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Abstract
Healthy cortical development depends on precise regulation of transcription and translation. However, the dynamics
of how proteins are expressed, function and interact across postnatal human cortical development remain poorly
understood. We surveyed the proteomic landscape of 69 dorsolateral prefrontal cortex samples across seven stages of
postnatal life and integrated these data with paired transcriptome data. We detected 911 proteins by liquid
chromatography-mass spectrometry, and 83 were significantly associated with postnatal age (FDR < 5%). Network
analysis identified three modules of co-regulated proteins correlated with age, including two modules with increasing
expression involved in gliogenesis and NADH metabolism and one neurogenesis-related module with decreasing
expression throughout development. Integration with paired transcriptome data revealed that these age-related
protein modules overlapped with RNA modules and displayed collinear developmental trajectories. Importantly, RNA
expression profiles that are dynamically regulated throughout cortical development display tighter correlations with
their respective translated protein expression compared to those RNA profiles that are not. Moreover, the
correspondence between RNA and protein expression significantly decreases as a function of cortical aging, especially
for genes involved in myelination and cytoskeleton organization. Finally, we used this data resource to elucidate the
functional impact of genetic risk loci for intellectual disability, converging on gliogenesis, myelination and ATP-
metabolism modules in the proteome and transcriptome. We share all data in an interactive, searchable companion
website. Collectively, our findings reveal dynamic aspects of protein regulation and provide new insights into brain
development, maturation, and disease.

Introduction
The human prefrontal cortex plays a critical role for

higher cognitive processes, including executive function,
social cognition and judgment, and has been implicated in
the onset and progression of many, if not most, neuro-
developmental disorders1–6. The development of a prop-
erly functioning prefrontal cortex depends upon the

proliferation and signaling of several cell types as well as
the reprograming of transcriptional and translational
pathways that unfold over the first two-three decades of
postnatal life7. During this time, the brain quadruples in
size, and grows through interneuronal genesis and
maturation, glial multiplication, myelination, formation of
new synaptic connections, and pruning of unused
synaptic connections8–10. Such processes are orchestrated
by thousands of molecules in a tightly synchronized spa-
tiotemporal fashion, and the disruption of any one of
which may result in loss of cortical integrity and home-
ostasis10, leading to cognitive deficits seen in patients with
neurodevelopmental abnormalities. Therefore, under-
standing the molecular factors governing long-term brain
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development in normal individuals is critical for the
identification of neurodevelopment mechanisms and
developmental vulnerability periods.
Much of our current knowledge of the biological chan-

ges underlying human brain development has been infer-
red from large transcriptomic investigations. Initial reports
of the developing human brain transcriptome revealed
marked changes across development and aging, with the
largest gene expression changes occurring prenatally and
during infancy and early childhood11–14; ages when many
neurodevelopmental disorders become clinically recog-
nizable. In parallel, several studies have identified devel-
opmental transcriptional networks with regional and cell
type specific expression patterns enriched within neuro-
developmental disorder-associated genetic risk loci15–18,
providing mechanistic insights of how mutations in risk
genes might perturb typical brain development. Several
studies consistently report, however, that levels of mes-
senger RNA and their respective translated proteins often
correlate poorly19–22. As proteins are the main functional
components in all cells, generating equivalent proteomic
information across human brain development represents a
critical gap in the field.
Mass spectrometry-based proteomics provides a com-

prehensive and complimentary perspective to tran-
scriptomic changes and can serve as an indicator for
functional and network levels of aging. Although human
proteome research has predominately focused on defining
a disease signature within a specific developmental period,
there has been some progress in understanding the
developmental proteome23–25. For example, a recent
study profiled the orbitofrontal cortex and identified 127
proteins implicated in cellular growth and proliferation
that were differentially expressed between young or old
human male individuals23. A separate study profiled seven
different brain regions across 11 developmentally distinct
individuals and found substantial differences in protein
abundance between brain regions, reflective of cytoarch-
itectural and functional variation25. While these investi-
gations have been key for informing mechanisms of brain
development, it has been challenging for proteome
research to identify highly abundant and reproducible
proteins across dozens of biological replicates. More
selective mass spectrometry techniques that are tailored
to detect highly abundant proteins across larger sample
sizes are required to accurately infer long-term time-
dependent protein expression patterns. As such, a critical
remaining question is how the brain proteome unfolds
throughout development, and ultimately how this infor-
mation may inform brain mechanisms governing health
and disease.
The current investigation applied label-free liquid

chromatography-mass spectrometry (LC-MS) proteomics

to 69 dorsolateral prefrontal cortex (DLPFC) samples
from healthy individuals aged 39 days to 49.5 years. These
proteomic data were integrated with paired tran-
scriptome data from matching DLPFC samples and
together comprise a unique resource of well-annotated
anatomical structures of fresh human brains from seven
different developmental stages. A multistep analytic
approach was used that specifically sought to address two
main goals: (1) to identify proteins and networks of highly
correlated proteins significantly associated with distinct
developmental stages and that changed with human age;
and (2) to determine the biological organization of the
proteome across postnatal development and clarify the
relationship between protein levels and their corre-
sponding mRNA levels in the DLPFC. We share our data
in an integrative, searchable companion website to enable
the discovery and localization of RNAs and proteins of
interest for further investigation and to enhance our
understanding of the temporally-defined molecular
mechanisms governing typical and pathological DLPFC
development.

