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1 Abstract

2 Double-stranded RNA (dsRNA) is a potent proinflammatory signature of viral infection 

3 and is sensed primarily by RIG-I-like receptors (RLRs). Oligomerization of RLRs 

4 following binding to cytosolic dsRNA activates and nucleates self-assembly of the 

5 mitochondrial antiviral signaling protein (MAVS). In the current signaling model, the 

6 caspase recruitment domains of MAVS form helical fibrils that self-propagate like 

7 prions to promote signaling complex assembly. However, there is no conclusive 

8 evidence that MAVS forms fibrils in cells or with the transmembrane anchor present. 

9 We show here with super-resolution light microscopy that MAVS activation by dsRNA 

10 induces mitochondrial membrane remodeling. Quantitative image analysis at imaging 

11 resolutions as high as 32 nm shows that in the cellular context MAVS signaling 

12 complexes and the fibrils within them are smaller than 80 nm. The transmembrane 

13 domain of MAVS is required for its membrane remodeling, interferon signaling and 

14 proapoptotic activities. We conclude that membrane tethering of MAVS restrains its 

15 polymerization and contributes to mitochondrial remodeling and apoptosis upon dsRNA 

16 sensing.
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1 Introduction

2 Recognition of viral nucleic acids by innate immune receptors is one of the most 

3 conserved and important mechanisms for sensing viral infection. Many viruses deliver 

4 or generate double-stranded RNA (dsRNA) in the cytosol of the host cell. Cytosolic 

5 dsRNA is a potent proinflammatory signal in vertebrates. Endogenous dsRNAs are 

6 modified or masked through various mechanisms to prevent autoimmune signaling, and 

7 genetic deficiencies in these dsRNA modification pathways can cause autoimmune 

8 disorders [1-3]. Cytosolic dsRNA is primarily sensed by the RIG-I-like receptors 

9 (RLRs) RIG-I (DDX58), MDA5 (IFIH1) and LGP2 (DHX58) [4], which activate the 

10 mitochondrial antiviral signaling protein (MAVS) [5-8]. RIG-I recognizes dsRNA blunt 

11 ends with unmethylated 5’-di- or triphosphate caps [9-12]. MDA5 recognizes 

12 uninterrupted RNA duplexes longer than a few hundred base pairs [11, 13]. LGP2 

13 functions as a cofactor for MDA5 by promoting the nucleation of MDA5 signaling 

14 complexes near dsRNA blunt ends [14, 15]. Binding to dsRNA causes RIG-I to form 

15 tetramers and MDA5 to cooperatively assemble into helical filaments around the 

16 dsRNA [16-19]. RIG-I and MDA5 each contain two N-terminal caspase recruitment 

17 domains (CARDs). The increased proximity of the CARDs upon RLR oligomerization 

18 induces the CARDs from four to eight adjacent RLR molecules to form a helical lock-

19 washer-like assembly [19, 20]. These helical RLR CARD oligomers bind to MAVS, 

20 which has a single N-terminal CARD, via CARD-CARD interactions [5]. Binding of 

21 MAVS CARDs to RLR CARD oligomers nucleates the polymerization of MAVS 

22 CARD fibrils with amyloid-like (or prion-like) properties including resistance to 

23 detergents and proteases [19-21]. MAVS polymerization is required for signaling, and 

24 the spontaneous elongation of MAVS fibrils following nucleation is thought to provide 

25 a signal amplification mechanism [21]. MAVS fibrils then recruit proteins from the 

26 TRAF and TRIM families to form multimeric signaling platforms, or signalosomes 

27 [21]. MAVS is localized primarily on the outer mitochondrial membrane [5] but can 
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1 also migrate via the mitochondria-associated membrane (MAM) to peroxisomes [22], 

2 which function as an alternative signaling platform to mitochondria [23]. MAVS 

3 signalosomes activate both type I interferon (through IRF3) and NF-B-dependent 

4 inflammatory responses [11, 13, 21]. Overexpression of MAVS induces apoptotic cell 

5 death, and this proapoptotic activity is dependent on its transmembrane anchor (TM) 

6 and mitochondrial localization, but independent of the CARD [24, 25]. A 

7 loss‐of‐function MAVS variant is associated with a subset of systemic lupus patients 

8 [26].

