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Abstract
We show that a K -approximate subgroup A of a residually nilpotent group G is
contained in boundedly many cosets of a finite-by-nilpotent subgroup, the nilpotent
factor of which is of bounded step. Combined with an earlier result of the author, this
implies that A is contained in boundedly many translates of a coset nilprogression of
bounded rank and step. The bounds are effective and depend only on K ; in particular,
if G is nilpotent they do not depend on the step of G. As an application we show that
there is some absolute constant c such that if G is a residually nilpotent group, and if
there is an integer n > 1 such that the ball of radius n in some Cayley graph of G has
cardinality bounded by nc log log n , then G is virtually (log n)-step nilpotent.

Mathematics Subject Classification Primary 11B30; Secondary 11P70

1 Introduction

Let G be a group. In recent years there has been a considerable amount of study of
subsets A ⊆ G that have doubling K in the sense that |A2| ≤ K |A|, where K ≥ 1
is some parameter. There is much motivation for the study of such sets already in the
literature; rather than adding to it here, we simply point out that work in this area has
had many applications in an impressively broad range of fields, and that the surveys
[12,19,20,29,37] provide more detail on the background to the field and on many of
these applications.

It turns out that the study of sets in G of bounded doubling essentially reduces to
the study of sets called approximate subgroups of G. A finite set A ⊆ G is said to be a
K -approximate subgroup of G if there exists a set X ⊆ G of size at most K such that
A2 ⊆ X A. The reader may consult [41] for precise details of the relationship between
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sets of bounded doubling and approximate groups, although it is certainly clear that a
K -approximate group has doubling at most K .

The definition of an approximate group is not particularly descriptive, and a central
aim of approximate group theory is to extract more explicit, algebraic information
about the structure of approximate groups. The most general result of this type is due
to Breuillard, Green and Tao [10], which at its simplest level is as follows.

Theorem 1.1 (Breuillard–Green–Tao [10, Theorem 2.12]) Let G be a group and sup-
pose that A is a K -approximate subgroup of G. Then there exist subgroups H �C ⊆ G
such that

1. H ⊆ A12;
2. C/H is nilpotent of rank and step at most O(K 2 log K );
3. A can be covered by OK (1) left cosets of C.

By the rank of a nilpotent group here we mean the minimum number of elements
needed to generate it as a group.

The use of ultrafilters in the proof of Theorem 1.1 makes it ineffective in the sense
that no explicit bound is known on the number of left cosets of C required to cover A.
There are, however, a number of results of various authors that give explicit bounds
in this theorem if one is prepared to restrict to certain specific classes of group; see,
for example, [5–9,16,17,21,27,28,33–35,40,43]. The main purpose of this paper is to
present a short argument giving explicit bounds in Theorem 1.1 in the case that G is
residually nilpotent, as follows.

Theorem 1.2 Let G be a residually nilpotent group and suppose that A is a K -
approximate subgroup of G. Then there exist subgroups H � C ⊆ G such that

1. H ⊆ AOK (1);
2. C/H is nilpotent of step at most K 6;
3. A can be covered by exp(K O(1)) left cosets of C.

Let us emphasise in particular that if G is nilpotent then Theorem 1.2 applies with
bounds that do not depend on the nilpotency class of G.

The proof of Theorem 1.2 is strongly inspired by the so-called nilpotent Freiman
dimension lemma of Breuillard, Green and Tao [11], which is a similar result valid in
the less general setting of a residually torsion-free nilpotent group.

Remark It is not known what the optimal bounds should be in Theorems 1.1 and 1.2,
although it would be surprising if Theorem 1.2 could not be improved. Breuillard and
the author [13, Fact 4.18] have given an example to show that in Theorem 1.1 one

cannot in general cover A with fewer than K
1

200 log log log log K cosets of C . Eberhard
[15] subsequently refined this construction to show that even K log log K cosets are not
in general sufficient.

Remark In principle, our proof of Theorem 1.2 also gives a bound on the rank of
the nilpotent quotient C/H , at least when G is assumed to be nilpotent. However, an
earlier result of the author [43] gives the much better bound exp(exp(K O(1))), as we
note in Corollary 1.4 below. An explicit bound on the order of the product set of A in

123



Approximate subgroups of residually nilpotent groups

which H is contained could also be computed from our argument, but it is rather poor,
being roughly a tower of exponentials of height K O(1), and so we do not quantify it
precisely.

Remark 1.3 Every finitely generated linear group is virtually residually nilpotent [44,
Corollary 1.7]; see also [32, pp. 376–377]. One could therefore, in principle, deduce a
version of Theorem 1.2 for any given finitely generated subgroup of GLn(K), with K

an arbitrary field. Care is needed, however. In some cases the consequences are trivial;
for example, if K is a finite field then the arguments of [32,44] exhibit the trivial
group as the finite-index residually nilpotent subgroup of GLn(K). In other cases
the consequences are weaker than those given by earlier results; for example, if K

has characteristic zero and n is fixed then results of Breuillard–Green–Tao [8,9], or of
Pyber–Szabó [33] and Breuillard–Green [6], imply Theorem 1.2 for G ⊆ GLn(K) but
with stronger bounds. Nonetheless, in certain cases Theorem 1.2 does appear to give
new information. For example, the kernel of the projectionGLn(Z) → GLn(Z/pZ) is
residually nilpotent (see [44, proof of Proposition 1.6] or [32, p. 377]), and so Theorem
1.2 applies directly to its approximate subgroups, whereas the results of [6,8,9,33] do
not apply if n is not a priori bounded.

Coset nilprogressions and a more detailed resultBreuillard, Green and Tao [10] in fact
proved amore detailed result than that given by Theorem 1.1. In order to state it we first
need a definition. Given elements x1, . . . , xr ∈ G and positive integers L1, . . . , Lr ,
we define the set P(x1, . . . , xr ; L1, . . . , Lr ) to consist of all those elements of G that
can be expressed as words in the xi and their inverses, in which each xi and its inverse
appear at most Li times between them. If the xi generate an s-step nilpotent subgroup
of G then P(x1, . . . , xr ; L1, . . . , Lr ) is said to be a nilprogression of rank r and step
s. Finally, if C is a subgroup of G and H is a normal subgroup of C , and Q is a
nilprogression of rank r and step s in C/H , then the set Q H is said to be a coset
nilprogression of rank r and step s in G.

