approximation, whilst maintaining temporal smoothness of action [26], [30], [31]. Second, models 

that work in simulation are often not robust when operating in hardware - a phenomenon called 

the ‘reality gap’. This is because of multiple sources of sensory noise and motor noise (flexibility, 

friction etc) that accompany any physical system, and the nature of this noise is difficult to predict. 

Third, uncertainty arises when building control systems that need to operate over very long 

periods (i.e. over development and lifetimes), because there are many changes in the noise and 

dynamics of the body/environment that happen over multiple time scales. Good evidence 

suggests that human decision-making adapts over such timescales (e.g. risk-taking, impulse 

inhibition, decision meta-cognition). These factors interact and emphasize the fact that without 

additional evidence, one should be cautious in assuming that current neuroscience models of 

decision-making will always work effectively across real-world situations and environments. 

 

Modelling complex disease. One of the main objectives of decision neuroscience is to 

understand how its disruption might lead to disease. Computational neurology and 

computational psychiatry aim to understand how disease symptomatology emerges from 

underlying disturbance of specific computational elements i.e. how differences in the architecture 

or parameterisation of computational operations cause the disease state. [32]–[34]. However, it 

seems likely that many diseases do not involve a single computational element, but rather a set 

of interacting elements (a sort of ‘computome’) that interact together generate disease 

phenotype (Figure 2). But as the complexity of the underlying models increases, making reliable 



predictions about how overall behaviour is changed when a specific computation element, or set 

of elements is altered, becomes much more difficult. 

 

 

 
 
Figure 2. Computomics of disease. The diagram summarises some of the key parameters that 

are involved in human decision-making that can be proposed to be important for the potential 

development of neuropsychiatric disease. The general hypothesis is that these factors interact 

in difficult-to-predict ways to generate the overall disease phenotype. 

 

 

For example, chronic lower back pain is thought to be primarily driven by brain-based factors (as 

opposed to over-activity of peripheral pain-sensing neurons (nociceptors)[35]. There are several 



distinct factors proposed for how chronic pain might develop, including excessive pain value 

predictions [36], reduced perception of pain controllability (also a proposed factor in 

depression)[37], impaired relief prediction [38], negative expectation bias in perceptual inference 

[39], over-generalisation in both active and passive pain conditioning (also a proposed factor in 

anxiety)[40], and others. Each of these factors relate to distinct computational operations within 

the broad RL framework, and it is probable that they represent independent risk factors that 

when coexisting, interact to generate sufficient an effect to support the maintenance of pain. 

However, the complexity of this interaction means that how this happens is difficult to predict.  

 

Evolutionary modelling. A key problem in decision neuroscience is to understand how and 

why certain behaviours and systems exist in the way that they do, especially since the very 

nature of human decision-making seems to make it prone to weaknesses such as impulsivity 

and compulsivity. Although laboratory experiments can address the proximate basis of much of 

the complexities of decision-making, understanding why neural systems are organised in the 

way they are (i.e. the ultimate basis) is critical to rationalising and predicting broader questions 

about the ‘design’ of these systems in the first place.  

 

Evolutionary robotics provides a method for developing computational control architectures 

based on biologically-inspired evolutionary algorithms (i.e. Darwinian selection based on a 

fitness function), and so can be used to explore and mimic the selective pressures on neural 

control systems that have arisen during the course of animal evolution. This is a valuable 

approach because the vast complexity of the environment necessitates that decision systems 

have evolved primarily as learning systems, as opposed to hard-wired stimulus-response 

systems. However, the evolutionary pressures on learning systems are much less easy to 

predict, especially when multiple systems operate in parallel. However these pressures are 

critical in determining the complex architecture and meta-parameters of learning [41], [42]. 

Related to this is understanding how values (both reward and punishment) are bestowed through 

evolution on certain stimuli, such that they have become ‘primary reinforcers’ of behaviour [43]. 

This is especially important for certain states that have intrinsic value (e.g. novelty seeking, 

endogenous control of pain [44], since it allows animals to navigate complex decisions in which 

the ultimate benefit of a decision may be long-term, beyond the bounds of learnable experience. 



One area where an evolutionary robotics approach may have particular value is in aspects of 

social decision making (e.g. sexual selection, cooperation and altruism, and observational 

learning and teaching). That is, many social decisions involve considerable complexity since 

action values depend on inferring and understanding the action and learning systems of others 

[45], and likely involve a complex combination of learning and intrinsic values that is difficult to 

predict without formal evolutionary simulation.  

 

 

Taken together, these three challenges place limits on developing our understanding of 

decision mechanisms in neuroscience, and appeal to robotics-based approaches. Advanced 

simulation platforms and hardware implementation could offer a stepwise increase in 

demonstrating the computational validity and general applicability of brain-based models. And, 

in principle evolutionary robotics provides simulation platforms that allow interrogation of how 

such complex systems might emerge and how different aspects of decision-system might trade 

off against others, revealing the nature of traits that can create risk factors for neuropsychiatric 

disease. 