9 In the current model of MAVS signaling, RLR CARD oligomers trigger a change of 

10 state in the CARD of MAVS, from monomer to polymeric helical fibril. MAVS fibrils 

11 grow like amyloid fibrils by drawing in any proximal monomeric MAVS CARDs [20]. 

12 This model is based partly on the observation that purified monomeric MAVS CARD 

13 spontaneously assembles into fibrils of 0.2 – 1 µm in length [19, 21]. The fibrils, but not 

14 the monomers, activate IRF3 in signaling assays [21] with cell-free cytosolic extracts. 

15 Moreover, a purified MAVS fragment lacking the TM can, in its polymeric fibril form, 

16 activate IRF3 in crude mitochondrial cell extracts that contain endogenous wild-type 

17 MAVS (17). However, this signaling model is based primarily on signaling assays and 

18 structural studies performed in a cell-free environment with soluble fragments of 

19 MAVS lacking the TM. MAVS has been reported to form rod-shaped puncta on the 

20 outer mitochondria membrane upon activation with Sendai virus [27], but evidence that 

21 MAVS forms polymeric fibrils in cells remains inconclusive, and furthermore MAVS 

22 fibrils are not sufficient for signaling. Indeed, the MAVS TM is required for interferon 

23 induction and cell death activation [5, 21, 25], and several viruses including hepatitis C 

24 virus suppress type I interferon production by cleaving it off [8, 28-31]. The sequence 

25 between the CARD and TM of MAVS, which represents 80% of the MAVS sequence, 

26 is also required for downstream signaling [32]. How this sequence and the TM function 

27 together with the CARD in cell signaling remains unclear.
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1 In the cellular context, MAVS CARD fibrils are subject to multiple physical constraints, 

2 including tethering to RLR-dsRNA complexes (at one end of the fibril) and to the 

3 mitochondrial membrane (via the TM of each MAVS molecule in the fibril). Here, we 

4 address the question of how the current model of MAVS signaling can be reconciled 

5 with these physical constraints, and the requirement of the TM, for cell signaling. 

6 Imaging of MAVS signaling complexes by super-resolution light microscopy with 

7 effective optical resolutions of up to 32 nm reveal that in the cellular context MAVS 

8 signaling complexes are significantly smaller than expected—no more than 80 nm. 

9 Moreover, MAVS signaling is associated with remodeling of mitochondrial 

10 compartments and apoptosis, and both of these activities are dependent on the TM of 

11 MAVS. Our data indicate that MAVS forms smaller signaling complexes than 

12 previously thought [21, 27].

13 Results

14 MAVS activation by cytosolic RNA induces mitochondrial membrane remodeling. 

15 The polymerization of purified soluble fragments of MAVS into helical fibrils is well 

16 documented [19, 21]. In the cellular context, however, MAVS is tethered to the outer 

17 mitochondrial membrane via its transmembrane anchor, and binds via its CARD to 

18 oligomeric or polymeric RLR-dsRNA complexes [19, 21, 33]. To examine how the 

19 physical constraints imposed by membrane tethering and association with RIG-I or 

20 MDA5 may affect MAVS CARD fibril formation, we imaged cells containing active 

21 MAVS signaling complexes by super-resolution fluorescence microscopy. Mouse 

22 embryonic fibroblasts (MEFs) and 3T3 cells were imaged by structured illumination 

23 microscopy (SIM) and stimulated emission depletion microscopy (STED). Because 

24 fluorescent proteins fused to the N-terminus, C-terminus or juxtamembrane region of 

25 MAVS were not suitable for STORM, cells were labeled with a monoclonal antibody 

26 against a linear epitope within residues 1-300 of MAVS and a fluorescently-labeled 
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1 secondary antibody. An antibody with an overlapping epitope was shown previously to 

2 recognize MAVS in the fibril form in non-reducing semi-denaturing electrophoresis 

3 [21]. Immunofluorescence of MAVS and TOM20, an outer mitochondrial membrane 

4 marker, showed that the two proteins localized to the same mitochondrial compartments 

