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Abstract

This thesis presents an account of the cubical sets model of homotopy type theory using

an internal type theory for elementary topoi.

Homotopy type theory is a variant of Martin-Löf type theory where we think of types

as spaces, with terms as points in the space and elements of the identity type as paths.

We actualise this intuition by extending type theory with Voevodsky’s univalence axiom

which identifies equalities between types with homotopy equivalences between spaces.

Voevodsky showed the univalence axiom to be consistent by giving a model of homotopy

type theory in the category of Kan simplicial sets in a paper with Kapulkin and Lumsdaine.

However, this construction makes fundamental use of classical logic in order to show

certain results. Therefore this model cannot be used to explain the computational content

of the univalence axiom, such as how to compute terms involving univalence.

This problem was resolved by Cohen, Coquand, Huber and Mörtberg, who presented

a new model of type theory in Kan cubical sets which validated the univalence axiom

using a constructive metatheory. This meant that the model provided an understanding of

the computational content of univalence. In fact, the authors present a new type theory,

cubical type theory, where univalence is provable using a new “glueing” type former.

This type former comes with appropriate definitional equalities which explain how the

univalence axiom should compute. In particular, Huber proved that any term of natural

number type constructed in this new type theory must reduce to a numeral.

This thesis explores models of type theory based on the cubical sets model of Cohen

et al. It gives an account of this model using the internal language of toposes, where we

present a series of axioms which are su�cient to construct a model of cubical type theory,

and hence a model of homotopy type theory. This approach therefore generalises the

original model and gives a new and useful method for analysing models of type theory.

We also discuss an alternative derivation of the univalence axiom and show how this

leads to a potentially simpler proof of univalence in any model satisfying the axioms

mentioned above, such as cubical sets.

Finally, we discuss some shortcomings of the internal language approach with respect to

constructing univalent universes. We overcome these di�culties by extending the internal

language with an appropriate modality in order to manipulate global elements of an object.
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Chapter 1

Introduction

This introduction is divided into two sections. The first o↵ers an introduction for a

layperson. This is intended for friends, family, or anyone else with a school-level background

in mathematics who happens to stumble across this thesis. My hope is that these few

pages will o↵er at least some insight into what I’ve been doing for the past three years.

The second introduction is aimed at experts, who may be more familiar with some of

the technical background involved: type theory, category theory, etc. It is intended to be

accessible to anyone with a background in mathematics or theoretical computer science.

Neither introduction contains significant technical detail. This is covered in chapters 2,

3 and 4, which provide more detailed background on existing work.

1.1 Layperson’s introduction

What does it mean to prove a theorem in mathematics? Take, for example, Pythagoras’

theorem: that for any right-angled triangle whose sides have lengths a, b and c, with c

being the longest side, then it is always the case that a2 + b2 = c2. Most people will have

learned this fact in school, but how do we know that it is true? How can we prove this

theorem?

In this case we could start by considering any right-angled triangle and labelling its

sides a, b and c:

a

c
b

We can then take four copies of this triangle and arrange them together to form a square,

like so:
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a
c

b a

c
b

a
c

ba

cb

Note that the white, unfilled region in the centre is a square with sides of length c.

Therefore the area of this unfilled space is c2. Next, we rearrange the triangles inside the

same outer square like so:

a
c

b

a
c

b
a

c
b

a

cb

Now the amount of unfilled space is given by the sum of the areas of the two white squares,

specifically a2+ b2. But we have not changed the amount of filled/unfilled space. Therefore

the unfilled area in this diagram, a2 + b2, is the same as the unfilled area in the previous

diagram, c2, and hence a2 + b2 = c2.

Is this a proof of Pythagoras’ theorem? Can you be sure that this will work for any

values a, b and c, and not just the ones that happen to have been used in the diagram?

How do you know that this is not a trick or an optical illusion, and perhaps the triangles

in the second diagram are di↵erent from those in the first? Does the argument about the

diagrams having the same amount of “unfilled space” really make sense?

These questions all stem from a more fundamental question: what exactly is a proof?

Can we come up with a precise definition of what qualifies as a proof, and then use that

to decide whether or not the argument above is a valid proof?

One way to approach this question is to think of a proof as a sequence of logical steps,

where each step has to be correct according to some predefined set of rules. First, we fix a

set of very basic facts as a starting point, for example that 1 + 1 = 2. We take these facts

to be true without any proof and call such things axioms. Next, we fix a set of rules which

tell us how we can prove new facts from old facts. For example, a rule might say that

if you prove that x = y and you prove that x has some property, e.g. that x is an even

14



number, then you get a proof that y has that property too, e.g. that y is also even. Then,

to prove a theorem we start with the axioms and apply the rules in order to prove new

facts. The aim is to repeat this process, gradually proving more and more complicated

things, until eventually we prove the theorem itself.

A specific instance of such axioms and rules is referred to as a foundational system for

mathematics. Once the axioms and rules are fixed then we can ask questions such as: can

we prove Pythagoras’ theorem using these axioms and rules? It could be the case that we

are not able to prove the theorem because our axioms are missing some important fact, or

perhaps we are missing a rule that we need for a crucial step of the proof. In this case

we say that the theorem is independent1 of the foundational system. On the other hand,

it could be that we have accidentally included an axiom which is not actually true, or a

rule which doesn’t work in all cases. In this case it could be that, not only can we prove

Pythagoras’ theorem, but we can also prove things which are clearly false, for example

that 0 = 1 or that 7 is an even number. We call such a system inconsistent.

One example of a foundational system is homotopy type theory (HoTT). HoTT is an

extension of an existing foundational system known as Martin-Löf type theory, or simply

“type theory”, where we add one new axiom: Voevodsky’s univalence axiom. Intuitively,

this axiom states that it doesn’t matter how you encode data in your proofs. For example,

you can encode numbers in decimal form: 0, 1, 2, 3, 4, etc, or in binary form: 0, 1, 10, 11, 100,

etc. If you prove a theorem about numbers using one encoding, then it should apply just

as well to the other encoding. Traditionally there is no way to prove this in general using

the rules of type theory. Instead, you would need to repeat the proof using the other

encoding, making adjustments where necessary. In HoTT, the univalence axiom tells you

that once you prove that the two encodings really are equivalent then you can treat them

as being the same. Therefore the proof that you had using one encoding will automatically

apply to the other encoding.

We want to use HoTT as a basis for doing mathematics. However, before doing so it is

crucial to have a good understanding of the answers to questions such as: what can we

and can’t we prove using HoTT, which theorems are independent, is HoTT consistent,

etc. In order to investigate these questions we study what are known as models of HoTT.

Intuitively, a model is a sort of translation from the rules and axioms of HoTT into a more

traditional form of mathematics (e.g. category theory) where it becomes easier to study

properties of the rules and axioms, and therefore easier to answer the sort of questions

discussed above.

One such model involves translating from HoTT into a class of mathematical structures

known as cubical sets. Accordingly, this is known as the cubical sets model of HoTT. In

fact there are several related models, all of which work in similar ways, and collectively we

1Technically, independence means that we can’t prove or disprove the theorem.
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refer to these as “cubical models of homotopy type theory”, a.k.a the first half of the title

of this thesis.

So far, everything described in this introduction covers existing work. The contribution

of this thesis is captured by the second half of its title: “an internal approach”. This refers

to the use of a technique known as using the internal language in order to simplify some

aspects of the existing work. At a high level, this thesis takes some existing work (the

cubical sets model of type theory) and applies a di↵erent technique (internal languages)

to the problem. Doing so o↵ers several advantages such as: simplifying the existing work,

making it easier to understand certain aspects, generalising the existing work so that it

now applies in other situations, and providing a better understanding of why the existing

approach works.

1.2 Expert’s introduction

Extensionality is a principle whereby two mathematical objects are deemed to be equal

if they have the same observable properties. Often, formal systems for mathematics will

include axioms designed to capture this principle. In the context of axiomatic set theory

we have the axiom of extensionality, which tells us that two sets are equal if they contain

the same elements. This can be stated formally as:

8A. 8B. ((8x. (x 2 A () x 2 B)) =) A = B)

In the context of (univalent/homotopy) type theory we have Voevodsky’s univalence

axiom [62, Section 2.10], which tells us, roughly speaking, that two types are equal if they

are isomorphic. This can be stated in the language of type theory as:

Y

A,B :U

A ' B ! A = B

where A ' B is the type of equivalences between A and B. So, for example, we might have

a type of decimal natural numbers, Ndec, with terms 0, 1, 2, 3, ... : Ndec and a type of binary

natural numbers, Nbin , with terms 0, 1, 10, 11, ... : Nbin . It is easy to show how to swap

back and forth between the two encodings, that is, that these two types are equivalent.

Therefore by the univalence axiom we can deduce that Ndec = Nbin .

It might seem strange at first for these types to be equal. For example, 7 is an element

of Ndec, but not an element of Nbin , so how can the two types be equal? The reason why this

axiom is consistent is because the rules of type theory prevent you from forming statements

such as “7 is an element of Nbin”. The rules ensure that all statements are phrased in a

suitably generic way so that they can only make use of the externally observable properties

16



of a type, and not the specific encoding used.

Let’s consider an example of a valid statement in type theory: the property of being a

commutative monoid. We say that a type X forms a commutative monoid i↵ there exists

an operation + : X � X � X which is associative, commutative and comes with a unit

e : X. This definition is well-formed in type theory because it is applicable to any arbitrary

type; it does not make any assumptions about what the elements of X might look like.

It is possible to prove, in type theory, that Ndec forms a commutative monoid, where +

is addition and e is 0. Since Ndec and Nbin are just di↵erent encodings of the same object

(the natural numbers) then it should also be the case that Nbin also forms a commutative

monoid. However, without the univalence axiom, proving this would require manually

reworking the proof for Ndec by converting back and forth between the two encodings.

The power of the univalence axiom is that it allows us to simply transport the monoid

structure from Ndec to Nbin by virtue of the fact that Ndec ' Nbin and hence Ndec = Nbin .

The simplest way to extend type theory with this new principle of univalence is simply

to add it as an axiom. That is, to postulate the existence of a term which witnesses the

principle of univalence. However, this approach presents a problem. Type theory is a

constructive system whose primitives have computational content. This means that not

only do we know how to construct terms, we also know how to compute with these terms.

An example of such behaviour is that if we have a proof of a statement of the form “there

exists a natural number n such that ...” then we should be able to actually compute n

from the proof. However, by simply stating univalence as an axiom we do not know, a

priori, how expressions involving univalence should compute.

In order to understand how such expressions should compute we study models of

univalent type theory. Once we have a model of UTT then we can potentially compute

the value of an expression simply by looking at its interpretation in the model. Or, more

likely, we could use the model to justify new computation rules which we could add to the

type theory in order to recover good computational properties.

The first model of univalent type theory, the simplicial sets model [39], makes inherent

use of classical logic to decide certain undecidable propositions. Therefore, while it tells

us that the univalence axiom is consistent, it does not in fact provide a good basis for

restoring the computational content of type theory, since evaluating an expression in the

model is not computable.

To resolve these issues Cohen et al. introduced the cubical sets model of type theory

[18]. This new model is presented using a constructive metatheory, in which evaluating

an expression in the model is computable, thereby providing a way to recover the com-

putational content of type theory. This model provides the basis for most of the work

presented in this thesis.

In general terms, this thesis analyses the cubical sets model using the internal language
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of the cubical sets topos. There are several advantages to this approach. In particular, this

approach: makes certain aspects of the cubical sets model clearer and easier to understand;

allows us to generalise the existing model by axiomatising the properties required to

construct a model of univalent type theory; and makes it clear which of these properties

are required to model which aspects of the type theory.

The process of axiomatising the model is not always straightforward. For example,

we will see in Chapter 7 that the problem of constructing univalent universes presents a

particular challenge for this approach. However, we believe that doing so is a worthwhile

endeavour. This approach provides a solid foundation for many applications. For example,

in Chapter 6 we use this approach to give an alternative presentation of the univalence

axiom. Other authors have also applied this work to other applications such as proving

independence results [61].

1.3 Structure of this thesis

This thesis begins with some background information:

• In Chapter 2 we explain univalent/homotopy type theory in more detail and discuss

an extension of it known as cubical type theory.

• In Chapter 3 we define what exactly a model of type theory is, and we briefly explain

the cubical sets model of Cohen et al. [18].

• In Chapter 4 we explain exactly what an internal language is, specifically in the case

of a topos.

We then cover the new results which form the main contribution of this thesis:

• In Chapter 5 we show how to use the internal language to axiomatise the cubical

sets model of type theory in any elementary topos with appropriate structure.

However, we are not able to define a univalent universe, although we do prove a

universe-agnostic form of univalence.

• In Chapter 6 we give a decomposition of the univalence axiom into some alternative

axioms and show that these are satisfied in any topos with the extra structure

specified in Chapter 5. This is essentially a simplification of the universe-agnostic

proof of univalence mentioned previously.

• In Chapter 7 we explain how to extend the internal language with a modality so as

to be able to axiomatise certain global properties of the topos. Using this modality

we show how to construct a univalent universe, thus resolving the shortcomings of

the preceeding chapters.
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Chapter 2

Type theory: an introduction

In this chapter we present some background material necessary for reading the rest of

this thesis. In particular, we introduce univalent type theory, also known as homotopy

type theory, and explain Voevodsky’s univalence axiom. We then introduce the system of

cubical type theory which can be seen as an extension, or refinement, of standard univalent

type theory. The key feature of cubical type theory is that it provides a computational

interpretation for the univalence axiom.

2.1 Univalent type theory

Univalent type theory (UTT), also known as homotopy type theory (HoTT), is a variant of

intensional Martin-Löf type theory where we formalise the common mathematical practice

of identifying isomorphic structures by introducing a new axiom known as Voevodsky’s

univalence axiom. In doing so we are forced to rethink many of our intuitions about the

nature of equality in intensional type theory.

In this section we will review the basic aspects of Martin-Löf type theory, including

the notion of intensional identity types and will discuss a new intuition for thinking about

elements of these identity types as paths in some topological space. We will see that this

intuition leads us to question the principle that any two proofs of equality are themselves

equal, often referred to as the uniqueness of identity proofs (UIP). We will then discuss

Voevodsky’s univalence axiom, which captures the notion that two spaces are equivalent

precisely when one can be continuously deformed into the other and vice-versa. Finally,

we will we see that the univalence axiom is in fact inconsistent with the principle of UIP.

The information presented here is intended as a summary. For the avoidance of doubt,

the type theory that we describe here is exactly the one defined in Appendix A of the

HoTT book [62].
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2.1.1 Martin-Löf type theory

Martin-Löf type theory (MLTT) is a foundational system for mathematics based on types

rather than the more usual notion of sets. It allows propositions to be encoded as types,

whose terms are then proofs of the proposition in question. This interpretation is often

referred to as the Curry-Howard correspondence, or sometimes as propositions-as-types.

MLTT includes many components which we can use to build and manipulate types and

terms. These include:

Dependent pair types - Given a type A and a family of types B(x) ranging over x : A

we can form the dependent pair type,
P

x:A B(x), of pairs (a, b) where a : A and

b : B(a). These come equipped with first and second projections fst, snd with the

usual computation rules. In the case where B does not depend on x : A we simply

write A⇥ B for the type
P

x:A B, recovering the usual simple product type.

Dependent product types - Given a type A and a family of types B(x) ranging over

x : A we can form the dependent product type,
Q

x:A B(x), of functions �x.b(x)

which map terms a : A to terms b(a) : B(a). In the case where B does not depend

on x : A we write A! B for the type
Q

x:A B, recovering the usual function type.

Identity types - Given a type A and two terms x, y : A we can can form the type

IdA(x, y) of proofs that x is equal to y. We know that everything must be equal to

itself, by reflexivity, and so for any A and x : A we have a proof reflx : IdA(x, x)

which asserts that x is equal to itself. We will also write x =A y, or simply x = y,

for type IdA(x, y). When we have a proof p : IdA(x, y) we say that x and y are

propositionally equal, as opposed to being mutually convertible via a sequence of

�⌘-reductions, in which case we say that they are definitionally equal and write

x ⌘ y.

Base types: 0, 1, B, N, ... - We have the initial (or empty) type 0 which has no inhab-

itants and from which there always exists a unique map 0A : 0! A for any type A.

We also have the terminal (or unit) type 1 which has a single inhabitant, ⇤ : 1, and
for which there always exists a unique map 1A : A! 1 for any type A. Finally we

have common datatypes such as the type of booleans, B, with terms true : B and

false : B, and the type of natural numbers N which has a terms 0 : N and succ(n) : N
for any n : N. These datatypes have the usual induction and computation rules.

Universes - We assume a countable hierarchy of universes U0 : U1 : U2 : ... which we

take to be à la Russell. That is, we identify types A with elements of the universe

A : U . We sometimes write U to ambiguously refer to any of the Ui where the index

can be inferred from the context, or where we mean to work polymorphically in

universe levels.

20



We encode mathematical statements in the usual way, interpreting universal quantifi-

cation with ⇧ and existential quantification with ⌃. So, for example, the statement “there

exist infinitely many prime numbers” may be encoded as:

Y

n:N

X

p:N

 
(n < p)⇥

Y

k:N

((1 < k)⇥ (k < p))! ¬(rem(p, k) = 0)

!

Note this encoding yields a constructive notion of proof. A term of the above type

(i.e. a proof of the proposition) is a function which given any n : N returns a pair (p, u)

where p : N is a prime number which is greater than n (with both facts witnessed by u).

This means that such a proof not only tells us of the existence of such a p, but actually

computes its value.

2.1.2 Identity types and UIP

As mentioned above, for any type A and terms x, y : A we can form the identity type

IdA(x, y). We make use of identity proofs using the J-eliminator. This eliminator states

that given a type C(x, y, p) depending on terms x, y : A and p : x = y then we can inhabit

C(x, y, p) simply by giving a term of type C(x, x, reflx). Alternatively, in order to prove

a property, C, about some y which is propositionally equal to x (as witnessed by p), then

it su�ces to assume that y ⌘ x and p ⌘ reflx.

A standard intuition for thinking about type theory is that types represent sets and

their terms represent the elements of that set. Under this interpretation we might expect

the identity type to correspond to the empty set if x and y are distinct, and the singleton

set if x and y in fact represent the same element. This gives us a simple interpretation

of the refl constructor as the single element of the singleton set. It is also easy to see

how to interpret the J-eliminator since a proof p : IdA(x, y) tells us that x and y represent

the same element and reflx and p both denote the unique element of the singleton set,

therefore C(x, y, p) must in fact denote the same set as C(x, x, reflx).

In fact, under this interpretation it should be the case that, since the identity type

represents a set containing at most one element, then any p, q : IdA(x, y) must in fact

denote the same element. So we would expect that the nested identity type, IdIdA(x,y)(p, q),

should always be inhabited. This principle is often referred to as uniqueness of identity

proofs (UIP). However, Hofmann and Streicher [29, 32] showed that this principle does

not follow from the usual rules of type theory by exhibiting a model in the category

of groupoids (categories where every morphism is invertible). In this model: types are

interpreted as groupoids, terms x, y : A as elements of the groupoid x, y 2 objA and the

identity type IdA(x, y) as the discrete groupoid on homA(x, y). The principle of UIP fails

to hold since a groupoid can have multiple distinct morphisms between two objects.
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x y

p

q

Figure 2.1: Two distinct paths between points x and y

Much of the work on UTT/HoTT is inspired by the intuition that, rather than thinking

of types as sets with their terms as elements of the set, we should instead think of types

as behaving like topological spaces with their terms as points in the space. We then view

elements of the identity type, p : IdA(x, y), as representing paths from the point x to the

point y. So we think of p as behaving like a continuous function p : I ! A, where I is
the unit interval [0, 1], with p(0) = x and p(1) = y. We then view of elements of nested

identity types, ↵ : IdIdA(x,y)(p, q) as homotopies ↵ : I⇥ I! A such that ↵(0, i) = p(i) and

↵(1, i) = q(i) with ↵(i, 0) = x and ↵(i, 1) = y for all i 2 I.
Under this interpretation of type theory the principle of UIP no longer seems obvious.

Indeed, by considering the example shown in Figure 2.1 we see why it is natural to reject

this principle entirely. The two points x and y represent two elements of the type A. The

two paths shown in the figure are both from x to y and so under this interpretation would

correspond to elements of the identity type p, q : IdA(x, y). However, because of the hole

in the centre of the space, there is clearly no way to continuously deform one into the other

without moving either endpoint. Therefore there can be no homotopy from one to the

other, and hence, there can be no inhabitant of the nested identity type IdIdA(x,y)(p, q).

2.1.3 Voevodsky’s univalence axiom

In the previous section we discussed the new intuition behind UTT/HoTT, and why this

might lead us to question the principle of UIP. However, we did not actually extend type

theory in any way so as to formalise this intuition. This is achieved via Voevodsky’s

univalence axiom [62, Section 2.10], which identifies the type of equalities between types

IdU (A,B) (also written A = B) with the type of equivalences A ' B.

The univalence axiom captures the homotopical intuition that two spaces with the

same homotopy group (i.e. two spaces with an equivalence between them) are connected

by a path in some classifying space. That is, we view U as the classifying space for (small)
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homotopy types.

From a logical perspective we can think of the univalence axiom as formalising the

common mathematical practice of identifying isomorphic objects. For example, a mathe-

matician might prove that a certain mathematical object, e.g. a group A, is isomorphic to

another, B, where we already know that B possesses some property. The mathematician

will then informally conclude that A therefore also possesses this property, often without

checking that the property in question is preserved under isomorphism. The univalence

axiom formalises this form of reasoning by essentially stating that every construction in

type theory is preserved under equivalence.

The exact statement of univalence involves some subtleties, particularly regarding the

definition of an equivalence between types. We now give the exact definition, starting with

the definition of an equivalence, and the auxiliary notion of a contractible type.

Definition 2.1.1 (Contractibility). A type A is said to be contractible if the type

isContr(A) ,
X

a0:A

Y

a:A

(a0 = a)

is inhabited. Contractibility expresses the fact that a type has a unique inhabitant.

Definition 2.1.2 (Equivalences). An equivalence A ' B is a pair (f, e) where f : A! B

and e is a proof that for every b : B the fibre of f at b is contractible. To be precise:

A ' B ,
X

f :A!B

isEquiv(f)

where

fibf (b) ,
X

a:A

(f a = b) and isEquiv(f) ,
Y

b:B

isContr(fibf (b))

for A : Ui, B : Uj for any i, j.

A simple example of an equivalence is the identity function idA : A! A for any type A.

To demonstrate that idA is an equivalence we must show that
Q

a:A isContr(
P

x:A(x = a)),

a fact which is easily shown using the J-eliminator.

Note that there are many competing notions of equivalence [62, Chapter 4]. We have

selected this one because it simplifies some of the proofs in Chapter 6. It is also worth

noting that the traditional definition of isomorphism is not a well-behaved notion of

equivalence in UTT. Specifically, defining isEquiv(f) as the existence of a map g : B ! A

such that
Q

a:A g (f a) = a and
Q

b:B f (g b) = b is not well-behaved. This is because this

notion, referred to as a quasi-inverse, is not a mere proposition [62, Theorem 4.1.3] and

hence there might be multiple distinct proofs that f has a quasi-inverse. This has several
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undesirable consequences. For example, the type of quasi-inverse equivalences is not a

subtype of the type A! B, and in fact the univalence axiom stated using quasi-inverse

equivalences is inconsistent [62, Exercise 4.6].

Next, observe that there always exists a canonical map from the type of equalities

between two types to the type of equivalences between them.

Definition 2.1.3 (idtoeqv). For all i, and types A,B : Ui, there is a canonical map

idtoeqv : (A = B)! (A ' B) which is defined by path induction1 on the proof A = B:

idtoeqv(reflA) , idA

where idA : A ' A is the identity map regarded as an equivalence.

Finally, we formalise the univalence axiom as the statement that this map is itself an

equivalence.

Definition 2.1.4 (Voevodsky’s univalence axiom). The univalence axiom for a uni-

verse Ui asserts that for all A,B : Ui the map idtoeqv : (A = B) ! (A ' B) is an

equivalence.

Note that the univalence axiom is a statement about a particular universe Ui. In

general, when working in UTT, we assume that all universes are univalent unless explicitly

stated otherwise. This assumption is what separates univalent/homotopy type theory

from vanilla Martin-Löf type theory.

2.1.4 Function extensionality

We now recall the principle of function extensionality in type theory:

Definition 2.1.5 (Function extensionality). The principle of function extensionality

states that two functions f, g :
Q

x:A B(x) are equal whenever they are pointwise equal.

That is, we have a map:

f ⇡ g ! f = g where f ⇡ g ,
Y

x:A

f(x) = g(x)

We say that we “assume function extensionality” when we are assuming the existence of a

term:

funexti,j :
Y

A:Ui

Y

B:A!Uj

Y

f,g:⇧x:AB(x)

f ⇡ g ! f = g

for all universe levels i, j.

1This is simply the J-eliminator described in Section 2.1.2. We use this name in reference to the
intuition of equality proofs as paths.
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Note that function extensionality is not derivable from the rules of standard Martin-Löf

type theory. However, it is derivable from the univalence axiom [62, Section 4.9].

2.1.5 An alternative formulation of univalence

While Definition 2.1.4 is very concise it is sometimes easier to work with a slightly di↵erent,

but equivalent, statement of the univalence axiom which we present here. In light of

the following definition we will sometimes refer to the univalence axiom as the proper

univalence axiom.

Definition 2.1.6 (Coerce). For all i, and types A,B : Ui, we can define a map coerce :

(A = B)! A! B either by path induction, or as:

coerce(p, a) , fst(idtoeqv(p))(a)

where fst is the first projection.

Definition 2.1.7 (The naive univalence axiom). The naive univalence axiom for a

universe Ui gives, for all A,B : Ui, a map from equivalences to equalities. In other words,

it asserts the existence of an inhabitant of the type:

UAi ,
Y

A,B:Ui

A ' B ! A = B

When using a term ua : UAi we will often omit the first two arguments (A and B). Proofs

of naive univalence may also come with an associated computation rule. That is, an

inhabitant of the type UA�i(ua), where:

UA�i(ua) ,
Y

A,B:Ui

Y

f :A!B

Y

e:isEquiv(f)

coerce (ua(f, e)) = f

Next, we give a result which is well-known in the UTT/HoTT community. This result

decomposes the proper univalence axiom into the naive version and a computation rule.

Note that this result requires the principle of function extensionality to hold. First we

give a lemma which generalises the core construction of this result.

Lemma 2.1.8. Given X : Ui, Y : X ! X ! Uj and a map f :
Q

x,x0:X x = x0 ! Y (x, x0)

then f x x0 is an equivalence for all x, x0 : X i↵ there exists a map

g :
Y

x,x0:X

Y (x, x0)! x = x0

such that for all x, x0 : X and y : Y (x, x0) we have f(g(y)) = y (we leave the first two

arguments to f and g implicit).
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Proof. For the backwards direction, assume that we are given g as above. To show that f

is an equivalence it su�ces to show that f is a bi-invertible map [62, Section 4.3]. To do

this we must exhibit both a right and left inverse.

For the left inverse we take g0(y) , g(y) ⇧ g(f(refl))�1. To see that this is indeed a

left inverse to f consider an arbitrary p : x = x0, we aim to show that g0(f(p)) = p. By

path induction we may assume that x ⌘ x0 and p ⌘ refl and therefore we are required to

show g0(f(refl)) = refl. However, since g0(f(refl)) ⌘ g(f(refl)) ⇧ g(f(refl))�1 this

goal simplifies to g(f(refl)) ⇧ g(f(refl))�1 = refl which follows immediately from the

groupoid laws for identity types.

For the right inverse we take g unchanged and observe that we know f(g(y)) = y for

all y : Y (x, x0) by assumption. Therefore the map f is an equivalence.

For the forwards direction, given a proof e : isEquiv(f) and y : Y (x, x0) we have

fst(e(y)) :
P

p:x=x0 f(p) = y. We can then define g(y) to be the first component of this

and the second component tells us that f(g(y)) = y as required.

Theorem 2.1.9. Assuming function extensionality, naive univalence, along with a com-

putation rule, is logically equivalent to the proper univalence axiom. That is, there are

terms

ua : UAi, ua� : UA�i(ua)

i↵ for all types A,B : Ui, the map idtoeqv : (A = B)! (A ' B) is an equivalence.

Proof. By ua� we know that fst(idtoeqv(ua(f, e))) = f for all (f, e) : A ' B. Now, since

isEquiv(f) is a mere proposition for each f , we can deduce that idtoeqv(ua(f, e)) = (f, e)

by [62, Lemma 3.5.1]. Therefore we simply take X ⌘ Ui, Y (A,B) ⌘ A ' B, f ⌘ idtoeqv

and g ⌘ ua in Lemma 2.1.8 to deduce the desired result.

2.1.6 The failure of UIP

We previously discussed how the new intuition behind UTT/HoTT led us to reject the

principle of UIP. We then formalised this intuition by way of Voevodsky’s univalence

axiom. We now briefly observe that univalence is su�cient to render UIP inconsistent.

Consider the type of equivalences on the booleans, B ' B. This type certainly contains

at least two distinct elements: the identity idB : B ' B and the negation map neg : B ' B
(leaving the proof terms witnessing the equivalences implicit). By univalence we know

that the type of equalities B =U B is equivalent to the type B ' B, therefore we deduce

the existence of two distinct proofs B =U B, but this is clearly incompatible with UIP.
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2.2 Cubical type theory

This section introduces the notion of cubical type theory, which is type theory extended

with an interval object and certain composition operations. As with “type theory” the

phrase “cubical type theory” can refer to any of several related systems, all with slightly

di↵erent notions of interval and composition. In this thesis we will take the system given by

Cohen et al. [18] as the canonical example of a cubical type theory. This section provides

a overview of the work presented in [18].