Materials and methods
Postmortem brain sample ascertainment
The current study analyzed fresh frozen postmortem

DLPFC tissue (BA46) from 69 individuals varying in age
from 39 days to 49.5 years (Table S1). The age range
investigated in the current study reflects the vulnerability
period for the development of neurodevelopmental and
neuropsychiatric disorders. All samples were obtained
from the National Child Health and Human Development
Brain and Tissue Bank for Developmental Disorders at the
University of Maryland, Baltimore, USA (UMBB). All
subjects were defined as healthy individuals by forensic
pathologists at UMBB, having no history of psychiatric or
neurological complaints, also confirmed by next of kin
interviews. These collected DLPFC samples comprised a
broad range of developmental milestones, spanning neo-
natal (n= 11), infantile (n= 14), toddler (n= 10), school
aged (n= 9), adolescence (n= 8), young adulthood (n=
9), and adulthood (n= 8). Each developmental stage was
matched for gender, postmortem interval (PMI), pH, and
ethnicity. The total sample included 41 males and 28
females covering African American (n= 36), Caucasian
(n= 34), and Hispanic (n= 1) ethnic backgrounds. The
average measures for PMI and pH are as follows: PMI
(17.1 ± 7.0 h); pH (6.6 ± 0.2). A subgroup of these samples
also underwent microarray transcriptome profiling (n=
44), consisting of 27 males and 17 females, and covariates
were recorded: pH (6.7 ± 0.15), PMI (16.9 ± 7.5 h) and
ethnicity (24 Caucasian, 20 African American). Detailed
demographic and technical information on all samples
can be found in Table S1.
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Tissue and protein extraction
Samples were dissected using a fine dental drill from the

middle frontal gyrus at a level just rostral to the genu of
the corpus callosum and the resulting tissue (average
weight ~500mg) was stored at −80 °C until use. Proteins
were extracted by sonicating each sample (~70 mg) in
350 μl lysis buffer (7M urea, 2M thiourea, 4% 3-[(3-
cholamidopropyl)dimethylammonio]-1-propanesulfonate
(CHAPS), 2% ASB14 and 70mM dithiotreitol (DTT),
followed by sonication for two cycles of 15 s on ice using a
Branson Sonifier 150 (Thistle Scientific, Glasgow, UK). A
50 μl aliquot of each protein extract was precipitated for
4 h with 200 μl of acetone at −20 °C. The precipitates
were centrifuged for 30 min at 13,400 rpm, at 4 °C, the
acetone supernatant decanted and discarded. The result-
ing pellets were re-suspended in 200 μl of 50 mM
ammonium bicarbonate (pH 8.0) and sonicated for 10 s.
Once re-suspended, protein concentration was measured
by Bradford Assay. An aliquot of each precipitated protein
extract, equivalent to 100 μg of protein, was reduced with
100mM DTT for 30 min at 60 °C, alkylated with 200mM
iodoacetamide at room temperature for 30min in dark
and digested with 4 μl of 0.5 μg/μl of modified sequencing
grade trypsin at 37 °C for 17 h. Digestion reaction was
stopped by adding 0.80 μl 8.8M hydrochloric acid (1:60).
An aliquot of 5 μl from each digested sample was pooled
together to be used as standard26.

Liquid chromatography-mass spectrometry and protein
quantification
Tryptic peptides were analyzed by a shotgun LC-MS

approach using a 1290 Infinity LC coupled to Agilent
6550 iFunnel Q-TOF instrument (Agilent Technology,
USA). Peptide separation was carried out using an Agilent
AdvanceBio Peptide column (2.1 µm × 250mm, 2.7 µm)
over a 90 min linear gradient of 3–45% ACN. The flow
rate was 0.3 mL/min and the column temperature was set
to 50 °C. Peptides were then detected by quadrupole time-
of-flight (Q-TOF) MS operated in positive mode. Acqui-
sition was in data-dependent mode over m/z 300–1700.
The top 10 precursor ions were scanned from 300 to 1700
and MS/MS from 50 to 1700. The precursor ions were
then automatically isolated and fragmented using collision
induced dissociation (CID) with a relative collision energy
calculated using the formula, 3.6*(m/z)/100+−4.8. Data
files were processed by Spectrum Mill Protein Identifi-
cation software (Rev B.05.00.180, Agilent Technologies,
USA). The protein identification was executed against the
Swiss-Prot database (released in February 2015, Homo
sapiens). Search parameters were as follows; precursor
mass tolerance, 20 ppm; product ion mass tolerance,
50 ppm; maximum two missed cleavages allowed; digested
by trypsin; fixed modification of carbamidomethyl
cysteine; variable modifications of oxidized methionine.

After MS/MS searching, auto-validation was carried out
by calculating the false-discovery rate (FDR). A FDR
threshold of 1.2 was applied. Relative protein quantifica-
tion was achieved using only distinct peptides that
assigned to each protein. Unique peptide intensities were
calculated from extracted ion chromatograms (MS1) from
the precursor ions. Total peak intensities of all distinct
peptides were then calculated to form relative protein
expression levels.

RNA isolation and microarray hybridization
All RNA procedures have previously been described27.

Briefly, total RNA was extracted from DLPFC samples
using Trizol (Sigma-Aldrich, St. Louis, MO, USA) and
RNA quality was assessed using a high-resolution elec-
trophoresis system (Agilent Technologies, Santa Clara,
CA, USA). Isolated total RNA was subjected to Affymetrix
preparation protocol and each sample was hybridized to
one HG-U133 Plus 2.0 GeneChip (Affymetrix, Santa
Clara, CA, USA) to quantify transcriptome-wide gene
expression.

Data pre-processing
All data pre-processing and statistical analyses were

conducted in the statistical package R. Proteins detected
in at least 60% of all samples were labeled high-confidence
proteins and used for downstream analyses. First, all data
were normalized to fit approximate normal distribution.
Protein data were median scaled by all runs and log(e)
transformed. Protein Uniprot IDs were converted to
HGNC symbols using the Uniprot database (http://www.
uniprot.org/uploadlists/). Microarray data were normal-
ized using the robust multi-array average normalization
with additional GC-correction (GCRMA)28. When mul-
tiple microarray probes mapped to the same HGNC
symbol, the probe the highest average expression across
all samples was used. Following normalization, all data
were inspected for outlying samples using unsupervised
hierarchical clustering (based on Pearson coefficient and
average distance metric) and principal component ana-
lysis to identify potential outliers outside two standard
deviations from these grand averages; no outliers were
present in these data. Linear mixed models from the R
package29 were used to characterize and identify biologi-
cal and/or technical drivers that may affect the observed
RNA and protein abundance. This approach quantifies
the main sources of variation in each expression dataset
attributable to differences in age, age group, gender, PMI,
pH, and ethnicity. Finally, to identify age-related genes
and proteins, generalized linear models with Bonferroni
multiple test correction were implemented. The covari-
ates gender, pH, PMI and ethnicity were included in the
models to adjust for their potential confounding influence
on RNA and protein expression (lm(age ~ expression+
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PMI+ sex+ pH+ ethnicity)). Further, a Spearman’s
correlation test was used to identify individual genes and
proteins whose expression profile were significantly cor-
related with a pre-defined developmental stage or tem-
plate (e.g., toddlers), which had been binarized (0 or 1) to
quantify associations with expression.