5 (Fig. 1). We observed changes in the distribution of MAVS and in overall mitochondrial 

6 morphology (using the TOM20 marker) upon infection of 3T3 cells with a West Nile 

7 virus (WNV) replicon (Fig. 1A). Infection with the WNV replicon caused mitochondrial 

8 compartments to form more fragmented and less filamentous structures closer to the 

9 nucleus. Introducing the dsRNA mimic poly(I:C) into MEFs by electroporation (0.6 – 1 

10 picogram per cell) recapitulated the changes in MAVS distribution and mitochondrial 

11 morphology observed upon infection with the WNV replicon (Fig. 1B). These changes 

12 were also recapitulated by cotransfecting MEFs derived from MAVS knockout mice 

13 (MAVS KO MEFs) [34] with poly(I:C) RNA and a plasmid encoding MAVS (0.6 – 1 

14 pg of each per cell, Figs. 1C). Mitochondrial remodeling associated with poly(I:C) 

15 treatment was quantified as statistically significant reductions in: (1) the distance from 

16 the nucleus (from an average of 9.0 µm to 4.5 µm, p = 2.0 x 10-4) (Fig. 1E); (2) the 

17 fraction of the cytosolic area occupied by mitochondria (from an average of 24.2% to 

18 16.7%, p = 0.0015) (Fig. 1F); and (3) the length of mitochondrial compartments 

19 measured as unbranched segments of skeletonized TOM20 fluorescence (from an 

20 average of 2.42 µm to 1.98 µm, p = 0.0478) (Fig. 1G). The amount of MAVS plasmid 

21 and the electroporation method used in transfections were selected to yield MAVS 

22 expression levels that were in the physiological range (see below). Notably, no MAVS 

23 filaments longer than the resolution limit were observed. The resolution of SIM and 

24 STED was approximately 110 nm and 80 nm in the imaging (xy) plane, respectively 

25 (and 350 and 600 nm in z, respectively). These resolutions were also sufficient to 

26 resolve differences in the positions of individual MAVS and TOM20 protein complexes 

27 so that the immunofluorescence signals from the two proteins formed an alternating 

28 pattern within mitochondrial compartments rather than strictly colocalizing (Figs. 1A, 
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1 1C, 2A). We confirmed that transfection with poly(I:C) RNA induced translocation of 

2 IRF3 to the nucleus, which is a hallmark of interferon-β (IFN-β) signaling (Fig. 2B). 

3 Importantly, we showed that the level of MAVS expression in transfected MAVS KO 

4 MEFs was comparable to the physiological level of endogenous MAVS expression in 

5 wild-type MEFs (Fig. 3). A live-cell dual-luciferase reporter assay was used to confirm 

6 that IFN- β signaling is activated in MAVS KO MEFs transfected with the MAVS 

7 expression plasmid and poly(I:C) RNA (see below). Costaining for MAVS and MDA5 

8 (Fig. 2C) showed an increased interaction between the two proteins, defined as the 

9 average distance between MAVS and MDA5 fluorescence (Fig. 2D) [35]. However, 

10 MDA5 staining remained predominantly cytosolic and no significant increase 

11 colocalization was detected with poly(I:C) treatment based on the Pearson correlation. 

12 Similarly, RIG-I was recently shown to partition into a MAVS-associated mitochondrial 

13 fraction and a cytosolic stress granule fraction [36]. In the absence of MAVS, 

14 mitochondria retained their filamentous morphology and failed to move towards the 

15 nucleus upon transfection with poly(I:C) (Figs. 1D). We note that the 

16 immunofluorescence and cell signaling data show relatively high levels of 

17 mitochondrial remodeling (Fig. 1), IRF3 nuclear translocation (Fig. 2B) and background 

18 signaling (see below) in cells transfected with a control plasmid instead of poly(I:C), 

19 which is likely attributable to IFN- signal transduction by cytosolic DNA sensors. We 

20 conclude that activation of MAVS by cytosolic RNA sensing is associated with 

21 remodeling of mitochondria into more globular and perinuclear compartments. 