A more precise version of Theorem 1.1 then states that if G is an arbitrary group,
and A is a K -approximate subgroup of G, then A can be covered by OK (1) left
translates of a coset nilprogression P ⊆ A12 of rank and step at most O(K 2 log K )

[10, Theorem 2.12]. As before, the bound OK (1) on the number of left translates of
P needed to cover A is ineffective.

The author [43] has given an effective version of this more detailed result valid
in the case that G is a nilpotent group of bounded step (see Theorem 2.8, below).
Theorem 1.2 allows us to extend this to residually nilpotent groups, and in particular
to make the bounds independent of the step of G in the case that G is nilpotent.

Corollary 1.4 (Freiman-type theorem for residually nilpotent groups) Let G be a resid-
ually nilpotent group and suppose that A is a K -approximate subgroup of G. Then
there is a coset nilprogression P ⊆ AOK (1) of rank at most exp(exp(K O(1))) and step
at most K 6 such that A can be covered by exp(K O(1)) left translates of P.

Remark In the case that G is abelian the so-called polynomial Freiman–Ruzsa conjec-
ture asserts that a K -approximate group A should be covered by K O(1) translates of a
coset progression of rank O(log K ) and cardinality at most |A|. These bounds would
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be optimal. The best result in this direction is due to Sanders [36], who has shown that
one can cover A with exp((log K )O(1)) translates of a progression of rank (log K )O(1).
Schoen [38] had previously obtained essentially optimal bounds in a closely related
variant of this problem, showing that A is contained in a single coset progression of
dimension at most K 1+O((log K )−1/2) and cardinality at most exp(K 1+O((log K )−1/2))|A|
(similar bounds in this variant can also be computed from the Sanders result).

Remark The abelian case of Corollary 1.4 (stated as Theorem 2.7, below) is ultimately
an ingredient in the proof of Corollary 1.4. It appears that if one modified the argument
of [43] to optimise the rank of the nilprogression rather than the number of translates
required to cover the approximate group, and then applied the arguments of the present
paper with the Sanders bounds in Theorem 2.7, one could swap the bounds on the rank
and the number of translates in Corollary 1.4 (thus, the rank of P would be at most
exp(K O(1)), with A being covered by exp(exp(K O(1))) translates of P). However,
it does not appear that one could improve either bound without worsening the other,
even assuming the polynomial Freiman–Ruzsa conjecture, and so we do not pursue
this matter here.

Remark Breuillard, Green and Tao’s more detailed version [10, Theorem 2.12] of
Theorem 1.1 actually gives a bit more qualitative information than Corollary 1.4.
Specifically, the coset nilprogression can be taken to be in OK (1)-normal form (see
[10, Definition 2.6]). In a very recent preprint [42], Tessera and the author have shown
that the coset nilprogression of Theorem 2.8, and hence that of Corollary 1.4, can also
be taken to be in OK (1)-normal form. See [42] for more details and background.

Residually nilpotent groups of bounded exponent Let us point out a specific setting in
which our argument gives stronger bounds than those of Theorem 1.2 and Corollary
1.4. Ruzsa [35] famously showed that if A is a set of doubling K inside an abelian
group in which every element has order at most r , then A is contained inside a gen-
uine subgroup of cardinality at most r K 4

K 2|A|. Our argument provides the following
generalisation of this statement to residually nilpotent groups.

Theorem 1.5 Let G be a residually nilpotent group in which every element has order
at most r . Suppose that A is a K -approximate subgroup of G. Then A can be covered
by K 35K 6+2 left cosets of a nilpotent subgroup contained in A(3r+2)K 6+2.

A one-scale growth gap for residually nilpotent groups Let G be a group with finite
symmetric generating set S. A well-known and remarkable theorem of Gromov [24]
states that if |Sn| is bounded by some polynomial in n then G is virtually nilpotent.
There have since been various refinements and strengthenings of this result. Some,
such as [30, Theorem 7.1], [10, Corollaries 11.2, 11.5 and 11.7] and [13, Theorem
4.1], were proved using approximate groups; in particular, each of these follows from
Theorem 1.1 or variants of it. As one might therefore expect, Theorem 1.2 also yields
a refinement of Gromov’s theorem in the residually nilpotent case.

Before we present this result, let us note that Shalom and Tao [39] have already
given a refinement of Gromov’s theorem in the general case, showing that there exists
c > 0 such that if

|Sn| ≤ n(log log n)c
, (1.1)
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for some n > 1 then G is virtually nilpotent. In the residually nilpotent case, Grig-
orchuk and Lubotzky and Mann have shown that one can weaken the bound required
on |Sn| yet further: they show that if

|Sn| < 2�√n	 (1.2)

for infinitely many n ∈ N then G is virtually nilpotent [14, Theorem E2]. Grigorchuk
[22] proved this first in the case that G is residually a p-group; a lemma of Lubotzky
and Mann [31, Lemma 1.7] then shows that his argument still works under the weaker
assumption that G is residually nilpotent. It has been suggested that (1.2) could be
enough to imply that an arbitrary group is virtually nilpotent [23].

Note that whereas the Grigorchuk–Lubotzky–Mann result requires the bound (1.2)
to hold for infinitely many n (we call this a ‘multi-scale’ hypothesis), the Shalom–Tao
result requires only that the bound (1.1) hold for a single value of n (we call this a
‘one-scale’ hypothesis). It is not known whether the bound (1.1) can be weakened
further at the expense of reverting to a multi-scale hypothesis.

The following corollary of Theorem 1.2 shows that in the class of residually nilpo-
tent groups one has Gromov’s theorem under a one-scale hypothesis with a slightly
weaker bound than (1.1), and goes via a completely different argument to those of
Grigorchuk, Lubotzky–Mann and Shalom–Tao.

Corollary 1.6 (One-scale growth gap for residually nilpotent groups) There exists an
absolute constant c > 0 such that if G is a residually nilpotent group with finite
symmetric generating set S, and if there exists n > 1 such that

|Sn| ≤ nc log log n, (1.3)

then G contains a (log n)-step nilpotent subgroup of index On(1).

Remark As in Remark 1.3, Corollary 1.6 implies a growth-gap result for linear groups.
Specifically, Corollary 1.6 holds with the same constant c when G is a linear group,
provided n is large enough in terms of the dimension of G and the ring generated by
the matrix entries of a generating set for G. However, much stronger results should be
available using the uniform Tits alternative (see the papers [2,3] of Breuillard and [4]
of Breuillard–Gelander) and uniform exponential growth for soluble groups (see the
paper [1] of Breuillard), and so we omit the details.