Weighted correlation network analyses
Prior to network analysis, missing protein values were

imputed using predictive mean matching in the MICE
package30 (number of multiple imputations, m= 5; the
number of iterations, maxit= 50). A high-confidence set
of proteins detected in at least 60% of the sample were
used to make meaningful imputations. Weighted gene
correlation network analysis (WGCNA)31 was used to
build signed co-expression networks independently for
the transcriptome (n= 20,122 genes) and proteome (n=
584 proteins). To construct each network, the absolute
values of Pearson correlation coefficients were calculated
for all possible gene pairs (transcriptome data) and pro-
tein pairs (proteome data), and resulting values were
transformed with an exponential weight (β) so that the
final matrices followed an approximate scale-free topol-
ogy (R2). Thus, for each network we only considered
powers of β that lead to a network satisfying scale-free
topology (i.e., R2 > 0.80), so the mean connectivity is high
and the network contains enough information for module
detection. The dynamic tree-cut algorithm was used to
detect network modules with a minimum module size set
to 30 and cut tree height set to 0.9999. The identified
RNA and protein modules were inspected for association
to age, as well as seven distinct postnatal stages and all
recorded covariates. To do so, singular value decom-
position of each modules expression matrix was per-
formed and the resulting module eigengene (ME),
equivalent to the first principal component, was used to
represent the overall expression profiles for each module
per sample. Modules were evaluated both quantitatively
and qualitatively for expression patterns significantly
associated with age (Figure S3). Fisher’s exact tests were
used to assess the overlap of RNA and protein modules
and correlations amongst RNA and protein ME’s were
explored using Pearson’s correlation coefficients.
A series of module preservation analyses sought to

determine whether (i) co-regulated modules of proteins
are preserved at the RNA level and (ii) whether RNA
modules are reproducible in independent BrainSpan data.
We collected publically available BrainSpan data (http://
www.brainspan.org/) and used only postnatal samples
(n= 17) to best reflect the developmental biology of our
current sample (Fig. S8). For these analyses, module
preservation was assessed using a permutation-based
preservation statistic, Zsummary, implemented within
WGCNA with 500 random permutations of the data32.

Zsummary takes into account the overlap in module
membership as well as the density and connectivity pat-
terns of genes within modules. A Zsummary score < 2
indicates no evidence of preservation, 2 < Zsummary < 10
implies weak preservation and Zsummary > 10 suggests
strong preservation.

Functional annotation and protein–protein interaction
networks
All age-related RNAs and proteins identified through

either linear regression or network-based analyses, were
subjected to functional annotation using the ToppFun
module of ToppGene Suite software33. We explored gene
ontology terms related to biological processes and mole-
cular factors using a one-tailed hyper-geometric tested
(Benjamini–Hochberg FDR corrected) to assess the sig-
nificance of the overlap. All terms must pass an FDR
corrected p-value and a minimum of five genes/proteins
per ontology were used as filters prior to pruning ontol-
ogies to less redundant terms.
The STRING database v9.134 was used to assess whe-

ther RNA and protein modules were significantly enri-
ched for direct protein–protein interactions (PPIs) and to
identify key genes/proteins mediating the regulation of
multiple targets. For these analyses, our signature query of
RNA or protein modules were used as input. STRING
implements a scoring scheme to report the confidence
level for each direct PPI (low confidence: < 0.4; medium:
0.4–0.7; high: > 0.7). We used a combined STRING score
> 0.04. Hub genes within the PPI network are defined as
those with the highest degree of network connections. We
further used STRING to test whether the number of
observed PPIs were significantly more than expected by
chance using a nontrivial random background model. For
visualization, the STRING network was imported into
Cytoscape35.

Cell type and genetic risk loci enrichment analyses
CNS cell type specific markers were collected from

three independent resources, including cell type specific
genes from RNA-sequencing36,37 and mass spectrometry-
based proteomics38. In order for a gene/protein to be
labeled cell type specific, each marker required a mini-
mum log2 expression of 1.4 units and a difference of 0.8
units above the next most abundance cell type measure-
ment, as previously shown18. Mouse homologs were
identified and converted into human HGNC gene sym-
bols using the mygene R package39. In parallel, neurode-
velopmental disorder genetic risk loci were curated from
human whole exome and genome-wide association stu-
dies of autism spectrum disorder40, epilepsy41, develop-
mental delay (OMIM)42, intellectual disability15, and
schizophrenia43. Overrepresentation of cell type markers
and genetic risk-related gene sets within proteome and
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transcriptome modules was analyzed using a one-sided
Fisher exact test to assess the statistical significance. All p-
values, from all gene sets and modules, were adjusted for
multiple testing using the Benjamini–Hochberg proce-
dure. We required an adjusted p-value < 0.05 to claim that
a gene set is enriched within a module. Lists of neuro-
developmental genetic risk loci can be found in Table S7.

Cell type deconvolution
The frequencies of brain cell types were estimated for

proteomic using Cibersort44 cell type deconvolution
(https://cibersort.stanford.edu/). Cibersort relies on
known cell subset specific marker genes and applies linear
support vector regression, a machine learning approach
highly robust compared to other methods with respect to
noise, unknown mixture content and closely related cell
types. As input, we used a curated cell type specific pro-
tein signature matrix38 to distinguish between neurons,
oligodendrocytes, astrocytes, and microglia. We were
unable to obtain sufficient enough overlap for microglial
markers based on protein detection to make meaningful
predictions for this cell type.