22 Mitochondrial remodeling from the healthy filamentous morphology to perinuclear 

23 globular compartments through mitochondrial fission events is a hallmark of apoptosis 

24 [37]. Indeed, MAVS was shown previously to promote apoptosis independently of its 

25 function in initiating interferon and NF-B signaling [24].

26 STORM shows MAVS signaling complexes are smaller than expected. Purified 

27 monomeric MAVS CARD spontaneously forms fibrils 0.2 – 1 µm in length [19, 21]. 
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1 The fibrils, but not the monomers, activate IRF3 in cell-free assays [21]. However, SIM 

2 and STED imaging of cells with actively signaling MAVS did not resolve any clearly 

3 apparent fibrils (Fig. 1). To determine whether MAVS forms fibrils too small to resolve 

4 by SIM or STED, we employed a higher-resolution imaging modality, stochastic optical 

5 reconstruction microscopy (STORM), to image cells containing active MAVS signaling 

6 complexes. STORM can yield effective resolutions of 20 nm in the imaging plane [38]. 

7 MEFs were immunolabeled with an antibody against MAVS and a secondary antibody 

8 conjugated to Alexa Fluor 647, which was selected for its favorable blinking 

9 characteristics and high photon output. MAVS KO MEFs were cotransfected with 

10 MAVS and poly(I:C) RNA as described for SIM and STED imaging. No MAVS 

11 filaments longer than the resolution limit were observed in the STORM images (Fig. 4). 

12 Instead, most of the MAVS immunofluorescence was present in fluorescent foci with 

13 irregular shapes, varying in diameter from 30 nm to 80 nm. These dimensions coincide 

14 with the effective resolution of the STORM imaging (see below). Unexpectedly, despite 

15 the global change in mitochondrial morphology associated with poly(I:C) treatment, 

16 there was no significant difference in the shapes and size range of MAVS foci in cells 

17 transfected with poly(I:C) or with a control plasmid.

18 Quantitative image analysis indicates MAVS fibrils are shorter than 80 nm. Since 

19 our ability to visualize submicrometer MAVS fibrils is critically dependent on the 

20 effective resolution of the imaging experiment, an accurate measurement of the imaging 

21 resolution is necessary to determine the minimum fibril length that can be resolved. We 

22 measured the resolution of our STORM images with the Fourier Ring Correlation 

23 (FRC) method, using an FRC of 0.143 as the threshold to measure resolution [39]. This 

24 criterion is the widely accepted standard for resolution assessment in cryo-electron 

25 microscopy (cryoEM) [40-42]. FRC curves calculated from our STORM images 

26 indicate that the resolution in the imaging plane ranged from 32 to 66 nm (Fig. 5A, B). 

27 Moreover, there was a correlation between the measured resolution of the images and 
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1 the visual appearance of the MAVS foci. More specifically, images with the lowest 

2 resolutions (Fig. 4G, A) had more diffuse density, whereas images with the highest 

3 resolutions (Fig. 4E, I, C) had more pronounced foci, regardless of poly(I:C) treatment. 

4 This suggests that the appearance of clearly visible foci is determined by the imaging 

5 resolution rather than by the size of the imaged object. The calculated FRC resolution of 

6 the lowest-resolution STORM image was 66 nm. This is consistent with the SIM and 

7 STED data (Fig. 1A, C), which showed no correlation between poly(I:C) treatment and 

8 the appearance of clearly distinguishable MAVS fluorescence foci.

9 To quantify any subtle effects that poly(I:C) treatment might have on the clustering of 

10 MAVS foci, we performed cluster analysis on the STORM images using the pair 

11 correlation function. A hierarchical cluster model of two nested clusters was necessary 

12 to obtain a good fit to the pair correlation curve (Fig. 5C, D) [43, 44]. The clustering 

13 analysis showed that the two cluster size parameters of the nested cluster model were 

14 not significantly different in poly(I:C)-treated and control samples (Fig. 5E), confirming 

15 the lack of correlation between poly(I:C) treatment and the size of MAVS fluorescent 

16 foci.