Outline of the paper In Sect. 2 we review the necessary background material on
approximate groups. In Sect. 3 we prove a preliminary structure theorem for nilpotent
approximate groups, which is essentially the argument of [11] adapted to deal with the
possibility of finite subgroups. We also deduce Theorem 1.5 in the specific case that
G is nilpotent. In Sect. 4 we prove a structure theorem for an approximate subgroup
of a nilpotent group G that surjects onto the quotient G/Z(G), and then in Sect. 5 we
combine everything to prove Theorem 1.2 in the case that G is nilpotent. In Sect. 6 we
deduce the general statements of Theorems 1.2 and 1.5 from their respective nilpotent
versions, as well as proving Corollary 1.4. Finally, in Sect. 7 we prove Corollary 1.6.
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2 Background on approximate groups

In this section we collect together various basic facts about approximate groups. We
start with a simple but powerful combinatorial lemma, based on an earlier result of
Gleason [18, Lemma1]. This is a key tool in the nilpotent Freiman dimension argument
of Breuillard, Green and Tao [11], where it essentially allows the authors to bound the
dimension of a torsion-free nilpotent K -approximate group in terms of K . Since the
dimension also bounds the step, this is sufficient to imply Theorem 1.2 in this case.

Lemma 2.1 Let A be a finite symmetric subset of a group and let m ∈ N. Let {1} =
H0 ⊆ H1 ⊆ · · · ⊆ Hk be a nested sequence of groups such that Am ∩ Hi � A2Hi−1.
Then |Am+1| ≥ k|A|.

Proof This is essentially [11, Lemma 3.1]. For each i = 1, . . . , k pick hi ∈ (Am ∩
Hi )\A2Hi−1. It is sufficient to show that the sets Ahi are all disjoint. To see this,
suppose that Ahi ∩ Ah j �= ∅ for some j < i . This would imply that hi ∈ A2h j ⊆
A2Hj ⊆ A2Hi−1, contradicting the choice of hi . �


The following standard lemma may be found in [43, Lemma 2.10], for example.

Lemma 2.2 Let G be a group with a subgroup H, and suppose that A is a K -
approximate subgroup of G. Let m ∈ N. Then Am ∩ H can be covered by K m−1

left translates of A2 ∩ H. In particular, Am ∩ H is a K 2m−1-approximate group for
every m ≥ 2.

Lemma 2.3 Let G be a group and H a subgroup. Suppose that A is a finite symmetric
subset of G. Then |A| ≤ |A2∩H ||AH/H | ≤ |A3|. Moreover, A is covered by |AH/H |
translates of A2 ∩ H.

Proof This is essentially [11, Lemma 2.2 (i)]. Let X ⊆ A be a minimal set of left-coset
representatives for H in AH , so that |X | = |AH/H |, and note that |X(A2 ∩ H)| =
|X ||A2 ∩ H | . The lemma then follows from the fact that A ⊆ X(A2 ∩ H) ⊆ A3. �


Corollary 2.4 Let G be a group, let A be a K -approximate subgroup, and let H be a
subgroup such that |A2 ∩ H | ≥ |A|/K ′. Then |AH/H | ≤ K ′K 2.

Proof This observation is made in the proof of [11, Theorem 1.1]. The upper bound
of Lemma 2.3, the approximate group property and the hypothesis of the corollary
imply that |A2 ∩ H ||AH/H | ≤ K 2|A| ≤ K 2K ′|A2 ∩ H |. �


Lemma 2.5 Let A be a finite symmetric set in a group, and let H be a subgroup such
that A2 ∩ H = {1}. Then |Am ∩ H | ≤ |Am+1|/|A|.

Proof This is essentially found in the proof of [11, Proposition 4.1]. First note that the
sets aH with a ∈ A are disjoint. Indeed, if a, a′ ∈ A and aH ∩a′ H �= ∅ then a−1a′ ∈
A2 ∩ H , and so a = a′. This implies in particular that |A(Am ∩ H)| = |A||Am ∩ H |,
and the lemma follows. �
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The next result is another key lemma from the Breuillard–Green–Tao nilpotent
Freiman dimension argument [11], where it allows the authors to locate an element
in an approximate group with a large centraliser, which is in turn a key ingredient
in finding a large nilpotent piece of that approximate group. It is also somewhat
reminiscent of [27, Proposition 4.1].

Lemma 2.6 Let A be a K -approximate subgroup of a group G, and let G = Z1 ⊇
Z2 ⊇ · · · be a central series for G. Let j be maximal such that A2 ∩ Z j �= {1}, and
let ω ∈ Am ∩ Z j . Then

|A2 ∩ CG(ω)| ≥ |A|
K 2m+2 .

Proof This is essentially found in the proof of [11, Proposition 4.1]. For each a ∈ A
we have [ω, a] ∈ A2m+2 ∩ Z j+1. Lemma 2.5 and the definition of j imply that
|A2m+2 ∩ Z j+1| ≤ K 2m+2, and so as a ranges through A the number of values taken
by [ω, a] is at most K 2m+2. Fix a so that [ω, a] is the most popular such value, so
that [ω, x] = [ω, a] for at least |A|/K 2m+2 elements x ∈ A. For each such x we have
xa−1 ∈ A2 ∩ CG(ω), and so the lemma holds. �

Theorem 2.7 (Green–Ruzsa [21]) Suppose that A is a K -approximate subgroup of an
abelian group. Then there exist a subgroup H ⊆ 4A, and elements x1, . . . , xr ∈
4A and positive integers L1, . . . , Lr with r ≤ K O(1), such that A ⊆ H +
P(x1, . . . , xr ; L1, . . . , Lr ) ⊆ K O(1) A.

As we remarked in the introduction, Sanders [36] has shown that one can take the
rank of P in Theorem 2.7 to be (log K )O(1), with A now contained in exp((log K )O(1))

translates of H + P . It does not appear that this leads to better bounds in Theorem 1.2.

Theorem 2.8 Let G be an s-step nilpotent group and suppose that A is a K -
approximate subgroup of G. Then there exists a coset nilprogression P of rank at
most K eO(s)

such that A ⊆ P ⊆ AK Os (1)
.