Results
Proteome organization in the developing dorsolateral
prefrontral cortex
A shotgun proteomics approach was applied to measure

temporal protein abundance in 69 DLPFC samples
(Brodmann area 46) from normal individuals, aged
39 days to 49.5 years. Following standardized data pre-
processing (Fig. S1), we detected 911 proteins for which a
total of 386 proteins were assigned low-confidence mea-
sures of protein detection and 584 proteins were assigned
high confidence on the basis of being detected across >
60% of all samples (see methods). For the low-confidence
proteins, rates of protein detection were moderately
influenced by different developmental stages, whereby 60
proteins, which were predominately post-synaptic density
proteins, were more likely to be detected during early
developmental stages and 99 proteins, which were
implicated in cellular respiration and GTPase binding,
were more likely to be detected during adulthood (Fig. S2,
Table S2).
To reduce the probability of false positives, we restricted

downstream analyses to only proteins with high-
confidence levels of protein detection. For these pro-
teins, a substantial amount of protein expression variation
was explained by age relative to other biological factors
(Fig. 1a–c). Next, we sought to identify proteins that were
significantly regulated as a function of postnatal age and
identified 83 proteins (FDR p < 0.05), including 66 with
decreasing abundance and 17 with increasing abundance
across postnatal stages (Table S2). The top ten most sig-
nificantly increased and decreased age-related proteins

are displayed in Table 1. Several significant age-related
proteins mapped to known neurodevelopmental genetic
risk loci, including genetic loci implicated in autism
spectrum disorder (ASD) (ANK2, YWHAE, L1CAM,
FABP5, NRCAM), intellectual disability (L1CAM, PLP1,
PSAP, QDPR), and schizophrenia (NCAN, ALCAM,
GNAO1, PSAP, NFASC). In addition, we also observed
that the neonatal time period (38–89 days) explained the
largest fraction of protein level variability according to
age, including 131 neonatal-related proteins (FDR p <
0.05) strongly enriched for central nervous system
development, neurogenesis and gliogenesis (Fig. S3, Table
S3). Notably, no proteins displayed sex-dependent effects
across development.
To characterize the temporal organization of the pro-

teome we ran unsupervised weighted correlation network
analysis and identified five modules of co-regulated pro-
teins, three of which were significantly associated with
development and age (Fig. 1d, Figs. S4, 5). Two age-
related modules displayed increasing expression
throughout development (FDR P < 0.05) and were enri-
ched for processes related to myelination and gliogenesis
(M1, 82 proteins, r= 0.71, p= 1.0 × 10−11) and gluco-
neogenesis and NADH metabolism (M2, 30 proteins, r=
0.58, p= 2.0 × 10−7) (Fig. 1e–g). One age-related module
displayed decreasing expression across development and
was implicated in axonogenesis, neurogenesis and cytos-
keleton organization (M4, 198 proteins, r=−0.77, p=
2.3 × 10−14) (Fig. 1h). The remaining two modules were
not significantly associated with age nor with any other
developmental stages or technical factors, and were
enriched for functions related to cellular respiration and
ATP metabolic processes (M3, 194 proteins) and
nucleotide metabolism and oxidation-reduction processes
(M5, 80 proteins) (Fig. S6). Collectively, all five modules
were significantly enriched for direct protein–protein
interactions (PPI), beyond what would be expected by
chance (Table S4), and PPI networks were constructed for
each module (Figs. S6, 7). Densely connected hub proteins
for each age-related module included,MBP and PGM1 for
module M1, ENO2 and MDH1 for module M2, and UBC
and HSP90AA1 for module M4. Further, cell type
deconvolution revealed that the majority of proteins
expressed across all DLPFC samples were specific to
neuronal and oligodendrocyte cell types, and further
highlighted substantial decreases in neuronal cell popu-
lations paralleled by increases in oligodendrocytes
throughout development (Fig. 1i); results which correlated
with transcriptome-based estimates (Fig. S8).

Correspondence between transcriptome and proteome
module organization
A total of 556 common HGNC symbols were detected

between our high confidence, reproducible proteins and
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transcriptome-wide gene expression assays (Fig. 2a).
Similar to the proteome, the largest amount of gene
expression variability was explained by age, as compared
to any other factor (Fig. S1). Comparably, the neonatal
time period (39–89 days) also explained the largest frac-
tion of transcriptome variation by age, albeit to a lesser
extent than in the proteome, including genes primarily
involved in ATP metabolic processes (Fig. S2). Mean-
while, variation across the sexes was small genome-wide,
but it explained a large percentage of expression variation
for genes on chrX and chrY. Linear regression analyses
identified ~11.5% of the transcriptome was associated
with postnatal development, including 1145 genes with
increasing expression and 1181 genes with decreasing
expression across all developmental stages (FDR p < 0.05)
(Fig. S2, Table S5). These age-related genes also included
several known neurodevelopmental genetic risk loci
implicated in ASD (LRP1, RNF135, YWHAE), schizo-
phrenia (TEKT4, LRP1, DNAH1, BRSK1, INTS1, ZC3H10,

METTL14), and developmental delay (SCYL1, PIGQ,
OBSL1, SMARCB1, CEP135, SPG11, TAF1, TAT,
FAM126A, RAD21). Notably, 27 molecules were uniquely
detected at the protein level, and a significant fraction
were enriched for oxidative phosphorylation-related pro-
cesses (FDR p= 2.3 × 10−8).
Weighted correlation network analysis identified eight

modules of co-regulated genes (Fig. 2b), which displayed a
high degree of reproducibility compared to existing
postmortem BrainSpan data (Fig. S9). Four of the eight
modules were significantly associated with postnatal
development, including two modules implicated in glio-
genesis (M4_t, 2624 genes, r= 0.54, p= 2.4 × 10−4) and
ATP metabolic processes (M6_t, 5078 genes, r= 0.72,
p= 4.1 × 10−5) with increasing expression, and two
modules involved in neurogenesis (M1_t, 3046 genes, r=
−0.71, p= 8.6 × 10−8) and synaptic signaling (M2_t, 403
genes, r=−0.53, p= 2.2 × 10−4) with decreasing expres-
sion throughout postnatal development (Fig. S10). One