The motivation for studying cubical type theory is to find a system in which the

univalence axiom can be given a constructive interpretation. This means that proofs

involving univalence should always compute in a suitable sense. For example, we would

expect that any closed term M : N should reduce to a numeral, that is, something of the

form succn0 for some (external) natural number n. This property is often called canonicity,

and was proved for cubical type theory by Huber [33].

2.2.1 The formal interval I

Cubical type theory introduces the notion of an interval object, I, which represents the

unit interval [0, 1]. The terms of I are elements of the free De Morgan algebra [9] on a

countable set of variables (written i, j, k, . . . ). That is, they are the terms built from the

following grammar:

r, s ::= 0 | 1 | i | 1� r | r ^ s | r _ s

where i is a variable, quotiented by the equations making r ^ s and r _ s into the meet

and join with 0 and 1 as the least and greatest elements respectively, and making 1� r

into an involution satisfying:

1� 0 = 1 1� 1 = 0

1� (r _ s) = (1� r) ^ (1� s) 1� (r ^ s) = (1� r) _ (1� s)

Following the intuition that I represents the unit interval, we think of r ^ s and r _ s as

representing the operations min and max respectively.

We can extend contexts with variables ranging over I, so if � is a valid context then so

is �, i : I. We say that r is well-formed in a context �, written � ` r : I, i↵ r only refers to

variables declared in �.

One thing to note is that, while the interval behaves much like a type in many respects,

it is a distinct sort of object and cannot be used as if it were a type, e.g. we cannot form

types such as N � I, and in particular I will not have a composition operation which we
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introduce in Section 2.2.4.

2.2.2 Path types

Following the intuition that equalities should be interpreted as paths, cubical type theory

uses the interval to define the notion of the path type, PathA x y, which intuitively consists

of functions p : I � A such that p 0 ⌘ x and p 1 ⌘ y. Since the interval is not a type

then we cannot directly define such functions and so the syntax is extended with separate

abstraction and application rules for paths. Path abstraction is written as hiit and

application is written as t r where r is built from the grammar given in the previous section.

We have the expected computation rule (hiit) r ⌘ t[r/i].

A nice feature of these path types, and a good example of using the syntax described

above, is that one can derive the principle of function extensionality for paths. That is,

given a proof p : ⇧x:A PathB (f x) (f y) then we can define:

hii �x. p x i : PathA�B f g

This is well-typed because if we substitute 0 for i in the path abstraction then we have:

�x. p x 0 ⌘ �x. f x since p x : PathB (f x) (g x) and hence p x 0 ⌘ f x

⌘ f by ⌘-conversion

and similarly when substituting 1 for i we get �x. p x 1 ⌘ g. Therefore hii �x. p x i has
type PathA�B f g.

2.2.3 The face lattice F

Recall the intuition behind univalent type theory, where we think of the terms of a type as

corresponding to points in some topological space. Now that we have extended type theory

with an interval object we can begin to talk, not only about points, but also about lines,

squares, cubes, and so on. For example, consider a term i, j : I ` a(i, j) : A in a context

with two interval variables, i and j. We can think of a as defining a square, parameterised

by the dimensions i and j, in the space corresponding to A, like so:

j

i

a(i, j)

a(0, 0)

a(0, 1)

a(1, j)
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By substituting 0 or 1 for the variables i and j we can access the corners and sides of the

square as shown in the diagram above.

Cubical type theory introduces the notion of the face lattice, F, which extends our

ability to talk about points, lines, squares, etc, to allows us to talk about certain shapes

built up as the union of faces, edges and corners of (n-dimensional) cubes, known as

“sub-polyhedra” of a cube. The terms of the face lattice are the elements of the free

distributive lattice on symbols (i = 0) and (i = 1) for every variable i, quotiented by the

relation (i = 0)^ (i = 1) = 0F. These elements can be described by the following grammar:

', ::= 0F | 1F | i = 0 | i = 1 | ' ^  | ' _  

where i is any variable. We say that a formula ' is well-formed in a context �, written

� ` ' : F, i↵ ' only refers to variables declared in �.

Whenever we have a well-formed formula � ` ' : F then we can form the restricted

context �,' ` which allows us to talk about sub-polyhedra of a type. For example, we

can think of a term i : I, j : I ` a : A as a square indexed by the dimensions i and j. If we

wish to restrict our attention to just two sides of this square then we can consider a in the

restricted context i : I, j : I, (i = 0) _ (j = 1) ` a : A.

j

i

i, j : I i : I, j : I ` a : A i : I, j : I, (i = 0) _ (j = 1) ` a : A

Importantly this context restriction defines a congruence on terms. So we may have two

terms � ` a : A and � ` a0 : A which are not judgementally equal, in that � ` a 6⌘ a0 : A,

but which become equal in the restricted context, i.e. �,' ` a ⌘ a0 : A. An example would

be the terms � ` i _ j : I and � ` i ^ (1 � j) : I which are not equal according to the

equations of the free De Morgan algebra. However, if we restrict the context with the

formula j = 0 then we have

�, (j = 0) ` i _ j ⌘ i _ 0 ⌘ i ⌘ i ^ 1 ⌘ i ^ (1� j) : I

and hence the two terms become equal under the restriction j = 0. In this case we say

that they agree on the formula j = 0.

We can also use context restriction to talk about partial elements of a type. Given a

type � ` A and a term �,' ` u : A we say that u is a partial element of A whose extent

of definition (or simply, “extent”) is '. We also say that a term � ` a : A (which we

sometimes refer to as a total element of A) extends u i↵ �,' ` u ⌘ a : A. Finally, we
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introduce a new judgement � ` a : A[' 7! u] to mean that a is a total element which

extends u, or explicitly: � ` a : A and �,' ` u ⌘ a : A.

2.2.4 Kan composition

In homotopy theory, topological spaces are often represented as certain presheaves, such

as simplicial or cubical sets. In particular attention is often restricted to those presheaves

satisfying some extra condition, sometimes referred to as the Kan filling condition, which

ensures that the presheaf represents some “well-behaved” topological space. Following

the intuition that types in UTT/HoTT should represent well-behaved topological spaces,

cubical type theory also introduces such a Kan-like condition for types. In fact this

condition is a generalisation of the one given for cubical sets by Kan himself [38].

The condition states that any partial line in a type which is extensible at one end

is also extensible at the other. What this means is perhaps made clearer by the exact

definition of the composition operation. A composition is well formed according to the

following judgement:

� ` ' : F �, i : I ` A �,', i : I ` u : A � ` a0 : A(i0)[' 7! u(i0)]

� ` compi A [' 7! u] a0 : A(i1)[' 7! u(i1)]

What this says is that for any type �, i : I ` A which may depend on the interval I,
and face formula ' : F then given a partial line in A, i.e. a term �,', i : I ` u : A, and

a total element which extends u at 0, i.e. � ` a0 : A(i0)[' 7! u(i0)], then we get a total

element which extends u at 1, that is a term of type A(i1)[' 7! u(i1)]. Following Cohen

et al [18], we use the notation (i0) for the substitution [0/i].

Using this composition operation, along with the structure of the interval, it is possible

to interpret the J-eliminator for path types2, meaning that the path type does indeed

model all the rules that we expect for an equality type.

2.2.5 Glueing

The final ingredient of cubical type theory is the glueing construction. This is similar to

the composition operation but instead of composing terms along (partial) lines it involves

composing types along (partial) equivalences. The glueing construction is then used to

define two things. Firstly, it is used to define a composition operation for the universe,

and secondly, it is used to interpret the univalence axiom in cubical type theory.

Here we simply present an overview of the Glueing construction. For further details

see either the original paper [18] or Section 5.4 of this thesis. Firstly, the formation rule

2With a propositional computation rule. See Definition 3.1.3 for further details on what this means.
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for the Glue type is as follows:

� ` ' : F � ` B �,' ` A �,' ` f : Equiv A B

� ` Glue [' 7! (A, f)] B

This rule states that given any face formula � ` ' : F, any total type � ` B and any

partial type �,' ` A which is equivalent to B everywhere that it is defined, as witnessed

by �,' ` f : Equiv A B, then we get a new type � ` Glue [' 7! (A, f)] B. We should

think of Glue [' 7! (A, f)] B as an extension of the partial type A. In particular we have

that this type is equal to A whenever it is defined, that is: Glue [1F 7! (A, f)] B ⌘ A.

Here we use the notation Equiv A B from [18], but this is exactly the type A ' B defined

in Section 2.1.3.

2.2.6 Univalence

Using the features described in the previous sections it is possible to prove the univalence

axiom inside of cubical type theory. This means that the axiom now reduces to more

primitive concepts in the type theory which provide much better computational behaviour

– the intended aim of cubical type theory. There are many di↵erent ways to approach

the proof of univalence, three di↵erent approaches are given in the original paper [18]

(including the appendix) and two are given in this thesis: one using glueing (Section 5.5)

and one which avoids the glueing construction (Chapter 6).

Here we just give a flavour of how glueing can be used to prove the univalence axiom.

A necessary step in establishing the univalence axiom is to define, either explicitly or

implicitly, an inverse to the map pathToEquiv : PathU A B � Equiv A B which is defined

exactly as in Definition 2.1.3 but using Path-types in place of Id-types. Using glueing, we

can define such a map, equivToPath : Equiv A B � PathU A B, like so:

equivToPath f , hii Glue [(i = 0) 7! (A, f), (i = 1) 7! (B, idB)] B

where idB : Equiv B B is the identity function regarded as an equivalence. Note that

when i = 0 we have

Glue [(0 = 0) 7! (A, f), (0 = 1) 7! (B, idB)] B ⌘ Glue [1F 7! (A, f)] B ⌘ A

and when i = 1 we have

Glue [(1 = 0) 7! (A, f), (1 = 1) 7! (B, idB)] B ⌘ Glue [1F 7! (B, idB)] B ⌘ B

and therefore equivToPath f does indeed define a path from A to B. This establishes

the first part of the naive univalence axiom (Definition 2.1.7). Next, we would need to
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show the computation rule: that coercing along equivToPath f is Path-equal to applying

the function f . Then, using Theorem 2.1.9, we would have a proof of the full univalence

axiom. Again, we will revisit this proof in more detail in the main body of the thesis.
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Chapter 3

Models of Martin-Löf type theory

In the previous chapter we discussed Martin-Löf type theory and various extensions to it

such as the univalence axiom, and cubical features such as an interval and composition

operations. In this chapter we describe how to present categorical models of Martin-Löf

type theory and discuss a particular model in the category of cubical sets which will model

all of the extensions described in Section 2.2, and hence provides a model of the univalence

axiom.

3.1 Categories with Families (CwFs)

There are many competing notions for how to present a model of dependent type theory.

In this thesis we will use Dybjer’s notion of a Category with Families (CwF) [23]. We use

slightly di↵erent notation from Dybjer and we separate his functor into the category of

families into two di↵erent functors, but otherwise the definition is unchanged. We first

recall the definition of the category of elements of a presheaf P : Cop � Set.

Definition 3.1.1 (The category of elements). Given any presheaf P : Cop � Set, the

category of elements of P , written
R
P , has as objects pairs (X, p) where X 2 C and

p 2 P (X). A morphism f : (X, p) ! (X 0, p0) is simply a morphism X ! X 0 in C such

that P (f)(p0) = p.

Definition 3.1.2 (Category with Families). A category with families consists of the

following data:

• A category of contexts C, whose objects represents the contexts of type theory and

whose morphisms represent substitutions between contexts. This category is required

to have a terminal object, 1, which represents the empty context.

• A functor Ty : Cop � Set which, to every context �, assigns a set Ty(�) representing

the types in context �. Given any morphism � : � ! � and type A 2 Ty(�),
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the action of Ty on morphisms gives us the interpretation of substitution and we

suggestively write A[�] for Ty(�)(A) 2 Ty(�). The functorial nature of Ty ensures

that substitution is strictly associative.

• A functor Ter : (
R
Ty)op ! Set which to every context � and type A 2 Ty(�)

assigns a set Ter(�, A) representing the terms of type A in context �. We will write

Ter(� ` A) for the set Ter(�, A). Once again, the action of Ter on morphisms

models substitution in a strictly associative way, and given � : �! �, A 2 Ty(�)

and a 2 Ter(� ` A) we write a[�] for Ter(�)(a) 2 Ter(� ` A[�]).

• A context extension operation . which takes a context � 2 C and a type A 2 Ty(�)

and returns an object �.A 2 C with a morphism p : �.A � � representing context

weakening, and a term q 2 Ter(�.A ` A[p]) representing the newly added variable

of type A. This operation must satisfy the following universal property: for any

substitution � : �! � and term a 2 Ter(� ` A[�]) there exists a unique morphism

h�, ai : � � �.A such that p � h�, ai = � and q[h�, ai] = a.

For notational convenience we will sometimes express properties of a CwF in the

form of rules where we will write the more familiar � ` A for A 2 Ty(A) and � ` a : A

for a 2 Ter(� ` A). For example, we could have stated the existence of the morphism

h�, ai : � � �.A like so:

� : � � � � ` A � ` a : A[�]

h�, ai : � � �.A

We will also write [a1, a2, ..., an] : ���.A1.A2....An for the substitution inductively defined

as:

[] , id

[a1, ..., an, an+1] , h[a1, ..., an], an+1i

where �.A1.A2....An ` An+1 and � ` an+1 : An+1[a1, ..., an].

3.1.1 Additional structure on a CwF

A CwF provides a basic framework for interpreting the types and terms of dependent type

theory. However, by default a CwF will not support the interpretation of type formers

such as dependent pairs, dependent functions, or intensional identity types. Such type

formers are specified as additional structure on the CwF.

As an example we give the extra structure required for a CwF to support intensional

identity types. In doing so we will draw attention to a subtlety in the definition of identity

types which will be important later in this thesis, specifically the di↵erence between
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identity types with a definitional, or judgemental, computational rule vs. those with a

propositional computation rule. We will refer to these as strict and weak intensional

identity types respectively. For the definition of other extra structure on a CwF, such as

dependent pairs, dependent functions and type-theoretic universe, we refer the reader to

an article by Hofmann [30].

Definition 3.1.3 (Intensional identity types on a CwF). We say that a CwF supports

intensional identity types i↵, for every type � ` A and term � ` a : A, the CwF is closed

under the following structure:

• A type former for the identity type:

� ` b : A
� ` IdA(a, b)

• A term witnessing reflexivity:

� ` reflA(a) : IdA(a, a)

• A term witnessing the induction principle:

�.A. IdA[p](a[p], q) ` C � ` c0 : C[a, reflA(a)] � ` b : A � ` u : IdA(a, b)

� ` JA(a, C, c0, b, u) : C[b, u]

such that all of these constructions commute with substitution:

IdA(a, b)[�] = IdA[�](a[�], b[�])

reflA(a)[�] = reflA[�](a[�])

JA(a, C, c0, b, u)[�] = JA[�](a[�], C[�0], c0[�], b[�], u[�])

for all � : � � �, where �0 : �.A[�]. IdA[��p](a[� � p], q) � �.A. IdA[p](a[p], q) is given by

�0 , hh� � p, qi � p, qi. Identity types must then satisfy one of the following conditions:

• We say that identity types are strict if they satisfy:

JA(a, C, c0, a, reflA(a)) = c0

• We say that identity types are weak if they are closed under the following rule:

�.A. IdA[p](a[p], q) ` C � ` c0 : C[a, reflA(a)]

� ` JEqA(a, C, c0) : IdC[a,reflA(a)](JA(a, C, c0, a, reflA(a)), c0)

35



satisfying the obvious stability condition:

JEqA(a, C, c0)[�] = JEqA[�](a[�], C[�0], c0[�])

for all � : � � �, where �0 is as above.

Note that strong identity types always satisfy the condition for weak identity types since if

JA(a, C, c0, a, reflA(a)) = c0 then we can simply define JEqA(a, C, c0) , reflC[a,reflA(a)](c0).

3.2 Presheaf models of type theory

In this section we show how any presheaf category, bC = Set
Cop

, admits the structure of a

category with families. Following the notation used in [18], we write I, J,K and f, g, h for

the objects and morphisms respectively of the category C.

Definition 3.2.1 (The CwF associated with a presheaf category bC). Given any

small category C we define a category with families as follows:

• The category of contexts is given by the functor category bC = Set
Cop

. Every such

presheaf category has a terminal object given by the presheaf which is constantly a

one element set.

• The functor Ty : bCop � Set is given by presheaves on the category of elements of �,

that is:

Ty(�) , obj(Set(
R
�)op)

Explicitly, this means that a type A 2 Ty(�) is given by a family of sets A(I, ⇢) for

every I 2 C, ⇢ 2 �(I) such that for every f : J ! I we have,

A(f) : A(I, ⇢)! A(J,�(f)(⇢))

such that A(id) = id and A(g � f) = A(f) � A(g).

Note that a natural transformation (substitution) between two presheaves (contexts),

� : � ! �, yields a functor between the categories of elements,
R
� :
R
� !

R
�.

Therefore the action on morphisms, Ty(�) : Ty(�) ! Ty(�), is simply given by

precomposition with (
R
�)op : (

R
�)op ! (

R
�)op. That is, given � 2 �(I), define:

A[�](I, �) , A(I, �I(�))

This gives a functor Ty : bCop � Set as required.

36



• The functor Ter : (
R
Ty)op � Set is given by global sections of A in the presheaf

category Set
(
R
�)op , that is:

Ter(� ` A) , hom(1, A)

Explicitly, writing a(I, ⇢) for a(I,⇢)(⇤), this means that a term a 2 Ter(� ` A) is

given by a family,

a(I, ⇢) 2 A(I, ⇢)

for every I 2 C and ⇢ 2 �(I), such that for all f : J ! I we have:

A(f)(a(I, ⇢)) = a(J,�(f)(⇢))

Here and elsewhere we omit the application of ⇤ 2 1(I) in uses of a.

As before, the action of Ter on a morphism � : (�, A0)! (�, A) is given by a form

of precompostion. That is, given � 2 �(I), define:

a[�](I, �) , a(I, �I(�)) 2 A(I, �I(�)) = A[�](I, �) = A0(I, �)

This gives a functor Ter : (
R
Ty)op � Set as required.

• Given � 2 bC and A 2 Ty(�), the extended context �.A 2 bC is given by,

(�.A)(I) , {(⇢, a) | ⇢ 2 �(I), a 2 A(I, ⇢)}

with the action on morphisms f : J ! I given by:

(�.A)(f)(⇢, a) , (�(f)(⇢), A(f)(a))

The map p : �.A ! � and the term q 2 Ter(�.A ` A[p]) are simply given by the

(pointwise) first and second projections:

pI(⇢, a) , ⇢ q(I, (⇢, a)) , a

These definitions satisfy the required universal property, with the unique morphism

h�, ai : �! �.A given by,

h�, aiI(�) , (�I(�), a(I, �))

for I 2 C and � 2 �(I). This is well-defined since if a 2 Ter(� ` A[�]) then

a(I, �) 2 A[�](I, �) = A(I, �I(�)) and hence (�I(�), a(I, �)) 2 (�.A)(I).
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Following the notation used in [18] we often omit the first argument to types and terms,

e.g. given A 2 Ty(�) and ⇢ 2 �(I) we write A(⇢) for A(I, ⇢). We will also write the action

of functors on morphisms �(f)(⇢) simply as ⇢f .

It is easy to show that any CwF of this form admits dependent sums, dependent

products, strict intensional identity types and universes. We omit the details of these

constructions but refer the reader to Huber’s thesis for further detail [34, Section 1.2].

In the following section we explain how the cubical sets model of type theory [18] is

constructed. In doing so we will make use of these of these dependent sums and products.

However, the standard interpretation of identity types will validate UIP, and hence will

not validate the univalence axiom. Therefore we will use an alternative interpretation for

the identity types, which we will call path types. We will also modify the standard universe

construction in order to construct a univalent universe.

3.3 A model in cubical sets

In this section we outline the presheaf model of type theory given by Cohen et al. [18]

which models all of the features of cubical type theory, as discussed in Section 2.2.

Recall that a De Morgan algebra is a distributive lattice equipped with a function

d 7! 1 - d which is involutive 1 - (1 - d) = d and satisfies De Morgan’s Law 1 - (d1 _ d2) =

(1 -d1)^ (1 -d2); see [9, Chapter XI]. A homomorphism of De Morgan algebras is a function

preserving finite meets and joins and the involution function. Let DM denote the category

of De Morgan algebras and homomorphisms and dM(I) the free De Morgan algebra on a

set I.

Definition 3.3.1 (The category of cubes, ⇤). Fix a countably infinite set D whose

elements we call names and write as i, j, k, . . . The objects of ⇤ are the finite subsets of D,
which we write as I, J,K, . . . The morphisms ⇤(I, J) are all functions J ! dM(I). Such

functions are in bijection with the De Morgan algebra homomorphisms dM(J)! dM(I)

and the composition in ⇤ of f 2 ⇤(I, J) with g 2 ⇤(J,K) is the composition in Set of

g : K ! dM(J) with the homomorphism dM(J)! dM(I) corresponding to f .

Thus ⇤ is equivalent to the opposite of the full subcategory of DM whose objects

are the free, finitely generated De Morgan algebras. Hence it is the algebraic theory of

De Morgan algebra as a Lawvere theory [41, 2]: it is a category with finite products

equipped with an internal De Morgan algebra (whose underlying object is {i} for some

chosen i 2 D) and is universal among such categories.

Definition 3.3.2. A cubical set is a presheaf on the category of cubes.

The category of cubical sets, Set⇤
op
, forms the category of contexts of a CwF which

will allow us to interpret all of the features of cubical type theory. In subsequent chapters
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we will axiomatise certain properties of this category and prove the previous statement in

an axiomatic way. In the rest of this section we provide a very brief outline of the original

approach taken by Cohen et al. [18].

We first introduce some notation that we will use in this section. For any set of symbols

I 2 ⇤ and symbol i /2 I we write I, i as an abbreviation for I [ {i}. We also write (i0)

for the map I ! I, i which sends i to 0 and is the identity everywhere else. Similarly

we write (i1) : I ! I, i for the map which sends i to 1. Here 0 and 1 are the least and

greatest elements of the free De Morgan algebra dM(I). Finally, we write si : I, i! I for

the inclusion I ✓ dM(I, i).

In the following sections we write Ty, Ter and . to refer to the standard CwF on the

category of cubical sets, as described in Definition 3.2.1.

3.3.1 The interval and face lattice

In order to model the additional features of cubical type theory we need to describe how

to interpret the interval, I, and the face lattice, F, in the CwF associated to the category

of cubical sets. We will define both as cubical sets and then observe that any cubical set

X can be viewed as a type in any context � by taking X 0 2 Ty(�) to be X 0(I, ⇢) , X(I).

We then interpret terms � ` i : I and � ` ' : F as elements of Ter(� ` I) and Ter(� ` F).
Context extensions of the form �.I are simply interpreted as normal context extensions.

We define I to be the cubical set defined by I(I) , dM(I) which sends morphisms to

their associated De Morgan algebra homomorphisms. An alternatively characterisation

is that I is the Yoneda embedding of a single element set, y{i} = ⇤( , {i}). All of the

required structure on the interval 0, 1, _ , ^ , etc, extends to I. For example, we get a

map _ : I⇥ I! I like so:

_I(r, s) , r _ s

which is natural since, for any f 2 ⇤(J, I) = I � dM(J), we have f(r _ s) = f(r) _ f(s)

where f : dM(I) � dM(J) is the De Morgan homomorphism corresponding to f .

We define F to be the cubical set which sends a set of symbols I to the set of face

formulae, as defined in Section 2.2.3, which only mention variables in I. The action of F
on a morphism f 2 ⇤(J, I) = I ! dM(J) is simply the act of substituting variables i 2 I

for f(i) 2 dM(J) and then performing the following rewrites,

(r _ s) = 1 7! (r = 1) _ (s = 1) (r _ s) = 0 7! (r = 0) ^ (s = 0)

(r ^ s) = 1 7! (r = 1) ^ (s = 1) (r ^ s) = 0 7! (r = 0) _ (s = 0)

(1� r) = 1 7! r = 0 (1� r) = 0 7! r = 1

in order to get a well-formed face formula.

39



Given ' 2 Ter(� ` F) we define the restricted context �,' to be the cubical set:

(�,')(I) , {⇢ 2 �(I) | '(I, ⇢) = 1F}

We now have an interpretation for the interval I from Section 2.2.1 and the face lattice

F from Section 2.2.3. However, with what we have described so far we are not currently

able to interpret either the univalence axiom or the Kan composition operation from

Section 2.2.4. To do this we introduce the notion of a fibrant type.

3.3.2 Fibrant types

Since every presheaf category forms a CwF as described in Definition 3.2.1 we see that the

category of cubical sets, b⇤, forms a model of intensional type theory with all the usual

type formers, including intentional identity types. However, the standard interpretation of

identity types in this CwF will not coincide with the desired interpretation as maps out of

the interval I. In particular, as we remarked at the end of Section 3.2, these identity types

will validate the principle of UIP and hence will not allow us to interpret the univalence

axiom.

Another problem with the standard CwF construction is that we will not be able to

interpret the composition operation described in Section 2.2.4. To resolve this issue we

construct a new CwF out of the canonical one, with the same contexts and terms but only

those types which have su�cient structure to interpret the composition operation. We call

such types “fibrant” and write FTy(�) for the set of types over a context � in this new

CwF. A fibrant type will be an non-fibrant type with a composition structure, defined

below. First we introduce the notion of a partial element.

Definition 3.3.3. Given I 2 ⇤, i 62 I, ⇢ 2 �(I, i), ' 2 F(I) a partial element of A(⇢) is

a family uf 2 A(⇢f) for every f : J ! I, i such that F(si � f)(') = 1F, with the property

that for any g : K ! J we have uf�g = A(g)(uf). We cal ' the extent of the partial

element.

Note that the term partial element is usually defined more generally than in the above

definition. Indeed we will make extensive use of partial elements in the rest of this thesis.

However, for the purposes of this chapter we restricted to a simplified form. See [18] for a

more general account in this context, and later chapters of this thesis for an account using

the internal language of topoi.

Definition 3.3.4 (Composition structure [18, Definition 13]). A composition structure

for A 2 Ty(�) is an operation, comp, as follows. Given I 2 ⇤, i 62 I, ⇢ 2 �(I, i), ' 2 F(I),
u a partial element of A(⇢) of extent ' and a0 2 A(⇢(i0)) such that A(f)(a0) = u(i0)�f for
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all f : J ! I such that F(f)(') = 1F, we have

comp(I, i, ⇢,', u, a0) 2 A(⇢(i1))

which is uniform in the sense that for any f : J ! I and j 62 J we have

comp(I, i, ⇢,', u, a0)f = comp(J, j, ⇢(f, i = j),'f, u(f, i = j), a0f)

and

comp(I, i, ⇢, 1F, u, a0) = u(i1)

where (f, i = j) : J, j ! I, i is the morphism that maps i to j and otherwise acts like f ,

and u(f, i = j) is the partial element given by u(f, i = j)g , u(f�g,i=j).

Definition 3.3.5 (Fibrant types). A fibrant type consists of a pair (A, compA) 2 FTy(�)

where A 2 Ty(�) and compA is a composition structure for A.

Theorem 3.3.6. Replacing Ty with FTy in the standard CwF on the category of cubical

sets yields a new CwF with dependent pairs, dependent functions and natural numbers.

Further, this CwF supports an interpretation of the composition operation described in

Section 2.2.4.

Proof. The first part is [18, Theorem 14]. The second is shown in [18, Section 8.3]. Note

that this depends on the fact that composition structures can be reindexed, in the sense

that, given (A, compA) 2 FTy(�) and � : �! �, we get a composition structure compA[�]

for the type A[�] and hence (A[�], compA[�]) 2 FTy(�).

3.3.3 Path types

We now define path types as described in Section 2.2.2. This definition is equivalent to

the one given in the section entitled “Semantic Path Types” in [18].

Definition 3.3.7. Given a type A 2 Ty(�) and terms a, b 2 Ter(� ` A) define the path

type PathA(a, b) 2 Ty(�) as follows. Given ⇢ 2 �(I), let PathA(a, b)(⇢) be the set of

equivalences classes generated by pairs (i, w) with i /2 I and w 2 A(⇢si) such that w(i0) =

a(⇢) and w(i1) = b(⇢), where we identify (i, w) with (i0, w0) i↵ w0 = w(i = j). The action

of PathA(a, b) on a morphism f : (J, ⇢ f)! (I, ⇢) is given by (i, w) f , (j, w(f, i = j)) for

j /2 J .

While the above definition applies to any (not necessarily fibrant) type, we require

that the type A is fibrant in order to conclude that PathA is fibrant. When we restrict to

the CwF of fibrant types then these path types correctly model weak intensional identity
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types (i.e. with just a propositional computation rule). For example, given A 2 Ty(�) and

a 2 Ter(� ` A), the reflA(a) constructor can be defined as,

reflA(a)(I, ⇢) , (i, a(⇢ si))

where i /2 I. These results are summarised below.

Theorem 3.3.8. The CwF of fibrant types supports weak intensional identity types given by

PathA. More specifically, given (A, compA) 2 FTy(�) and a, b 2 Ter(� ` A), we can define

a new composition structure compPathA(a,b) such that (PathA(a, b), compPathA(a,b)) 2 FTy(�).

Moreover this type supports all the required structure of weak intensional identity types for

a CwF as described in Definition 3.1.3.

Proof. By [18], where the J-eliminator is defined using the composition structures attached

to types in the CwF of fibrant types.

3.3.4 Glueing

The next feature of cubical type theory is the glueing construction described in Section

2.2.5. The definition of the glueing construction, and the proofs that it preserves fibrancy

and has the correct properties are all quite involved. Indeed, one of the aims of this thesis

is to analyse these proofs and hopefully to give a simpler presentation. As such we do not

reproduce the original versions here. Instead we simply state the following theorem.

Theorem 3.3.9. The CwF of fibrant types supports the interpretation of a glueing operation

as defined in Section 2.2.5.

Proof. By [18].