Proof This is [43, Theorem 1.5], except that the bound on the rank of P stated in [43]
is K Os (1). The more precise K eO(s)

claimed here follows from an inspection of the
proof in [43]. �


3 A preliminary structure theorem for nilpotent approximate groups

The strategy of Breuillard, Green and Tao’s nilpotent Freiman dimension argument
[11] is roughly as follows. Given a K -approximate subgroup A of a torsion-free
nilpotent group G, they seek a large piece of A that is nilpotent of bounded step. They
first use Lemma 2.6 to locate an element γ1 ∈ A with a large centraliser; passing to a
group of bounded index, they can in fact assume that γ1 is central. Writing H1 for the
largest cyclic subgroup containing γ1, they then pass to the quotient G/H1, which is
automatically torsion-free, and repeat, producing a sequence γ1, γ2, . . . , γk .
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Writing Hi = 〈γ1, . . . , γi 〉, since G/Hi−1 is torsion-free and A is finite, each γi has
a power that is not contained in A2 modulo Hi . This element γi therefore contributes
to the doubling of A in the sense of Lemma 2.1, and so that lemma implies that the
number of elements γi this process produces is bounded in terms of K . In particular,
this process gives a central series of bounded length that contains a large piece of A,
and this piece is therefore of bounded step.

In the setting of the present paper, the fact that G may have torsion means we
cannot assume in the same way that γi contributes to the doubling of A. Indeed, it
is possible that γi generates a subgroup that is entirely contained in A modulo Hi−1,
and hence makes no contribution to the doubling of A in the sense of Lemma 2.1. We
must therefore content ourselves with the following statement.

Proposition 3.1 Let G be a nilpotent group and let A be a K -approximate subgroup
of G. Then there exist k ≤ K 6, subgroups D1 ⊆ · · · ⊆ Dk ⊆ Dk+1 and 〈A〉 = C0 ⊇
C1 ⊇ · · · ⊇ Ck of G, and elements γ1, . . . , γk such that γi normalises Di and such
that, writing H0 = {1} and Hi = 〈γi 〉Di for i = 1, . . . , k, we have that

1. Di � Ci−1;
2. γi is central in Ci/Di ; in particular Hi � Ci ;
3. Hi−1 ⊆ Di ;
4. Di ⊆ A2Hi−1;
5. Ci = 〈A2 ∩ Ci 〉Hi ;
6. γi ∈ A6\A2Hi−1;
7. |A2 ∩ Ci | ≥ K −35i |A|;
8. Ck = Dk+1.

The subgroups and inclusions given by this proposition are illustrated in Fig. 1. The
key output to note is the normal series

{1} = H0 � D1 � H1 � D2 � · · · � Dk � Hk � Dk+1 (3.1)

(that this series is normal is not stated explicitly in the proposition, but follows imme-
diately from it). Each subgroup Hi is cyclic and central modulo Di , being generated
by the element γi modulo Di . The groups Hi and the elements γi are analogous to
the groups Hi and elements γi in the description above of the argument of Breuillard,
Green and Tao.

The groups Di , on the other hand, do not feature in the torsion-free setting of
Breuillard, Green and Tao; they correspond to the elements, described before Propo-
sition 3.1, that do not contribute to the doubling of A in the torsion setting (note that
conclusion (4) of the proposition implies that Di is contained in A2 modulo Hi−1; in
particular, Di/Hi−1 is a finite group).

We will not ultimately be interested in the subgroups Ci , but their presence in the
statement of the proposition makes it easier to formulate our inductive proof. The
reader may therefore ignore these groups when it comes to applying Proposition 3.1
in later sections.

We start our proof of Proposition 3.1 with the following lemma.
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Dk+1 = Ck ⊆ Ck−1 ⊆ · · · ⊆ C1 ⊆ C0 = A

Dk

Dk−1

...

D2

D1

Hk

Hk−1

H1

H0 = {1}

Fig. 1 Illustration of Proposition 3.1

Lemma 3.2 Let G be a group with symmetric generating set B, and let Z be a normal
subgroup of G. Suppose that B∩Z is not a normal subgroup of G. Then B3∩Z\B �= ∅.

Proof If B ∩ Z is not a subgroup then we have the stronger statement that B2∩ Z\B �=
∅. If B ∩ Z is a non-normal subgroup then there exist b ∈ B and x ∈ B ∩ Z such that
b−1xb /∈ B ∩ Z . Since b−1xb ∈ B3 ∩ Z , the lemma is proved. �

Proof of Proposition 3.1 Noting thatC0 = 〈A〉 and H0 = {1} always satisfy conditions
(2), (5) and (7) of the proposition for i = 0, we show that if subgroups C0, . . . , C j

and D1, . . . , D j and elements γ1, . . . , γ j exist and satisfy the first seven conditions
of the proposition for i = 0, . . . , j , and if C j � A2Hj , then we can construct
C j+1, D j+1, γ j+1 that satisfy the first seven conditions for i = j + 1. On the other
hand, if we do have C j ⊆ A2Hj then we stop and take k = j and D j+1 = C j so
that conditions (1), (3), (4) and (8) are satisfied. Note that if j > K 6 then property (6)
would contradict Lemma 2.1, so the process must terminate with k ≤ K 6.

Write π j for the projection homomorphism π j : C j → C j/Hj , and set B j =
π j (A2 ∩ C j ). Let C j/Hj = Z1 ⊇ Z2 ⊇ · · · be a central series for C j/Hj . If
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B j = C j/Hj then we have C j ⊆ A2Hj , and the process stops; in particular, if
C j � A2Hj then B2

j �= B j by property (5), and so we may set � to be maximal such

that there exists ω j ∈ B3
j ∩ Z�\B j . Property (5) for i = j , along with Lemma 3.2 and

the maximality of �, imply that B j ∩ Z�+1 is a normal subgroup of C j/Hj , and so we
may set D j+1 to be its pullback π−1

j (B j ∩ Z�+1), which satisfies conditions (1), (3)
and (4) for i = j + 1.

Now write ρ j for the projection homomorphism ρ j : C j/Hj → C j/D j+1. Note
that ρ j (ω j ) �= 1, and moreover that this implies that ρ j (B j ) �= {1} (since ρ j (B j )

generates C j/D j+1 by the i = j case of property (5)). We may therefore let n be
maximal such that ρ j (B2

j ) ∩ ρ j (Zn) �= {1}. This implies that there exist b ∈ B2
j and

z ∈ Zn such that ρ j (b) = ρ j (z) �= 1, and in particular that there exists h ∈ B j ∩ Z�+1
such that z = bh.