17 Reconstruction of fine structural features by super-resolution microscopy depends on 

18 the precision with which the position of each fluorophore can be localized, and on the 

19 density and spatial distribution of active fluorophores along the labeled sample [39]. In 

20 the case of immunolabeled samples, the primary and secondary antibodies increase the 

21 spacing between the molecule of interest and the fluorophore significantly (by 20 – 35 

22 nm) [45]. To determine whether 200 nm MAVS fibrils would in principle be visible in 

23 STORM images with the localization precision, labeling strategy and fluorophore 

24 properties inherent to our study, we generated an atomic model of 200 nm MAVS 

25 CARD fibrils bound to primary and secondary antibodies, and simulated the appearance 

26 of the fibrils with the same localization precision as our STORM images at different 
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1 labeling efficiencies (Fig. 4K, L). Immunolabeling increases the overall diameter of the 

2 fibrils from 8.5 nm to 79 nm, but fibrils were nevertheless clearly visible with labeling 

3 efficiencies greater than 40%. Notably, the diameter of immunolabeled MAVS CARD 

4 fibrils is similar to the lowest resolution measured for the STORM images (79 vs. 66 

5 nm, respectively). Therefore, immunolabeled MAVS fibrils shorter than 80 nm in axial 

6 length would be expected to appear as globular foci in STORM. Hence the absence of 

7 visible fibrils in our images remains consistent with the presence of helical MAVS 

8 fibrils up to 70 – 80 nm. A MAVS CARD helical assembly of this length would contain 

9 136 – 156 MAVS molecules based on the 5.13 Å axial rise per protomer [19]. By 

10 comparison, purified MAVS fragments form filaments 200 – 1,000 nm in length in 

11 solution [19, 21].

12 MAVS TM is required for mitochondrial remodeling and IFN-β signaling. MAVS 

13 CARD fibrils are sufficient to activate IRF3 in cytosolic extracts, but the 

14 transmembrane domain (TM) of MAVS is absolutely required for MAVS to activate 

15 IRF3 and induce interferon [5, 21]. We have shown that MAVS signaling activation 

16 causes changes in overall mitochondrial morphology similar to those associated with 

17 apoptosis, consistent with the documented proapoptotic activity of MAVS, which is 

18 dependent on the TM but not the CARD of MAVS [24]. To determine whether the 

19 MAVS TM is required for MAVS-dependent mitochondrial remodeling we used STED 

20 microscopy to image MAVS KO MEFs transfected with a plasmid encoding MAVS 

21 with the TM deleted (MAVS-ΔTM). As reported previously [5], we found that MAVS-

22 ΔTM had diffuse cytosolic staining (Fig. 6A). Notably, cells expressing MAVS-∆TM 

23 showed no visible aggregation, and little or no mitochondrial remodeling upon 

24 induction with poly(I:C), consistent with a recent report that the TM is required for the 

25 formation of high molecular weight MAVS aggregates [46].
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1 Previous studies have measured MAVS signaling activity from cytosolic or 

2 mitochondrial cell extracts. We confirmed that MAVS KO MEFs transfected with wild-

3 type MAVS and poly(I:C) following the same protocol used for super-resolution 

4 imaging induced IFN-β signaling in the dual-luciferase reporter assay (Fig. 6B). In 

5 contrast, cells expressing MAVS-∆TM failed to activate IFN-β signaling. The signal-to-

6 noise ratio was low in the assay, however, due at least in part to induction of IFN-β 

7 signaling by cytosolic DNA sensing pathways such as cGAS-STING [47] in response to 

8 the transfected plasmid DNA. We therefore performed the luciferase reporter assay in 

9 STING KO MEFs (Fig. 6B), which are defective for cGAS-dependent DNA sensing 

10 [48]. The signal-to-noise was higher with STING KO MEFs than with MAVS KO 

11 MEFs despite the presence of endogenous MAVS in the STING KO MEFs. A slight but 

12 statistically insignificant increase in signaling was observed in STING KO MEFs 

13 transfected with MAVS-∆TM. This is consistent with previous work showing that 

14 purified recombinant MAVS-∆TM can, in its aggregated form, induce aggregation of 

15 endogenous wild-type MAVS and IRF3 activation in cell extracts enriched for 

16 mitochondria [21].