Table 1 Top ten down and up age-related proteins throughout postnatal development with paired RNA products

Uniprot ID HUGO gene symbol (name) Proteome Transcriptome

t-statistic Adj. p-value t-statistic Adj. p-value

O15075 DCLK1 (doublecortin like kinase 1) −10.786 6.02E−16 −3.836 4.46E−04

P22676 CALB2 (calbindin 2) −9.154 3.51E−13 −11.731 2.31E−14

Q9BPU6 DPYSL5 (dihydropyrimidinase like 5) −8.951 7.86E−13 −12.522 3.05E−15

P52306 RAP1GDS1 (Rap1 GTPase-GDP dissociation stimulator 1) −8.950 7.90E−13 −5.331 4.39E−06

P05413 FABP3 (fatty acid binding protein 3) −8.511 4.57E−12 −2.295 2.72E−02

P29966 MARCKS (myristoylated alanine rich protein kinase C substrate) −8.321 9.79E−12 −11.097 1.24E−13

Q12860 CNTN1 (contactin 1) −7.733 1.05E−10 −3.490 1.22E−03

P55072 VCP (valosin containing protein)* −7.688 1.25E−10 −3.995 2.78E−04

Q6PCE3 PGM2L1 (phosphoglucomutase 2 like 1) −7.639 1.53E−10 −7.150 1.33E−08

O14594 NCAN (neurocan)‡ −7.256 7.13E−10 −8.759 9.49E−11

P09417 QDPR (quinoid dihydropteridine reductase)† 7.707 1.16E−10 10.303 1.09E−12

P49189 ALDH9A1 (aldehyde dehydrogenase 9 family member A1) 6.201 4.81E−08 2.478 1.77E−02

O94856 NFASC (neurofascin)‡ 5.917 1.47E−07 3.699 6.65E−04

P07602 PSAP (prosaposin)†, ‡ 5.818 2.16E−07 9.804 4.47E−12

P12277 CKB (creatine kinase B) 5.590 5.22E−07 N/A N/A

O94811 TPPP (tubulin polymerization promoting protein) 5.257 1.86E−06 10.842 2.47E−13

P14618 PKM (pyruvate kinase, muscle) 5.190 2.39E−06 10.344 9.73E−13

Q16653 MOG (myelin oligodendrocyte glycoprotein) 5.180 2.48E−06 4.991 1.29E−05

P13611 VCAN (versican) 5.170 2.58E−06 −2.601 1.31E−02

Q969P0 IGSF8 (immunoglobulin superfamily member 8) 5.038 4.21E−06 2.104 4.19E−02

N/A not detected
Linear regression models adjusted for pH, PMI, sex, and ethnicity. The direction of change (t-statistic) across postnatal development and p-value significance are
displayed for each protein and paired RNA product. Candidate neurodevelopmental genetic risk loci are symbolized: *, autism; †, intellectual disability; ‡,
schizophrenia
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immune response-related module was significantly asso-
ciated to the toddler postnatal age group (1.2–5.1 years)
(M7_t, 384 genes, r= 0.52, p= 3.3 × 10−4). Interestingly, a
number of significant overlaps were identified between
transcriptome modules and proteome modules (Fig. 2b).
The majority of overlapping RNA- and protein-based
modules also displayed a high degree of collinearity (Fig.
2c) and shared similar biological functions, including
modules involved in gliogenesis and myelination (M1,

M4_t), ATP metabolic processes (M2, M3, M5, M6_t) and
neurogenesis (M4, M1_t) (Fig. 2d–g). Overall, all five
protein modules were well represented at the RNA level
(Fig. 2g).

Correspondence between RNA and protein levels
throughout postnatal development
We further quantified the association between gene and

protein level expression using a subgroup of DLPFC
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Fig. 1 Protein expression and function in the developing DLPFC. a Sample characteristics for LC-MS proteomic data (n= 69) and a subgroup of
DLPFC samples with additional transcriptome data (n= 44). b Principal component analysis on global normalized protein abundance, samples are
shaded by age (39 days–49.5 years). c variancePartition linear mixed model analysis of global protein abundance identifies age as a leading trait
explaining most of observed protein variability. d Weighted correlation network analysis identified five protein modules, three significantly associated
with age. x-axis indicates −log10 p-value significance. Module names and the number of proteins within each module are displayed right of
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samples for which paired transcriptome and proteome
data were available (n= 44). We first examined the degree
of within-sample correlation using 556 paired RNAs and
proteins, and then by sub-setting these analytes according
to the five previously identified protein modules (Fig. 3a).
Across all analytes, we found weak-to-moderate within-
sample correspondence (Pearson’s r= 0.15–0.40), with
the highest correlations observed for RNA and protein
products involved in gliogenesis and myelination (M1, r
= 0.26–0.53) and the lowest correlations for RNA and
protein products involved in nucleotide and ATP meta-
bolic processes (M5, r=−0.05–0.22). Subsequently, we

explored these within-sample correlations as a function of
age and found that the correspondence between RNAs
and their respective translated proteins is higher for early
developmental stages and lower for later developmental
stages, indicating an overall decrease in correlation
between RNA and protein level expression throughout
postnatal development (r=−0.56, p= 6.4 × 10−5). This
decreased correlation was also significant for subgroup-
ings of RNAs and proteins involved in processes of
myelination and gliogenesis (M1, r=−0.30, p= 0.04) and
neurogenesis and cytoskeleton organization (M4, r=
−0.67, p= 3.9 × 10−7) (Fig. 3b, e). These age-related