3.3.5 A univalent universe

The final aspect of cubical type theory which must be modelled is the existence of a univalent

universe. As discussed in Section 2.2.6, we can prove that the universe is univalent from

the other features of cubical type theory, particularly the glueing construction. However,

this proof requires the existence of a universe which is closed under all the type formers,

including glueing. Therefore, given the previous results, to model a univalent universe it

su�ces to model a universe which is closed under all the type formers.

In fact, Cohen at al. construct a universe containing all small fibrant types (for some

notion of smallness in the metatheory). Since all of the type formers preserve smallness

this universe will therefore be closed under the necessary type formers and hence will be

univalent by the argument given in [18, Section 7].
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The construction is a slightly modified version of the Hofmann-Streicher universe

construction [31]. This definition relies on the existence of a notion of smallness in the

ambient metatheory, e.g. a Grothendieck universe [14]. Given this, we say that a type

A 2 Ty(�) is small i↵ its fibres A(⇢) are small for all ⇢ 2 �(I). We write Ty0(�) and

FTy0(�) for the collections of small types and small fibrant types respectively. We can

then define a universe of small types like so:

Definition 3.3.10. The universe in the cubical sets model is defined as follows. Define a

cubical set V : ⇤op ! Set as the composition V , FTy0 � yop. This means that, on objects,

the functor gives the collection of fibrant types over the Yoneda embedding of an object:

V(I) , FTy0(yI)

As mentioned above, any cubical set can be regarded as a type in the empty (and therefore

any other) context and so we have V 2 Ty(1). We then define a decoding function

El : Ter(� ` V)! FTy0(�) by taking El(a) , (Ela, compa) where Ela 2 Ty0(�) is defined

as

Ela(I, ⇢) , fst(a(⇢))(I, id I)

and compa is a composition structure for Ela defined as

compa(I, i, ⇢,', u, a0) , snd(a(⇢))(I, i, id ,', u, a0)

Finally we define a coding function p q : FTy0(�)! Ter(� ` V) like so:

p(A, compA)q(⇢) , (A, compA)[⇢]

where ⇢ : yI � � is ⇢ 2 �(I) transported across the Yoneda lemma. We can then easily

check that these coding and decoding functions are inverses. Given a : Ter(� ` V) and
⇢ 2 �(I) then for any f : J � I we have

Ela[⇢](f) = Ela(⇢ f)

= fst(a(⇢ f))(idJ)

= fst(a(⇢))(f)

and so Ela[⇢] = fst(a(⇢)). Similarly for the second component we have

compa[⇢](J, j, f,', u, a0) = compa(J, j, ⇢ f,', u, a0)

= snd(a(⇢ f))(I, i, id ,', u, a0)

= snd(a(⇢))(I, i, f,', u, a0)
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and so compa[⇢] = snd(a(⇢)). Therefore

pEl(a)q(⇢) = (Ela, compa)[⇢]

= (fst(a(⇢)), snd(a(⇢)))

= a(⇢)

and hence we have pEl(a)q = a. In the other direction, given (A, compA) 2 FTy0(�), then

for any ⇢ 2 �(I) we have

fst(El(p(A, compA)q))(⇢) = fst(p(A, compA)q(⇢))(id I)

= fst((A, compA)[⇢])(id I)

= A[⇢](id I)

= A(⇢)

and so fst(El(p(A, compA)q)) = A. Then for the other projection we have

snd(El(p(A, compA)q))(I, i, ⇢,', u, a0) = snd(p(A, compA)q(⇢))(I, i, id ,', u, a0)
= snd((A, compA)[⇢])(I, i, id ,', u, a0)

= compA[⇢](I, i, id ,', u, a0)

= compA(I, i, ⇢,', u, a0)

and so snd(El(p(A, compA)q)) = compA. Therefore El(p(A, compA)q) = (A, compA) and

hence the coding and decoding functions are mutual inverses. Therefore (FTy0,V ,El , p q)
define a universe in the sense of Huber [34, Definition 1.1.4].

Note that the above proves that (FTy0,V ,El , p q) is a universe in the original CwF of

(not necessarily fibrant) types. In order to conclude that it is also a universe in the CwF

of fibrant types we need to show that the type V is fibrant. This follows from the fact

that the universe contains all small fibrant types and hence is closed under glueing. We

can then use the glueing operation to define a composition structure on the universe as in

[18, Section 7.1].

Theorem 3.3.11. The CwF of fibrant types supports the interpretation of a universe of

small fibrant types. Moreover, this universe is univalent.

Proof. The first part is shown in the previous definition. The fact that the universe is

univalent follows from the fact that it is closed under glueing. This means that we can

apply the argument sketched in Section 2.2.6. See [18, Section 7] for full details or the

main body of this thesis for an account of this fact using the internal language of topoi.
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Chapter 4

The internal type theory of a topos

The previous chapters described the formal system of cubical type theory and its model in

the topos of cubical sets. In the subsequent chapters of this thesis I present an account

of this model working in the internal language of topoi. In order to do so I first explain

what exactly this language is and how it can be used to work with models of cubical type

theory.

4.1 Elementary topoi

We begin by introducing the notion of an (elementary) topos. A topos is a category which

behaves like the category of sets. Indeed, the category of sets is the canonical example of

a topos. Every topos comes equipped with an object known as the subobject classifier :

Definition 4.1.1. In any category E with all finite limits, a subobject classifier is an object

⌦ 2 E equipped with a monomorphism > : 1 � ⌦, such that for every monomorphism

m : X ⇢ Y there exists a unique morphism �X : Y ! ⌦ making the following diagram

into a pullback square:

X // m //

✏✏

Y

�X

✏✏

1 // > // ⌦

We say that the map �X classifies the monomorphism m : X ⇢ Y , or simply that �X

classifies the subobject X. Every subobject of Y is classified uniquely (up-to isomorphism)

by a map Y � ⌦.

Definition 4.1.2. A topos is a cartesian closed category with all finite limits and a

subobject classifier.
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Note that while the definition is quite simple and concise it in fact implies many other

properties. For example, every topos is locally cartesian closed (every slice category is

cartesian closed), has all finite colimits, and admits the interpretation of extensional type

theory as an internal language. It is this final property of topoi that we will make extensive

use of in the rest of this thesis.

4.1.1 Examples

We now briefly describe two examples of topoi. Firstly, the canonical example of a topos:

the category of sets. Secondly, we explain why any presheaf category forms a topos.

Example 4.1.3 (The topos Set). Set is well known to be cartesian closed and have

all finite limits, therefore we simply outline definition of the subobject classifier. In Set

the subobject classifier ⌦ is given by the two element set {0, 1}. The classifying map

�X : Y ! {0, 1} for a subobject m : X ⇢ Y is essentially just the characteristic map for

X regarded as a subset of Y , explicitly:

�X(y) ,

8
<

:
1 if 9x 2 X.m(x) = y

0 otherwise

Example 4.1.4 (Presheaf topoi). Given any small category, C, the presheaf category,
bC forms a topos. Again, we only describe the construction of the subobject classifier ⌦.

In the case of presheaves, ⌦(I) is defined to be be the set of sieves on I. That is, sets of

morphisms into I which are closed under precomposition with arbitrary morphisms. The

classifying map �X : Y ! ⌦ for a subobject m : X ⇢ Y is given by:

(�X)I(y) , {f : J ! I | 9x 2 X(J).mJ(x) = Y (f)(y)}

This set is closed under precomposition because, given f : J ! I with x 2 X(J) such

that mJ(x) = Y (f)(y) and any g : K ! J , then taking x0 = X(g)(x) we have mK(x0) =

mK(X(g)(x)) = Y (g)(mJ(x)) = Y (g)(Y (f)(y)) = Y (f � g)(y) and hence f � g is also in

the sieve.

4.2 The internal type theory

As mentioned above, every topos possesses a powerful internal language which may be

presented in several ways. The most common presentation is in terms of a many-sorted

higher-order logic, often called the Mitchell-Bénabou language [40]. However, in this thesis

we use a presentation in terms of extensional Martin-Löf type theory along the lines of

those discussed in [48].
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This language includes a type for every object of the topos E , and all the usual type

formers of MLTT: dependent pairs, dependent products and identity types. Note that

these identity types are extensional, which means not only that UIP always holds, but in

fact propositional equality coincides with definitional equality and so, for example, if we

know that b : B a and that a = a0 then we can conclude b : B a0 with no explicit coercion.

Extensional identity types also satisfy function extensionality.

In order to interpret this language in the topos we rely on the categorical semantics of

dependent type theory in terms of categories with families, as described in Section 3.1.

For each topos E one can find a CwF with the same objects, such that the category of

families at each object X is equivalent to the slice category E/X. This can be done in a

number of di↵erent ways; for example [53, Example 6.14], or the more recent references

[39, Section 1.3], [46] and [7], which cater for categories more general than a topos (and

for contextual/comprehension categories rather than CwFs in the first two cases). Here

we sketch the construction given in [53, Example 6.14]:

Definition 4.2.1 (The CwF associated with any topos). Given a topos E with

subobject classifier > : 1 � ⌦, we construct a CwF whose category of contexts is simply

given by E . For each object � 2 E define Ty(�) as the collection of pairs (A, a) where

A 2 E and a : �⇥ A � ⌦. The set of terms Ter(� ` (A, a)) then consists of morphisms

t : �! A making the following diagram commute1:

�
(id ,t)

//

✏✏

�⇥ A

a

✏✏

1
> // ⌦

Given any � : ��� we can reindex types (A, a) 2 Ty(�) and terms t 2 Ter(� ` A) like so:

(A, a)[�] = (A, a � (�, id)) 2 Ty(�) t[�] = t � � 2 Ter(� ` (A, a)[�])

The reindexed term, t[�], satisfies the condition required to be an element of the set

Ter(� ` (A, a)[�]) since:

a � (�, id) � (id , t � �) = a � (�, t � �) = a � (id , t) � � = > � 1� � � = > � 1�

It is easy to see that this definition of reindexing is functorial in a strict sense, without any

need for a coherent choice of pullbacks in E , since reindexing of both types and terms is

defined using composition. The extended context �.(A, a) is simply given by the subobject

1We use the notation (�,�) for the pairing map, rather than h�,�i, to avoid confusion with the
unique morphism that exists as part of the CwF structure.
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classified by a, ie. the domain of a : �.(A, a) ⇢ �⇥ A. The projection p : �.(A, a)! �

and generic element q 2 Ter(�.(A, a) ` A[p]) are then given by:

p , fst � a q , snd � a

Finally, we show how to construct the unique map into an extended context. Given

�,� 2 E , (A, a) 2 Ty(�), � : �! �, then t 2 Ter(� ` (A, a)[�]) is a morphism t : �! A

such that a � (�, id) � (id , t) = >� 1�. Therefore, the outer square in the following diagram

commutes,

� (�,t)

!!

&&

h�,ti
##

�.(A, a) // a //

✏✏

�⇥ A

a

✏✏

1
> // ⌦

and hence we get a unique map h�, ti : � ! �.(A, a) satisfying p � h�, ti = � and

q[h�, ti] = t, as required.

Using the objects, families and elements of this CwF as a signature, we get an internal

type theory along the lines of those discussed in [48], canonically interpreted in the above

CwF in the standard fashion [30]. This CwF supports dependent pairs, dependent functions

and strict extensional identity types. In addition, the universal property of the subobject

classifier gives rise to comprehension subtypes.

Definition 4.2.2 (Comprehension subtypes). Given � ` A and �, x : A ` '(x) : ⌦,
then we can form the comprehension subtype � ` {x : A | '(x)} with the following

introduction and elimination rules:

� ` t : A � ` '(t)
� ` t : {x : A | '(x)}

� ` t : {x : A | '(x)}
� ` t : A

Note that there are no explicit coercions between the original type and the comprehension

subtype.

Comprehension subtypes can be interpreted in the CwF described in Definition 4.2.1 like

so: given � 2 E , (A, a) 2 Ty(�) and ' 2 Ter(�.(A, a) ` ⌦) we interpret the comprehension

subtype as the pair (A, a0) 2 Ty(�) where a0 is the dependent conjunction of a and '.

More precisely, we have that ' : �.(A, a) � ⌦ classifies a monomorphism ' : · ⇢ �.(A, a).

Therefore we have a � ' : · ⇢ �⇥ A where a : �.(A, a) ⇢ �⇥ A is the monomorphism

classified by a. We then take a0 = �a�' : �⇥ A! ⌦.
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We now show the soundness of the introduction and elimination rules. For the

introduction rule, first observe that a0 � a = ' because, by the definition of a0, the left

diagram is a pullback square and therefore, since a is mono, so is the right diagram.

�.(A, a0) //
'
//

✏✏

�.(A, a) // a // �⇥ A

a0

✏✏

1
> // ⌦

a mono
=)

�.(A, a0) //
'
//

✏✏

�.(A, a)

a0� a
✏✏

1
> // ⌦

This means that a0 � a classifies the monomorphism '. However, since classifying

morphisms are unique we have a0 � a = '. Given the hypotheses of the introduction rule:

t 2 Ter(� ` (A, a)) such that ' � hid , ti = > � 1�, we have:

a0 � (id , t) = a0 � a � hid , ti = ' � hid , ti = > � 1�

Therefore we deduce t 2 Ter(� ` (A, a0)).

Next, we consider the elimination rule. Given any term t 2 Ter(� ` (A, a0)) we have

(id , t) = a0 � hid , ti = a � ' � hid , ti and so,

a � (id , t) = a � a � ' � hid , ti = > � 1�.(A,a) � ' � hid , ti = > � 1�

hence t 2 Ter(� ` (A, a)). Therefore Ter(� ` (A, a0)) ✓ Ter(� ` (A, a)), validating the

elimination rule.

Definition 4.2.3 (Subsingletons). Taking A = 1 in the previous definition we have, for

each ' : ⌦, a type whose inhabitation corresponds to provability of ':

['] , { : 1 | '}

We will use this type extensively in the rest of this thesis.

In following chapters we will show how to model one type theory (cubical type theory)

using a di↵erent type theory (the internal language of a topos). We use di↵erent syntax in

order to help di↵erentiate between the two. When working in the object language (cubical

type theory) we use the notation introduced in Chapter 2 (⌃, ⇧, etc). When we make

definitions and postulates in this internal language for E we instead use a concrete syntax

inspired by Agda [4]. Dependent function types are written as (x : A)�B; their canonical

terms are function abstractions, written as �(x : A) � t. Dependent product types are

written as (x : A)⇥ B; their canonical terms are pairs, written as (s, t). In the text we

use this language informally, similar to the way that Homotopy Type Theory is presented

in [62]. For example, the typing contexts of the judgements in the formal version, such
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as [x0 : A0, x1 : A1(x0), x2 : A2(x0, x1)], become part of the running text in phrases like

“given x0 : A0, x1 : A1(x0) and x2 : A2(x0, x1), then. . . ”

In the internal type theory the subobject classifier ⌦ of the topos becomes an impred-

icative universe of propositions, with logical connectives (>,?,¬,^,_,)), quantifiers

(8(x : A), 9(x : A)) and extensional equality (=) satisfying UIP, as well as function and

proposition extensionality properties. These propositions will not (in general) satisfy the

law of excluded middle or the axiom of choice. However, they always satisfy the axiom of

unique choice for any type A. This can be expressed in the internal type theory as the

existence of a term:

uc : (' : A � ⌦) � [9!(a : A). ' a] � {a : A | ' a} (4.1)

where 9!(a : A). ' a , 9(a : A).(' a ^ 8(a0 : A). ' a0 ) a = a0).

Finally, we will assume E comes with an internal full subtopos U . In the internal

language we use U as a Russell-style universe (that is, if A : U , then A itself denotes a

type) containing ⌦ and closed under forming products, exponentials and comprehension

subtypes. Note that not every topos will contain such an internal full subtopos. However,

this assumption is mostly just a convenience to avoid having to quantify externally over

the objects, families and elements of the CwF associated with E . Most of the results in

this thesis should apply in topoi without an internal universe, the exception being the

work on modelling type theoretic universes described in Chapter 7 which does require an

internal universe from which we construct the new universe of fibrant types.

We will also adopt a couple of useful notational conventions from Agda. Firstly,

function arguments that are written with infix notation are indicated by the placeholder

notation “ ”; for example u : I � I � I applied to i, j : I is written i u j. Secondly, we

use the convention that braces {} indicate implicit arguments; for example, the application

of ax9 in Figure 5.4 to ' : Cof, A : ['] � U , B : U and s : (u : [']) � (Au ⇠= B) is written

ax9AB s, or ax9 {'}AB s if ' cannot be deduced from the context.

Remark 4.2.4. Note that the standard interpretation of the syntax of type theory in an

arbitrary CwF [30] assumes that the syntax is annotated with additional typing information

in certain places. For example, if t : (x : A)�B and u : A then the application, t u, should

in fact be annotated with A and B, e.g. t u should be written as appx:A.B(t, u). When

using the internal language in this thesis we will omit these annotations in most places

and conjecture that any missing annotations can be inferred from the context. We believe

that this conjecture is supported by the existence of the Agda development described in the

following section where such annotations are either inferred or given explicitly in the code.
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4.3 The proof assistant Agda

Many of the definitions, lemmas and theorems presented in this thesis have been formalised

in the proof assistant Agda [4]. This Agda development can be found at https://doi.

org/10.17863/CAM.35681.

One advantage to the approach of working in the internal type theory of a topos, rather

than working externally with the objects and morphisms of the topos, is that this approach

better lends itself to machine-assisted formalisation. To understand why, consider what

formalising a model constructed externally would entail. Firstly, we would need to define

all the mathematical structures (categories, functors, etc) and formalise all their relevant

properties used in the model construction. Next, we would have to formalise the actual

model itself, using the structures defined in the previous step. By working in the internal

language we can essentially remove the entire first step. This is because, rather than

formalising the notion of a topos and it’s internal language in a proof assistant, we simply

use the proof assistant as if it were the internal language of a topos.

Agda is a proof assistant based on an intensional form of MLTT. While the language

provided by Agda is not quite the same as the internal type theory of a topos we found

ways to adapt it so as to make it su�ciently close. Agda does not require explicit type

annotations of the kind described in Remark 4.2.4, but instead infers these types as part

of it’s type-checking algorithm. Given these adaptions, we were able to formalise all of our

arguments fairly straightforwardly.

The first di↵erence between the two languages is that Agda’s identity types are

intensional whereas the internal type theory’s are extensional. This means that we are

required to do more work in the formalisation than in the proofs presented in this thesis.

For example, we might have to explicitly coerce between propositionally equal types.

Something which is implicit in the internal language. However, this di↵erence did not

cause any real issues when formalising the work presented here. We also added some

additional extensionality principles to Agda using postulates, specifically function and

propositional extensionality.

We also made modest use of the facility for user-defined rewriting in recent versions

of Agda [17], in order to make certain postulated equalities definitional, rather than just

propositional, thereby eliminating a few proofs in favour of computation.

The second di↵erence is that Agda does not, by default, include an impredicative

universe of propositions corresponding to the subobject classifier ⌦. However, we persuaded

it to provide such a universe of propositions using a method due to Escardo [24]. This

method works by using Agda’s type-in-type pragma to define ⌦ as the type of all (small)

mere propositions [62, Section 3.3]. That is, a proposition in ⌦ is given by a pair (prf , equ)

where prf : Set is the type of proofs for the proposition and equ : (u v : prf ) � u = v

witnesses the fact that any two proofs are equal. The exact definition can be seen in Figure
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{-# OPTIONS --type-in-type #-}
record W : Set where

constructor prop
field

prf : Set
equ : (u v : prf) ! u ⌘ v

Figure 4.1: The definition of ⌦ in Agda

4.1. This construction gives us an intensional, proof-relevant version of the subobject

classifier in the sense that two proofs u, v : P for P : ⌦ are not definitionally equal but

only propositionally equal, and are explicitly passed around in proofs.

Usually a definition like this would mean that ⌦ would be an element of Set1 (i.e. in

the next universe), however, the use of the type-in-type option means that Agda accepts

the definition of ⌦ as an element of Set . In general, the use of type-in-type is unsound

since it allows us to encode a type of all types and then replay Russel’s paradox. However,

in our development we only use type-in-type for the definition of ⌦, which is separated into

a separate module. The type-in-type option is then not enabled outside of this module,

and we believe this restricted use to be consistent.

4.4 A remark on impredicativity

While having a universe of propositions satisfying propositional extensionality is an essential

part of the constructions presented in this thesis, we believe that the impredicative nature

of ⌦ is in fact unnecessary. Instead, we could simply work in a predicative style using

types in U which are mere propositions in the sense of the HoTT book [62, Section 3.3]

and postulate the necessary uses of propositional extensionality.

For example, later we will introduce a certain class of propositions known as cofibrant

propositions. This class of propositions is specified by a map cof : ⌦ � ⌦. However, they

could instead have been specified by a map cof : U � U with axioms stating that: cof '

is always a mere proposition, cofibrant types are always mere propositions, and cofibrant

types always satisfy propositional extensionality. Formally, we could postulate:

isPropcof : (' : U)(u v : cof ') � u ⌘ v

cofisProp : (' : U)( : cof ')(x y : ') � x ⌘ y

cofExt : ('  : U)( : cof ')( : cof  ) � ('�  ) � ( � ') � ' ⌘  

where ⌘ is the internal (strict) identity type.

We believe that this approach would be su�cient to carry out the constructions

presented in this thesis. In particular, the material presented in Chapter 7, which is

presented in the impredicative style, is adapted from a paper [44] where the same material
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is presented in the predicative style.

The advantage of using an impredicative style is that it simplifies certain aspects of the

presentation. For example, in the impredicative presentation we will define the collection

of cofibrant propositions as

Cof , {' : ⌦ | cof'}

and we have Cof : U . In the impredicative presentation we would instead define this

collection as

Cof , (A : U)⇥ cofA

and then we would have Cof : U1 where U1 is some larger internal universe with U : U1.

This happens because this type is a dependent product over the original universe U and

hence must be in a larger universe. This means that accounting for universe levels in

various definitions becomes more complicated. The impredicative presentation also more

closely matches the true internal language of a topos.

Conversely, the advantage of the predicative style is twofold. Firstly, some mathemati-

cians reject impredicativity on philosophical grounds, either outright or because defining

the subobject classifier in the category of sets requires classical logic in the metatheory

(the definition of �X in Example 4.1.3 requires deciding the statement 9x 2 X.m(x) = y).

The other, more practical, advantage is that there are potentially more models of the

predicative axioms than of the impredicative ones. For example, the predicative axioms

could potentially be satisfied by a category which does not form a topos, but merely

something weaker such as a locally cartesian closed category or a stratified pseudotopos

[50] (or any other notion of “predicative topos”). Certainly, any impredicative model will

also be a predicative model since, given cof : ⌦ � ⌦, we can define cof0 : U � U as

cof0 A , {' : ⌦ | cof ' ^ ['] = A}

and show that cof0 satisfies the three properties mentioned above.

Overall, we opted for the impredicative presentation in this thesis but we included this

section to highlight the fact that our approach does not depend on this impredicativity

and that we are confident that the results here should generalise to any predicative setting.

For the Agda development, instead of using the type-in-type option, we could simply

have defined ⌦ to be in the next universe up, and then worked with a larger type of

propositions. However, as mentioned above, the approach that we have taken more closely

matches the true internal language of a topos and also avoids additional boilerplate code

relating to universe levels.
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Chapter 5

Axioms for modelling cubical type

theory in a topos

In Chapter 4 we saw how every topos admits a rich internal language based on extensional

Martin-Löf type theory. In the rest of this thesis we show how the model of cubical type

theory described in Section 3.3 can be presented using this internal language. In doing

so we implicitly generalise the model given by Cohen et al. [18] to any topos with the

appropriate structure. In order to specify this additional structure we take an axiomatic

approach, giving a set of axioms which we require to hold in the internal language. Our

presentation of the model then makes use of these axioms, rather than assuming that we

are always working in the topos described in Section 3.3.

This approach has several advantages. Firstly, it allows for a better understanding of

exactly which properties of the topos of cubical sets make it suitable for modelling cubical

type theory; which properties are essential, which are superfluous. Secondly, it allows us

to see exactly how these properties are used and for which constructions. For example,

we will see that a closure property of a certain class of propositions is only required to

model the definitional computation rule for the J-eliminator, and can be dispensed with

if one does not demand this property of the type theory. Thirdly, this approach makes

it easier to find new models of cubical type theory. This is because the axioms clarify

the properties that a topos must posses in order to model cubical type theory. Indeed,

there is a direct and fairly obvious model in the Lawvere theory defined by a subset of

the axioms, although this is in fact very similar to the model given by Cohen at al. [18].

Alternatively, rather than looking for new topoi which model cubical type theory we may

want to check if existing topoi of interest, such as the topos of simplicial sets [39], are also

potential models. Using the work presented here this task is simplified to checking a few

simple properties of the topos.
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5.1 The axioms

In this section we present the axioms that we require to hold in the internal type theory of

a topos E . We provide an overview of each axiom, giving some intuition as to its purpose

and we explain where it is used in the construction of a model of cubical type theory.

This allows us to see that certain axioms are only required for modelling specific parts of

cubical type theory, for example definitional identity types (Section 5.3.4). These axioms

can therefore be dropped when, for example, looking for models of cubical type theory

with only propositional identity types (Section 5.2). For ease of reference the axioms are

collected together at the end of this section in Figure 5.4, written in the language described

in Chapter 4.

5.1.1 The interval I

We begin by axiomatising the structure needed to model type theory with an interval

object I, as described in Section 2.2.1. Firstly, we assume the existence of an object

I : U which will be the interpretation of I in the model1. We assume that I has su�cient

structure to model the required operations on the interval. Specifically, we assume that I

comes equipped with morphisms 0, 1 : 1 � I and u , t : I � I � I satisfying axioms

ax1–ax4 in Figure 5.1.

Axiom ax1 expresses that the interval I is internally connected, in the sense that any

decidable subset of its elements is either empty or the whole of I. This implies that if a

path in an inductive datatype has a certain constructor form at one point of the path, it

has the same form at any other point. This is used at the end of Section 5.3.3 to show

that the natural number object in the topos is fibrant (that is, denotes a type) and that

fibrations are closed under binary coproducts. It also gets used in proving properties of

the glueing construct in Section 5.4. Together with axiom ax2, connectedness of I implies

that there is no path from inl ⇤ to inr ⇤ in 1 + 1 and hence that the path-based model of

Martin-Löf type theory determined by the axioms is logically non-degenerate.

Axioms ax3 and ax4 endow I with a form of connection algebra structure [15]. They

capture some very simple properties of the minimum and maximum operations on the

unit interval [0, 1] of real numbers that su�ce to ensure contractibility of singleton types

(Section 5.2) and, in combination with subsequent axioms, to define path lifting from

composition for fibrations (see Section 5.3.1). In the model of [18] the connection algebra

structure is given by the lattice structure of the interval, taking u to be binary meet,

t to be binary join and using the fact that 0 and 1 are respectively least and greatest

elements.
1To be precise, since objects of the topos in fact model contexts in the type theory, I will actually be

the interpretation of the singleton context i : I `
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The interval I : U is connected

ax1 : [8(' : I � ⌦). (8(i : I). ' i _ ¬' i)) (8(i : I). ' i) _ (8(i : I). ¬' i)]

has distinct end-points 0, 1 : I

ax2 : [¬(0 = 1)]

and a connection algebra structure u , t : I � I � I

ax3 : [8(i : I). 0 u x = 0 = x u 0 ^ 1 u x = x = x u 1]
ax4 : [8(i : I). 0 t x = x = x t 0 ^ 1 t x = 1 = x t 1].

Figure 5.1: The axioms for the interval

Remark 5.1.1 (De Morgan involution). Note that in Section 2.2.1 and in the model

of [18] I is not just a lattice, but also has an involution operation 1 � ( ) : I � I (so

that (1 � (1 � i) = i) making t the De Morgan dual of u, in the sense that i t j =

1 � ((1 � i) u (1 � j)). Although this involution structure is convenient, it is not really

necessary for the constructions that follow. Instead we just give a 0-version and a 1-version

of certain concepts; for example, “composing from 1 to 0” as well as “composing from 0 to

1” in Section 5.3.1.

Axioms ax2–ax4, along with two more subsequent axioms, will allow us to show that

fibrations provide a model of ⇧- and ⌃-types; and furthermore to show that the path

types determined by the interval object I (Section 5.2) satisfy the rules for identity types

propositionally [20, 63].

5.1.2 Cofibrant propositions

Next, we need to axiomatise the properties of the face lattice F from cubical type theory.

One approach to doing this would be to assume existence of a object modelling F with

certain algebraic properties, as we did for I is the previous section. However, instead

we take a di↵erent approach based on the original intuition behind the face lattice as

specifying the input to a Kan-like filling problem, as described in see Section 2.2.4.

Kan filling and other cofibrancy conditions on collections of subspaces have to do with

extending maps defined on a subspace to maps defined on the whole space. Here we

take “subspaces of spaces” to mean subobjects of objects in toposes. Since subobjects

are classified by morphisms to ⌦, it is possible to consider collections of subobjects that

are specified generically by certain propositions. More specifically, given a property of

propositions, cof : ⌦ � ⌦, we get a corresponding collection of propositions

Cof , {' : ⌦ | cof'} (5.1)
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Using this intuition we internalise the face lattice F as such a collection of propositions. We

can then axiomatise the properties that we require of this collection in order to construct

a model of cubical type theory. These properties are shown in Figure 5.2. Axioms ax5, ax6

and ax7 closely mirror to the last four cases in the grammar, given in Section 2.2.3, which

generates elements of the face lattice. In this presentation ax7 makes explicit that the

conjunction may be dependent, something which is not clear in the syntactic presentation.

Axiom ax8 states that cofibrant propositions are closed under I-indexed quantification.

As with the dependency in ax7, this is something which is not explicitly added to the

face lattice in the syntactic presentation, but rather is something which happens to be

true for the freely generated set of terms which define F. Axiom ax8 is used to prove the

realignment lemma (Lemma 5.3.10) which is used in the definition of the weak form of

glueing to ensure that the induced fibration structure extends the fibration structure on

the family that we are “glueing”.