We conclude that z ∈ B3
j ∩Zn , and so sinceρ j (z) �= 1we have z ∈ (B3

j ∩Zn)\(B j ∩
Z�+1). Thus n ≤ � by definition of �. In particular, ρ j (ω j ) ∈ ρ j (B3

j ) ∩ ρ j (Zn), and
so Lemmas 2.2 and 2.6 imply that

|ρ j (B2
j ) ∩ CC j /D j+1(ρ j (ω j ))| ≥ |ρ j (B j )|

K 24 .

Defining G j+1 = π−1
j ◦ ρ−1

j (CC j /D j+1(ρ j (ω j ))), we therefore have

|ρ j ◦ π j (A4 ∩ G j+1)| ≥ |ρ j (B j )|
K 24 . (3.2)

Moreover, following [11], we have

K 11|A2 ∩ G j+1| ≥ |A12 ∩ G j+1| (by Lemma 2.2)

≥ |(A4 ∩ G j+1)
3|

≥ |(A4 ∩ G j+1)
2 ∩ D j+1||ρ j ◦ π j (A4 ∩ G j+1)| (by Lemma 2.3).

Since (A4 ∩ G j+1)
2 ∩ D j+1 ⊇ A4 ∩ D j+1, we conclude that

|A2 ∩ G j+1| ≥ K −11|A4 ∩ D j+1||ρ j ◦ π j (A4 ∩ G j+1)|,

which combines with (3.2) to imply that

|A2 ∩ G j+1| ≥ K −35|A4 ∩ D j+1||ρ j (B j )|
= K −35|A4 ∩ D j+1||ρ j ◦ π j (A2 ∩ C j )|
≥ K −35|(A2 ∩ C j )

2 ∩ D j+1||ρ j ◦ π j (A2 ∩ C j )|
≥ K −35|A2 ∩ C j | (by Lemma 2.3)

≥ K −35( j+1)|A| (by property (7) for i = j).

Pick an arbitrary element γ j+1 ∈ A6∩C j such thatπ j (γ j+1) = ω j , and note that γ j+1
satisfies (6) for i = j +1 and, being contained in C j , normalises D j+1. Finally, define
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C j+1 = 〈A2∩G j+1〉Hj+1, noting that this satisfies (5) and (7) for i = j+1.Moreover,
(the image of) γ j+1 is central in G j+1/D j+i by definition, and so in particular it is
central in C j+1/D j+i , and so (2) is satisfied for i = j + 1. �

Proof of Theorem 1.5 (nilpotent case) Apply Proposition 3.1, noting that property (6)
implies that γi ∈ A6, and hence that 〈γi 〉 ⊆ A3r . It then follows from repeated
application of property (4) that Hk ⊆ A(3r+2)K 6

, and hence from property (8) that
Ck ⊆ A(3r+2)K 6+2. The result then follows from property (7) for i = k, and Corollary
2.4. �


4 Central extensions of nilpotent approximate groups

Theorem 1.2 requires us to exhibit a group H ⊆ AOK (1) and a group C such that
H � C and C/H is nilpotent of bounded step. So far, we have succeeded only in
producing the chain (3.1) given by Proposition 3.1, which in fact consists of several
quotients Di/Di−1 that are in some sense the opposite of what we are looking for:
Hi−1 is nilpotent of bounded step (indeed, abelian) in the quotient Di/Di−1, whilst
Di/Hi−1 is finite.

We have (A2 ∩ Di )Hi−1 = Di by conclusions (3) and (4) of Proposition 3.1, and
the group Hi−1 is central in the quotient Di/Di−1 by conclusion (2). The quotient
Di/Di−1 may therefore be thought of as a ‘central extension’ of the approximate
group A2 ∩ Di . In this section we describe the structure of such central extensions of
nilpotent approximate groups, as follows.

Proposition 4.1 Let G be a finitely generated nilpotent group, and let A be a K -
approximate subgroup such that G = A · Z(G). Then there exist k ≤ K 8, and normal
subgroups {1} = H0 ⊆ H1 ⊆ · · · ⊆ Hk ⊆ [G, G] of G such that Hi ⊆ A8Hi−1, and
such that [G, G] ⊆ A4Hk. In particular, [G, G] ⊆ A8K 8+4.

Remark 4.2 Essentially the same argument shows that if G = G1 ⊇ · · · ⊇ Gs ⊇
Gs+1 = {1} is the lower central series for G and G = AGs+1−i then Gi+1 ⊆ AK Oi (1) .
We leave the details to the reader.

Throughout this section, G is a finitely generated nilpotent group and A is a K -
approximate subgroup such that G = A · Z(G), as in Proposition 4.1.

Given elements a, b ∈ G we define, as usual, the commutator [a, b] by [a, b] =
a−1b−1ab. It is well known (see [26, §11.1], for example) that there exists a finite
set c1, . . . , cr of commutators, called basic commutators, such that the series {1} =
Γ0 ⊆ Γ1 ⊆ · · · ⊆ Γr formed by taking Γi = 〈c1, . . . , ci 〉 is a central series with
[G, G] = Γr , and such that every x ∈ Γi can be expressed in the form x = c�i

i · · · c�1
1 ,

with �i ∈ Z of course depending on x . Let these commutators ci and subgroups Γi be
fixed from now on.

Lemma 4.3 The set of commutators in G is contained in A4.

Proof Write π : G → G/Z(G) for the projection homomorphism. The commutator
[a, b] depends only on π(a) and π(b). Since π(A) = G/Z(G), there exist a′, b′ ∈

123



M. C. H. Tointon

A such that π(a′) = π(a) and π(b′) = π(b), and so [a, b] = [a′, b′] ∈ A4, as
desired. �

Lemma 4.4 We have Γi ⊆ A4Γi−1 for each i = 1, . . . , r .

Proof Writing ci = [ai , bi ], it follows from the easily verified identity [x, yz] =
[x, z]z−1[x, y]z that [ai , bi ]�i ∈ [ai , b�i

i ]Γi−1. The desired result therefore follows
from Lemma 4.3. �

Lemma 4.5 Let j ∈ {0, . . . , r − 1}. Then there exists j ′ > j such that Γ j ′ ⊆ A4Γ j ,
and such that either j ′ = r or Γ j ′+1 = A8Γ j ∩ Γ j ′+1 � A4Γ j .