Fig. 2 Overlap of age-related RNA and protein modules. a Venn diagram of detected the proteome and transcriptome. b Overlap analysis of
transcriptome- and proteome-based modules. The number of overlapping HGNC symbols are displayed for significant intersects. c Pearson’s
correlation coefficient analysis of module eigengenes (MEs) within and across transcriptome- and proteome-based modules. White diamonds
indicate p < 0.05. Convergent ME expression patterns for modules with significant overlap and shared function between transcriptome and
proteome, including gliogenesis and myelination (d), ATP and NADH metabolic processes (e), and neurogenesis (f). Smoothing linear spline models
(knot= 4) were fit for each ME across seven postnatal stages (shaded gray/white). g Overlap and correspondence of the top four functional
categories for all RNA- and protein-based modules
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differences prompted us to investigate the degree of
conservation in protein-based co-expression networks at
the RNA level, for which we found no preservation for co-
regulated RNAs implicated in nucleotide metabolic pro-
cesses (M5) (Fig S11). Finally, we examined correlations
between the 556 RNA-protein pairs across all samples
(opposed to within-samples), as a function of postnatal
development. Overall, a high level of correspondence was
observed when comparing age-related linear regression
results (t-statistics) computed separately for individual
RNAs and proteins (r= 0.62, p= 2.4 × 10−60) (Fig. 3c).
Upon closer inspection, 78.4% of all RNA-protein pairs
were positively correlated throughout development while
the remaining were negatively correlated (Table S6).
Notably, we find that RNA expression profiles that are
significantly associated with cortical development (FDR p
< 0.05) display higher correlations with their respective
translated protein level expression compared to RNA
expression profiles that are not significantly age-related
(p= 6.4 × 10−25) (Fig. 3d).

Cell type and neurodevelopmental disorder genetic risk
loci enrichment
We sought to determine whether the transcriptome-

and proteome-based modules were strongly linked to the
underlying cellular architecture in the developing DLPFC
using previously defined cell type specific markers (Fig.
4a). Three different cell type specific resources were used

to discover and validate cell type enrichments, including
those based on RNA36,37 and protein discovery38. As
expected, several proteome and transcriptome modules
were significantly enriched for known cell type specific
markers and demonstrated high reproducibility across
three independent resources. Protein module M1 was
consistently enriched for oligodendrocyte and astrocyte
cell types. Protein modules M3 and M4 also consistently
displayed significant overrepresentation for neuronal cell
type markers. In parallel, several transcriptome-based
modules displayed consistent enrichment for CNS cell
type markers, including modules M1_t, M2_t, and M6_t
enriched for neuronal markers, M3_t enriched for astro-
cyte markers, M5_t enriched for oligodendocyte markers,
and M7_t enriched for microglial markers. Notably, no
protein module displayed enrichment for microglial cell
markers, which is consistent with our cell type estimates
that indicate our DLPFC proteome samples are pre-
dominately comprised of neuronal and oligodendocytes
cell types.
Subsequently, we sought to determine whether genes

associated with risk for neurodevelopmental disorders
converge on common cellular and biological processes
during human cortical development in the proteome and
transcriptome. Intellectual disability (ID) genes tightly
coalesce in proteome and transcriptome modules that
implicate gliogenesis (M1, ∩= 7, p= 0.009; M4_t, ∩= 70,
p= 0.006) and ATP metabolism functions (M3, ∩= 20,

Fig. 3 Concordance between transcriptome and proteome in the developing DLPFC. a Within-sample Pearson correlation coefficients (PCC)
between paired transcriptome and proteome samples (n= 44). Associations were tested for all paired RNA and protein molecules (proteome) and
then by focusing on RNA and protein content accordingly to protein module status. The number of molecules compared within each module are
listed on the x-axis. b Average PCC’s within paired transcriptome and proteome samples (y-axis) measured as a function of age (x-axis). Samples are
ranked according to age, and shaded accordingly to postnatal developmental period (1, neonate; 2, infant; 3, toddler; 4, school age; 5, teenager; 6,
young adult; 7, adult). c Scatterplot of age-related linear regression t-statistics computed for the overlapping 556 mRNAs and proteins, colored
according to protein module membership. d Across-sample Spearman correlation coefficient (SCC) comparing RNA expression profiles to their
respective translated protein expression. SCC’s are parsed by RNA’s which are significantly associated with cortical development (FDR p < 0.05),
compared to those which do not (Table S6). A Mann–Whitney U test was used to compute significance between these two groups. e Direct
protein–protein interaction network of protein module M1, displaying significant decrease in correlation between RNA and proteins across postnatal
development
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p= 2.2 × 10−9; M6_t, ∩= 120, p= 0.01) (Fig. 4b). Simi-
larly, developmental delay (DD) risk variants were con-
centrated in the same modules associated with gliogenesis
(M1, ∩= 11, p= 0.001; M4_t, ∩= 147, p= 0.003) and
ATP metabolism (M3, ∩= 35, p= 2.4 × 10−12). The ID
genes used here represent high-confidence genes impli-
cated in monogenic forms of ID from multiple publica-
tions, whereas the DD genes are those available from the
Developmental Disorders Genotype-Phenotype database
(DDG2P). Both ID and DD are relatively common
pediatric disorders with overlapping symptomologies.
These loci also constituted several hub proteins within
proteome module M3, including NDUFS1-8, SYN1,
STXBP1, and MAP2K1 (Fig S6A).Together, these results
support the notion that common and rare variants con-
tribute to ID and DD by perturbation of processes
encoding ATP metabolism and myelination. In addition,
similar to previous reports, we also confirm strong
enrichment for several ASD and SCZ genetic risk loci in
neurogenesis-related module M4 in the proteome (∩= 4,
p= 0.04; ∩= 10, p= 0.04, respectively) as well as module
M1_t in the transcriptome (∩= 59, p= 8.2 × 10−16; ∩=
134, p= 4.3 × 10−9, respectively). These analyses, and
others, can be performed using our online software tool
(http://amp.pharm.mssm.edu/DELTA).