Consider the class of monomorphisms m : A ⇢ B whose classifying morphism

�(y : B) � 9(x : A). mx = y : B � ⌦

factors through Cof ⇢ ⌦. We call such monomorphisms cofibrations. Kan-like filling

properties have to do with when a morphism A! X can be extended along a cofibration

m : A ⇢ B. Instead, working in the internal language of E , we will consider when partial

elements whose domains of definition are in Cof can be extended to totally defined elements.

Recall that in intuitionistic logic, partial elements of a type A are often represented by

sub-singletons, that is, by functions s : A � ⌦ satisfying

8(x x0 : A). s x ^ s x0 ) x = x0

However, it will be more convenient to work with an extensionally equivalent representation

as dependent pairs ' : ⌦ and f : ['] � A, as in the next definition. The proposition ' is

the extent of the partial element; in terms of sub-singletons it is equal to 9(x : A). s x.

Definition 5.1.2 (Cofibrant partial elements, ⇤A). We call elements of type Cof

cofibrant propositions. Given a type A : U , we define the type of cofibrant partial elements

of A to be

⇤A , (' : Cof)⇥ (['] � A) (5.2)

An extension of such a partial element (', f) : ⇤A is an element a : A together with a

proof of the following relation:

(', f)% a , 8(u : [']). f u = a (5.3)

Note that by taking i = 0 in axiom ax5 we have cof(0 = 0) (that is, cof>) and
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Cofibrant propositions Cof = {' : ⌦ | cof'} (where cof : ⌦ � ⌦)
include end-point-equality

ax5 : [8(i : I). cof(i = 0) ^ cof(i = 1)]

and are closed under binary disjunction

ax6 : [8('  : ⌦). cof') cof ) cof(' _  )]

dependent conjunction

ax7 : [8('  : ⌦). cof') (') cof )) cof(' ^  )]

and universal quantification over I

ax8 : [8(' : I � ⌦). (8(i : I). cof(' i))) cof(8(i : I). ' i)].

Figure 5.2: Axioms for cofibrant propositions

cof(0 = 1); and combining the latter with axiom ax2 we deduce also that cof? holds.

Therefore > and ? are both cofibrant propositions, corresponding to the first two cases in

the grammar which generates elements of the face lattice (Section 2.2.3). So A ⇢ A and

;⇢ A are always cofibrations, where ; is the initial object. Since cof> holds, for every

a : A there is a total cofibrant partial element (>,� � a) : ⇤A with a the unique element

that extends (>,� � a). Since cof? holds, every object A has an empty cofibrant partial

element given by (?, elim;) : ⇤A such that every a : A is an extension of (?, elim;). (For
any B : U , elim; : [?] � B denotes the unique function given by initiality of [?].)

Example 5.1.3. It is helpful to think of variables of type I as names of dimensions in

space, so that working in a context i1, ..., in : I corresponds to working in n dimensions.

Assume that we are working in a context with i, j, k : I; this therefore corresponds to

working in three dimensions. We think of an element i, j, k : I ` a : A as a cube in

the space A, as shown below. Let ' , (i = 0) _ (j = 0) _ (j = 1 ^ k = 1). From

ax5–ax7 we have i, j, k : I ` ' : Cof. We think of ' as specifying certain faces and edges

of a cube, in this case the bottom face (i = 0), the left face (j = 0) and the front-right

edge (j = 1 ^ k = 1), as in the right-hand picture below. Then a cofibrant partial ele-

ment f : [']�A can be thought of as a partial cube, only defined on the region specified by '.
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i

j

k

i, j, k : I a : A f : ['] � A

Definition 5.1.4 (Join of compatible partial elements). Say that two partial elements

f : ['] � A and g : [ ] � A are compatible if they agree wherever they are both defined:

(', f) ` ( , g) , 8(u : ['])(v : [ ]). f u = g v (5.4)

In that case we can form their join f [ g : [' _  ] � A, such that

8(u : [']). (f [ g) u = f u 8(v : [ ]). (f [ g) v = g v

To see why, consider the following pushout square in the topos:

[' ^  ] // //

✏✏

✏✏

[ ]
✏✏

✏✏ g

⇣⇣

[']

f 00

// // [' _  ]
f[g
""

A

The outer square commutes because (', f) ` ( , g) holds and then f [ g is the unique

induced morphism out of the pushout. Note that axiom ax6 in Figure 5.2 implies that the

collection of cofibrant partial elements is closed under taking binary joins of compatible

partial elements.

The following lemma gives an alternative characterization of axioms ax7 and ax8. Since

we noted above that cof> holds, part (i) of the lemma tells us that cofibrations form

a dominance in the sense of synthetic domain theory [56]; we only use this property of

Cof in order to construct definitional identity types from propositional identity types (see

Section 5.3.4).

Lemma 5.1.5. (i) Axiom ax7 is equivalent to requiring the class of cofibrations to be

closed under composition.

(ii) Axiom ax8 is equivalent to requiring the class of cofibrations to be closed under

exponentiation by I.
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Proof. For part (i), first suppose that ax7 holds and that f : A ⇢ B and g : B ⇢ C are

cofibrations. So both 8(b : B). cof(9(a : A). f a = b) and 8(c : C). cof(9(b : B). g b = c)

hold and we wish to prove 8(c : C). cof(9(a : A). g(f a) = c). Note that for b : B and

c : C

g b = c ) (9(a : A). g(f a) = c) = (9(a : A). f a = b) since g is a monomorphism

) cof(9(a : A). g(f a) = c) = cof(9(a : A). f a = b) = >

So for ' , 9(b : B). g b = c and  , 9(a : A). g(f a) = c, we have cof' and ') cof .

Therefore by ax7 we get cof(� ^  ), which is equal to cof( ) since  ) '. So we do

indeed have 8(c : C). cof(9(a : A). g(f a) = c).

Conversely, suppose cofibrations are closed under composition and that ', : ⌦ satisfy

cof' and ' ) cof . That cof' holds is equivalent to the monomorphism ['] ⇢ 1

being a cofibration; and since

' ) ( = ' ^  ) ) (cof = cof(' ^  ))

from ') cof we get ') cof(' ^  ) and hence the monomorphism [' ^  ] ⇢ ['] is a

cofibration. Composing these monomorphisms, we have that [' ^  ] ⇢ 1 is a cofibration,

that is, cof(' ^  ) holds.
For part (ii), first suppose that ax8 holds and that f : A ⇢ B is a cofibration. We

have to show that I� f : (I�A) ⇢ (I�B) is also a cofibration. Given � : I�B we have

(8i : I)(9a : A). f a = � i

) (8i : I)(9!a : A). f a = � i (since f is a monomorphism)

) (9↵ : I � A)(8i : I). f(↵ i) = � i (by unique choice in the topos)

) (8i : I)(9a : A). f a = � i

so that (8i : I)(9a : A). f a = � i is equal to (9↵ : I � A)(8i : I). f(↵ i) = � i; and the

latter is equal to (9↵ : I�A). (I� f)↵ = � by function extensionality in the topos. Since

f is a cofibration, for each i : I we have cof(9(a : A). f a = � i). Hence by axiom ax8

we also have cof((8i : I)(9a : A). f a = � i), that is, cof(9↵ : I � A). (I � f)↵ = �), as

required for I � f to be a cofibration.

Conversely, suppose cofibrations are closed under I � ( ) and that ' : I � ⌦ satisfies

(8i : I). cof(' i). The latter implies that {i : I | ' i} ⇢ I is a cofibration. Hence so is

the monomorphism (I � {i : I | ' i}) ⇢ (I � I). Since id : I � I is in the image of this

monomorphism i↵ (8i : I). ' i holds, we have cof((8i : I). ' i), as required for axiom

ax8.
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Strictness axiom: any cofibrant-partial type A
that is isomorphic to a total type B everywhere that A is defined,

can be extended to a total type B0 that is isomorphic to B:

ax9 : {' : Cof}(A : ['] � U)(B : U)(s : (u : [']) � (Au ⇠= B)) �
(B0 : U)⇥ {s0 : B0 ⇠= B | 8(u : [']). A u = B0 ^ s u = s0}

Figure 5.3: The strictness axiom

5.1.3 The strictness axiom

Our final axiom is distinct from the others in that it is less about axiomatising some

essential aspect of cubical type theory and more about addressing a weakness of the

internal language approach. This final axiom, ax9, states that any cofibrant-partial type

A that is isomorphic to a total type B everywhere that A is defined, can be extended to

a total type B0 that is isomorphic to B. The exact definition of the axiom is given in

Figure 5.3, and the definition of isomorphism is as follows:

Definition 5.1.6 (Isomorphisms). Given objects A,B : U , an isomorphism between A

and B is a function f : A � B that has a two-sided inverse. Let A ⇠= B be the type of

isomorphisms between A and B, defined by

A ⇠= B , {f : A! B | (9g : B � A) (g � f = id) ^ (f � g = id)}

We say that A and B are isomorphic if there exists an isomorphism f : A ⇠= B. We say

that two families A,B : �! U are isomorphic if each of their fibres are, and we abusively

write

A ⇠= B , (x : �) � Ax ⇠= B x

Isomorphisms have inverses up to the extensional equality of the internal type theory,

in contrast to the notion of equivalences which we introduce later, which will only have

inverses up to path equality. In addition these inverses are unique, and hence, using unique

choice, we can always construct the inverse to an isomorphism. Therefore, given f : A ⇠= B,

we will write f�1 : B ⇠= A for this inverse of f .

To gain some intuition for what this axiom is doing consider the following example.

We have a family of types over the interval B : I � U and a single type A : U such

that A ⇠= B 0. We would like to be able to, in a sense, “overwrite” the value of B at 0,

replacing it with A. This should then give us a family B0 : I � U which is isomorphic

to the original family B, but such that A = B0 0. Given axiom ax9 then we can define

B0 i : U to be the first projection of ax9 {i = 0} (� � A) (B i) (� � s) where s : A ⇠= B 0

is the isomorphism witnessing that A is isomorphic to B at 0. The second projection gives
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us the new isomorphism witnessing that B0 is isomorphic to B, and in particular this new

isomorphism is simply the old one when i = 0.

A priori, without axiom ax9, there is no way to perform such a construction in the

internal type theory. Indeed, such a construction seems quite strange from a categorical

point of view, where we usually only work “up to isomorphism”. However, this axiom will

be required later in order to validate certain definitional equalities which must hold in the

type theory. In that sense the need for axiom ax9 is reminiscent of the issues that arise

when interpreting substitution in type theory as pullback in a categorial model.

Axiom ax9 will be used to regain the strict form of glueing used by Cohen et al. [18].

Its validity in presheaf models depends on a construction in the external metatheory that

cannot be replicated internally; see Theorem 5.6.3 for details.

5.2 Path types

Given A : U , we call elements of type I � A paths in A. The path type associated with A

is ⇠ : A � A � U where

a0 ⇠ a1 , {p : I � A | p 0 = a0 ^ p 1 = a1} (5.5)

Can these types be used to model the rules for Martin-Löf identity types? We can certainly

interpret the identity introduction rule (reflexivity), since degenerate paths given by

constant functions

k a i , a (5.6)

satisfy k : {A : U}(a : A) � a ⇠ a. However, we need further assumptions to interpret the

identity elimination rule, otherwise known as path induction, described in Section 2.1.2.

Coquand has given an alternative (propositionally equivalent) formulation of identity

elimination in terms of substitution functions a0 ⇠ a1 � P a0 � P a1 and contractibility of

singleton types (a1 : A)⇥ (a0 ⇠ a1); see [11, Figure 2]. The connection algebra structure

gives the latter, since using ax3 and ax4 we have

ctr : {A : U}{a0 a1 : A}(p : a0 ⇠ a1) � (a0, k a0) ⇠ (a1, p) (5.7)

ctr p i , (p i,�j � p(i u j))

However, to get suitably behaved substitution functions we have to consider families of

types endowed with some extra structure; and that structure has to lift through the type-

forming operations (products, functions, identity types, etc). This is what the definitions

in the next section achieve.
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The interval I : U is connected

ax1 : [8(' : I � ⌦). (8(i : I). ' i _ ¬' i)) (8(i : I). ' i) _ (8(i : I). ¬' i)]

has distinct end-points 0, 1 : I

ax2 : [¬(0 = 1)]

and a connection algebra structure u , t : I � I � I

ax3 : [8(i : I). 0 u x = 0 = x u 0 ^ 1 u x = x = x u 1]
ax4 : [8(i : I). 0 t x = x = x t 0 ^ 1 t x = 1 = x t 1].

Cofibrant propositions Cof = {' : ⌦ | cof'} (where cof : ⌦ � ⌦)
include end-point-equality

ax5 : [8(i : I). cof(i = 0) ^ cof(i = 1)]

and are closed under binary disjunction

ax6 : [8('  : ⌦). cof') cof ) cof(' _  )]

dependent conjunction

ax7 : [8('  : ⌦). cof') (') cof )) cof(' ^  )]

and universal quantification over I

ax8 : [8(' : I � ⌦). (8(i : I). cof(' i))) cof(8(i : I). ' i)].

Strictness axiom: any cofibrant-partial type A
that is isomorphic to a total type B everywhere that A is defined,

can be extended to a total type B0 that is isomorphic to B:

ax9 : {' : Cof}(A : ['] � U)(B : U)(s : (u : [']) � (Au ⇠= B)) �
(B0 : U)⇥ {s0 : B0 ⇠= B | 8(u : [']). A u = B0 ^ s u = s0}

Figure 5.4: All the axioms
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5.3 Cohen-Coquand-Huber-Mörtberg (CCHM) fibra-

tions

In this section we show how to generalise the notion of fibration introduced in Definition

3.3.4 from the particular presheaf model considered there to any topos with an interval

object as in the previous sections. To do so we use the notion of cofibrant proposition from

Figure 5.4 to internalise the composition and filling operations described in [18]. We show

that this notion is closed under forming ⌃-, ⇧- and Path-types, as well as basic datatypes;

finally we show how to define identity types with a definitional computation rule, Id-types,

and we show that fibrations are also closed under forming Id-types.

5.3.1 Composition and filling structures

Given an interval-indexed family of types A : I�U , we think of elements of the dependent

function type ⇧IA , (i : I) � A i as dependently typed paths. We call elements of type

⇤(⇧IA) cofibrant-partial paths. Given (', f) : ⇤(⇧IA), we can evaluate it at a point i : I

of the interval to get a cofibrant partial element (', f) @ i : ⇤(A i):

(', f) @ i , (',�(u : [']) � f u i) (5.8)

An operation for filling from 0 in A : I�U takes any (', f) : ⇤(⇧IA) and any a0 : A 0 with

(', f)@0% a0 and extends (', f) to a dependently typed path g : ⇧IA with g 0 = a0. This

is a form of uniform Homotopy Extension and Lifting Property (HELP) [49, Chapter 10,

Section 3] stated internally in terms of cofibrant propositions rather than externally in

terms of cofibrations. A feature of our internal approach compared with Cohen et al. is

that their uniformity condition on composition/filling operations (Definition 3.3.4), which

allows one to avoid the non-constructive aspects of the classical notion of Kan filling [10],

becomes automatic when the operations are formulated in terms of the internal collection

Cof of cofibrant propositions.

Since we are not assuming any structure on the interval for reversing paths (see

Remark 5.1.1), we also need to consider the symmetric notion of filling from 1. Let

{0,1} , {i : I | i = 0 _ i = 1} (5.9)

Note that because of axiom ax2, this is isomorphic to the object of Booleans, 1 + 1 and

hence there is a function

: {0,1} � {0,1} (5.10)

satisfying 0 = 1 and 1 = 0. In what follows, instead of using path reversal we parameterise

definitions with e : {0,1} and use (5.10) to interchange 0 and 1.
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Definition 5.3.1 (Filling structures). Given e : {0,1}, the type Fill eA : U of filling

structures for an I-indexed families of types A : I � U , is defined by:

Fill eA , (' : Cof)(f : ['] � ⇧IA)(a : {a0 : Ae | (', f) @ e% a0}) �
{g : ⇧IA | (', f)% g ^ g e = a}

(5.11)

Example 5.3.2. For some intuition as to why such an operation is referred to as filling,

consider the following example. For simplicity, assume that A : I � U is a constant family

A , �( : I) � A0. Recall that we think of variables of type I as dimensions in space; so

that, given an element a : A in an ambient context j, k : I, we think of a as a square in the

space A. We are interested in extending this two dimensional square to a three dimensional

cube as indicated below.

j

k

j, k : I a : A f : ['] � ⇧IA g : ⇧IA

However, let us imagine that we already know how to extend a on certain faces and edges of

the cube, for example, on the faces/edges specified by ' , (j = 0) _ (j = 1 ^ k = 1). This

means that we have a cofibrant partial path f : ['] � ⇧IA which agrees with a where they

are both defined, that is (', f) @ 0% a. Note that f is a partial path rather than partial

element because, on the faces/edges where it is defined, it must be defined at all points

along the new dimension by which we are extending a, i.e. ' cannot depend on this new

dimension. A filling for this data is a cube g : ⇧IA which agrees with the faces/edges that

we started with. That is, it extends f and agrees with a at the base of the cube: (', f)% g

and g 0 = a.

A notable feature of [18] compared with preceding work [11] is that such filling structure

can be constructed from a simpler composition structure that just produces an extension

at one end of a cofibrant-partial path from an extension at the other end. We will deduce

this using axioms ax3–ax6 from the following, which is the main notion of this chapter.

Definition 5.3.3 (CCHM fibrations). A CCHM fibration (A,↵) over a type � : U is

a family A : � � U equipped with a fibration structure ↵ : isFibA, where isFib : {� :

U}(A : � � U) � U is defined by

isFib {�}A , (e : {0,1})(p : I � �) � Comp e (A � p) (5.12)

Here Comp : (e : {0,1})(A : I � U) � U is the type of composition structures for I-indexed
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families:

Comp eA , (' : Cof)(f : ['] � ⇧IA) �
{a0 : Ae | (', f) @ e% a0} � {a1 : Ae | (', f) @ e% a1}

(5.13)

Example 5.3.4. In Example 5.3.2 we considered the case where the family A was constant.

We now consider the non-constant case, providing some intuition for the role of � and

p : I�� in the definition of CCHM fibrations (5.12). Following the intuition that fibrations

should correspond to topological spaces parameterised by another topological space, we think

of � as a space, called the base of the fibration, and p : I � � as a path in this space. We

have a space, Ax, lying above x for every x : �, called the fibre at x. In particular we have

spaces A(p 0) and A(p 1) lying over the start and end of the path p as shown below:

As in Example 5.3.2, consider working in a context with two dimensions j, k : I, where

' , (j = 0) _ (j = 1 ^ k = 1). Further, take e = 0. This means that f : ['] � ⇧I(A � p)
defines one face and one edge of a cube as in Example 5.3.2, except that these no longer

exist inside a single fibre, but rather they exists in the total space of A, lying over the

path p, as shown in the leftmost diagram below. Then a0 defines a square in the space

A(p 0), as shown in the central diagram, where the condition (', f) @ e% a0 ensures that

f properly aligns with the relevant edge and corner of a0. The result of the composition

operation, ↵ 0 p' f a0 : A(p 1), therefore defines a square in the fibre A(p 1), where the

condition (', f) @ e% a1 ensures that this square is properly aligned with f , as shown in

the rightmost diagram below.

f : ['] � ⇧I(A � p) a0 : A(p 0) ↵ 0 p' f a0 : A(p 1)

67



Definition 5.3.5 (The CwF of CCHM fibrations). Let Fib� be the type of CCHM

fibrations over an object �, defined by

Fib � , (A : �! U)⇥ isFibA (5.14)

CCHM fibrations are closed under re-indexing: given � : � � � and A : � � U , we get a

function [�] : isFibA � isFib(A � �) defined by ↵[�] e p , ↵ e (� � p). Therefore we get

a function [ ] : (� � �) � Fib� � Fib� given by

(A,↵)[�] , (A � �,↵[�]) (5.15)

which is functorial: (A,↵)[id ] = (A,↵) and (A,↵)[g � f ] = (A,↵)[g][f ]. It follows that Fib

has the structure of a Category with Families by taking families to be CCHM fibrations

(A,↵) : Fib� over each � : U and elements of such a family to be dependent functions in

(x : �) � Ax.

Remark 5.3.6 (Fibrant objects). We say A : U is a fibrant object if we have a

fibration structure for the constant family �( : 1) � A over the terminal object 1. Note

that if (A,↵) : Fib� is a fibration, then for each x : � the type Ax : U is fibrant, with

the fibration structure given by reindexing ↵ by the map �( : 1) � x : 1 � �. However

the converse is not true: having a family of fibration structures, that is, an element of

(x : �) � isFib(�( : 1) � Ax), is weaker than having a fibration structure for A : � � U .
To see why, consider the family, P : I � U defined by

P i , [0 = i] (5.16)

For each i : I the fibre P i : U is a fibrant object, with a fibration structure, ⇢i : isFib(�( :

1)� P i), given by ⇢i e p � f x , x. However, it is not possible to construct a ⇢ : isFibP .

For if it were, then we could define ⇢ 0 id ? elim; ⇤ : [0 = 1]; combined with ax2, this

would lead to contradiction. This example is explored in more detail later, in Section 7.1.

If ↵ : Fill eA, then �' f a�↵' f a e : Comp eA and so every filling structure gives rise

to a composition structure. Conversely, the composition structure of a CCHM fibration

gives rise to filling structure:

Lemma 5.3.7 (Filling structure from composition structure). Given � : U , A : ��
U , e : {0,1}, ↵ : isFibA and p : I��, there is a filling structure fill e↵ p : Fill e (A�p)
that agrees with ↵ at e, that is:

8(' : Cof)(f : ['] � ⇧IA)(a : A(p e)).

(', f) @ e% a ) fill e↵ p' f a e = ↵ e p' f a (5.17)
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Furthermore, fill is stable under re-indexing in the sense that for all � : � � � and

p : I � �

fill e↵ (� � p) = fill e (↵[�]) p (5.18)

Proof. The construction of filling from composition follows [18, Section 4.4], but just using

the connection algebra structure on I (axioms ax3 and ax4), rather than a De Morgan

algebra structure. Suppose � : U , A : � � U , e : {0,1}, ↵ : isFibA, p : I � �, ' : Cof,

f : ['] � ⇧I(A � p), a : A(p e) with (', f) @ e% a, and i : I. Then using Definition 5.1.4

we can define

fill e↵ p' f a i , ↵ e (p0 i) (' _ i = e) (f 0 i [ g i) a (5.19)

where

p0 : I � I � �

p0 i j , p(i ue j)

f 0 : (i : I) � ['] � ⇧I(A � (p0 i))

f 0 i u j , f u (i ue j)

g : (i : I) � {g0 : [i = e] � ⇧I(A � (p0i)) | (', f 0 i) ` (i = e, g0)}

g i v j , a

and where ue is given by u0 , u and u1 , t. Finally, property (5.18) is immediate from

definitions (5.15) and (5.19).

Compared with [11], the fact that filling can be defined from composition considerably

simplifies the process of lifting fibration structure through the usual type-forming constructs,

as the following two theorems demonstrate. Their proofs are internalisations of those in [18,

Section 4.5], except that we avoid the use Cohen et al. make of De Morgan involution.

5.3.2 Properties of fibrations

We now prove some properties of fibrations that will be useful later. First, we show that

the class of fibrations is closed under isomorphism. We will say that two fibrations (A,↵)

and (B, �) : Fib � are isomorphic if the underlying families A and B are, and we abusively

write

(A,↵) ⇠= (B, �) , A ⇠= B

where A ⇠= B is as in Definition 5.1.6.

Lemma 5.3.8. Given a family A : �! U and a fibration (B, �) : Fib �, such that A ⇠= B,

then we can construct ↵ such that (A,↵) : Fib �.
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Proof. Assume that we are given A and (B, �) as above with an isomorphism f : A ⇠= B.

We can then define a composition structure for A as follows:

↵ e p ' q a0 , f�1 (p e) (� e p ' (�u i � f (p i) (q u i)) (f (p e) a0))

This construction has the required property that, given u : [']:

↵ e p ' q a0 = f�1 (p e) (� e p ' (�u i � f (p i) (q u i)) (f (p e) a0))

= f�1 (p e) (f (p e) (q u e))

= q u e

Therefore (', q) @ e% ↵ e p ' q a0, and hence (A,↵) : Fib �.

Note that this proof only uses the fact that f�1 x � f x = id and so in fact the lemma

holds more generally in the case where hf, f�1i is just a section-retraction pair rather

than a full isomorphism. Although in this thesis we will only use it in the context of

isomorphisms.

Next, we show that it is possible to adapt or realign composition structures on a family.

First, we introduce the notion of cofibrant-partial type-families :

Definition 5.3.9 (Cofibrant-partial families). Given a object � : U and a cofibrant

property � : � � Cof define the restriction of � by � to be

�|� , (x : �)⇥ [� x] (5.20)

Thus �|� : U and there is a monomorphism ◆ : �|� ⇢ � given by first projection. (Note

that �|� is isomorphic to the comprehension subtype {x : � | � x}, but we use the above

representation to make proofs of � x more explicit in various constructions.) Then given

an object � : U and a cofibrant property � : �� Cof, a cofibrant-partial type-family over �

is a family A of types over the restriction �|�, that is A : (�|�) � U .

Lemma 5.3.10 (Realignment lemma). Given � : U and � : � � Cof, let ◆ : �|� ⇢ �

be the first projection. For any A : � � U , � : isFib(A � ◆) and ↵ : isFibA, there exists a

composition structure realign(�, �,↵) : isFibA such that � = realign(�, �,↵)[◆].

Proof. Given �,�, A, �,↵ as above, using axiom ax8 (and ax6) we can define realign(�, �,↵)

by

realign(�, �,↵) e p f g , ↵ e p ( _ (8(i : I).� (p i))) (f [ f 0) g (5.21)

where f 0 : [8(i : I).� (p i)] � ⇧I(A � p) is given by f 0 u , fill e � (�i � (p, u i)) f g.

The fact that f and f 0 are compatible follows from the fact that we use  and f in the
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definition of f 0 and so by the properties of filling f 0 must agree with f wherever they are

mutually defined.

In words, given a fibrant type A and an alternative composition structure defined only

on some restriction of A, then we can realign the original composition structure so that it

agrees with the alternative on that restriction.

Note that this construction is stable under reindexing, in the sense that, given the

following data:

� : �! �, � : � � Cof, A : � � U , � : isFib(A � ◆), ↵ : isFibA

then,

realign(�, �,↵)[�] e p f a

= realign(�, �,↵) e (� � p) f a

= ↵ e (� � p) ( _ (8(i : I).� ((� � p) i))) (f [ fill e � (�i � (� � p, u i)) f a) a

= ↵[�] e p ( _ (8(i : I). (� � �)(p i))) (f [ fill e �[� ⇥ id ] (�i � (p, u i)) f a) a

= realign(� � �, �[� ⇥ id ],↵[�]) e p f a

Therefore we have

realign(�, �,↵)[�] = realign(� � �, �[� ⇥ id ],↵[�])

5.3.3 Type formers and simple datatypes

Theorem 5.3.11 (Fibrant ⌃-types). There is a function

isFib⌃ : {� : U}{A1 : � � U}{A2 : (x : �)⇥ A1 x � U} �
isFibA1 � isFibA2 � isFib(⌃A1 A2)

(5.22)

where ⌃A1 A2 x , (a1 : A1 x)⇥A2(x, a1). The function is stable under re-indexing, in the

sense that for all � : � � �

(isFib⌃ ↵1 ↵2)[�] = isFib⌃(↵1[�])(↵2[� ⇥ id ]) (5.23)

Hence the category with families given by CCHM fibrations supports the interpretation of

⌃-types [30, Definition 3.18].

Proof. The construction of isFib⌃ makes use of the filling operation from Lemma 5.3.7.

Given � : U , A1 : � � U , A2 : (x : �) ⇥ A1 x � U , ↵1 : isFibA1, ↵2 : isFibA2,

e : {0,1}, p : I � �, ' : Cof, f : ['] � ⇧I((⌃A1 A2) � p) and (a1, a2) : (⌃A1 A2)(p e) with
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(', f) @ e% (a1, a2), define

isFib⌃ ↵1 ↵2 e p' f (a1, a2) , (↵1 e p' f1 a1 , ↵2 e q ' f2 a2) (5.24)

where

f1 : ['] � ⇧I(A1 � p)

f1 u i , fst(f u i)

q : I � (x : �)⇥ A1 x

q , hp , fill e↵1 p' f1 a1i

f2 : ['] � ⇧I(A2 � q)

f2 u i , snd(f u i)

Thus isFib⌃ ↵1 ↵2 e p' f (a1, a2) : (⌃A1 A2)(p e); and since

8(u : [']). f1 u e = ↵1 e p' f1 a1 = fill e↵1 p' f1 a1 e

8(u : [']). f2 u e = ↵2 e q ' f2 a2

hold, it follows that

(', f) @ e% isFib⌃ ↵1 ↵2 e p' f (a1, a2).

Hence isFib⌃ ↵1 ↵2 : isFib(⌃A1 A2). Finally, property (5.23) follows from (5.18) and

(5.24).

Theorem 5.3.12 (Fibrant ⇧-types). There is a function

isFib⇧ : {� : U}{A1 : � � U}{A2 : (x : �)⇥ A1 x � U} �
isFibA1 � isFibA2 � isFib(⇧A1 A2)

(5.25)

where ⇧A1 A2 x , (a1 : A1 x) � A2(x, a1). This function is stable under re-indexing

(cf. 5.23) and hence the category with families given by CCHM fibrations supports the

interpretation of ⇧-types [30, Definition 3.15].