17 MAVS induces cell death in response to cytosolic RNA. An early hallmark of 

18 apoptosis is the depolarization of the inner mitochondrial membrane [49], which is 

19 followed at later stages of cell death by loss of nuclear DNA content due to DNA 

20 fragmentation [50]. Overexpression of MAVS in HEK293T cells was shown previously 

21 to induce apoptosis [24]. To determine whether MAVS KO MEFs expressing 

22 physiological levels of MAVS induced apoptosis in response to activation with 

23 cytosolic dsRNA, we conducted cell death assays on cells transfected with MAVS and 

24 poly(I:C) RNA following the same protocol as for super-resolution imaging. Inner 

25 mitochondrial membrane depolarization and loss of nuclear DNA content were 

26 measured with the fluorescent markers 3,3′-dihexyloxacarbocanine iodide (DiOC6) 

27 (Fig. 6C) and propidium iodide (PI) (Fig. 6D), respectively. We found poly(I:C) 
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1 treatment induced a loss of mitochondrial membrane potential in one third of cells 

2 transfected with wild-type MAVS, and loss of nuclear DNA content indicative of cell 

3 death in 21% of cells, at 16 h post-transfection, the same time point used for super-

4 resolution imaging (Fig. 6C, D). In contrast poly(I:C) treatment of cells transfected with 

5 MAVS-∆TM induced a loss of mitochondrial membrane potential and DNA content in 

6 only 13% and 8% of cells, respectively.

7 Discussion

8 Implications for signal transduction by MAVS. Taken together, our super-resolution 

9 light microscopy data suggest that in live cells, MAVS signaling complexes contain 

10 significantly smaller fibrils than those formed in vitro by soluble MAVS fragments. The 

11 absence of visible fibrils in SIM, STED and STORM images of cells expressing 

12 physiological levels of MAVS activated with various stimuli (synthetic or viral 

13 dsRNA), and a quantitative assessment of the resolution of the STORM images are all 

14 consistent with an upper limit in the range of 70 – 80 nm for the longest dimension of 

15 any MAVS fibrils within the MAVS signalosome. Unexpectedly, despite the global 

16 change in mitochondrial morphology associated with poly(I:C) treatment, there were no 

17 significant differences in the shape and distribution of MAVS foci in cells transfected 

18 with poly(I:C) or with a control plasmid. Cluster analysis of STORM images revealed 

19 no significant correlation between poly(I:C) treatment and the size of the clusters. Our 

20 confocal, SIM, STED and STORM data are consistent with each other and broadly 

21 consistent with previous fluorescence microscopy studies [21, 51], although a 3-D SIM 

22 reconstruction in one previous study showed MAVS forming rod-shaped puncta ranging 

23 from 100 nm to 650 nm in length, with a median length of 350 nm (n = 74) [27]. 

24 However, 350 nm is similar to the axial resolution of SIM and hence could be an 

25 overestimate of the MAVS cluster length.
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1 An 80-nm long MAVS CARD helical assembly would still contain 156 MAVS 

2 molecules, a sufficiently large number to retain potential for polymerization-dependent 

3 signal amplification and to function as a mitochondrial signaling platform capable of 

4 recruiting the necessary number and diversity of downstream signaling proteins to elicit 

5 a robust IFN- response [19, 20]. Given the smaller than expected size of MAVS 

6 signaling assemblies, a maximal MAVS-dependent signaling response may require a 

7 larger number of fibril nucleation events than previously thought. However, these 

8 nucleation events need not be independent, and MAVS signaling complexes may 

9 nevertheless assemble cooperatively, with assembled complexes promoting the 

10 nucleation of additional complexes without MAVS CARD filament extension beyond 

11 approximately 80 nm, but potentially forming two- or three-dimensional networks of 

12 microfibrils. Such a trade-off of reduced filament length in favor of increased nucleation 

13 was recently shown to occur elsewhere in the dsRNA sensing pathway. Indeed, LGP2 

14 increases the initial rate of MDA5-dsRNA binding and limits MDA5 filament assembly, 

15 resulting in the formation of more numerous, shorter MDA5 filaments to generate a 

16 greater signaling activity [14]. Imaging at higher resolution, for example by electron 

17 microscopy, is required to elucidate the structural organization of MAVS signaling 

18 complexes.