 

Why robotics needs decision neuroscience 
There are many previous examples in robotics in which biological inspiration has led to 

improvements in design and control systems, for example in motor control and artificial vision. It 

is therefore plausible that decision neuroscience could also offer novel insights, and below we 

describe three areas where this may be realistic. 

 

Multiple controller architectures. In contrast to most robot-control algorithms, humans and 

animals have multiple control systems that govern decisions and actions (Figure 3). First is a 

system for innate responses, which emit simple hard-wired behaviours in response to inherently 

salient stimuli (generalised reflexes such as approach or withdrawal, or specific reflexive actions 

such as leg-flexion to a shock). Second, these responses can also be transferred to predictive 

neutral stimuli through classical (Pavlovian) conditioning, which allows the behaviours to be 

emitted early. Furthermore, there are separate systems for reward and punishment, dealing with 

a full spectrum of positive and negative outcomes through specifically tuned anticipatory 



responses [46]. Third, animals learn stimulus-response actions (‘habits’), in which rewards or 

punishments reinforce actions that lead to them, such that after repeated pairing the actions are 

emitted ‘automatically’ when cued. Here too, there is also evidence for separate reward and 

punishment systems, tracking both best-case and worst-case scenario actions [47], [48]. Finally, 

a cognitive (‘goal-directed’) control system can guide actions by learning a model of environment, 

and leverages the learned knowledge base to quickly adapt to the change in the environment 

structure, such as a latent state-space or a reward structure. This allows great behavioral 

flexibility over performance when an environment structure changes. While this sophisticated 

control strategy is considered to be optimal in many scenarios, it requires a high computational 

cost and takes a longer time to process than the stimulus-response control system.  

 

 
Figure 3. Overview of human decision making systems in the brain. Ultimately the brain is 

thought to implement a nested hierarchy of control systems: that range from implementation 

evolutionary acquired response systems that are quick and computationally efficient, to more 



experience-based learning that involves progressively higher levels of computational 

sophistication. 

 

 

Each system is best in different situations: the innate/Pavlovian systems exploits evolutionarily 

learned knowledge and allow rapid responses before much learning has happened, in effect 

providing an evolutionary prior on action space. Goal-directed learning allow sophisticated 

modelling of the world, supporting planning and flexibility [49]. And habit learning provides 

stability in the face of inherent unpredictability and over extended time, alongside considerable 

computational efficiency [50]. Given this multi-controller architecture, the brain therefore needs 

to decide how to integrate the different systems, and the brain appears to use a number of 

strategies, ranging from a simple scaling of system outputs (between reward and punishment 

systems), to direct competition between systems based on uncertainty by a “meta-controller” 

(between stimulus-response and goal-directed systems) [51]–[53].  

 

Rapid and single-shot learning. Control algorithms for robots, especially in AI settings, usually 

require a large amount of experience. On the other hand, humans learn fast, often after a single 

experience. Consequently recent insights into the neuroscience of rapid learning in biological 

systems may provide practical insight to robotics. 

 

First, it can improve optimality of robot learning. For example, a recent neuroscience study found 

that when there is only few examples available, or when interactions with environment are limited, 

humans have a strong tendency to increase their learning rates; they strive for quickly making 

sense of unknown parts of environment by compromising safe learning, rather than performing 

incremental learning [54]–[56]. A robotic system that can flexibly adjust its own learning speed 

would resolve a tradeoff between performance and speed. 

 

Second, implementing human-style rapid learning in robots would improve human-robot 

interaction. Single-shot inference or jumping-to-conclusion is associated with suboptimal 

behavior that a rational robotic agent cannot predict. For example, a neuroscientific basis of 

rapid learning and inference[55] offers great potential for building robots that can interact with 



suboptimal entities like humans. This can also foster social trust of the human users in service 

robotics environment.  

 

Single-shot learning can be implanted into robots by taking up the idea of hippocampal episodic 

memory controller. It is originated from a theoretical idea in decision neuroscience, which has 

emerged as an effective alternative in the presence of a large amount of measurement noise in 

the environment or in the very early stage of learning [50]. The episodic memory control can 

guide decisions based on a single past episode that the agent remembers [57], [58], thereby 

allowing itself to kick-start learning when the environment becomes too complex or too noisy, or 

even when the it needs to transfer from one task to another. 

 

Metacognitive learning. Reinforcement learning algorithms are optimistic (or over-confident) in 

that their current predictions are expected to be correct even if they are sampling from the part 

of the environment they haven’t learned about enough. Learning without estimation of its own 

prediction performance (i.e., over-confident learning) may lead to resorting to a suboptimal policy 

(local minima problem), especially in a complex and dynamic environment. 