Proof. Given � : U , A1 : � � U , A2 : (x : �) ⇥ A1 x � U , ↵1 : isFibA1, ↵2 : isFibA2,

e : {0,1}, p : I��, ' : Cof, f : [']�⇧I((⇧A1 A2)�p), g : (⇧A1 A2)(p e) with (', f)@e% g

and a1 : A1(p e), using Lemma 5.3.7 we define

isFib⇧ ↵1 ↵2 e p' f g a1 , ↵2 e q ' f2 a2 (5.26)
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where

f1 : ⇧I(A1 � p)

f1 , fill e↵1 p? elim; a1

q : I � (x : �)⇥ A1 x

q , hp , f1i

f2 : ['] � ⇧I(A2 � q)

f2 u i , f u i (f1 i)

a2 : {a02 : A2(q e) | (', f2) @ e% a02}

a2 , g(f1 e)

Since we know that f1 e = fill e↵1 p? elim; a1 e = a1, therefore we have

isFib⇧ ↵1 ↵2 e p' f g a1 : A2(q e) = A2(p e, f1 e) = A2(p e, a1) (5.27)

Furthermore, since (', f2) @ e% ↵2 e q ' f2 a2, for any u : ['] we have

f u e a1 = f u e (f1 e) = f2 u e = ↵2 e q ' f2 a2 = isFib⇧ ↵1 ↵2 e p' f g a1 (5.28)

Since (5.27) and (5.28) hold for all a1 : A1(p e), from the first if follows that

isFib⇧ ↵1 ↵2 e p' f g : (⇧A1 A2)(p e)

and from the second that (', f) @ e % isFib⇧ ↵1 ↵2 e p' f g. Therefore we have that

(5.26) does give an element of isFib(⇧A1 A2). Finally, stability of isFib⇧ ↵1 ↵2 under

re-indexing follows from (5.18).

These theorems allow us to construct fibration structures for ⌃- and ⇧-types, given

fibration structures for their constituent types. But are there any fibration structures to

begin with? We answer this question by showing that the natural number object N in the

topos is always fibrant. This is proved for the topos of cubical sets b⇤ in [11, Section 4.5]

by defining a composition structure by primitive recursion. We give a more elementary

proof using the fact that the interval object in b⇤ satisfies axiom ax1 (see Theorem 5.6.1).

Theorem 5.3.13 (N is fibrant). If N is an object with decidable equality, then there is a

function isFibN : {� : U}� isFib(�( : �)� N). In particular, if the topos E has a natural

number object 1
Z�! N

S�! N, then the category with families given by CCHM fibrations has a

natural number object.

Proof. Suppose � : U , e : {0,1}, p : I � �, ' : Cof, f : ['] � ⇧I(� � N) and n : N with

(', f)@e% n. By assumption on N, for each u : ['] the property �(i : I)�(f u i = n) : I�⌦
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is decidable; hence by axiom ax1 and the fact that f u e = n, we also have f u e = n.

Therefore we can get isFibN e p' f n : {n0 : N | (', f) @ e % n0} just by defining:

isFibN e p' f n , n. For the last part of the theorem we use the fact that in a topos with

natural number object, equality of numbers is decidable.

A similar use of axiom ax1 su�ces to prove:

Theorem 5.3.14 (Fibrant coproducts). Writing A1
inl��! A1 + A2

inr �� A2 for the

coproduct of A1 and A2 in E, we lift this to families of types, ] : {� : U}(A1 A2 :

� � U) � � � U , by defining (A1 ] A2) x , A1 x+ A2 x. Then there is a function

isFib] : {� : U}{A1 A2 : � � U} � isFibA1 � isFibA2 � isFib(A1 ] A2) (5.29)

and this fibration structure on coproducts is stable under re-indexing. Hence the category

with families given by CCHM fibrations has binary coproducts.

Proof. The proof makes use of the principle of unique choice, which holds in the internal

type theory of a topos:

uc : (A : U)(' : A � ⌦) � [9!(a : A). ' a] � {a : A | ' a} (5.30)

where 9!(a : A). ' a , 9(a : A). ' a ^ 8(a0 : A). ' a0 ) a = a0.

Suppose we have � : U , A1 A2 : ��U , ↵1 : isFibA1, ↵2 : isFibA2, e : {0,1}, p : I��,

' : Cof, g : [']�⇧I((A1 ]A2) � p) and c : A1(p e) +A2(p e) with (', g) @ e% c. Note that

for all u : ['] and i : I

P1, P2 : ['] � I � ⌦

P1 u i , 9!(a1 : A1(p i)). g u i = inl a1

P2 u i , 9!(a2 : A2(p i)). g u i = inr a2

are complementary propositions (P1 u i ^ P2 u i = ? and P1 u i _ P2 u i = >); and
hence by ax1 we have that (8(i : I). P1 u i) _ (8(i : I). P2 u i). Either c = inl a1 for some

a1 : A1(p e), or c = inr a2 for some a2 : A2(p e). In the first case, since 8(u : [']). g u e = c,

it follows that 8(u : ['])(i : I). P1 u i; then using uc we get some f1 : ['] �⇧I(A1 � p) with
8(u : ['])(i : I). g u i = inl(f1 u i) and we can define

isFib] ↵1 ↵2 e p' g (inl a1) , inl(↵1e p' f1 a1)

Similarly if c = inr a2, then there is some f2 : [']�⇧I(A2 �p) with 8(u : ['])(i : I). g u i =

inr(f2 u i) and we can define

isFib] ↵1 ↵2 e p' g (inr a2) , inr(↵2e p' f2 a2).
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5.3.4 Path and identity types

Theorem 5.3.15 (Fibrant path types). There is a function

isFibPath : {� : U}{A : � � U} � isFibA � isFib(PathA) (5.31)

where PathA : (x : �)⇥ (Ax⇥ Ax) � U is given by

PathA (x, (a0, a1)) , a0 ⇠ a1 (5.32)

and where ⇠ is as in (5.5). This fibration structure on path types is stable under re-indexing,

in the sense that for all � : � � �

(isFibPath ↵)[� ⇥ (id ⇥ id)] = isFibPath(↵[�]) (5.33)

Proof. Given � : U , A : � � U , ↵ : isFibA, e : {0,1}, p : I � (x : �) ⇥ (Ax ⇥ Ax),

' : Cof, f : ['] � ⇧I((PathA) � p), q : PathA (p e) with (', f) @ e% q and i : I, suppose

p = hp0 , hq0 , q1ii where p0 : I � � and q0, q1 : ⇧I(A � p), and define

isFibPath ↵ e p' f q i , ↵ e p0 (' _ i = 0 _ i = 1) (f 0 [ f0 [ f1) (q i) (5.34)

where

f 0 : ['] � ⇧I(A � p0)

f 0 u j , f u j i

f0 : {g : [i = 0] � ⇧I(A � p0) | (', f 0) ` (i = 0, g)}

f0 , q0

f1 : {g : [i = 1] � ⇧I(A � p0) | (' _ i = 0, f 0 [ f0) ` (i = 1, g)}

f1 , q1

Thus for each i : I we have isFibPath ↵ e p' f q i : A(p0e), so that isFibPath ↵ e p' f q :

I � A(p0e). Since ↵ e p0 : Comp e (A � p0), we have

8(u : [' _ i = 0 _ i = 1]). (f 0 [ f0 [ f1) u e =

↵ e p0 (' _ i = 0 _ i = 1) (f 0 [ f0 [ f1) (q i) = isFibPath ↵ e p' f q i

Hence isFibPath ↵ e p' f q 0 = q0 e and isFibPath ↵ e p' f q 1 = q1 e, giving a path from
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q0 e to q1 e and so

isFibPath ↵ e p' f q : PathA (p0 e, (q0 e, q1 e)) = PathA (p e)

and furthermore, (', f) @ e % isFibPath ↵ e p' f q. Thus isFibPath ↵ : isFib(PathA).

Finally, property (5.33) is immediate from (5.34) and the definition of [ ] (5.15).

These path types in the CwF of CCHM fibrations (Definition 5.3.5) satisfy the Coquand

formulation of identity types with propositional computation properties [11, Figure 2].

Thus in addition to the contractibility of singleton types (5.7), we get substitution functions

for transporting elements of a fibration along a path

subst : {� : U}{A : � � U}{↵ : isFibA}{x0 x1 : �} � (x0 ⇠ x1) � Ax0 � Ax1 (5.35)

subst p a , ↵ 0 p? elim; a

using the cofibrant partial elements (?, elim;) mentioned after Definition 5.1.2. By

Lemma 5.3.7 we have that these substitution functions satisfy a propositional computation

rule for constant paths (5.6):

H : {� : U}{A : � � U}{↵ : isFibA}{x : �}(a : Ax) � (a ⇠ subst(k x) a) (5.36)

H a , fill 0↵ (k x)? elim; a

Remark 5.3.16 (Function extensionality). As one might expect from [62, Lemma 6.3.2],

the path types of Theorem 5.3.15 satisfy function extensionality. Given A : U , B : A � U ,
f, g : (x : A) � B x and p : (x : A) � (f x ⇠ g x), we get a path funext p : f ⇠ g in

(x : A) � B x given by

funext p i , �(x : A) � p x i

for all i : I.

To get Martin-Löf identity types with standard definitional, rather than propositional

computation properties from these path types, we use a version of Swan’s construction [60]

like the one in Section 9.1 of [18], but only using the connection algebra structure on I,

rather than a De Morgan algebra structure. This is the only place that axiom ax7 is used;

we need the fact that the universe given by Cof and [ ] : Cof�U is closed under dependent

products:

Lemma 5.3.17. The following element of type ⌦ is provable: 8(' : ⌦)(f : [']�⌦). cof')
(8(u : [']). cof(f u))) cof(9(u : [']). f u).

Proof. Note that if u : ['] then (9(v : [']). f v) = f u and hence cof(9(v : [']). f v) =

cof(f u). So 8(u : [']). cof(f u) equals ' ) cof(9(v : [']). f v). Therefore from
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cof' and 8(u : [']). cof(f u) by axiom ax7 we get cof(' ^ 9(v : [']). f v) and hence

cof(9(v : [']). f v), since (9(v : [']). f v)) '.

Theorem 5.3.18 (Fibrant identity types). Define identity types by:

Id : {� : U}(A : � � U) � (x : �)⇥ (Ax⇥ Ax) � U (5.37)

IdA (x, (a0, a1)) , (p : PathA (x, (a0, a1)))⇥ {' : Cof | ') 8(i : I). p i = a0}

Then there is a function isFibId : {� : U}{A : � � U} � isFibA � isFib(IdA) and the

fibration (IdA, isFibIdA) can be given the structure of Martin-Löf identity types in the

CwF of CCHM fibrations [30, Definition 3.19].

Proof. Given � : U , A : � � U and ↵ : isFibA, using Theorems 5.3.11 and 5.3.15 we

define isFibId ↵ , isFib⌃(isFibPath ↵) �, where � : isFib� with

� : (y : (x : �)⇥ (Ax⇥ Ax))⇥ PathAy � U

�((x, (a0, a1)), p) , {' : Cof | ') 8(i : I). p i = a0}

and the fibration structure � mapping e : {0,1}, p : I�(y : (x : �)⇥(Ax⇥Ax))⇥PathAy,

' : Cof, f : ['] � ⇧I(� � p) and '0 : �(p e) with (', f) @ e% '0 to the element

� e p' f '0 , 9(u : [']). f u e

(using Lemma 5.3.17 to see that this is well defined). We get the usual introduction,

elimination and computation rules for these identity types as follows. Since > : Cof holds

by axiom ax5, identity introduction

refl : {� : U}{A : � � U}{x : �}(a : Ax) � IdA (x, (a, a)) (5.38)

can be defined by refl a , (�a i � a,>). Identity elimination

J : {� : U}(A : � � U)(x : �)(a0 : Ax)(B : (a : Ax)⇥ IdA (x, (a0, a)) � U)
(� : isFibB)(a1 : Ax)(e : IdA (x, (a0, a1))) � B(a0, refl a0) � B(a1, e)

(5.39)

is given by

JAxa0 B � a1(p,') b , � 0 hp , qi' f b

where q : (i : I) � IdAx (a0, p i) is q i j , (p(i u j),' _ i = 0) and f : ['] � ⇧I(B � hp , qi)
is f u i , b. (In the above element, since (p,') : IdA (x, (a0, a1)) we have p 0 = a0,

p 1 = a1 and ' ) 8(i : I). p i = a0; hence ' ) 8(i : I). q i = refl a0, so that f is

well-defined.) Note that by axioms ax3 and ax4 we have q 0 = refl a0 and q 1 = (p,'),

so that JAxa0 B � a1(p,') b = � 0 hp , qi' f b : B(p 1, q 1) = B(a1, (p,')), as required.
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Furthermore, since (', f) @ 1% � 0 hp , qi' f b, we have

8(u : [']). b = f u 1 = JAxa0 B � a1(p,') b

So when (p,') = refl a0 = (k a0,>) and hence a1 = a0, we have

JAxa0 B � ao (refl a0) b = b (5.40)

In other words the computation property for identity elimination holds as a judgemental

equality and not just a propositional one. Finally, to correctly support the interpretation

of intensional identity types, one needs stability of (IdA, isFibIdA), refl and JA under

re-indexing; but this follows from the stability properties of isFib⌃ and isFibPath.

5.4 Glueing

In this section we give an internal presentation of the glueing construction given by Cohen

et al. [18]. Glueing is similar to a composition structure (Definition 5.3.3) for type-families,

except that instead of partial paths of types it involves partial equivalences between types.

Glueing is crucial for the constructions relating to univalence [62] given in Section 5.5.

We begin by defining the glueing construction for cofibrant-partial types, that is, for

functions A : ['] � U where ' : Cof:

Definition 5.4.1 (Glueing). Given ' : Cof, A : [']�U , B : U and f : (u : ['])�Au�B,

the type Glue'AB f : U is defined to be

Glue'AB f , (a : (u : [']) � Au)⇥ {b : B | 8(u : [']). f u (a u) = b} (5.41)

Elements of this type consist of pairs (a, b) where a is a partial element of the partial

type A and b is an element of type B, such that f applied to a gives a partial element

of B that extends to b. When ' = > then A and f are both total and so Glue'AB f

essentially consists of pairs (a, f a) for every a : A and hence is clearly isomorphic to A.

When ' = ? then A and f are both uniquely determined and Glue'AB f will consist of

pairs (elim;, b) for every b : B and hence is clearly isomorphic to B.

We now extend this glueing operation from cofibrant-partial types to cofibrant-partial

type-families:

Definition 5.4.2 (Glueing for families). We lift the glueing operation from types

to type-families as follows. Given � : U , � : � � Cof, A : �|� � U , B : � � U and
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f : (x : �)(v : [�x]) � A(x, v) � B x, define the family Glue�AB f : � � U by

Glue�AB f x , Glue (� x) (A(x, )) (B x) (f(x, )) (5.42)

The glueing construction works for any map f : (x : �)(v : [�x]) � A(x, v) � B x.

However, we want to see that this construction lifts to the CwF of CCHM fibrations. This

means that Glue�AB f should have a fibration structure whenever A and B do and

this puts some requirements on f . We begin by introducing the notion of an extension

structure:

Definition 5.4.3 (Extension structures). The type of extension structures, Ext : U�U ,
is given by

ExtA , (ã : ⇤A) � {a : A | ã% a}

Having an extension structure for a type A : U allows us to extend any partial element of

A to a total element. We say that a family A : � � U has an extension structure if each of

its fibres do, and we abusively write

ExtA , (x : �) � Ext(Ax)

An extension structure for A : �� U is similar to having a composition structure for A

in the sense that both allow us to extend partial elements; and in fact every family with

an extension structure is a fibration. However, an extension structure does not require a

total element from which we extend/compose and so is in fact a stronger notion than a

composition structure. First note that having an extension structure for A : U implies that

A is inhabited, because we can always extend the empty partial element. Further, given

any element a : A we can use the extension structure to show that it is path equal to the

extension of the empty partial element. Together these facts tell us that A is contractible:

Definition 5.4.4 (Contractibility, cf. Definition 2.1.1). A type A is said to be

contractible if it has a centre of contraction a0 : A and every element a : A is propositionally

equal to a0, that is, there exists a path a0 ⇠ a. Therefore a type is contractible if ContrA

is inhabited, where Contr : U � U is defined by

ContrA , (a0 : A)⇥ ((a : A) � a0 ⇠ a)

As with extension structures, we say that a family A : � � U is contractible if each of its

fibres is and write

ContrA , (x : �) � Contr(Ax)

As mentioned above, having an extension structure for a family A : � � U implies that

A is both fibrant and contractible. In fact the converse is true as well (cf. [18, Lemma 5]):
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Lemma 5.4.5. There are functions

fromExt : {� : U}{A : � � U} � ExtA � isFibA⇥ ContrA (5.43)

toExt : {� : U}{A : � � U} � isFibA � ContrA � ExtA (5.44)

Proof. Given � : U , A : � � U and " : ExtA we define ↵ : isFibA

↵ e p ' f a0 , " (p e) ((', f) @ e)

For every x : � we use the totally undefined cofibrant-partial element (?, elim;) : ⇤A to

define a0 : A

a0 , " x (?, elim;)

For each a : Ax and i : I, we have � � a : [i = 1] � Ax; so we get a path pa : I � Ax

pa i , " x (i = 1,� � a)

By the definition of ExtA we have pa 1 = " x (>,� � a) = a, and by ax2 we have

pa 0 = " x (?, elim;) = a0. Therefore pa : a0 ⇠ a. Hence Ax is contractible. Together

this shows that, given " : ExtA, we can define elements of type isFibA and ContrA.

Therefore there is a function fromExt : {� : U}{A : �� U}� ExtA� isFibA⇥ ContrA.

Conversely, given � : U , A : � � U , ↵ : isFibA, ha0, pi : ContrA, note that for

any x : �, ' : Cof and f : ['] � Ax we have (p x) � f : ['] � (I � Ax) such that

8(u : [']). ((p x) � f) u : a0 x ⇠ f u; therefore (', (p x) � f) @ 0% (a0 x) and so defining

" x (', f) , ↵ 0 (� � x)' ((p x) � f) (a0 x)

we get " x (', f) : Ax. Furthermore, since (', (p x) � f) @ 1 = (', f) by the type of ↵ we

get (', f)% " x (', f). Thus " x (', f) : Ext(Ax), as required.

We now come to the main result of this section: showing that fibrations are closed

under glueing. Proving this requires that the function f is an equivalence:

Definition 5.4.6 (Equivalences [62, Section 4.4]). Given types A,B : U , a function

f : A � B is an equivalence if the type Equiv f is inhabited, where

Equiv f , (b : B) � Contr((a : A)⇥ f a ⇠ b)

Again, this lifts to families in the obvious way: given � : U , A,B : � � U and f : (x :

�) � Ax � B x, define

Equiv f , (x : �) � Equiv (f x)
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Theorem 5.4.7 (Composition for glueing). Let �, A, B and f be as in Definition 5.4.2.

Then Glue�AB f has a fibration structure if A and B both have one and f has the structure

of an equivalence. In other words there is a function

isFibGlue : {� : U}{� : � � Cof}{A : �|� � U}{B : � � U}
(f : (x : �)(u : [�x]) � A(x, u) � B x) �
((x : �)(v : [�x]) � Equiv(f x v)) �
isFibA � isFibB � isFib(Glue�AB f)

(5.45)

Proof. Given � : U , � : ��Cof, A : �|��U , B : ��U , f : (x : �)(u : [� x])�A(x, u)�B x,

eq : (x : �)(u : [�x]) � Equiv(f x v), ↵ : isFibA, � : isFibB, we wish to define an

element of type isFib(Glue�AB f). Therefore, taking

e : {0,1}, p : I � �,  : Cof, q : [ ] � ⇧I(Glue�AB f)

(a0, b0) : {(a0, b0) : (Glue�AB f)(p e) | ( , q) @ e% (a0, b0)}

our goal is to define (a1, b1) : (Glue�AB f) x such that ( , ã1) % a1 and ( , b̃1) % b1,

where x : �, ã1 : [ ] � ((u : [�x]) � A(x, u)) and b̃1 : [ ] � B x are defined by

x , p e

ã1 v , fst(q v e)

b̃1 v , snd(q v e)

and satisfy 8(v : [ ])(u : [�x]). f x u (ã1 v u) = b̃ v by the definition of Glue�AB f .

We start by composing over p in B to get b01 : B x which can be thought of as a first

approximation to b1:

b01 , � e p  (�(v : [ ])(i : I) � snd(q v i)) b0

Recall that a1 will have type (u : [� x]) � A(x, u) and so we assume u : [� x] in order

to define an element of type A(x, u). Note that we cannot simply compose over p in A

because we do not know that �(p i) holds for all i : I. Instead we will use the equivalence

structure to define a1.

Let C , (a : A(x, u)) ⇥ f x u a ⇠ b01 be the fibre of f x u at b01. Using Theorems

5.3.11 and 5.3.15 and the fact that both A and B are fibrations (as witnessed by ↵ and

� respectively) we can deduce that C is a fibrant object. Combined with the fact that

eq x u b01 : ContrC we can use Lemma 5.4.5 to define " : ExtC. We can then define

( , (�(v : [ ]) � ã1 v u, refl � b̃1)) : ⇤C
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This is well-defined because, as mentioned above, we have 8(v : [ ]). f x u (ã1 v u) = b̃1 v

and, by the type of composition structures, we have ( , b̃1)% b01 and so given v : [ ] we

have refl(b̃1 v) : f x u (ã1 v u) ⇠ b01. Now we can define

" ( , (�(v : [ ]) � ã1 v u, refl � b̃1)) : C

Discharging our assumption u : [�x] and taking first and second projections of the pair

defined above we get:

a1 : (u : [�x]) � A(x, u) pb : (u : [�x]) � f x u (a1 u) ⇠ b01

We now have a1 and b01 such that ã1 % a1 and b̃1 % b01. However, we cannot simply take

b1 to be b01 because we do not know that 8(u : � x). f x u (a1 u) = b01 and therefore cannot

conclude that (a1, b01) : (Glue�AB f) x. In order to solve this problem we perform one

final composition in B x in order to “correct” b01 to achieve this property. Consider the

following join

pb [ (refl � b̃1) : [� x _  ] � ⇧I(B x)

This is well defined because pb is defined by extending refl � b̃1 and so they must be equal

where they are both defined. We use this to perform one final composition in B x:

b1 , � 1 (�( : I) � x) (�x _  ) (pb [ (refl � b̃1)) b01

We now have (a1, b1) : (Glue�AB f) x such that ( , ã1) % a1 and ( , b̃1) % b1, as

required.

We now have a way to interpret the glueing operation from [18] that meets some of

the necessary requirements; see [18, Figure 4]. However, the current construction fails the

requirement that Glue�AB f should be equal to A when reindexing along the inclusion

◆ : �|� ⇢ �. In fact, this equality should hold in the CwF of CCHM fibrations. This

means that not only should A = (Glue�AB f)� ◆ : �|�! U , but also that reindexing the

fibration structure derived in Theorem 5.4.7 should result in the same fibration structure

with which we started. To be precise, what we require is:

(A,↵) = (Glue�AB f, isFibGlue f eq ↵�)[◆] (5.46)

What we have at present is that the families A and (Glue�AB f) � ◆ are isomorphic in

the sense of Definition 5.1.6.

We get to (5.46) in two steps. First we use Axiom ax9 in order to strictify the

glueing construction to get a new, strict form of glueing, SGlue, such that Glue�AB f ⇠=
SGlue�AB f but where A = (SGlue�AB f) � ◆. We then use Axiom ax8 to adapt the
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fibration structure on SGlue so that under reindexing along ◆ it is equal to the fibration

structure on A. The order of these steps does not seem to be important; we could equally

have first adapted the fibration structure on Glue and then strictified Glue with this new

fibration structure.

Remark 5.4.8. Apart from the use of the internal language of a topos, our approach

to getting a glueing operation with good properties diverges from that taken by Cohen et

al. [18], where glueing is defined directly with all the required properties. However it is

possible to see where our final two steps occur in the original work. The strictification can

be seen in the use of the case split on '⇢ = 1F in [18, Definition 15]; see Section 5.6.2 for

more details. Rather than defining an initial composition structure for glueing and then

modifying it to get the required reindexing property, Cohen et al. define the composition

structure directly. Removing all uses of the 8 operator from [18, Section 6.2] would yield

our initial composition structure, and we then use the closure of Cof under 8(i : I) (axiom
ax8) in a separate step to modify this composition. We prefer this approach because it

simplifies the core composition structure for glueing and makes more explicit what role ax8

plays in the construction of a model of cubical type theory.

We now recall axiom ax9 from Figure 5.4:

ax9 : {' : Cof}(A : ['] � U)(B : U)(s : (u : [']) � (Au ⇠= B)) �
(B0 : U)⇥ {s0 : B0 ⇠= B | 8(u : [']). A u = B0 ^ s u = s0}

This states that any partial type A, which is isomorphic to a total type B everywhere that

it is defined, can be extended to a total type B0 that is isomorphic to B. We investigate

why the cubical presheaf topos [18] satisfies this axiom in section 5.6.2. Given ax8, it is

straightforward to define a strict form of glueing.

Definition 5.4.9 (Strict glueing). Given � : U , � : � � Cof, A : �|� � U , B : � � U
and f : (x : �)(u : [�x]) � A(x, u) � B x, define SGlue�AB f : � � U by

SGlue�AB f x ,
fst(ax9 (�u : [�x] � A(x, u)) (Glue �AB f x) (�u : [�x] � glue (x, u)) (5.47)

where glue (x, u) : A(x, u) ⇠= Glue �AB f x is the isomorphism alluded to in Defini-

tion 5.4.1 given by

glue (x, u) a , (� � a, f x u a)

Note that SGlue has the desired strictness property: given any (x, u) : �|�, by ax9 we

have A(x, u) = fst(ax9 (�u : [�x] � A(x, u)) (Glue �AB f x) (�u : [�x] � glue (x, u)))

and hence

8(x : �)(u : [�x]). SGlue�AB f x = A(x, u) (5.48)
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Theorem 5.4.10 (Composition structure for strict glueing). Given �, �, A, B,

and f as in Definition 5.4.9, SGlue�AB f : � � U has a fibration structure if A and B

have one and f has the structure of an equivalence.

Proof. By Lemma 5.3.8 we have that (fibrewise) isomorphisms preserve fibration structures.

Hence we obtain a fibration structure on SGlue by transporting the structure obtained

from isFibGlue (Theorem 5.4.7) along the isomorphism from ax9.

The final step in this section in this section is to use axiom ax8 to adapt the composition

structure for SGlue so that we recover the original composition structure on A.

Corollary 5.4.11. Given � : U , � : � � Cof, (A,↵) : Fib(�|�), (B, �) : Fib� and

f : (x : �)(v : [� x])�A(x, v)�B x, there exists (G, �) : Fib� such that (A,↵) = (G, �)[◆].

Proof. Simply take G = SGlue�AB f ; by Theorem 5.4.10 we get a composition structure

for G, which we then adapt using Lemma 5.3.10 to get a new composition structure �

satisfying the required equality.

5.5 Univalence

Voevodsky’s univalence axiom (Section 2.1.3) for a universe V in a CwF (with at least ⌃-,

⇧- and Id-types) states that for every A,B : V the canonical function from IdV AB to

(f : A � B)⇥ Equiv f is an equivalence. Cohen et al. construct a universe in the (CwF

associated to the) presheaf topos of cubical sets whose family of types is generic for CCHM

fibrations with small fibres (for a suitable notion of smallness in the metatheory) and prove

that it satisfies the univalence axiom. They do so by adapting the Hofmann-Streicher

universe construction for presheaf categories [31], see Section 3.3.5 for details. It is not

possible to express their universe construction just using the internal type theory of a

general topos, for reasons that we discuss in Theorem 7.1.1. In Chapter 7 we explain why

the universe construction cannot be axiomatised naively and then show how to resolve

this issue by working in a modal extension of the internal type theory. For now, we just

prove a version of univalence without reference to a universe of fibrations.

To understand what this might mean, consider the following: were there to be a universe

V whose elements are codes for CCHM fibrations, then given fibrations (A,↵), (B, �) : Fib�

named by functions a, b : � � V into the universe, a path-equality between a and b gives

(by Currying) a function p : � ⇥ I � V such that p(x, 0) = a x and p(x, 1) = b x for all

x : �. Then p names a fibration (P, ⇢) : Fib(�⇥ I) such that (P, ⇢)[hid , 0i] = (A,↵) and

(P, ⇢)[hid , 1i] = (B, �). The latter gives a notion of path-equality between type-families

whether or not there is such a V , which we study in this section in relation to equivalences

between fibrations.
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To give the definitions more formally, we expand our running assumption that the

ambient topos E comes with a universe (internal full subtopos) U to the case where there

is a second universe U1 with U : U1. We sometimes refer to objects of type U as small

types and objects of type U1 as large types.

Definition 5.5.1 (Path equality between fibrations). Define the type of paths be-

tween CCHM fibrations ⇠U : {� : U} � Fib� � Fib� � U1 by

A ⇠U B , {P : Fib(�⇥ I) | P [hid , 0i] = A ^ P [hid , 1i] = B}

Previously, we indicated why such a notion of path should correspond to the usual

notion were there to exist a universe of CCHM fibrations. Here we explain why this notion is

indeed equivalent in the concrete model given in [18]. Recall that the universe construction

there is given by a variant of the usual Hofmann-Streicher universe construction for presheaf

categories, as described in Section 3.3.5. This means that, in the external metatheory, there

exists a type V 2 Ty(�) for all � given by V(I, ⇢) , FTy0(yI) where yI denotes the Yoneda

embedding of I. Every (small) fibrant type A 2 FTy0(�) has a code pAq 2 Ter(� ` V)
and every a 2 Ter(� ` V) encodes a type El a 2 FTy0(�) such that El (pAq) = A and

pEl aq = a for all a and A.