Proof Let j ′ ≤ r be maximal such that (A4 ∩ Γ j ′)Γ j is a group, noting that j ′ > j
by Lemma 4.4. Lemma 4.4 implies that (A4 ∩ Γ j ′) generates Γ j ′ , so in fact we have
(A4 ∩ Γ j ′)Γ j = Γ j ′ ; in particular, Γ j ′ ⊆ A4Γ j , as required. If j ′ �= r then (A4 ∩
Γ j ′+1)Γ j is not a group by definition of j ′, and in particular we have (A8∩Γ j ′+1)Γ j �

(A4 ∩ Γ j ′+1)Γ j , and hence A8Γ j ∩ Γ j ′+1 � A4Γ j . However, Γ j ′+1 = A8Γ j ∩ Γ j ′+1
by Lemma 4.4. �

Proof of Proposition 4.1 It follows from repeated application of Lemma 4.5 that there
exist k ∈ Z and 0 = j(0) < j(1) < · · · < j(k) such that Γ j(i) = A8Γ j(i−1) ∩Γ j(i) �

A4Γ j(i−1) for each i , and such that [G, G] ⊆ A4Γ j(k). Lemma2.1 implies that k ≤ K 8,
and so we may take Hi = Γ j(i) in Proposition 4.1. �


5 Nilpotent groups

In this section we prove Theorem 1.2 under the assumption that G is nilpotent. In fact,
we prove the following slightly more detailed result, which includes some additional
conclusions that are of use when generalising to the residually nilpotent setting.

Proposition 5.1 (Nilpotent case of Theorem 1.2) Let G be a nilpotent group and
suppose that A is a K -approximate subgroup of G. Then there exist subgroups H�C ⊆
G such that

(a) H ⊆ AOK (1);
(b) C/H is nilpotent of step at most K 6;
(c) C is generated by A6 ∩ C;
(d) |A2 ∩ C | ≥ exp(−K O(1))|A|;
(e) A can be covered by exp(K O(1)) left cosets of C.

We use the following special case of a lemma of Guralnick [25].

Lemma 5.2 ([25, Lemma 3.1]) Let G be a group, and let D be an abelian normal
subgroup of G such that G = 〈x1, . . . , xn, D〉. Then [G, D]={∏n

i=1[xi , di ]:di ∈ D}.
Proof of Proposition 5.1 Let k, D1, . . . , Dk+1, γ1 . . . , γk be as given by Proposition
3.1, write Zi = 〈γi 〉, and write C = Dk+1; the group C acts to some extent as the
ambient group in this proof. Note that Proposition 3.1 (4) and (6) imply that C is
generated by A6 ∩ C , and so property (c) of the present proposition is satisfied.
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We have |A2 ∩ C | ≥ K −35k |A| and k ≤ K 6, and so Corollary 2.4 implies that A is
covered by K 35K 6+2 translates ofC , and properties (d) and (e) are satisfied.Moreover,
for each i we have Di normal in C , and Di+1 ⊆ A2Zi Di with Zi central in C/Di .
Finally, D1 ⊆ A2.

We claim that there exist the following.

(i) Subgroups Dk+1 ⊇ Dk ⊇ · · · ⊇ D1, normal in C , such that Dk+1 = C and
Di ⊆ Di ⊆ AOK ,(k−i)(1) Di otherwise, and such that Di+1 is central in C/Di .

(ii) Non-negative integers r(k) ≤ · · · ≤ r(1) such that r(i) ≤ OK ,(k−i)(1), and
elements x1, . . . , xr(1) ∈ C such that x1, . . . , xr(i) ∈ AOK ,(k−i)(1), and such that
Di+1 = 〈xr(i+1)+1, . . . , xr(i), Di 〉.

Note that part (i) of the claim is enough to prove the proposition, since we may take
H = D1, and then (Di/D1) is a central series of length at most K 6 +1 for C/H . Part
(ii) exists only to facilitate an inductive proof of part (i).

To prove the claim, we assume that Dk+1, . . . , Di+1 and x1, . . . , xr(i+1) have been
constructed and satisfy (i) and (ii), and then construct Di and r(i). This assumption
implies that there exists m ≤ OK ,(k−i)(1) such that Di+1 = (Am ∩ Di+1)Zi Di .
Lemma 2.2 implies that Am ∩ Di+1 is an OK ,(k−i)(1)-approximate group, and so
Proposition 4.1 applied to Di+1/Di implies that [Di+1, Di+1] ⊆ AOK ,(k−i)(1) Di .

Since Di+1 is normal in C , so is [Di+1, Di+1], and so we may define a nor-
mal subgroup D′

i = [Di+1, Di+1]Di , noting that D′
i ⊆ AOK ,(k−i)(1)Di . Since Di+1

is abelian in C/D′
i , we may apply Lemma 5.2 in this quotient to conclude that

[C, Di+1] ⊆ {∏r(i+1)
j=1 [x j , d j ] : d j ∈ Di+1}D′

i .

Since Zi is central in C/Di , the image of [x j , d j ] in Di+1/Di when d j ∈ Di+1

depends only on the image of d j in the quotient Di+1/Zi Di . Moreover, for each
d j ∈ Di+1 there exists d ′

j ∈ Am ∩ Di+1 with the same image as d j in Di+1/Zi Di .

Every such commutator [x j , d j ] therefore lies in AOK ,(k−i)(1)Di . In particular, setting
D′′

i = [C, Di+1]D′
i we have D′′

i ⊆ AOK ,(k−i)(1) Di , with D′′
i normal in C .

The image of Am ∩ Di+1 in C/D′′
i is an abelian OK ,(k−i)(1)-approximate group

by Lemma 2.2, and so it follows from Theorem 2.7 that there exist y1, . . . , yn ∈
AOK ,(k−i)(1) ∩ Di+1, with n ≤ OK ,(k−i)(1), and a set B ⊆ AOK ,(k−i)(1) ∩ Di+1 such
that B D′′

i is a group, such that Di+1 = 〈y1, . . . , yn, B D′′
i 〉. Set r(i) = r(i + 1) + n,

and set xr(i+1)+ j = y j for j = 1, . . . , n.
Since the image of Di+1 in C/D′′

i is central, the group B D′′
i is normal. Note,

moreover, that B D′′
i ⊆ AOK ,(k−i)(1)Di . Thus we can finally define Di = B D′′

i , and
the claim, and hence the proposition, is proved. �


6 Residually nilpotent groups

A group G is said to be residually nilpotent if for every non-identity element g ∈ G
there exists a nilpotent group N and a homomorphismπ : G → N such thatπ(g) �= 1.
This is a strictly weaker condition than that of being nilpotent: finitely generated free
groups are residually nilpotent, for example. In this section we extend our results
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from nilpotent groups to this more general setting, using an argument similar to one
appearing in [11].