 

Metacognition refers to an ability to evaluate the agent’s own thought processes, such as 

perception [59], valuation [60], [61] and learning, inference [62], and to report the level of 

confidence/uncertainty about her choice leading to an outcome that she predicted [63]. The 

change in the confidence level depends on her ability to learn, e.g., a slow learner builds up 

confidence slowly, but it may also depend on various environmental contexts. For example, low 

task difficulty or low environmental noise would make the learning agent confident, leading to 

more decisive actions, whereas losing confidence in opposite cases would lead to a more 

cautious and defensive strategy. The metacognitive learning thus allows for rapid adaptation to 

the context change while maintaining robustness against environmental noise. This raises an 

optimistic expectation that the metacognitive learning agent would compensate for the weakness 

of model-based reinforcement learning that it inevitably suffers from a large amount of prediction 

error when the environment is highly noisy [52]. 

 



Growing evidence from decision neuroscience about computational mechanisms of 

metacognition and confidence-based decision-making [60], [61] may lend an insight into 

metacognitive learning algorithm design for robots [64]. It also has an enormous potential for 

further augmenting robot intelligence in many different ways. First, this ability would guide 

valuation taking into account uncertainty. Second, it could help resolve exploration-exploitation 

tradeoffs. For example, because a metacognitive agent has the ability to distinguish what it has 

learned from what it hasn’t figured out yet, it can determine when to explore to learn more about 

the task and when to exploit to achieve a goal. Naturally a successful implementation of 

metacognitive reinforcement learning would bring about performance boost of decision-making 

models [65], [66]. 

 

 

Taken together, neuroscience offers insight into a set of solutions that might benefit robot 

control systems. Each involves adding complexity - multi-controller architectures, additional 

systems for rapid inference, and supervisory systems - but each of these seem to evolved in 

humans to deal with the practicalities and reality of living in the real-world. Although our current 

understanding of how the brain achieves are yet at a point to be directly implementable in robots, 

the principles they embody could inspire development of comparable strategies that confer 

flexibility and efficiency in robotics. 

 

Conclusion 
In summary, we have highlighted three key issues where decision neuroscience can be informed 

by robotics: learning in real environments (i.e. addressing the reality-gap in neuroscience 

models), modelling complex disease (making predictions when there are multiple risk factors), 

and evolutionary modelling (understanding why neural systems are structured in the way that 

they are). And we have highlighted three potentially valuable insights for robotics that come from 

decision neuroscience: adopting multi-controller architectures (to enhance safety and efficiency), 

rapid/single-shot learning (to enhance performance with very limited information exposure), and 

metacognition (to enhance robustness in the face of significant change). Together, they illustrate 

how an enhanced dialogue between neuroscience and robotics could be mutually beneficial. 

 



Indeed an increasing number of studies are beginning to cross this boundary. Recent robotics 

and AI studies, for instance, draw on the idea of model-based reinforcement learning from 

decision neuroscience, showing that an agent possessing the human’s ability to carry out 

simulations over predictive models of the environment can handle various physics-based 

navigation tasks [67], [68]. On the other hand, recent neuroscience studies adopted recurrent 

neural networks, a class of models frequently used for approximate optimal control of robots, to 

test theoretical ideas, such as that the structured representations of spatial information in the 

hippocampus improve the efficiency of goal-directed reinforcement learning [69], and that the 

midbrain dopamine system promotes meta-reinforcement learning in the prefrontal cortex [53].  

 

Discovering computational principles of such meta-level functions in these brain circuits offer 

great potential for furthering the design of brain-robot interfaces. It would not only allow the ability 

to read out latent states of the brain, such as a learning strategy or a task goal [70], but also 

inform when and how the brain creates a new mental state [71]. Given that a set of possible 

choices varies according to the brain’s latent states, a brain-robot interface equipped with this 

capability potentially allows a robot agent to make more precise predictions about user’s 

intention. 

 

It is also possible that robotics and neuroscience can synergistically work above and beyond 

simple interdisciplinary approaches. For instance, most of robot-based high-throughput 

screening or neuroscience studies require completion of the following cycle: hypothesis 

development, assay preparation / task design, data collection / experiment, and evaluation / data 

analysis. To test a hypothesis of interest against alternative ones, the task design requires 

careful manipulation of task variables while controlling for potential confounding effects. Rapid 

progress in machine learning may provide powerful tools for finding an optimal task parameter 

set that allows us to effectively contrast a main hypothesis with competing hypotheses [72], [73]. 

One of important directions for future research concerns AI-based task parameter optimization, 

in which AI being incorporated into robot-based automation of experiments [74], [75]. 

 

Finally, a key emerging concept in human-robot interaction is that robots may be better suited 

to human interactive environments if they learn, act and behave in a similar way to humans. This 



may help in terms of human’s ability to understand and infer the robots goals and intentions, 

enhance empathy towards the robot, facilitate social decision-making such as cooperation and 

joint decision-making, and promote observational learning. Indeed a key part of the future 

application of human-assistive robots for people with cognitive impairment could conceivably 

include decision support, in which a robot infers goals of a human and uses its own decision-

making algorithms to suggest optimal decisions. Notwithstanding this, there is an inherent logic 

in having robots think in the same way as humans as being a key facet to successful integrative 

environments, even if this means robots occasionally displaying suboptimal human-like traits 

that emerge naturally from brain-like architectures, such as mild impulsivity and anxiety, in 

certain situations. 
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