Now consider the following: externally, a path P : A ⇠U B corresponds to a fibration

P 2 FTy0(�.I) such that P [hid , 0i] = A and P [hid , 1i] = B for some � 2 b⇤ and A,B 2
FTy0(�). From this data we can construct p 2 Ter(� ` PathV pAq pBq) like so:

p(⇢) , hii pPq(⇢si, i)

for I 2 ⇤, ⇢ 2 �(I), where si : I, i! I is the obvious inclusion of I in I, i. Note that this

does define a path with the correct endpoints since substituting 0 for i we get:

pPq(⇢, 0) = pPq[hid , 0i](⇢) = pP [hid , 0i]q(⇢) = pAq(⇢)

Therefore (pPq(⇢si, i))(i0) = pAq(⇢). Similarly when i = 1 we have (pPq(⇢si, i))(i1) =
pBq(⇢), and so hii pPq(⇢si, i) 2 PathV pAq pBq(⇢) as required.

Conversely, given p 2 Ter(� ` PathV pAq pBq) we can define P 2 FTy0(�.I) with the

required properties like so:

P , El(p0) where p0(⇢, i) , p ⇢ i

for I 2 ⇤, ⇢ 2 �(I), i 2 I. Again, note that this has the correct properties, e.g. at 0:

P [hid , 0i] = El(p0)[hid , 0i] = El(p0[hid , 0i]) = El(pAq) = A
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It is easily checked that these two constructions are mutual inverses. Therefore the data

described by ⇠U corresponds exactly to the data required to describe a path in the

universe.

We now show that given such a path (P, ⇢) : (A,↵) ⇠U (B, �) it is always possible

to construct an equivalence f : (x : �) � Ax � B x. Conversely, given an equivalence

f : (x : �) � Ax � B x between fibrations (A,↵) and (B, �), it is always possible to

construct such a (P, ⇢).

Theorem 5.5.2 (Converting paths to equivalences). There is a function

pathToEquiv : {� : U}{A B : Fib�}
(P : A ⇠U B) � (f : (x : �) � fst Ax � fst B x)⇥ Equiv f

(5.49)

Proof. Given � : U , (A,↵), (B, �) : Fib� and (P, ⇢) : A ⇠U B we define maps f : (x :

�) � Ax � B x and g : (x : �) � B x � Ax. First, given x : � write hx, idi : (x, 0) ⇠ (x, 1)

for the path given by hx, idi i , (x, i). Now define f and g as follows:

f x a , ⇢ 0 hx, idi? elim; a g x b , ⇢ 1 hx, idi? elim; b

This definition is well-typed since P (x, 0) = Ax and P (x, 1) = B x. Since both functions

are defined using composition structure we can use filling (Lemma 5.3.7) to find dependently

typed paths:

p : (x : �)(a : Ax) � ⇧IP defined by p x a , fill 0 ⇢ hx, idi? elim; a

q : (x : �)(b : B x) � ⇧IP defined by q x b , fill 1 ⇢ hx, idi? elim; b

Note that for all x : � and a : Ax we have p x a 0 = a and p x a 1 = f x a. Similarly, for all

b : B x we have q x b 0 = g x b and q x b 1 = b. Now we define:

r : (x : �)(a : Ax) � a ⇠ g x (f x a)

r x a i , ⇢ 1 hx, idi (i = 0 _ i = 1) ((� � p x a) [ (� � q x (f x a))) (f x a)

s : (x : �)(b : B x) � b ⇠ f x (g x b)

s x b i , ⇢ 0 hx, idi (i = 0 _ i = 1) ((� � q x b) [ (� � p x (g x b))) (g x b)

Hence f and g are quasi-inverses; from which we can construct an equivalence structure [62,

Chapter 4].

We now wish to show that, conversely, one can convert equivalences to paths between

fibrations. To do so we use the glueing construction given in Section 5.4.
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Theorem 5.5.3 (Converting equivalences to paths). There is a function

equivToPath : {� : U}{A B : Fib�}
(f : (x : �) � fst Ax � fst B x) � (Equiv f) � A ⇠U B

(5.50)

Proof. Given � : U , (A,↵), (B, �) : Fib �, f : (x : �)�fst Ax�fst B x and eq : Equiv f ,

define the following:

� : �⇥ I � Cof

� (x, i) , (i = 0) _ (i = 1)

C : (�⇥ I)|� � U

C ((x, i), u) , ((� : [i = 0] � Ax) [ (� : [i = 1] � B x)) u

f 0 : ((x, i) : �⇥ I)(u : [�(x, i)]) � C((x, i), u) � B x

f 0 (x, i) , (� : [i = 0] � f x) [ (� : [i = 1] � id)

Now let P , SGlue �C (�(x, )�B x) f 0 and observe that P (x, 0) = Ax and P (x, 1) = B x

by the strictness property of SGlue.

Now we show that P has a fibration structure. First, we observe that C has a fibration

structure, using axiom ax1. In order to define � : isFib C we take:

e : {0,1}, p : I � (�⇥ I)|�, ' : Cof, f : ['] � ⇧(C � p), c : C (p e)

and aim to define � e p' f c : C(p e). First, define the predicate pZero : I � ⌦ by:

pZero i , (snd(fst(p i)) = 0)

Observe that since p : I! (�⇥ I)|� we know, from snd � p, that:

(8i : I) snd(fst(p i)) = 0 _ snd(fst(p i)) = 1 (5.51)

and so, using ax2, we have (8i : I) (pZero i _ ¬(pZero i)) and so using ax1 we get

((8i : I) pZero i) _ ((8i : I)¬(pZero i))

In case (8i : I) pZero i, we deduce that C � p = A � fst � fst � p and define:

� e p' f c , ↵ e (fst � fst � p)' f c

Otherwise, in case (8i : I)¬(pZero i), we use ax2 to deduce (8i : I) snd(fst(p i)) = 1,
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hence C � p = B � fst � fst � p, and so define:

� e p' f c , � e (fst � fst � p)' f c

Therefore C has a fibration structure. Next we show that f 0 is an equivalence for every

x : �, i : I and u : [� i]. First note that the identity function id : B x � B x is always

an equivalence; let idEq : Equiv id be a proof of this fact. Define eq0 : (x : �)(i : I)(u :

[� i]) � Equiv (f 0 x i u) by:

eq0x i , (�u : [i = 0] � eq) [ (�u : [i = 1] � idEq)

Hence, by Corollary 5.4.11, we get a fibration structure, ⇢ : isFibP , such that

(P, ⇢)[◆ : (�⇥ I)|� ⇢ �⇥ I] = (C, �)

and hence (P, ⇢)[hid , 0i] = (P, ⇢)[◆ � hid , 0, ⇤i] = (C, �)[hid , 0, ⇤i] = (A,↵) and similarly

(P, ⇢)[hid , 1i] = (B, �). Therefore we define equivToPath f e , (P, ⇢).

The univalence axiom (Definition 2.1.4) becomes here the property that the map

pathToEquiv is itself an equivalence. Theorem 2.1.9 tells us that this is actually the same

as having a map from equivalences to paths, which we have in equivToPath, such that

coercion along equivToPath f e is path equal to f . This property does indeed hold:

Theorem 5.5.4 (Univalence for ⇠U). Define

coerce : {� : U}{A B : Fib�}(P : A ⇠U B)(x : �) � fst Ax � fst B x

coerce(P, ⇢) , fst(pathToEquiv(P, ⇢))

Given � : U , (A,↵), (B, �) : Fib�, f : (x : �) � Ax � B x and eq : Equiv f , there exists a

path f ⇠ coerce(equivToPath f e).

Proof. Let (P, ⇢) , equivToPath f e. Unfolding the definition of coerce we have

coerce (P, ⇢) x a = ⇢ 0 hx, idi? elim; a

Recalling that ⇢ is the composition structure for SGlue we can calculate ⇢ 0 hx, idi? elim; a.

We first move across the isomorphism with Glue so that a becomes (� � a, f x a). We

now trace the algorithm for composition in Glue: we begin by composing in B x to

get b01 , � 0 (� � x)? elim; (f x a). Next, we use the equivalence structure to derive

a1 : (u : [1 = 0 _ 1 = 1]) � B x and pb : (u : [1 = 0 _ 1 = 1]) � id (a1 u) ⇠ b01, where in

particular, a1 is given by a1u , � 1 (� � x)? elim; b01. We then perform the final step of

the composition, which is to compose from b01 in B x to get b1. This leaves us with the
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result of composing in Glue as (a1, b1). When transferring back across the isomorphism

we simply take the first component of the pair, namely a1, but now regarded as a total

element to get the final result of composing in SGlue as � 1 (� � x)? elim; b01. So, in

summary we have:

coerce (P, ⇢) x a = ⇢ 0 hx, idi? elim; a

= � 1 (� � x)? elim; b01

= � 1 (� � x)? elim; (� 0 (� � x)? elim; (f x a))

Since this is simply two trivial compositions applied to f x a we can use use filling to

derive a path f x a ⇠ coerce (P, ⇢) x a. Now, two applications of function extensionality

(Remark 5.3.16) yields a path f ⇠ coerce (P, ⇢) as required.

5.6 Satisfying the axioms

Working informally in a constructive set theory, the authors of [18] give a model of their

type theory using the topos b⇤ = Set
⇤op

of contravariant set-valued functors on a particular

small category ⇤ that they call the category of cubes, as described in Section 3.3. In this

section we present su�cient conditions on an arbitrary small category C for the topos
bC = Set

Cop
of set-valued presheaves (within Intuitionistic ZF set theory [1, Section 3.2],

say) to have an interval object and subobject of cofibrant propositions satisfying the

axioms in Figure 5.4. We show that the category of cubes is an instance of such a C (in

more than one way); and we also show that in the presence of the Law of Excluded Middle,

so is the simplex category �.

5.6.1 The interval object (ax1–ax4)

Returning to the general case of a small category C with its associated presheaf topos
bC, if we take the interval object I 2 bC to be a representable functor yi , C( , i) for

some object i 2 C, then the following theorem gives a useful criterion for such an interval

object to satisfy axiom ax1.

Theorem 5.6.1. In a presheaf topos bC, a representable functor I = yi satisfies axiom

ax1 if C is a cosifted category, that is, if finite products in Set commute with colimits

over C
op [26].

Proof. C is cosifted if the colimit functor colimCop : bC � Set preserves finite products.

Recall that colimCop : bC�Set is left adjoint to the constant presheaf functor � : Set� bC
and (hence) that for any c 2 C it is the case that colimCop yc ⇠= 1. So when C is cosifted
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we have for any c 2 C

bC(yc ⇥ yi,�{0, 1}) ⇠= Set(colimCop(yc ⇥ yi), {0, 1}) ⇠=
Set(colimCop yc ⇥ colimCop yi, {0, 1}) ⇠= Set(1⇥ 1, {0, 1}) ⇠= {0, 1}

Since decidable subobjects in bC are classified by 1+ 1 = �{0, 1}, this means that the only

two decidable subobjects of yc ⇥ yi are the smallest and the greatest subobjects. Since

this is so for all c 2 C, it follows that I = yi satisfies ax1.

A more elementary characterisation of cosiftedness is that C is inhabited and for every

pair of objects c, c0 2 C the category of spans c  · ! c0 is a connected category [2,

Theorem 2.15]. Any category with finite products trivially has this property. This is the

case for the category ⇤ of cubes defined above and thus the interval in the model of [18]

(where C = ⇤ and i is the generic De Morgan algebra) satisfies ax1. A relevant example

of a category that does not have finite products, but which is nevertheless cosifted is �,

the category of inhabited finite linearly ordered sets [0 < 1 < · · · < n], for which bC is

the category of simplicial sets, widely used in homotopy theory [28]. Thus the natural

candidate for an interval in b�, namely yi when i is the 1-simplex [0 < 1], satisfies ax1.

In addition to ax1, the other axioms in Figure 5.4 concerning the interval say that

I is a non-trivial (ax2) model of the algebraic theory given by ax3 and ax4, which we

call connection algebra. (See also Definition 1.7 of [27], which considers a similar notion

in a more abstract setting.) For cubical sets, the Yoneda embedding y : ⇤ ! b⇤ sends

the generic De Morgan algebra in ⇤ to a De Morgan algebra in b⇤. This is a non-trivial

connection algebra: the constants are the least and greatest elements and the binary

operations are meet and join. An obvious variation on the theme of [18] would be to

replace ⇤ by the Lawvere theory for connection algebras. Note also that the 1-simplex

in b� is a non-trivial connection algebra, the constants being its two end points and the

binary operations being induced by the order-preserving binary operations of minimum

and maximum on [0 < 1].

5.6.2 Cofibrant propositions (ax5–ax8) and the strictness axiom

(ax9)

In a topos with an interval object, there are many candidates for a subobject Cof ⇢ ⌦

satisfying axioms ax5–ax8 in Figure 5.4. At one extreme, one could just take Cof to be the

whole of ⌦. At the opposite extreme, one could take the subobject (internally) inductively

defined by the requirements that it contains the propositions i = 0 and i = 1 (for all i : I)

and is closed under binary disjunction, dependent and I-indexed conjunction, thereby

obtaining the smallest Cof satisfying ax5–ax8. However, cofibrant propositions also have
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to satisfy the strictness axiom ax9 and we consider that next.

Given a presheaf topos bC, we work in the CwF associated with bC as in Definition 3.2.1.

In particular, families over a presheaf � 2 bC are given by functors (
R
�)op � Set, where

R
� is the usual category of elements of �, with obj(

R
�) = (c 2 objC) ⇥ � c and

(
R
�)((c, x), (d, y)) = {f 2 C(c, d) | � f y = x}. If S is a Grothendieck universe in the

ambient set theory, then its Hofmann-Streicher lifting [31] to a universe U in that CwF

satisfies that the morphisms � � U in bC name the families (
R
�)op � S taking values in

S ✓ Set.

Definition 5.6.2 (⌦dec). The subobject classifier ⌦ in a presheaf topos bC maps each

c 2 C to the set ⌦(c) of sieves on c, that is, pre-composition closed subsets S ✓ obj(C/c).

Let ⌦dec ⇢ ⌦ be the subpresheaf whose value at each c 2 objC is the subset of ⌦(c)

consisting of those sieves S that are decidable subsets of obj(C/c).

Of course if the ambient set theory satisfies the Law of Excluded Middle, then ⌦dec = ⌦.

In general ⌦dec classifies monomorphisms ↵ : F ⇢ G in bC such that for all c 2 objC the

(injective) function ↵c : F c � Gc has decidable image.

Theorem 5.6.3. Interpreting the universe U as the Hofmann-Streicher lifting [31] of a

Grothendieck universe in Set, a subobject Cof ⇢ ⌦ in a presheaf topos bC satisfies the

strictness axiom ax9 if it is contained in ⌦dec ⇢ ⌦.

Proof. For each c 2 objC, suppose we are given S 2 ⌦dec(c). Thus S is a sieve on c and

for each c0 2 objC and C-morphism f : c0 � c, it is decidable whether or not f 2 S. We

can also regard S as a subpresheaf S ,! yc.

Suppose that we have families A : (
R
S)op � S, B : (

R
yc)op � S and a natural

isomorphism s between A and the restriction of B along S ,! yc. For each C-morphism

· f�! c, using the decidability of S, we can define bijections s0(f) : B0(f) ⇠= B(f) given by

B0(f) ,

8
<

:
A(f) if f 2 S

B(f) if ¬(f 2 S)
and s0(f) ,

8
<

:
s(f) if f 2 S

f if ¬(f 2 S)

(compare this with Definition 15 in [18]). We make B0 into a functor (
R
yc)

op � S by

transferring the functorial action of B across these bijections. Having done that, s0 becomes

a natural isomorphism B0 ⇠= B; and by definition its restriction along S ,! yc is s.

Corollary 5.6.4. Let C be a small category with finite products containing an object

i with the structure of a non-trivial connection algebra 0, 1 : 1 � i, u,t : i ⇥ i � i

(cf. Figure 5.4). Suppose that for each object c 2 C, the set C(c, i) has decidable equality.

Then the topos of presheaves bC satisfies all the axioms in Figure 5.4 if we take the interval

I to be yi and Cof to be ⌦dec.
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Proof. We already noted in section 5.6.1 that axioms ax1–ax4 are satisfied by this choice of

I. The decidability of each set C(c, i) implies that the subobjects {0} ⇢ I and {1} ⇢ I

in bC factor through ⌦dec ⇢ ⌦ and hence that axiom ax5 is satisfied when Cof = ⌦dec.

Note that this choice of Cof automatically satisfies ax6 and ax7; and it satisfies axiom

ax9 by Theorem 5.6.3. So it just remains to check that axiom ax8 is satisfied. We saw in

Lemma 5.1.5(ii) that this axiom is equivalent to requiring cofibrations to be closed under

exponentiation by I. In this case cofibrations are the monomorphisms ↵ : F ⇢ G classified

by ⌦dec and we noted after Definition 5.6.2 that they are characterized by the fact that

each function ↵c 2 Set(F c,G c) has decidable image. Closure of these monomorphisms

under exponentiating by I follows from the fact that C has finite products and that

I = yi is representable; for then I � ( ) is isomorphic to the functor bC! bC induced by

precomposition with ( )⇥i : C! C, which clearly preserves the componentwise decidable

image property.

The above argument for axiom ax8 does not apply to �, since it does not have finite

products; we do not know whether that axiom is satisfied by constructive simplicial sets.

However, in the presence of the Law of Excluded Middle (LEM), ⌦dec = ⌦ and we have:

Corollary 5.6.5 (Classical simplicial sets). Assuming LEM holds in the set-theoretic

metatheory, then the presheaf topos of simplicial sets b� satisfies the axioms in Figure 5.4

if we take I to be the representable presheaf on the 1-simplex and Cof to be the whole of ⌦.

Proof. We already noted in section 5.6.1 that axioms ax1–ax4 are satisfied by this choice

of I. If Cof = ⌦ (that is, cof = � �>), then axioms ax5–ax8 hold trivially. Furthermore,

if LEM holds, then ⌦dec = ⌦ and so axiom ax9 holds by Theorem 5.6.3.

Remark 5.6.6. As a partial converse of Theorem 5.6.3, we have that if ax9 is satisfied by

the Hofmann-Streicher universe in the CwF associated with bC, then each cofibrant mono

↵ : F ⇢ G has component functions ↵c 2 Set(F c,G c) (c 2 objC) whose images are

¬¬-closed subsets of Gc. To see this we can apply an argument due to Andrew Swan

[private communication] that relies upon the fact that in the ambient set theory one has

(X = ;) = 8x 2 X. ? = ¬¬(8x 2 X. ?) = ¬¬(X = ;) (5.52)

For suppose given c 2 objC and S 2 Cof(c). We have to use axiom ax9 to show that S

is a ¬¬-closed subset of obj(C/c). Let A : (
R
S)

op � S be the constant functor mapping

each (c0, f) to {;}; and let B : (
R
yc)

op � S map each (c0, f) to {{;}, {; | f 2 S}} (which

does extend to a functor, because S is a sieve). The restriction of B along S ,! yc is

isomorphic to A and so by ax9 there is some B0 : (
R
yc)

op � S whose restriction along

S ,! yc is equal to A and some isomorphism s0 : B0 ⇠= B. For any (c0, f) 2 obj(
R
yc),

suppose X 2 B0(c0, f); then f 2 S ) X = ;, hence ¬¬(f 2 S) ) ¬¬(X = ;) and
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therefore by (5.52), ¬¬(f 2 S) ) (X = ;). Therefore ¬¬(f 2 S) ) B0(c0, f) = {;} )
B(c0, f) ⇠= {;}) f 2 S. So S is indeed a ¬¬-closed subset of obj(C/c).

Note that this result implies that it is not possible to take Cof to be the whole of ⌦ and

satisfy ax9 unless the ambient set theory satisfies LEM.

Since in a constructive setting equality in free De Morgan algebras is decidable, it

follows that Corollary 5.6.4 gives a model of our axioms when C = ⇤, the category of

cubes (Definition 3.3.1). However, this uses a di↵erent choice of cofibrancy from the one

in [18, Section 4.1]. In the remainder of this section we check that the CCHM notion of

fibrancy satisfies our axioms.

Definition 5.6.7 (Cofibrant propositions in [18]). For each object of the category of

cubes I 2 obj⇤, Cohen et al. define the face lattice F(I) to be the distributive lattice

generated by symbols (i = 0) and (i = 1) for each i 2 I, subject to the equations

(i = 0) ^ (i = 1) = ?.
Since the free De Morgan algebra dM(I) is freely generated as a distributive lattice by

symbols i and 1-i (as i ranges over the finite set I), we can regard F(I) as a quotient lattice of
dM(I) via the function mapping i to (i = 1) and 1 - i to (i = 0); we write qI : dM(I)! F(I)
for the quotient function.2 It is not hard to see that for each f 2 C(J, I), the corresponding

De Morgan algebra homomorphism dM(I)! dM(J) (which we also write as f) induces a

lattice homomorphism between the face lattices:

dM(I)
f
//

qI
✏✏

dM(J)

qJ
✏✏

F(I) F f
// F(J)

This makes F into an object of b⇤ and there is a monomorphism m : F ⇢ ⌦ whose

component at I 2 obj⇤ sends each ' 2 F(I) to the sieve

mI(') = {· f�! I | F f ' = >} (5.53)

We now take Cof ⇢ ⌦ in b⇤ to be the subobject given by this monomorphism

m : F ⇢ ⌦. Axioms ax1–ax4 hold without change from Corollary 5.6.4; and axioms

ax5–ax7 follow from the definition of the face lattices F(I). So it just remains to check

axioms ax8 and ax9.

Recall that the interval object in b⇤ is the representable presheaf I = y{i} on a one-

element subset {i} 2 obj⇤. For an arbitrary object I 2 obj⇤, with n distinct elements

i1, . . . in 2 D say, the representable yI is isomorphic to an n-fold product In in b⇤. Thus

2If r 2 dM(I), then [18] uses the notation (r = 1) for qI(r).
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the sieve (5.53) corresponds to a subobject of the n-cube In. Indeed, each ' in the face

lattice F(I) is a finite join of irreducible elements; and each of those irreducibles is a

finite conjunction of atomic conditions of the form i = 0 or j = 1. The corresponding

subobject of In is a finite union of faces, that is, subobjects of In obtained by setting some

co-ordinates to either 0 or 1. This disjunctive normal form for elements of F(I) entails that
its equality is decidable and hence this Cof is contained in ⌦dec and axiom ax9 is satisfied

(Theorem 5.6.3). Finally, axiom ax8 follows from the fact that pullback of cofibrations

along a projection ⇡1 : In ⇥ I! In has a (stable) right adjoint, or equivalently that the

lattice morphisms F ⇡1 : F(I)! F(I [ {i}) (for any I 2 obj⇤ and i 2 D� I) have (stable)

right adjoints. This is the quantifier elimination result for face lattices; see [18, Lemma 2].

5.7 Related work

The work presented in this chapter was inspired by the suggestion of Coquand [19] that

some of the constructions developed in [18] might be better understood using the internal

logic of a topos. We have shown how to express Cohen, Coquand, Huber and Mörtberg’s

notion of fibration in the internal type theory of a topos. The use of internal language

permits an appealingly simple description (Definition 5.3.3) compared, for example, with

the more abstract category-theoretic methods of weak factorization systems and model

categories, which have been used for the same purpose by Gambino and Sattler [27,

Section 3]. Birkedal et al. [12] develop guarded cubical type theory with a semantics based

on an axiomatic version of [18] within the internal logic of a presheaf topos.

Within the framework of a topos equipped with an interval-like object, we found that

quite a simple collection of axioms (Figure 5.4) su�ces for this to model Martin-Löf type

theory with intensional identity types satisfying a weak form of univalence. In particular,

only a simple connection algebra, rather than a De Morgan algebra structure, is needed on

the interval. Furthermore, the collection of propositions suitable for uniform Kan filling is

not tightly constrained and can be chosen in various ways. In Section 5.6 we only considered

how presheaf categories can satisfy our axioms. It might be interesting to consider models

in general Grothendieck toposes (where presheaves are restricted to be sheaves for a given

notion of covering), particularly gros toposes such as Johnstone’s topological topos [36];

this allows the interval object to be (a representable sheaf corresponding to) the usual

topological interval and hence for the model of type theory to have a rather direct connection

with classical homotopy types of spaces. However, although the Hofmann-Streicher [31]

universe construction (the basis for the construction in Section 8.2 of [18] of a fibrant

universe satisfying the full univalence axiom) can be extended from presheaf to sheaf

toposes via the use of sheafification [59, Section 3], it seems that sheafification does not

interact well with the CCHM notion of fibration. In another direction, recent work of
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Frumin and Van Den Berg [25] makes use of our elementary, axiomatic approach using a

non-Grothendieck topos, namely the e↵ective topos [35]. Finally, Uemura has also applied

this approach to show the independence of the propositional resizing axiom in cubical

type theory [61].
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Chapter 6

Decomposing the univalence axiom

In the previous chapter we gave an axiomatic presentation of the model of Cohen et

al. [18] using the internal language of an elementary topos. While the approach of using

the internal language is new, the structure of many of the proofs, such as the fact that

fibrations are closed under type formers or the use of glueing to develop univalence, followed

the same structure as in the original work of Cohen et al. In this chapter we will use the

internal language to present new work, namely: an alternative proof of the univalence

axiom in any topos satisfying our axioms.

We do so by first decomposing univalence into a collection of simpler properties. We

explain why all but one of these new properties should be satisfied, not only in a topos

satisfying our axioms, but in fact in any presheaf topos with a CwF constructed in the

usual way, as per Section 3.2. We then explain how the remaining property is easily

validated in any topos satisfying our original axioms. In fact this construction, which we

call contraction, is a specialised case of the general glueing construction. However, the

definition and the subsequent proofs are a lot simpler than those used for glueing.

6.1 The decomposition

Recall the decomposition of the proper univalence axiom into a naive form along with

a computation rule presented in Theorem 2.1.9. In this section we further decompose

the univalence axiom into even simpler properties, working in MLTT with function

extensionality, but without either UIP or univalence assumed. Note that the proofs given

in this section are to be interpreted in the source language which we eventually wish to

model, rather than in the internal language of a topos. We show that the univalence axiom

for a universe Ui is equivalent to axioms (1) to (5) given in Table 6.1 for the universe Ui.

We begin by decomposing naive univalence, UAi, into axioms (1)-(3). These axioms

also follow from UAi. Recall that we are taking function extensionality as an ambient

assumption. First, we recall the definition of singleton types.
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Axiom Premise(s) Equality

(1) unit : A =
P

a:A 1

(2) flip :
P

a:A

P
b:B C a b =

P
b:B

P
a:A C a b

(3) contract : isContr A ! A = 1

(4) unit� : coerce unit a = (a, ⇤)
(5) flip� : coerce flip (a, b, c) = (b, a, c)

Table 6.1: (A,B : Ui, C : A! B ! Ui, a : A, b : B and c : C a b, for some universe Ui)

Definition 6.1.1 (Singletons). Given a type A and element a : A, we can define

sing(a) ,
X

x:A

(a = x)

to be the type of elements of A which are equal to a. It is easily shown by path induction

that the type sing(a) is always contractible in the sense of Definition 2.1.1.

Theorem 6.1.2. Axioms (1)-(3) for a universe Ui are together logically equivalent to UAi.

Proof. We begin by showing the forwards direction. Assume that we are given axioms

(1) to (3). We now aim to define a term ua : UAi. Given arbitrary types A,B : Ui and an

equivalence (f, e) : A ' B then for all a : A we know that sing(a) is contractible, and

hence by contract we have:

1 = sing(f a) =
X

b:B

f a = b

Further, for any b : B, we know that fibf(b) is contractible by e(b) : isContr(fibf(b)).

Hence, by contract, we have:

1 = fibf (b) =
X

a:A

f a = b

Therefore, we define ua(f, e) : A = B as follows:

A =
X

a:A

1 by unit

=
X

a:A

X

b:B

f a = b by funext and contract on sing(fa)

=
X

b:B

X

a:A

f a = b by flip

=
X

b:B

1 by funext and contract on fibf (b) (contractible by e(b))

= B by unit
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where the proof that A = B is given by the concatenation of each step of the above

calculation.

The backwards direction follows from the fact that the obvious maps

A !
X

a:A

1
X

a:A

X

b:B

C a b !
X

b:B

X

a:A

C a b

a 7! (a, ⇤) (a, b, c) 7! (b, a, c)

are both easily shown to be bi-invertible and hence equivalences, and from the fact that

any contractible type is equivalent to 1 [62, Lemma 3.11.3.]. Therefore given ua : UAi we

simply apply it to these equivalences to get the required equalities (1)-(3).

Next, we decompose the computation rule for naive univalence UA�i into axioms (4)

and (5). Since UA�i depends on UAi and axioms (4) and (5) depend on axioms (1) and (2)

respectively, we in fact show the logical equivalence between the pair UAi and UA�i, and

axioms (1)-(5).

Lemma 6.1.3. The function coerce is compositional. That is, given types A,B,C : Ui,

and equalities p : A = B and q : B = C we have coerce(p ⇧ q) = coerce(q) � coerce(p)
where p ⇧ q is the transitive proof that A = C.

Proof. Straightforward by path induction on either of p or q, or on both.

Theorem 6.1.4. Axioms (1)-(5) for a universe Ui are together logically equivalent to
P

ua:UAi
UA�i(ua).

Proof. For the forwards direction we know from Theorem 6.1.2 that axioms (1) to (3)

allow us to construct a term ua : UAi. If, in addition, we assume axioms (4) and (5) then

we can show that for all (f, e) : A ' B we have coerce(ua(f, e)) = f as follows.

Since ua was constructed as the concatenation of five equalities then, in light of Lemma

6.1.3, we have that coercing along ua(f, e) is equal to the result of coercing along each

stage of the composite equality ua(f, e). We know the result of coercing along unit and

flip from unit� and flip� respectively. In the case of contract we are coercing between

two contractible types and can therefore take the coercion to be any function that we like,

since all such functions are propositionally equal. Therefore, starting with an arbitrary

a : A, we can track what happens at each stage of this process like so:

a 7! (a, ⇤) 7! (a, f a, refl) 7! (f a, a, refl) 7! (f a, ⇤) 7! f a

Therefore we see that for all a : A we have coerce(ua(f, e))(a) = f(a) and hence by

function extensionality we have coerce(ua(f, e)) = f as required.
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For the reverse direction we assume that we are given ua : UAi and ua� : UA�i(ua).