It will be convenient first to note that being residually nilpotent is in fact equivalent
to an apparently slightly stronger condition, as follows.

Lemma 6.1 Let G be a residually nilpotent group and let A ⊆ G be a finite set such
that 1 /∈ A. Then there exists a nilpotent group N and a homomorphism π : G → N
such that A ∩ ker π = ∅.

Proof By definition, for each a ∈ A there exists a nilpotent group Na and a homo-
morphism πa : G → Na such that πa(a) �= 1. In particular, writing sa for the step of
Na and G = G1 ⊇ G2 ⊇ · · · for the lower central series of G we have a /∈ Gsa+1.
Writing s = maxa∈A sa , we may therefore take π to be the projection homomorphism
π : G → G/Gs+1. �

Lemma 6.2 Let G be a group, and let A ⊆ G be a symmetric set containing the
identity. Let N be another group, and let π : G → N be a homomorphism. Let
H ⊂ π(A) be a subgroup of N. Then we have the following.

1. If A2 ∩ ker π = {1} then π is injective on A.
2. If A3 ∩ ker π = {1} then there exists a subgroup H ′ ⊆ A isomorphic to H via π .
3. If A4 ∩ ker π = {1} then H ′ is normal in 〈A〉 if and only if H is normal in 〈π(A)〉.
Proof Item (1) follows from the fact that if π(a) = π(a′) then a−1a′ ∈ ker π , and in
turn implies that for each h ∈ H there is a unique φ(h) ∈ A such that π(φ(h)) = h.
Given h, h′ ∈ H we have φ(h)φ(h′)φ(hh′)−1 ∈ A3 ∩ ker π . If A3 ∩ ker π = {1},
it therefore follows that φ(h)φ(h′) = φ(hh′), and hence that H ′ = φ(H) ⊆ A is a
subgroup. Item (1) implies moreover that π |H ′ : H ′ → H is an isomorphism.

If H is normal in 〈π(A)〉 then for every a ∈ A and h ∈ H there exists ĥ ∈ H
such that π(a−1)hπ(a) = ĥ. In particular, a−1φ(h)aφ(ĥ−1) ∈ ker π ∩ A4, so if
A4 ∩ ker π = {1} then a−1φ(h)a ∈ H ′, and hence H ′ is normal in 〈A〉. �

Proof of Theorem 1.5 The theorem holds for nilpotent groups by the proof given at
the end of Sect. 3. Set M = (3r + 2)K 6 + 3. Lemma 6.1 implies that there exists
a homomorphism π from G to a nilpotent group N such that A3M ∩ ker π = {1}.
Applying the nilpotent version of the theorem to π(A), we conclude that there exists a
subgroup C ⊆ π(AM−1) and a subset X ⊆ A with |X | ≤ K 35K 6+2 such that π(A) ⊆
π(X)C . However, Lemma 6.2 (2) implies that there exists a subgroup C ′ ⊆ AM−1

such that π |C ′ : C ′ → C is an isomorphism, and so for every a ∈ A there exist x ∈ X
and c ∈ C ′ such that π(a) = π(xc). Since π is injective on AM by Lemma 6.2 (1),
we conclude that a = xc, and so A ⊆ XC ′ and the theorem is proved. �


Recall that the simple commutator of weight k in the elements x1, . . . , xk is defined
inductively by [x1, x2] := x−1

1 x−2
2 x1x2 and [x1, . . . , xk] := [[x1, . . . , xk−1], xk], and

that a group G generated by a set X is nilpotent of step s if and only if every simple
commutator of weight s + 1 in elements of X is trivial [26].

Proof of Theorem 1.2 Let m be the quantity implied by the OK (1) notation in Propo-
sition 5.1 (a), let � be the word length of a simple commutator of weight K 6 + 1, and
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let M ≥ m(�+1). Lemma 6.1 implies that there exists a homomorphism π from G to
a nilpotent group N such that A4M ∩ ker π = {1}. Applying Proposition 5.1 to π(A),
we conclude that there exist subgroups H � C ⊆ N such that H ⊆ π(Am), such that
C/H is nilpotent of step at most K 6, such that C is generated by π(A6)∩C , and such
that |π(A2) ∩ C | ≥ exp(−K O(1))|π(A)|.

Define C ′ = 〈Am ∩π−1(C)〉, noting that π(C ′) = C . Note also that H ⊆ π(Am ∩
π−1(C)) = π(Am ∩ C ′), and so Lemma 6.2 implies that there is a normal subgroup
H ′ � C ′ such that H ′ ⊆ Am and such that π |H ′ : H ′ → H is an isomorphism.

Set k = K 6. Following [11], if x1, . . . , xk+1 ∈ Am ∩ C ′ then the nilpotency of
C/H implies that [π(x1), . . . , π(xk+1)] ∈ H , which implies that there exists h ∈
H ′ such that [π(x1), . . . , π(xk+1)]π(h) = 1. By Lemma 6.2 (1) this implies that
[x1, . . . , xk+1]h = 1, and so we conclude that C ′/H ′ is nilpotent of step at most K 6.

Finally, note that π(A2) ∩ C = π(A2 ∩ C ′), and hence, by Lemma 6.2 (1), that
|A2 ∩ C ′| = |π(A2) ∩ C | ≥ exp(−K O(1))|π(A)| = exp(−K O(1))|A|. The theorem
therefore follows from Corollary 2.4. �

Proof of Corollary 1.4 It follows from Theorem 1.2 and Lemma 2.3 that A can be
covered by exp(K O(1)) translates of A2 ∩ C . Writing π : C → C/H , Lemma 2.2
implies that π(A2 ∩ C) is a K 3-approximate subgroup of the K 6-step nilpotent group
C/H . The result then follows from Theorem 2.8. �


7 Growth

Proof of Corollary 1.6 We start by proving the corollary under the additional assump-
tion that n ≥ N , where N ∈ N is some constant to be determined shortly. If (1.3)
holds then in particular we have |Sn| ≤ nc log log n|S�n1/2�|, which we may re-write as
|Sn| ≤ (log n)c log n|S�n1/2�| = (log n)2c log n1/2 |S�n1/2�|. This implies that there exists
r ∈ [0, log5 n1/2] such that

∣
∣
∣S5r+1�n1/2�

∣
∣
∣ ≤ (log n)O(c)

∣
∣
∣S5r �n1/2�

∣
∣
∣ .