Discussion
Proteins are the functional components of cells in the

CNS, however our understanding of the brain proteome
continues to lag behind the pace of transcriptome dis-
covery. This discrepancy is largely due to the lack of
established proteome-wide technologies, which have only
recently matured to enable improved protein detection
and coverage. To provide a foundation for an age-
dependent brain proteome map, we performed label-free
LC-MS proteomic analysis across 69 human DLPFC
(BA46) samples, aged 35 days to 49.5 years, which com-
prised seven different developmental stages. Our
approach identified 911 highly abundant and reproducible
proteins across a large number of developmentally dis-
tinct biological replicates and resulted in the largest col-
lection thus far of protein expression data in the
developing human DLPFC. The proteins detected here
function to sub-serve some of the most fundamental CNS
cell signaling cascades required for typical cortical
development. By integrating these data with tran-
scriptome data, we were able to examine relationships
between RNA and protein expression levels, which
revealed a much tighter coupling of RNA and protein
expression during early developmental stages (i.e., neo-
natal and infant) compared to later stages (i.e., adulthood).

Fig. 4 Cell type and neurodevelopmental disorder genetic risk loci enrichment. a Cell type enrichment analysis for the identified transcriptome-
and proteome-based modules. The number of significantly overlapping HGNC symbols are displayed (**p < 0.0001; *0.01 > p < 0.05). b Genetic risk
loci enrichment analysis according to transcriptome- and proteome-based modules. Five previously generated lists of neurodevelopmental disorder
risk loci were used, including intellectual disability (ID), developmental delay (DD), autism spectrum disorder (ASD), epilepsy, and schizophrenia (SCZ).
Data information: In a, three cell type marker resources were leveraged, including two based on transcriptome profiling36,37 and one based on
proteome profiling38
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Finally, we examined RNA and protein networks enriched
for neurodevelopmental genetic risk loci, to gain insight
into how mutations in risk genes may perturb molecular
pathways during healthy brain development. We discuss
these points in turn below.
The majority of the detected proteins in the current

investigation (~64.1%) were associated with cortical
development and formed functional protein modules,
which harbored a large number of direct protein–protein
interactions. Two protein modules were identified, which
gradually increased in expression across cortical devel-
opment and enriched for gliogenesis, myelination and
olidodendrocyte cell type specificity (M1) as well as
NADH metabolism and gluconeogenesis (M2), while one
module was decreasing in expression and implicated in
axonogenesis, cytoskeleton organization, and neuronal
cell types. These modules represent some of the most
basic CNS functions and their expression profiles are at
least partially driven by a shifting CNS cellular landscape
throughout cortical development, as reflected by the
observed neuron-glia oscillations. Although cell division
and migration of neurons are largely prenatal events,
neurogenesis is known to persist throughout adult life,
albeit to a limited level and produce only a small fraction
of the neuronal population45,46. In contrast, proliferation
and migration of glial progenitors, while beginning pre-
natally, continue for a protracted period as oligoden-
drocytes and astrocytes differentiate. Oligodendrocyte
cells begin to differentiate by increasing myelin protein
expression, as evident in the current study. However,
much uncertainty has existed regarding the extent of
postnatal proliferation, migration and differentiation, and
about the timing of these processes relative to each
other45. Our results indicate that the greatest degree of
change likely occur during school age years (3–15 years of
age), and that these neuron-glia changes appear to play an
important role in the functional organization of neural
circuits during early and late stages of postnatal devel-
opment. We also report marked increases in discretely co-
regulated proteins involved in NADH metabolism and
gluconeogenesis (M2) across development, which is
consistent with the well-known energy requirements of
the brain47. Previous work by us and others suggests that
myelination is also a major energy-demanding process in
the brain27,48, especially during postnatal life. For exam-
ple, myelin synthesis is an ATP-dependent process and
oligodendrocytes often oxidize glucose at higher rates
than neurons49, supporting these distinct changes in
protein modules across time. To this end, two additional
protein modules were identified peaking in expression
during the ages of 6 months to 1 year and were enriched
for cellular respiration and ATP metabolism (M3) and
purine ribonucleoside monophosphate activity (M5),
which likely represent shared components of a larger

glycolysis, cellular respiration and oxidative phosphor-
ylation cycle, along with M2. Importantly, glucoregulatory
abnormalities, oxidative stress vulnerability, and oligo-
dendrocyte dysfunction have been prominently linked to
neuropsychiatric and neurodegenerative disorders50–52,
and a detailed understanding of how these proteins unfold
in expression throughout cortical development may guide
future follow-up studies targeting these pathways.
In the context of the temporally dynamic expression

profiles, a fundamental question is whether RNAs and
their respective translated proteins correlate throughout
postnatal development. We observed within-sample
Pearson correlation coefficients between 0.15 and 0.40.
Several studies have also found similar low correlations in
human19,20 and murine tissues38. These discrepancies
may be due to well-known differences in the regulation,
localization, structures and functions of mRNA and pro-
teins. However, a novel finding from the current study, is
that when presenting these correlations as a function of
postnatal age, we identified that correlations between
RNA and protein expression tend to decrease throughout
development (r=−0.56, p= 6.4 × 10−5), in that younger
samples tend to have higher RNA-protein correlations
and older samples tend to have weaker RNA-protein
correlations (Fig. 3b). This negative trend accelerated for
genes implicated in myelination (M1) and cytoskeleton
organization (M4). Interestingly, the efficiency of myeli-
nation decreases with age, a process largely regulated by
age-dependent epigenetic control of gene expression53.
That is, during infancy, myelin synthesis is preceded by
downregulation of oligodendrocyte differentiation inhi-
bitors, and this is associated with recruitment of histone
deacetylase to promoter regions; a process that becomes
less efficient in adulthood and ultimately prevents a suc-
cessive surge in myelin gene expression53–55. Regarding
the weakening correlation of cytoskeleton-related RNA
and protein expression across postnatal development, it is
clear that cytoskeleton plays a vital role in regulating CNS
cell mechanics with age. Moreover, since several studies
have shown that many neurodevelopmental disorders are
likely influenced by aberrant cytoskeleton organization, it
is important to understand how the expression and
interaction of cytoskeletal proteins change with age.
Overall, these results shed light on several candidate
myelination and cytoskeleton proteins for follow-up
functional studies to assess whether insufficient amounts
of translated protein product during early development
may negatively impact nerve cell shape, motility and
communication thereby leading to behavioral and/or
developmental deficits.
We also examined the correspondence between 556