We can now apply Theorem 6.1.2 to construct terms unit, flip and contract satisfying

axioms (1) to (3) from ua.

Since unit and flip were constructed by applying ua to the obvious equivalences,

then by ua� we know that applying coerce to these equalities will return the equivalences

that we started with. From this we can easily construct terms unit� and flip� satisfying

axioms (4) and (5) respectively.

Corollary 6.1.5. Axioms (1)-(5) for a universe Ui are together logically equivalent to the

proper univalence axiom for Ui.

Proof. By combining Theorem 2.1.9 and Theorem 6.1.4.

6.2 Applications in models of type theory

In this section we discuss one reason why the result given in Corollary 6.1.5 is useful

when trying to construct models of univalent type theory. Specifically, we believe that

this decomposition is particularly useful for showing that a model of type theory with an

interval object supports the univalence axiom. We first explain why we believe this to be

the case in general terms, and then give a precise account of what happens in the specific

case of a topos with the structure described in Section 5.1. As discussed there, this result

will therefore apply to the cubical sets model presented in [18], but it should also apply to

many similar models of type theory [11, 6, 8, 54, 12].

Note that we are assuming function extensionality. Every model of univalence must

satisfy function extensionality [62, Section 4.9], but it is often much easier to verify function

extensionality than the proper univalence axiom in a model of type theory. In particular,

function extensionality will hold in any type theory which includes an appropriate interval

object, cf. [62, Lemma 6.3.2].

Experience shows that axioms (1), (2), (4) and (5) are simple to verify in many

potential models of univalent type theory. To understand why, it is useful to consider the

interpretation of A ' B in such a model. Propositional equality in the type theory is

usually not interpreted as equality in the model’s metatheory, but rather as a construction

on types e.g. path spaces in models of HoTT. Therefore, using the notation of Categories

with Families, an equivalence in the type theory will give rise to terms,

f 2 Ter(� ` A � B) and g 2 Ter(� ` B � A)

which are not exact inverses, but rather are inverses modulo the interpretation of proposi-
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tional equality, that is, the existence of terms,

↵ 2 Ter(� ` IdA�B(g � f, id)) and � 2 Ter(� ` IdB�A(f � g, id)).

The existence of these do not imply that g � f = id or f � g = id , for example in the

cubical sets model where ↵ and � would be paths between the composites and the identity,

as described in Section 3.3.3. However, in many models the interpretations of A and
P

a:A 1, and of
P

a:A

P
b:B C a b and

P
b:B

P
a:A C a b will be isomorphic, i.e. there will

be morphisms going back and forth which are inverses up to equality in the model’s

metatheory. This will be true in any presheaf model of type theory of the kind described in

Section 3.2, and should be true more generally in any model which validates eta-rules for

1 and ⌃, since then the maps back and forth will be inverses up to judgemental equality

in the type theory and hence their interpretations in the model will be strict inverses.

This means that we can satisfy (1) and (2) by proving that this stronger notion of

isomorphism gives rise to a propositional equality between types. Verifying axioms (4)

and (5) should then reduce to a fairly straightforward calculation involving two instances

of this construction.

This leaves axiom (3), which captures the homotopical condition that every contractible

space can be continuously deformed into a point. The hope is that verifying the previous

axioms should be fairly straightforward, leaving this as the only non-trivial condition to

check.

We now examine what happens in the specific case of a topos with the structure that

we axiomatised in Section 5.1. For ease of reference we will refer to this topos as E . For
the rest of this section we return to working in the internal type theory of E .

6.2.1 Strictification

Recall from Section 5.1.3 that we postulate the existence of a term:

ax9 : {' : Cof}(A : ['] � U)(B : U)(s : (u : [']) � (Au ⇠= B)) �
(B0 : U)⇥ {s0 : B0 ⇠= B | 8(u : [']). A u = B0 ^ s u = s0}

In words, this says that given any object B : U and any cofibrant partial object A : [']�U
such that A is isomorphic to B everywhere it is defined, then one can can construct a

new object B0 : U which extends A, is isomorphic to B, and this isomorphism extends the

original isomorphism.

We now lift this strictification property from objects to fibrations.

Theorem 6.2.1. Given � : U and � : �! Cof, a cofibrant-partial fibration A : Fib(�|�)
and a total fibration B : Fib � with iso : A ⇠= B[◆], we can construct a new type and
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isomorphism:

A0 : Fib(�) and iso0 : A0 ⇠= B

such that

A0[◆] = A and iso0 � ◆ = iso

where ◆ is the inclusion �|� ⇢ �.

Proof. Given � : U , � : �! Cof, (A,↵) : Fib(�|�) and (B, �) : Fib � with iso : A ⇠= B�◆,
we define A0, iso0 as:

A0 x , fst(ax9(A(x, ), B x, iso(x, )))

iso0 x , snd(ax9(A(x, ), B x, iso(x, )))

Now consider the equalities that are required to hold. From the properties of ax9 we

already have that A0 � ◆ = A and iso0 � ◆ = iso. Therefore we just need to define a

composition structure ↵0 : isFib A0 such that ↵0[◆] = ↵.

Since A0 ⇠= B and � : isFib B we can use Lemma 5.3.8 to deduce that A0 has a

composition structure, which we call ↵0
pre. We then define ↵0 , realign(�,↵,↵0

pre) using

Lemma 5.3.10 to ensure that ↵0[◆] = ↵.

Note that, since realign is stable under reindexing, in the sense that realign(�, �,↵)[�] =

realign(� � �, �[� ⇥ id ],↵[�]) for any � : � � �, and all other constructions used above

are performed fibrewise, we can deduce that the construction given in Theorem 6.2.1 is

also stable under reindexing.

6.2.2 Misaligned paths between fibrations

We now introduce a new relation between fibrations which we call a misaligned path.

This is similar to the notion of path between fibrations introduced in Definition 5.5.1,

except that rather than being equal to A and B at the endpoints, the path only need be

isomorphic to A and B at the endpoints.

Definition 6.2.2 (Misaligned path equality between fibrations). Define the type

of misaligned paths between CCHM fibrations ⇠⇠= : {� : U} � Fib� � Fib� � U1 by

A ⇠⇠= B , (P : Fib(�⇥ I))⇥ (A ⇠= P [hid , 0i])⇥ (B ⇠= P [hid , 1i])

We can show that every misaligned path can be improved to a regular path between

fibrations. First, we introduce a new construction on fibrations.
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Definition 6.2.3. Given fibrations A,B : Fib � we define a new fibration

A YB : Fib((�⇥ I)|�) where �(x, i) , (i = 0) _ (i = 1)

given by (A,↵) Y (B, �) , (C, �) where

C : (�⇥ I)|� � U

C ((x, i), u) , ((� : [i = 0] � Ax) [ (� : [i = 1] � B x)) u

Here C is a sort of disjoint union of the families A and B, observing that (�⇥I)|� ⇠= �+�

then we can think of C as essentially being [A,B] : �+ �! U .
To see that C is fibrant we observe that the interval I is internally connected in the

sense of ax1 in Figure 5.4. This means that any path p : I� (�⇥I)|� must either factor as

p = hp0, 0, ⇤i or as p = hp0, 1, ⇤i. Therefore any composition problem for C must lie either

entirely in A, in which case we use ↵ to construct a solution, or entirely in B, in which

case we use �. For further detail we refer the reader to Theorem 5.5.3 where the family C

occurs as an intermediate construction, and where we defined this fibration structure in

more detail. Note that this construction is stable under reindexing:

A[�] YB[�] = (A YB)[� ⇥ id ⇥ id ]

for any � : � � �. Finally, observe that for all A,B : Fib � we have:

(A YB)[hid , 0, ⇤i] = A and (A YB)[hid , 1, ⇤i] = B

Definition 6.2.4. Given � : U , fibrations A,B : Fib � and a misaligned path (D, f0, f1) :

A ⇠⇠= B we define

f0 Y f1 : A YB ⇠= D[◆]

as follows:

(f0 Y f1) (x, i, u) : (fst(A YB)) (x, i, u)! (fstD) (x, i)

(f0 Y f1) (x, i, u) ,
(
f0 x when u : [i = 0]

f1 x when u : [i = 1]

where (x, i, u) : (�⇥ I)|�. Observe that for all � : � � � we have,

(f0 � �) Y (f1 � �) = (f0 Y f1) � (� ⇥ id ⇥ id)
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and also that:

(f0 Y f1) � hid , 0, ⇤i = f0 and (f0 Y f1) � hid , 1, ⇤i = f1

We now use these two constructions to show the following result:

Lemma 6.2.5. There exists a function

improve : {� : U}{A B : Fib�} � A ⇠⇠= B � A ⇠U B

Proof. Take � : U , A,B : Fib� and (P, f0, f1) : A ⇠⇠= B and observe that f0Yf1 : AYB ⇠=
P [◆]. Therefore we can use Theorem 6.2.1 to strictify P in order to get P 0 : Fib(�⇥I) such

that P 0[◆] = A YB, where ◆ is the restriction (�⇥ I)|� � �⇥ I. Now consider reindexing

P 0 along hid , 0i : �! �⇥ I we get:

P 0[hid , 0i] = P 0[◆ � hid , 0, ⇤i] = P 0[◆][hid , 0, ⇤i] = (A YB)[hid , 0, ⇤i] = A

and similarly P 0[hid , 1i] = B. Therefore we have P 0 : A ⇠U B as required. Moreover we

have

improve(P [� ⇥ id ], f0 � �, f1 � �) = improve(P, f0, f1)[� ⇥ id ]

for any � : � � �.

6.2.3 Function extensionality

As discussed previously, function extensionality holds straightforwardly in any type theory

which includes an interval object/type with certain computational properties, cf. [62,

Lemma 6.3.2]. See Remark 5.3.16 or [18, Section 3.2] for a proof in the case of cubical

type theory.

6.2.4 Axioms (1), (2), (4) and (5)

As discussed previously, we can satisfy axioms (1) and (2) by showing that there is a way

to construct paths between strictly isomorphic (fibrant) types A,B : Fib �.

Theorem 6.2.6 (Isovalence). Given fibrations A,B : Fib � with f : A ⇠= B we can

construct a path isopath(f) : A ⇠U B.

Proof. Given A,B, f as above, let B0 , B[fst] : Fib(� ⇥ I) and note that f : A ⇠=
B0[hid , 0i] and id : B ⇠= B0[hid , 1i] where id is the obvious isomorphism B ⇠= B. Therefore

we can define

isopath(f) , improve(B[fst], f, id) : A ⇠U B

104



as required. Note that, in this case, improve will in fact only improve B[fst] at 0, since

at 1 we improve along the identity, which does nothing. Note that, for any � : � � � we

have:

isopath (f � �) = improve(B[�][fst], f � �, idB[�])

= improve(B[fst][� ⇥ id ], f � �, idB � �)

= improve(B[fst], f, idB)[� ⇥ id ]

= (isopath f)[� ⇥ id ]

and hence isopath is stable under substitution.

Corollary 6.2.7. Axioms (1) and (2) hold in the CwF of fibrant types in E .

Proof. The obvious isomorphisms A ⇠= A ⇥ 1 and
P

a:A

P
b:B C a b ⇠=

P
b:B

P
a:A C a b

are both clearly strict isomorphisms in the sense of Definition 5.1.6. Therefore we can

construct the required paths A ⇠U (A⇥ 1) and (
P

a:A

P
b:B C a b) ⇠U (

P
b:B

P
a:A C a b).

Hence axioms (1) and (2) hold.

We have seen that we can easily satisfy properties (1) and (2) using our axioms.

However, we also need to know what happens when we coerce along these equalities. This

can be stated in general for any strictly isomorphic types.

Theorem 6.2.8. Given fibrations (A,↵), (B, �) : Fib � with f : A ⇠= B, coercing along

isopath f is (propositionally) equal to applying f .

Proof. Take (A,↵), (B, �), f as above and let (P, ⇢) = isopath f . By unfolding the

constructions used we can see that ⇢ was obtained by realigning some ⇢pre, which in turn

was obtained by transferring �[fst] across the isomorphism:

iso (x, i) = snd(ax9((A, �) Y (B, �)(x, i, ), B x, (f Y id) (x, i, ))) : P x ⇠= B x

Now consider arbitrary x : �, a0 : A x and note that

iso (x, 0) = (f Y id) (x, 0) = f x

and

iso (x, 1) = (f Y id) (x, 1) = id
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Also, observe that,

8i.(i = 0 _ i = 1)) (8i.i = 0) _ (8i.i = 1) by ax1

) 1 = 0 _ 0 = 1 by instantiating the 8s

) ? by ax2

and hence 8i.(i = 0 _ i = 1) = ?. Now calculate:

coerce (isopath f) x a0

= ⇢ 0 hx, idi ? elim; a0 by unfolding definitions1

= ⇢pre 0 hx, idi (8i.(i = 0 _ i = 1)) q a0 by Lemma 5.3.10 (for some q)

= ⇢pre 0 hx, idi ? elim; a0 by the argument above

= iso�1(x, 1) (� 0 hx, idi ? elim; (iso(x, 0) a0)) by Lemma 5.3.8

= � 0 hx, idi ? elim; (iso(x, 0) a0)) since iso(x, 1) = id

= � 0 hx, idi ? elim; (f x a0) since iso(x, 0) = f x

Since this is merely a trivial/empty composition applied to f x a0 we can construct a path

from f x a0 to coerce (isopath f) x a0 like so:

fill 0 � hx, idi ? elim; (f x a0) : f x a0 ⇠ coerce isopath f x a0

Therefore, coercing along isopath f is always propositionally equal to applying f .

Corollary 6.2.9. Axioms (4) and (5) hold in the CwF of fibrant types in E (for the terms

constructed in Corollary 6.2.7).

Proof. By Theorem 6.2.8.

6.2.5 Axiom (3)

In light of the previous section, the only axiom remaining is axiom (3). Our goal here is,

given a contractible fibration A : Fib �, to define a path A ⇠U 1. Note that, for any � : U ,
there exists a unique fibration structure !1 such that (� ! 1, !1) : Fib(�). Therefore we

will ambiguously write 1 : Fib(�) for the pair (� ! 1, !1).

1Note that there are di↵erent ways to interpret coerce in the model. This interpretation is not in general
the same as the one obtained by directly interpreting Definition 2.1.6. However, the two interpretations will
always be path equal in the model (the other interpretation will have more trivial/empty compositions),
and so the result still holds when using the other interpretation.
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Definition 6.2.10 (The contraction of a family). Given a family A : �! U we define

the contraction of A as

CA : �⇥ I! U

CA(x, i) , [i = 0]! A(x)

Note that, for any � : � � �, we have CA�� = CA � (� ⇥ id).

We now need to show that CA is fibrant whenever A is both fibrant and contractible

(Definition 5.4.4). Recall from Lemma 5.4.5 that a family being both fibrant and con-

tractible is equivalent to having an extension structure (Definition 5.4.3) for that family.

We therefore construct a fibrancy structure for CA as follows:

Theorem 6.2.11. If (A,↵) : Fib � is contractible then we can construct a composition

structure for CA. That is, there is a function

isFibC : {� : U}{A : � � U} � isFib A � Contr A � isFib CA

Proof. Take � : U , A : � ! U , ↵ : isFib A and ctr : Contr A. Since A is both fibrant

and contractible then, by Lemma 5.4.5, we can construct an extension structure " ,
toExt↵ ctr : ExtA. We can then define a composition structure isFibC ↵ ctr : isFib(CA)

like so:

isFibC ↵ ctr e p ' f c0 u , " (fst(p e)) (', (�v ! f v e u))

for u : [snd(p e) = 0]. Since " is an extension structure we have that, for any v : ['],

isFibC ↵ ctr e p ' f c0 = �u! " (fst(p e)) (', (�v ! f v e u))

= �u! f v e u

= f v e

and hence (', f) @ e% isFibC ↵ ctr e p ' f c0 as required. Therefore we have a defined

a valid composition operation for CA. Further, note that for any � : � � � we have:

isFibC (↵[�]) (ctr � �) e p ' f c0 u

= toExt (↵[�]) (ctr � �) (fst(p e)) (', (�v ! f v e u))

= ((toExt ↵ ctr) � �) (fst(p e)) (', (�v ! f v e u))

= (toExt ↵ ctr) (� (fst(p e))) (', (�v ! f v e u))

= (toExt ↵ ctr) (fst((� ⇥ id)(p e))) (', (�v ! f v e u))

= (isFibC (↵) (ctr)) e ((� ⇥ id) � p) ' f c0 u

= (isFibC ↵ ctr)[� ⇥ id ] e p ' f c0 u
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Therefore isFibC (↵[�]) (ctr � �) = (isFibC ↵ ctr)[� ⇥ id ] and hence isFibC is stable

under reindexing.

Theorem 6.2.12. There exists a function

contract : {� : U}(A : Fib �) � Contr A � A ⇠U 1

Proof. Given � : U , (A,↵) : Fib � and ctr : Contr A, we obverse that

CA[hid , 0i](x) = CA(x, 0) = ([0 = 0] � A(x)) ⇠= (1 � A(x)) ⇠= A(x)

and

CA[hid , 1i](x) = CA(x, 1) = ([1 = 0] � A(x)) ⇠= (;� A(x)) ⇠= 1

Therefore we have

((CA, isFibC ↵ ctr), fA, gA) : (A,↵) ⇠⇠= 1

where fA : A ⇠= CA[hid , 0i] and gA : 1 ⇠= CA[hid , 1i] are the obvious isomorphisms indicated

above. Hence we can define

contract((A,↵), ctr) , improve((CA, isFibC ↵ ctr), fA, gA) : (A,↵) ⇠U 1

as required. Further, for any � : � � �, we have:

contract ((A,↵)[�]) (ctr � �)

= improve((CA��, isFibC (↵[�]) (ctr � �)), fA��, gA��)

= improve((CA � (� ⇥ id), (isFibC ↵ ctr)[� ⇥ id ]), fA � �, gA � �)

= improve((CA, isFibC ↵ ctr)[� ⇥ id ], fA � �, gA � �)

= improve((CA, isFibC ↵ ctr), fA, gA)[� ⇥ id ]

= contract((A,↵), ctr)[� ⇥ id ]

and hence contract is stable under reindexing.

Corollary 6.2.13. The CwF of fibrant types in E models axiom (3).

6.3 Conclusion

In this chapter we have shown how the univalence axiom can be decomposed into an

alternative set of properties. This decomposition happens inside of MLTT, without

reference to any particular model. We then showed how these new properties are satisfied

by any topos satisfying our axioms from Chapter 5. Most of the new properties follow fairly
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straightforwardly from the strictness axiom, ax9, and from the properties of fibrations,

such as the realignment lemma (Lemma 5.3.10) and the fact that fibrations are closed

under isomorphism. The final property, number (3), is shown to hold by defining the

contraction of a family (Definition 6.2.10). This can be seen as a significantly simplified

case of the glueing construction presented in Section 5.4.

In Chapter 5 we showed how to repeat many of the constructions of Cohen et al. [18]

using the internal language of a topos. Although we were unable to construct a univalent

universe using the internal language, we did show some results relevant to univalence. The

idea was that those results should imply that, were there to be a universe containing all

small fibrations, then that universe would satisfy the univalence axiom. In this chapter we

proved the same result but with, we believe, simpler constructions. Therefore, when taken

together, the results in this chapter prove the following:

Theorem 6.3.1. Given any topos E which is a model of our axioms (Figure 5.4). If E
also models a type-theoretic universe of U-small fibrations then that universe satisfies the

univalence axiom.

In fairness, it should be noted that while this proof of the univalence axiom avoids the

use of the glueing construction from Section 5.4, that does not imply that we have entirely

eliminated the need for glueing. In particular, the (external) proof that the universe of

U -small fibrations is a fibrant object (a fibration over 1) still requires the use of the glueing

construction. The fact that the universe is fibrant is essential, not only to ensure that it

is contained in the CwF of fibrant types, but also to allow us to compose paths in the

universe as we do in Theorem 6.1.2.

Therefore the only piece missing in order to give a full internal account of the cubical

sets model of univalent type theory is the construction of such a universe of fibrant types.

This problem is resolved in Chapter 7.

109



110



Chapter 7

Internal universes

In Chapter 5 we saw how models of univalent type theory could be axiomatised using the

internal type theory of an elementary topos. However, while we were able to replicate

many of the constructions of Cohen et al. [18] using this approach, we were unable to

axiomatise the necessary properties of a universe of (small) fibrations (Section 3.3.5) using

the internal language.

In this chapter we propose an extension to the usual internal language which will allow

us to axiomatise the properties we want. We will then use this extended language in order

to show how a universe can be constructed from a simpler requirement that the interval

be tiny.

7.1 The “no-go” theorem for internal universes

In this section we show why there can be no universe that weakly classifies CCHM fibrations

in an internal sense. Such a weak classifier would be given by the following data

V : U1 code : {� : U}(� : Fib �) � � � V

E` : Fib V Elcode : {� : U}(� : Fib �) � [E`[code�] = �]
(7.1)

where Fib � is, as in Definition 5.3.51, the collection of small fibrations over �. That is,

those fibrations whose fibres are in U . Here V is the universe and E` is a CCHM fibration

over it which is a weak classifier in the sense that any (small) fibration � : Fib � can

be obtained from it (up to equality) by re-indexing along some function code� : � � V .
(The word “weak” refers to the fact that we do not require there to be a unique function

� : � � V with E`[�] = �.)

We will show that the data in (7.1) implies that the interval must be trivial (0 = 1),

1Technically we need to generalise the definition given there to allow � to range over types of any size,
specifically over U1 so that E` : Fib V is well-formed. Otherwise the definition remains unchanged. In
particular, the fibres of the fibration still lie in U .
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contradicting the assumption ax2 in Figure 5.4. This is because (7.1) allows one to deduce

that if a family of types A : ��U has the property that each Ax has a fibration structure

when regarded as a family over the unit type 1, then there is a fibration structure for the

whole family A; and yet there are families where this cannot be the case.

This was first pointed out in Remark 5.3.6, but we repeat the construction here for

readability. Consider the family P : I � U with P i , [0 = i]. For each i : I, the type P i

has a fibration structure ⇡ i : isFib {1} (� � P i), because the internal equality satisfies

the principle of uniqueness of identity proofs. Specifically, given e : {0,1}, p : I � 1,

' : Cof, f : ([']�⇧I(� �P i)) = ([']�I� [0 = i]) and a0 : {a0 : [0 = i] | (', f)@e% a0}
then we can simply define

⇡ i e p' f a0 , a0 : {a1 : [0 = i] | (', f) @ e% a1}

where the condition that (', f) @ e% a0 is satisfied by the fact that the type of proofs

[0 = i] is a subterminal.

However, the family P as a whole cannot have a fibration structure. That is, we have

isFib P �?. This is because if we had a fibration structure, ↵ : isFib P , then we could

define a substitution function as in (5.35):

subst : i ⇠ j � P i � P j

Since we have id : 0 ⇠ 1 and ⇤ : P 0 we could therefore apply these arguments to subst

in order to get:

subst id ⇤ : P 1

However, we know that P 1 = [0 = 1]; therefore by combining this with ax2 from Figure

5.4 we get a contradiction.

From this we deduce the following “no-go” 2 theorem for internal universes of CCHM

fibrations.

Theorem 7.1.1 (The no-go theorem). The existence of types and functions as in (7.1)

for CCHM fibrations is contradictory. More precisely, if IntUniv : U2 is the dependent

record type with fields V, E`, code and Elcode as in (7.1), then there is a term of type

IntUniv �?.

Proof. 3 Suppose we have an element of IntUniv and hence functions as in (7.1). Given any

family A : ��U such that each fibre is a fibrant object, ⇡ : (x : �)� isFib {1} (� �Ax),

2We are stealing Shulman’s terminology [58, section 4.1].
3See https://doi.org/10.17863/CAM.35681 for an Agda version of this proof.
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then, for each x : � we can define:

code ((� � Ax) , ⇡ x) : 1 � V

and hence by applying ⇤ : 1 and then abstracting over x we get a map a : � � V defined

like so:

a x = code ((� � Ax) , ⇡ x) ⇤ (7.2)

We can then reindex E` to get a fibration over �:

� : Fib � � = E`[a] (7.3)

Using Elcode we can show that fst � = A. Specifically, given any x : � we have

fst �x = fst (E`[a]) x by definition of �

= fst E` (a x) by definition of [ ]

= fst E` (code ((� � Ax) , ⇡ x) ⇤) by definition of a

= fst (E`[code ((� � Ax) , ⇡ x)]) ⇤ by definition of [ ]

= fst ((� � Ax) , ⇡ x) ⇤ by Elcode

= Ax by evaluation

Hence by function extensionality we have fst � = A.

Therefore we can deduce that snd � : isFib A. However, we saw above how to

transform such an element into a proof of ? by taking � , I and A , �i � [0 = i]. So

altogether we have a proof of IntUniv �?.

Remark 7.1.2. This counterexample generalises to other notions of fibration: it is not

usually the case that any type family A : �! U for which Ax is fibrant over 1 for all x : �,

is fibrant over �. The above proof should be compared with the proof that there is no

“fibrant replacement” type-former in Homotopy Type System (HTS); see https://ncatlab.

org/homotopytypetheory/show/Homotopy+Type+System#fibrant_replacement. The-

orem 7.3.2 below provides a further example of a global construct that does not internalize.

7.2 Crisp type theory

The proof of Theorem 7.1.1 depends upon the fact that in the internal language the code

function can be applied to elements with free variables. In this case it is the variable x : �

in code ((� �Ax) ,⇡ x) ⇤; by abstracting over it we get a function ��V and re-indexing E`
along this function gives the o↵ending fibration (7.3). Nevertheless, the cubical sets presheaf
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topos does contain a (univalent) universe which is a CCHM fibration classifier, but only in

an external sense. Thus there is an object V in b⇤ and a global section E` : 1 ! Fib V
with the property that for any object � and morphism � : 1! Fib �, there is a morphism

code� : �! V so that � is equal to the composition Fib (code�) � E` : 1! Fib �; see

Section 3.3.5 for a concrete description of V . The internalisation of this property replaces

the use of global elements 1 ! � of an object by local elements, that is, morphisms

X ! � where X ranges over a suitable collection of generating objects (for example, the

representable objects in a presheaf topos); and we have seen that such an internalised

version cannot exist.

Nevertheless, we would like to explain the construction of universes like V 2 b⇤ using

some kind of type-theoretic language that builds on Chapter 5. So we seek a way of

manipulating global elements of an object �, within the internal language. One cannot

do so simply by quantifying over elements of the type 1 � �, because of the (internal)

isomorphism � ⇠= (1 � �). Instead, we pass to a modal type theory that can speak about

global elements, which we call crisp type theory. Its judgements, such as � | � ` a : A,

have two context zones—where � represents global elements and � the usual, local ones.

The context structure is that used for an S4 necessitation modality [52, 22, 58], because a

global element from � can be used locally, but global elements cannot depend on local

variables from �. Following [58], we say that the left-hand context � contains crisp

hypotheses about the types of variables, written x :: A.

The interpretation of crisp type theory in cubical sets makes use of the comonad

[ : b⇤! b⇤ that sends a presheaf A to the constant presheaf on the set of global sections

of A; thus [A(X) ⇠= A(1) for all X 2 ⇤ (where 1 2 ⇤ is terminal). Then a judgement

� | � ` a : A describes the situation where � is a presheaf, � is a family of presheaves over

[�, A is a family over ⌃([�)� and a is an element of that family. The rules of crisp type

theory are designed to be sound for this interpretation. Compared with ordinary type

theory, the key constraint is that types in the crisp context and terms substituted for crisp

variables depend only on crisp variables. The crisp variable and (admissible) substitution

rules are:

�, x :: A,�0 | � ` x : A

� | ⇧ ` a : A �, x :: A,�0 | � ` b : B

�,�0[a/x] | �[a/x] ` b[a/x] : B[a/x]
(7.4)

The semantics of the variable rule, which says that global elements can be used locally,

uses the counit "A : [A! A of the comonad [ mentioned above. In the substitution rule,

⇧ stands for the empty context, so a and A may only depend upon the crisp variables

from �. The other rules of crisp type theory (those for ⇧ types, ⌃ types, etc.) carry the

crisp context along. For our application we do not need a type-former for [, but instead

make use of crisp ⇧ types (see, e.g. [22, 51]), that is, ⇧ types whose domain is crisp with
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� | ⇧ ` A : Um �, x :: A | � ` B : Un

� | � ` (x :: A) � B : Umtn

�, x :: A | � ` b : B

� | � ` �x :: A.b : (x :: A) � B

� | � ` f : (x :: A) � B � | ⇧ ` a : A

� | � ` f a : B[a/x]

Figure 7.1: Formation, introduction and elimination rules for crisp ⇧ types

�⌘ judgemental equalities. The formation, introduction and elimination rules are shown

in Figure 7.1. In these rules, because the argument variable x is crisp, its type A, and the

term a to which the function f is applied, must also be crisp.

We also use crisp induction [58] for crisp type theory’s identity type, x ⌘ y. Specifically,

this is identity elimination with a family y :: A, p :: x ⌘ y ` C(y, p) whose parameters are

crisp variables, so that for every such A :: Un, x :: A and C : (y :: A)(p :: x ⌘ y) � Un we

get a map

(y :: A)(p :: x ⌘ y)(z : C x refl) � C y p (7.5)

together with a � judgemental equality. In this thesis we are working with the topos’

internal identity type defined by x ⌘ y , [x = y] with refl , ⇤, and therefore the above

induction principle follows immediately from the fact that this identity type is extensional.

However, we mention this fact to clarify what we require when working in a setting without

an extensional identity type, such as in the Agda development which accompanies this

thesis.