It then follows from [13, Lemma 2.2], for example, that S2·5r �n1/2� is a (log n)O(c)-
approximate group. Provided c is small enough and N is large enough, Theorem 1.2
therefore implies that there is a subgroup C of G and a normal subgroup H � C
contained in SOn(1) such that C/H is nilpotent of step at most log n − 1, and such that
S�n1/2� is contained in at most n1/2 left cosets of C . In particular, [13, Lemma 2.7]
implies that C has index at most n1/2 in G.

Following the proof of [10, Corollary 11.7], note that C acts on H by conjugation.
Since |H | ≤ On(1), the permutation group of H has cardinality at most On(1), and
hence the stabiliser C ′ < C of this action has index at most On(1). This proves the
corollary for n ≥ N , since C ′ is nilpotent of step at most log n.

Replacing c by a smaller constant if necessary, wemay assume that N c log log N < 2;
this ensures that if (1.3) holds for some n ∈ [2, N ] then G is the trivial group, and
hence satisfies the corollary. This completes the proof for all n ≥ 2. �
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Conference (2013). arXiv:1301.7718
13. Breuillard, E., Tointon, M.C.H.: Nilprogressions and groups with moderate growth. arXiv:1506.00886
14. Dixon, J.D., Du Sautoy, M.P.F., Mann, A., Segal, D.: Analytic pro-p groups, Cambridge studies in

advanced mathematics, vol. 61, 2nd edn. Cambridge Univ. Press, Cambridge (2003)
15. Eberhard, S.: A note on nonabelian Freiman–Ruzsa. arXiv:1511.06758
16. Freiman, G.A.: Foundations of a structural theory of set addition, Translations of Mathematical Mono-

graphs, vol. 37. Amer. Math. Soc., Providence. Translated from the 1966 Russian version, published
by Kazan Gos. Ped, Inst (1973)

17. Gill, N., Helfgott, H.A.: Growth in solvable subgroups of GLr (Z/pZ). Math. Ann. 360(1), 157–208
(2014)

18. Gleason, A.M.: Compact subgroups. Proc. Natl. Acad. Sci. USA 37(9), 622–623 (1951)
19. Green, B.J.: Approximate groups and their applications: work of Bourgain, Gamburd, Helfgott and

Sarnak. Current events bulletin of the AMS (2010). arXiv:0911.3354
20. Green, B.J.: Approximate algebraic structure. In: Proc. ICM 2014. arXiv:1404.0093
21. Green, B.J., Ruzsa, I.Z.: Freiman’s theorem in an arbitrary abelian group. J. Lond. Math. Soc. 75(1),

163–175 (2007)
22. Grigorchuk, R.I.: On the Hilbert–Poincaré series of graded algebras that are associated with groups.

Mat. Sb. 180(2), 207–225, 304 (1989). English translation Math. USSR-Sb. 66(1), 211–229 (1990)
23. Grigorchuk, R.I.: On the Gap conjecture concerning group growth. Bull. Math. Sci. 4, 113–128 (2014)
24. Gromov, M.: Groups of polynomial growth and expanding maps. Publ. Math. IHES 53, 53–73 (1981)
25. Guralnick, R.M.: On a result of Schur. J. Algebra 59, 302–310 (1979)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/0804.1395
http://arxiv.org/abs/1101.2552
http://arxiv.org/abs/1301.7718
http://arxiv.org/abs/1506.00886
http://arxiv.org/abs/1511.06758
http://arxiv.org/abs/0911.3354
http://arxiv.org/abs/1404.0093


Approximate subgroups of residually nilpotent groups

26. Hall, M.: The Theory of Groups. Amer. Math. Soc./Chelsea, Providence (1999)
27. Helfgott, H.A.: Growth and generation in SL2(Z/pZ). Ann. Math. 167, 601–623 (2008)
28. Helfgott, H.A.: Growth in SL3(Z/pZ). J. Eur. Math. Soc. 13(3), 761–851 (2011)
29. Helfgott, H.A.: Growth in groups: ideas and perspectives. arXiv:1303.0239
30. Hrushovski, E.: Stable group theory and approximate subgroups. J. Am. Math. Soc. 25(1), 189–243

(2012)
31. Lubotzky, A., Mann, A.: On groups of polynomial subgroup growth. Invent. Math. 104, 521–533

(1991)
32. Lubotzky, A., Segal, D.: Subgroup Growth, Progress in Mathematics, vol. 212. Birkhäuser, Basel

(2003)
33. Pyber, L., Szabó, E.: Growth in finite simple groups of Lie type of bounded rank. arXiv:1005.1858
34. Ruzsa, I.Z.: Generalized arithmetical progressions and sumsets. Acta Math. Hungar. 65(4), 379–388

(1994)
35. Ruzsa, I.Z.: An analog of Freiman’s theorem in groups, structure theory of set addition. Astérisque

258, 323–326 (1999)
36. Sanders, T.: On the Bogolyubov–Ruzsa lemma. Anal. PDE. 5(3), 627–655 (2012)
37. Sanders, T.: The structure theory of set addition revisited. Bull. Am. Math. Soc. 50, 93–127 (2013)
38. Schoen, T.: Near optimal bounds in Freimans theorem. Duke Math. J. 158, 1–12 (2011)
39. Shalom, Y., Tao, T.C.: A finitary version of Gromov’s polynomial growth theorem. Geom. Funct. Anal.

20(6), 1502–1547 (2010)
40. Tao, T.C.: Freiman’s theorem for solvable groups. Contrib. Discrete Math. 5(2), 137–184 (2010)
41. Tao, T.C.: Product set estimates for non-commutative groups. Combinatorica 28(5), 547–594 (2008)
42. Tessera, R., Tointon, M.C.H.: Properness of nilprogressions and the persistence of polynomial growth

of given degree. arXiv:1612.05152
43. Tointon, M.C.H.: Freiman’s theorem in an arbitrary nilpotent group. Proc. Lond. Math. Soc. (3) 109,

318–352 (2014)
44. Wehrfritz, B.A.F.: Groups of automorphisms of soluble groups. Proc. Lond.Math. Soc. (3) 20, 101–122

(1970)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1303.0239
http://arxiv.org/abs/1005.1858
http://arxiv.org/abs/1612.05152

	Approximate subgroups of residually nilpotent groups
	Abstract
	1 Introduction
	2 Background on approximate groups
	3 A preliminary structure theorem for nilpotent approximate groups
	4 Central extensions of nilpotent approximate groups
	5 Nilpotent groups
	6 Residually nilpotent groups
	7 Growth
	Acknowledgements
	References