RNA-protein pairs across all samples and found that the
majority of pairs (78.4%) correlate positively across
development, while others do not, and in some instances
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display strong negative correlations (Table S6). It is
unlikely that false positives can fully explain these low/
negative correlations. Therefore, it may be that varied
levels of regulation, such as translational regulation,
supersede the transcriptional level and provide biological
fine-tuning for the specific conditions encountered by the
cells. Furthermore, protein half-life and translational rates
can also vary, which can effect the correlation between
RNA and protein levels. However, it is notable that RNA
profiles, which were not associated with postnatal devel-
opment displayed significantly lower correlation dis-
tributions compared to RNA profiles, which were
significantly associated with aging and development (Fig.
S11). Thus, our results show that significant age-related
changes in gene expression commonly co-occur with
tighter correlations with protein levels, giving further
confidence for the use of mRNA data for biological
discovery.
One important similarity across the brain transcriptome

and proteome was the consistent mapping of intellectual
disability and developmental delay genetic risk loci to
modules enriched for myelination, gliogenesis, and ATP
metabolic processes. These modules displayed a collinear
patter of expression between RNA and protein products,
peaking in expression during adolescence and adulthood
(Fig. 2d–f). As there is a close interdepency between
myelin synthesis and ATP-dependent processes, a dis-
order affecting one of the two inevitably also leads to
disturbance of the other. Indeed, defective myelination
and ATP processes have been reported as key factors
causing pathogenic processes involved in these dis-
orders15,56,57, and these data provide further substantial
evidence in the broader context of long-term brain
development. These results support the notion that
common and rare variants contribute to ID and DD by
perturbation of common gliogenesis and ATP metabolism
networks. In parallel, ASD variants resided primarily in
neuronal-based modules in the transcriptome, and not in
the proteome. These results echo recent large tran-
scriptome network studies that demonstrate the involve-
ment of neuronal and synaptic processes involved in
ASD12,16,17. We also mapped epilepsy genetic risk loci to
oxidative phosphorylation-related modules in the pro-
teome, consistent with growing evidence that deficits in
oxidative phosphorylation complexes can result in
increased oxygen and free-radical release likely implicated
in the initiation and progression of epilepsy58.
Our study also has some limitations. First, while our

selective approach sought to inform CNS development by
detecting highly abundant and reproducible proteins
across 69 developmentally distinct biological replicates,
the data presented here may represent an incomplete
picture of the entire proteome. We are unable to discuss
the developmental role of lowly abundant proteins.

Moreover, 556 proteins were represented at the mRNA
level, a marginal 3.5% of the detected transcriptome.
Despite, with this level of detection we were able to
capture a considerable amount of protein variability and
functionality across postnatal development compared to
paired transcriptome data. That is, all of the age-related
transcriptome modules (M1_t, M2_t, M4_t, M6_t: 11,150
genes total), which comprised 55.4% of the observed
transcriptome, were well represented at a functional level
in the proteome, even though fewer proteins were
detected; emphasizing that the majority of the detected
proteins are highly expressed and sub-serve for some of
the most fundamental CNS molecular processes. None-
theless, it is possible that future reports applying deeper
analytical techniques will enable both greater proteome
coverage. A second caveat to these data is the lack of
prenatal samples, developmental stages when gene
expression patterns appear to be most dynamic. For
example, vast increases in expression for synapse and
dendrite development genes occur prenatally and taper off
in the first decade of postnatal life10,59, and went unde-
tected in the current investigation likely due to the lack of
prenatal samples. Moreover, it is challenging to directly
compare these age-related proteomics results to those
derived from other studies due to extensive differences in
proteomic technologies and the ascertainment of post-
mortem tissues. However, in contrast to previous pro-
teomic studies, we were able to capitalize on larger
postnatal developmental group sizes (2.5× larger), thus
increasing our ability to identify biologically meaningful
age-related proteins and protein networks. As these
concerns are addressed in the future, it will be possible to
reveal further insights into the transcriptional and trans-
lational foundations of human brain development.
Our unbiased, global approach outlined both simila-

rities and differences of the developing DLPFC between
the transcriptome and proteome across postnatal devel-
opment. The various proteins detected and discussed are
likely to be candidates for further functional and/or
synaptic developmental studies. Therefore, to promote
the exchange of this information, we developed a website
with an easily searchable interface to act as a companion
to this resource paper: the DEveLopmental Trajectory
Atlas (DELTA) in DLPFC is available from the following
URL: http://amp.pharm.mssm.edu/DELTA. This website
will be maintained and periodically updated as additional
data emerge from this unique cohort. Using the website
researchers can: (1) query any protein/gene symbol of
interest to determine at which developmental stage it is
expressed; (2) determine whether a user submitted input
list of proteins/genes is over-represented within our
identified proteomic and transcriptomic gene modules;
(3) download all corresponding proteomic and tran-
scriptomic data. Our expectation is that the website and
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the data that it hosts will serve as a resource to stimulate
and enable additional studies to further elucidate the
complex molecular controls guiding postnatal human
cortical development.

Data availability
To promote the exchange of this information, we developed an interactive
website with an easily searchable interface to act as a companion site for this
paper: the DELTA in DLPFC is available from the following URL: http://amp.
pharm.mssm.edu/DELTA. In addition, all sample descriptions, proteomic and
transcriptomic data are available and can directly downloaded from this site.
Alternatively, gene expression data can be downloaded from GEO using
accession GSE13564.
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