Remark 7.2.1 (Presheaf models of crisp type theory). Crisp type theory is moti-

vated by the specific presheaf topos b⇤. However, very little is required of a category C

for the presheaf topos bC to soundly interpret it using the comonad [ = p⇤ � p⇤, where
p⇤ : bC ! Set takes the global sections of a presheaf and its left adjoint p⇤ : Set ! bC
sends sets to constant presheaves. Explicitly:

p⇤(A) , bC(1, A) p⇤(X)( ) , X

This [ preserves finite limits (because p⇤ has a left adjoint given by left Kan extension

along C ! 1). Although the details remain to be fully worked out, it appears that to

model crisp type theory with crisp ⇧ types satisfying the rules in Figure 7.1 and crisp

identity induction (7.5) (and moreover a [ modality with crisp [ induction, which we do

not use here), the only additional condition needed is that this comonad is idempotent
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(meaning that the comultiplication � : [! [ � [ is an isomorphism).

This idempotence holds if bC is a connected topos, which is the case if C is a connected

category—for example, when C has a terminal object. In this case, when C is connected,

any natural transformation f : 1 ! p⇤(X) is entirely determined by it’s action at any

object, since fI(⇤) = fJ(⇤) 2 X whenever I and J are connected by a morphism in C.

Therefore p⇤(p⇤(X)) = bC(1, p⇤(X)) ⇠= X for any set X and hence p⇤ � p⇤ ⇠= id . From this

we deduce [ � [ = p⇤ � p⇤ � p⇤ � p⇤ ⇠= p⇤ � p⇤ = [ with � : [ ! [ � [ being one side of this

isomorphism. Note that this argument assumes that C is inhabited, but when C is empty

then � is trivially an isomorphism.

If bC has a terminal object, then it is in fact a local topos [37, Sect. C3.6] and [ has a

right adjoint; in which case, conjecturally [58, Remark 7.5], one gets a model of the whole

of Shulman’s spatial type theory, of which crisp type theory is a part. In fact ⇤ does not

just have a terminal object, it has all finite products (as does any Lawvere theory) and

from this it follows that b⇤ is not just local, but also cohesive [43].

Remark 7.2.2 (Agda-flat). Vezzosi has created a fork of Agda, called Agda-flat [3],

which allows us to explore crisp type theory. It adds the ability to use crisp variables4

x :: A in places where ordinary variables x : A may occur in Agda, and checks the modal

restrictions in the above rules. For example, Agda-flat quite correctly rejects the following

attempted application of a crisp-⇧ function to an ordinary argument

wrong : (A :: Un)(B : Um)(f : ( :: A) � B)(x : A) � B wrongAB f x = f(x)

while the variant with x :: A succeeds. This is a simple example of keeping to the modal

discipline that crisp type theory imposes; for more complicated cases, such as occur in

the proof of Theorem 7.3.3 below, we have found Agda-flat indispensable for avoiding

errors. However, Agda-flat implements a superset of crisp type theory and more work is

needed to understand their precise relationship. For example, Agda’s ability to define

inductive types leads to new types in Agda-flat, such as the [ modality itself; and its

pattern-matching facilities allow one to prove properties of [ that go beyond crisp type

theory. Agda allows one to switch o↵ pattern-matching in a module; to be safe we do

that as far as possible in our development. Installation instructions for Agda-flat are at

https://doi.org/10.17863/CAM.35681.

7.3 Universes from tiny intervals

In crisp type theory, to avoid the inconsistency in the “no-go” theorem (Theorem 7.1.1),

we can weaken the definition of a universe in (7.1) by taking code and Elcode to be crisp

4The Agda-flat concrete syntax for “x :: A” is “x :{[} A”.
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functions of fibrations � (and implicitly, of the base type � of the fibration). For if code

has type {� :: U}(� :: Fib �)(x : �)�V , then the proof of a contradiction is blocked when

in (7.2) we try to apply code to � = ((� � Ax) , ⇡ x), which depends upon the local

variable x : �. Indeed we show in this section that given an extra assumption about the

interval I, that holds for cubical sets, it is possible to define a universe with such crisp

coding functions which moreover are unique, so that one gets a classifying fibration, rather

than just a weakly classifying one.

It should be noted that none of results in this chapter depend on the exact definition of

fibration as given in Definition 5.3.3. In fact, the universe construction and other results

generalise directly to other notions of fibration, such as the one used in cartesian cubical

type theory [6]. Therefore, for the remainder of this chapter we will work more generally,

by abstracting the notion of fibration to something parametrised by an arbitrary Comp

structure.

Definition 7.3.1 (Comp-fibrations). Given some structure Comp : UI � U , we define the

type of Comp-fibration structures for a family A : �! U to be:

isFibComp A , (p : �I) � Comp(A � p)

Where Comp is obvious from the context we will simply write isFib for isFibComp. Note

that we recover the previous notion of fibration, up-to a reordering of arguments, by taking

Comp A , (e : {0,1})! Comp0 eA

where Comp0 is the composition operation previously defined in Definition 5.3.3. As before

we write Fib � for the type (A : � � U)⇥ isFib(A).

Recall from Section 3.3.1 that in the cubical sets model, the type I denotes the

representable presheaf y{i} 2 b⇤ on the object {i} 2 ⇤. Since ⇤ has finite products, there

is a functor ⇥ {i} : ⇤! ⇤. Pre-composition with this functor induces an endofunctor

on presheaves ( ⇥ {i})⇤ : b⇤! b⇤ which has left and right adjoints, given by left and right

Kan extension [47, Chap. X] along ⇥ {i}. Hence by the Yoneda Lemma, for any F 2 b⇤
and X 2 ⇤

(F I)X = b⇤(yX ⇥ I, F )

= b⇤(yX ⇥ y{i}, F )

⇠= b⇤(y(X ⇥ {i}), F )

⇠= F (X ⇥ {i})

= (( ⇥ {i})⇤F )X
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naturally in both X and F . It follows that the exponential functor ( )I : b⇤ ! b⇤ is

naturally isomorphic to ( ⇥ {i})⇤ and hence not only has a left adjoint (corresponding to

product with I) but also a right adjoint. The significance of objects in a category with

finite products that are not only exponentiable (product with them has a right adjoint),

but also whose exponential functor has a right adjoint was first pointed out by Lawvere in

the context of synthetic di↵erential geometry [42]. He called such objects “atomic”, but

we will follow later usage [65] and call them tiny.5 Thus the interval in cubical sets is tiny

and we have a right adjoint to the path functor ( )I that we denote by
p

: b⇤! b⇤. So for

each B 2 b⇤, the functor b⇤( I, B) : b⇤ ! Set is representable by
p
B, that is, there are

bijections b⇤(AI, B) ⇠= b⇤(A,
p
B), natural in A.

Given � and A : � � U in b⇤, from Definition 5.3.3 we have that fibration structures

1! isFib A correspond to sections of fst : ((p : �I)⇥ Comp(A � p))! �I as indicated

by ↵ in the following diagram:

�I ↵ //

id
((

(p : �I)⇥ Comp(A � p)
fst
✏✏

�I

Transposing across the adjunction ( )I a p, we get morphisms making the following

diagram commute:

�

↵

**

id
��

p
((p : �I)⇥ Comp(A � p))

p
fst

✏✏

� ⌘�
//
p
(�I)

We therefore have that fibration structures for A correspond to sections of the pullback

⇡1 : R�A ! � of
p
fst along the unit ⌘� : � ! p(�I) of the adjunction at � (which is

the adjoint transpose of id : �I ! �I), as indicated below:

�

↵

**

//

id
  

R�A
⇡2 //

⇡1

✏✏

p
((p : �I)⇥ Comp(A � p))

p
fst

✏✏

� ⌘�
//
p
(�I)

5Warning: the adjective “tiny” is sometimes used to describe an object X of a V-enriched cocomplete
category C for which the hom V-functor C(X, ) : C ! V preserves colimits; see [57] for example. We prefer
Kelly’s term small-projective object for this property. In the special case that V = C and C is cartesian
closed and has su�cient properties for there to be an adjoint functor theorem, then a small-projective
object is in particular a tiny one in the sense we use here.
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p
: (A :: Un) � Un

R : {A :: Un}{B :: Um}(f :: AI � B) � A �pB
L : {A :: Un}{B :: Um}(g :: A �pB) � AI � B

LR : {A :: Un}{B :: Um}{f :: AI � B} � L(R f) ⌘ f

RL : {A :: Un}{B :: Um}{g :: A �pB} � R(L g) ⌘ g

Rnat : {A :: Un}{B :: Um}{C :: Uk}(g :: A � B)(f :: BI � C) � R(f � gI) ⌘ Rf � g

Figure 7.2: Axioms for tinyness of the interval in crisp type theory

This characterization of fibration structure does not depend on the particular definition

of Comp, so should apply to many notions of fibration. We will show how it leads to the

construction of a universe V = RU id and family ⇡1 : RU id ! U which is a classifier for

fibrations. However, there are two problems that have to be solved in order to carry out

the construction within type theory:

• First, for Elcode in (7.1) to be an equality (rather than just an isomorphism), one

needs the choice of R�A to be strictly functorial with respect to re-indexing along �

(and hence to be a dependent right adjoint in the sense of [16]).

• Secondly, one cannot use ordinary type theory as the internal language to formulate

the construction, because the right adjoint to ( )I does not internalize, as the following

theorem shows.

Theorem 7.3.2. There is no internal right adjoint to the path functor ( )I : b⇤ ! b⇤
for cubical sets. In other words, there is no family of natural isomorphisms ( I � B) ⇠=
( �pB) : b⇤! b⇤ (for B 2 b⇤).

Proof. It is an elementary fact about adjoint functors that such a family of natural

isomorphisms is also natural in B. Note that 1I ⇠= 1. So if we had such a family, then

we would also have isomorphisms B ⇠= (1 � B) ⇠= (1I � B) ⇠= (1 �pB) ⇠=
p
B which are

natural in B. Therefore
p

would be isomorphic to the identity functor and hence so would

be its left adjoint ( )I. Hence I� and 1� would be isomorphic functors b⇤! b⇤, which

implies (by the internal Yoneda Lemma) that I is isomorphic to the terminal object 1,

contradicting the fact that I has two distinct global elements, ax2.

We will solve the first of the two problems mentioned above in the same way that

Voevodsky [64] solves a similar strictness problem (see also [16, Section 6]): apply
p

once

and for all to the displayed universe and then re-index, rather than vice versa (as done

above). The second problem is solved by using the crisp type theory of the previous

section to make the right adjoint
p

suitably global. The axioms we use are given in

Figure 7.2. The function R gives the operation for transposing (global) morphisms across
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the adjunction ( )I a p, with inverse L (the bijection being given by LR and RL); and

Rnat is the naturality of this operation. The other properties of an adjunction follow from

these, in particular its functorial action
p

: {A :: Un}{B :: Um}(f :: A � B) �pA �pB
can be defined like so:

p
f , R("A � f)

where "A :: (
p
A)I ! A is the counit of the adjunction, which in turn can be defined as:

"A = L(idp
A)

Note that Figure 7.2 assumes that the right adjoint to I � ( ) preserves universe levels.

The soundness of this for b⇤ relies on the fact that this adjoint is given by right Kan

extension [47, Chap. X] along ⇥ I : ⇤! ⇤ and hence sends a presheaf valued in the nth

Grothendieck universe to another such.

Theorem 7.3.3 (Universe construction
6). Consider the notion of fibration in Defini-

tion 7.3.1 with any definition of composition structure Comp (e.g. the CCHM one used in

Chapter 5). Given the axioms for a tiny interval (Figure 7.2), there is a universe V : U1

with a classifying fibration E` : Fib V equipped with the following data:

code : {� :: U}(� :: Fib �) � � � V
Elcode : {� :: U}(� :: Fib �) � [ E`[code�] = � ]

codeEl : {� :: U}(� :: � � U ) � [ code(E`[�]) = � ]

(7.6)

Proof. Consider the display function associated with the first universe:

Elt : U1 pr : Elt � U (7.7)

Elt = (A : U)⇥ A pr(A, x) = A

We have Comp : UI � U and hence using the transpose operation from Figure 7.2, R Comp :

U �pU . We define V : U1 by taking a pullback:

V ⇡2 //

⇡1

✏✏

p
Elt

p
pr

✏✏

U
R Comp

//
pU

6We just construct a universe for fibrations with fibers in U0. However, similar universes Vn : Un+1 can
be constructed for fibrations with fibers in Un, for each n.
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Explicitly, we construct the pullback like so:

V = {(A,B) : U ⇥pElt | pprB = R Comp A} (7.8)

with ⇡1 and ⇡2 the obvious first and second projections. Transposing this square across

the adjunction ( )I a p we get pr � L ⇡2 = Comp �⇡I1 : VI � U since:

pr � L ⇡2 = L(
p
pr � ⇡2) by naturality of L

= L(R Comp �⇡1) by the previous diagram

= L(R(Comp �⇡I1)) by naturality of R

= Comp �⇡I1 by by LR

Therefore the following diagram commutes:

VI L⇡2 //

⇡I
1

✏✏

Elt

pr

✏✏

UI
Comp

// U

Considering the first and second components of L ⇡2, we have L ⇡2 = hComp �⇡I1 , �i for
some � : (p : VI) � Comp(⇡1 � p); hence � is an element of isFib {V} ⇡1 and so we can

define

E` : Fib V E` = (⇡1, �) (7.9)

So it just remains to construct the functions in (7.6). Given � :: U and � = (A,↵) :: Fib �,

we have ↵ :: isFib A = (p : �I) � Comp(A � p). So the outer square in the diagram below

commutes:

�I

AI

((

hComp �AI,↵i

%%

VI L⇡2 //

⇡I
1

✏✏

Elt

pr

✏✏

UI
Comp

// U

(7.10)

Transposing across the adjunction ( )I a p, this means that the outer square in the

following diagram also commutes and therefore induces a function code� : � � V to the
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pullback.

�

A

''

RhComp �AI,↵i

%%

code�
// V ⇡2 //

⇡1

✏✏

p
Elt

p
pr

✏✏

U
R Comp

//
pU

(7.11)

So we have that ⇡1 � code� = A and ⇡2 � code� = R hComp �AI ,↵i. Transposing the latter

back across the adjunction and recalling that L ⇡2 = hComp �⇡I1 , �i gives:

hComp �AI , ↵i = L(R hComp �AI , ↵i)

= L(⇡2 � code�)

= L⇡2 � (code�)I

= hComp �⇡I1 , �i � (code�)I

= hComp �⇡I1 � (code�)I , � � (code�)Ii

= hComp �(⇡1 � code�)I , � � (code�)Ii

= hComp �AI , � � (code�)Ii

From this, and the injectivity of the pairing map, we get � � (code�)I = ↵. Combining

this with the proof of ⇡1 � code� = A, we get the desired proof of Elcode� since:

E`[code�] = (⇡1, �)[code�]

= (⇡1 � code�, � � (code�)I)

= (A,↵)

= �

Finally, taking � = V and � = E` in (7.11), the uniqueness property of the pullback implies

that code E` = id ; and similarly, for any � :: �� � we have that (code�) � � = code(�[�]).

Together these properties give us the desired proof codeEl � that

code(E`[�]) = (code E`) � � = id � � = �

as required.

Remark 7.3.4. The above theorem can be generalised by replacing the particular universe

id : U � U by an arbitrary one E0 : U0 � U . So long as the composition structure Comp

lands in U0, one can use the above method to construct a universe of fibrant types from
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among the U0 types. The application of this generalisation we have in mind is to directed

type theory; for example one can first construct the universe of fibrant types in the CCHM

sense and then make a universe of covariant discrete fibrations in the Riehl-Shulman [55]

sense from the fibrant types (repeating the construction with a di↵erent interval object).

Remark 7.3.5. The results in this section only make use of the fact that the functor
p

: b⇤! b⇤ is right adjoint to the exponential I � ( ) and we saw at the beginning of this

section why such a right adjoint exists. It is possible to give an explicit description of

presheaves of the form
p
�, but so far we have not found such a description useful.

7.4 Applications

Models. Theorem 7.3.3 is the missing piece that allows a completely internal devel-

opment of a model of univalent foundations based upon the CCHM notion of fibration,

albeit internal to crisp type theory rather than ordinary type theory. One can define a

CwF in crisp type theory whose objects are crisp types � :: U1, whose morphisms are crisp

functions � :: �0 � �, whose families are crisp CCHM fibrations � = (A,↵) :: Fib � and

whose elements are crisp dependent functions f :: (x : �) � Ax. To see that this gives a

model of univalent foundations one needs to prove:

(a) The CwF is a model of intensional type theory with ⇧-types and inductive types

(⌃-types, identity types, booleans, W -types, . . . ).

(b) The type V :: U1 constructed in Theorem 7.3.3 is fibrant (as a family over the unit

type).

(c) The classifying fibration E` :: Fib V satisfies the univalence axiom in this CwF.

These steps follow from previous results and the axioms given in Figure 7.2, together

with the assumptions about the interval object and cofibrant types listed in Figure 5.4

from Chapter 5.

Part (a) was shown in Section 5.3 of Chapter 5. There we were not working in crisp

type theory, however, the proofs still hold since the internal type theory used there is

simply crisp type theory with the crisp context always taken to be empty. All of the rules

and judgements are then the same as before.

Part (b) can be proved using the (strict) glueing operation defined in Section 5.4. The

proof is essentially the same as the one given in [18].

Part (c) can be proved either using the method in Section 5.5, which mirrors the

approach taken by Cohen et al. [18], or the simplified approach presented in Chapter 6.
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Remark 7.4.1 (The interval is connected). Recall that we previously assumed that

the interval was connected, ax1 in Figure 5.4. In fact, this axiom becomes redundant

when assuming that the interval is tiny since ax1 follows from the axioms in Figure 7.2.

The proof in Theorem 5.6.1, that the interval in cubical sets is connected, essentially uses

the fact that b⇤ is a cohesive topos (Remark 7.2.1). However it also follows directly from

the tinyness property: connectedness holds i↵ (I � B) ⇠= B, where B = 1 + 1 is the type

of Booleans; since we postulate that I � has a right adjoint, it therefore preserves this

coproduct and hence (I � B) ⇠= (I � 1) + (I � 1) ⇠= 1 + 1 = B.

Remark 7.4.2 (Alternative models). We have focussed on axioms satisfied by b⇤ and

the CCHM notion of fibration in that presheaf topos. However, the universe construction

in Theorem 7.3.3 also applies to the cartesian cubical sets model [6], and we expect it is

possible to give proofs in crisp type theory of its fibrancy and univalence as well.

In this chapter we only consider “cartesian” path-based models of type theory, in

which a path is an arbitrary function out of an interval object, or in other words, the path

functor is given by an exponential. The models in [39] and [11] are not cartesian in that

sense—the path functors they use are right adjoint to certain functorial cylinders [27] not

given by cartesian product.7 However, those path functors do have right adjoints and

universes in these models can be constructed using the method of Theorem 7.3.3. This is

because the proof does not actually depend on the fact that the path functor is of the form

( )I. In fact the theorem works exactly the same if we replace ( )I with some arbitrary

functor }, even if } is not an internal functor. A proof in crisp type theory that those

universes are fibrant (as families over 1) and univalent may require a modification of our

axiomatic treatment of cofibrancy; we leave this for future work.

Universe hierarchies. Given that there are many notions of fibration that one may

be interested in, it is natural to ask how relationships between them induce relationships

between universes of fibrant types. As motivating examples of this, we might want a cubical

type theory with a universe of fibrations with regularity, an extra strictness corresponding

to the computation rule for identity types in intensional type theory; or a three-level

directed type theory with non-fibrant, fibrant, and co/contravariant universes. Towards

building such hierarchies, it is possible to show in crisp type theory that universes are

functorial in the notion of fibration they encapsulate—when one notion of fibrancy implies

another, the first universe includes the second.

Lemma 7.4.3. Let Comp1, Comp2 : UI � U be two notions of composition, isFib1 and

isFib2 the corresponding fibration structures, and V1 and V2 the corresponding classifying

7Furthermore, obvious candidates for an interval object are not necessarily tiny in those models—for
example, for the 1-simplex �[1] the exponential �[1] � ( ) in the topos b� of simplicial sets does not have
a right adjoint.
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universes. A morphism of fibration structures is a function f�,A :: isFib1 A � isFib2 A

for all � and A : � � U , such that f is stable under reindexing: given � : � � �, and

↵ : isFib1 �A then

f�,A(↵)[�] = f�,A�h(↵[�])

Such a morphism of fibrations f induces a function f : V1 �V2, and this preserves identity

and composition in the sense that id = id and g � f = g � f .

7.5 Conclusion

In this chapter we addressed the shortcomings of the work in Section 5.5. Specifically,

the fact that the material on univalence does not apply to an actual universe object. We

recalled why there can be no internal description of the univalent universe itself if one

uses ordinary type theory as the internal language. Instead we extended ordinary type

theory with a suitable modality and then gave a universe construction that hinges upon

the tinyness property enjoyed by the interval in cubical sets. We call this language crisp

type theory and our work inside it has been carried out and checked using an experimental

version of Agda provided by Vezzosi [3].
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Chapter 8

Conclusion

This thesis examined the extent to which the Kan cubical sets model of homotopy type

theory can be explained using the internal language of the topos of cubical sets. Chapter 5

showed that most of the constructions can be carried out starting from the nine axioms

given in Figure 5.4. This axiomatic approach means that the constructions carried out

in the internal language either apply directly, or are easily adapted, to related models of

type theory such as the cartesian cubical model [6]. We also believe that this presentation

is cleaner than the external presentation, especially for readers familiar with type theory.

In Chapter 6 we showed how this internal approach can be used for a new purpose,

namely, for presenting a simpler proof of univalence. In the process we proved intermediate

results about the model which may be useful for other purposes, such as the principle of

isovalence (Theorem 6.2.6).

The final step missing from the work described above was the construction of a univalent

universe using this internal approach. This problem was addressed in Chapter 7 where

we extended the internal language with a modality for manipulating global elements of a

type, which allowed us to axiomatise the property needed in order to construct a univalent

universe, namely, the fact that the interval is tiny (Section 7.3).

Therefore, in conclusion, this thesis presents a complete internal presentation of the

model given by Cohen et al. [18] including the construction of univalent universes. It

generalises the model to other settings by axiomatising, in the internal language, su�cient

properties to carry out the model construction. Finally, it also presents an alternative

proof of the univalence axiom by decomposing it into sub-axioms which it then shows are

validated, fairly straightforwardly, in any topos satisfying the axioms.

This thesis is accompanied by an extensive Agda development, available at https:

//doi.org/10.17863/CAM.35681, which formalises all of the internal language arguments,

as well as the decomposition of univalence given in Section 6.1. This Agda development

was invaluable for verifying the work contained in this thesis; for identifying mistakes and

missing steps in early versions of many proofs. The Agda was not only useful for checking
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work done on paper, but was also extremely useful for experimenting with new ideas and

constructions.

8.1 Future work (higher inductive types)

The obvious direction for future work would be to investigate the extent to which we

can carry out the construction of higher inductive types (HITs) [62, Chapter 6] using the

internal language approach. Recently, a new paper by Coquand, Huber and Mörtberg [21]

was published which presents the semantics for certain HITs in the cubical sets model,

and takes a first step towards defining a general schema for HITs. Initial experiments

suggest that it is possible to repeat some of these constructions in the internal language

by using quotient inductive types (QITs) [5]. Although further investigation is required to

see how much can be done using this approach, as well as fully justifying the semantics of

QITs, the initial results seem promising.

The key insight in the recent work [21] is that the fibration structure described in

Definition 5.3.3 can be decomposed into two new operations called homogeneous-fibration

structure and transport structure. A family has a homogeneous-fibration structure whenever

each of its fibres is a fibrant object (a fibration over 1). In Remark 5.3.6 we observed that

every fibration satisfies this property, but that not every family satisfying this property

is a fibration. A transport structure captures the extra (non-fibrewise) structure that

di↵erentiates fibrations and families of fibrant objects. We now formally define both of

these concepts in the internal type theory.

Definition 8.1.1 (Homogeneous-fibration structure). A homogeneous-fibration struc-

ture for a family A : � � U over a type � : U is an element of the type isHFibA where

isHFib : {� : U}(A : � � U) � U is defined by:

isHFib {�}A , (e : {0,1})(x : �)(' : Cof)(f : ['] � I � Ax) �
{a0 : Ax | (', f) @ e% a0} � {a1 : Ax | (', f) @ e% a1}

(8.1)

This definition is equivalent to asking that every fibre is a fibrant object. We have simply

eliminated the redundant p : I� 1 that would appear in the direction use of that definition.

Definition 8.1.2 (Transport structure). A transport structure for a family A : � � U
is an element of the type isTranspA where isTransp : {� : U}(A : � � U) � U is defined

by:

isTransp {�}A , (e : {0,1})(p : I � �){' : Cof | ') 8(i : I). p i = p e} �
(a0 : A (p e)) � {a1 : A (p e) | (', a0)% a1}

(8.2)
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where a0 : ['] � A (p e) is a0 regarded as a partial element of A (p e).

We can then show the decomposition of fibration structure into homogeneous-fibration

structure and transport structure that we mentioned above.

Theorem 8.1.3. There are functions

fromFib : {� : U}{A : � � U} � isFibA � isHFibA⇥ isTranspA (8.3)

toFib : {� : U}{A : � � U} � isHFibA � isTranspA � isFibA (8.4)

Proof. Given � : U , A : � � U and ↵ : isFibA we define fromFib ↵ = (hA, tA) where

hA : isHFibA and tA : isTranspA are defined by

hA e x ' f a0 , ↵ e (� � x) ' f a0

tA e p ' a0 , ↵ e p ' (� � a0) a0

For the reverse direction, take � : U , A : � � U , hA : isHFibA and tA : isTranspA and

define a composition structure toFib hA tA : isFibA like so:

toFib hA tA e p ' f a0 , hA e (p e) ' f 0 (tA e p ? a0)

where f 0 : ['] � I � A (p e) is defined by

f 0 u i , tA e (�(j : I) � p(i te j)) (i = e) (f u i)

and where te is given by t0 , t and t1 , u.

To understand the advantage of this decomposition, consider how we might attempt to

construct higher inductive types. As an example, take the suspension [62, Section 6.5].

This is a parameterised-HIT defined, in the language of the external cubical sets CwF

(Section 3.3), like so: given any type A 2 FTy(�) we have a new type ⌃A 2 FTy(�), called

the suspension of A, with terms

north 2 Ter(� ` ⌃A)

south 2 Ter(� ` ⌃A)

merid(a) 2 Ter(� ` PathA(north, south))

for every a 2 Ter(� ` A), which is initial (in a suitable sense) amongst types with this

structure. Moreover, these constructions must be stable under reindexing in the usual

sense.
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Internally we might try to define such a construction by first defining a map ⌃ : U �U ,
taking ⌃A to be the type inductively generated by the constructors,

north : ⌃A

south : ⌃A

merid : A � I � ⌃A

quotiented by the relation that makes merid(a, 0) = north and merid(a, 1) = south for

all a : A. This would then lift to ⌃ : {� : U}(A : � � U) � � � U in a fibrewise way:

⌃ A x , ⌃ (A x)

The problem comes when trying to lift this further to a map ⌃ : {� : U} � Fib � � Fib �

because, given that A is fibrant, there is no obvious reason why ⌃A would also be fibrant.

One idea would be to try to freely add the results of any unsolved composition problems

in ⌃A to construct the “free fibrant family” on ⌃A. This process is known as fibrant

replacement and presents two major issues. The first is that the operation of fibrant

replacement is not, in general, stable under substitution, but our interpretation of HITs

must be stable under substitution. The second problem is that, without worrying about

stability, the obvious definition of fibrant replacement does not preserve smallness of fibres.

For example, given � : U1 and A : � � U then we currently have ⌃A : � � U , but if

we were to fibrantly replace ⌃A in the obvious way then we would get a map � � U1,

i.e. one universe level up (equal to the universe level of the base, �). These issues, and the

semantics of HITs more generally, are discussed in [45].

However, since having a homogeneous composition structure is a fibrewise property,

it does seem to be possible to construct the “homogeneous-fibrant replacement” of a

family, and this process is stable under reindexing and preserves smallness. Moreover, it is

possible to show that if a family A has a transport structure then it’s homogeneous-fibrant

replacement does too.

Now, note that whenever A : � � U has a transport structure tA : isTranspA then we

can define a transport structure t⌃A : isTransp(⌃A) like so:

t⌃A e p ' north , north

t⌃A e p ' south , south

t⌃A e p ' (merid a i) , merid (tA e p ' a) i

This respects the quotient on ⌃A and satisfies the requirements of a transport structure.

Therefore we can construct the suspension as follows. Take a fibration (A,↵) : Fib�

and let ⌃0A be the homogeneous-fibrant replacement of ⌃A. From above, we know that
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whenever A is fibrant, and hence has a transport structure, then ⌃A has a transport

structure as well, and hence so does its homogeneous-fibrant replacement. By definition

⌃0A is always homogeneous-fibrant. Therefore, by (8.4), ⌃0A is fibrant. Moreover, the

“free” part of the homogeneous-fibrant replacement ensures that ⌃0A will still satisfy the

correct elimination principle amongst fibrant types. Therefore ⌃0A correctly models the

suspension of A.

The work described here is still very much in the initial stages. A formalisation of

the argument given above can be found in the Agda development which accompanies

this thesis at https://doi.org/10.17863/CAM.35681. As alluded to at the start of the

chapter, the construction of the homogeneous-fibrant replacement requires the existence of

quotient inductive types (QITs) [5]. At present, these are being simulated in Agda using

some potentially unsound extensions and any future work in this direction would need to

establish the soundness of these construction in general topoi, or specifically in the topos

of cubical sets.

A similar approach in this direction can also be seen in Simon Boulier’s thesis [13,

Section 5.2.5], where he constructs homotopy pushouts in the internal language (which he

calls ITT) by using a quotient type and then taking a fibrant replacement.
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