19 We have shown that the MAVS transmembrane anchor is required for MAVS-

20 associated mitochondrial remodeling and confirmed that the TM is required for MAVS-

21 dependent IFN-β signaling and apoptosis in live cells and under the same experimental 

22 conditions used for the super-resolution imaging experiments in this study. The diffuse 

23 cytosolic localization of MAVS-∆TM suggests that MAVS oligomerization is regulated 

24 by elements between the CARD and TM, and that the TM is required to overcome this 

25 regulation. It is tempting to speculate that the physical constraints imposed by MAVS 

26 aggregation and association with RLR-RNA complexes exert a physical force on the 
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1 outer mitochondrial membrane capable of inducing distortions that could conceivably 

2 contribute to mitochondrial remodeling or leakage associated with apoptotic cell death. 

3

4 Materials and methods

5 Expression plasmids. Genes encoding full-length mouse MAVS (residues 1-503, 

6 Uniprot entry Q8VCF0) and mouse MAVS with the transmembrane anchor (residues 

7 479-503) deleted (MAVS-∆TM) were cloned into the pCMV-SPORT6 vector (BioCat, 

8 Heidelberg, Germany).

9 Cell culture. Wild-type mouse embryonic fibroblasts (MEFs), MAVS knockout 

10 (MAVS KO) MEFs, STING KO MEFs and 3T3 cells were cultured in Dulbecco’s 

11 modified Eagle Medium high glucose (DMEM) (Gibco, Waltham, MA), supplemented 

12 with 10% v/v fetal bovine serum and 10% sodium pyruvate (Gibco). Cells were 

13 maintained at 37°C in a 5% CO2 atmosphere.

14 Transfections. Transient transfections were performed with the Neon transfection 

15 system (ThermoFisher, Waltham, MA) following the manufacturer’s protocol. For 

16 transfections in 6-well plates, the cells were transfected at a density of 2.5 x 105 cells 

17 per well using a 10 μl Neon Tip and a total of 0.5 μg of nucleic acids per well. For 

18 transfections in 96-well plates, cells were transfected and seeded at 8.5 x 104 cells per 

19 well using a 10 μl Neon Tip and a total of 0.1 μg of nucleic acids per well. For MAVS 

20 KO MEFs transfected with MAVS the transfected nucleic acids consisted of 1:1 (w/w) 

21 pCMV-MAVS plasmid DNA:poly(I:C) RNA (Midland Certified Reagents), or 1:1 

22 (w/w) pCMV-MAVS plasmid DNA:pCMV empty vector plasmid DNA for the 
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1 untreated control. The total amount of poly(I:C) RNA was 0.6 – 1 ng per 1,000 cells. 

2 For the MAVS KO MEF negative control and the experiments with wild-type MEFs 

3 and endogenous MAVS (Fig. 1B, 3) the transfected nucleic acids consisted of 1:1 (w/w) 

4 pCMV empty vector plasmid DNA:poly(I:C) RNA, or pCMV empty vector plasmid 

5 DNA only for the untreated control.

6 West Nile Virus infection. West Nile reporter virus particles were generated in HEK 

7 293T cells by cotransfecting the cells with plasmids encoding the structural proteins (C, 

8 prM, E) and a subgenomic replicon containing GFP (pWNVII-Rep-G-Z), as described 

9 previously [52, 53]. The plasmids were kind gifts from Theodore Pierson (NIH). 

10 Supernatant collected 48 h after transfection was filtered through 0.2 μm membranes 

11 and used to infect 3T3 cells. 24 h post-infection, the cells were fixed with 4% 

12 formaldehyde solution and labeled for immunofluorescence.

13 Immunofluorescence staining. For anti-MAVS staining cells were fixed 16 h post-

14 transfection on the microscopy coverslips with 4% formaldehyde in phosphate-buffered 

15 saline (PBS), permeabilized in 50 mM Tris/HCl pH 7.5, 0.15 M NaCl, 0.02% Saponin 

16 (TBSS) for 30 min at 37˚C, and then blocked in 5% BSA in TBSS for 1 h at 37˚C. Cells 

17 were stained with a mouse anti-MAVS monoclonal IgG2a antibody (MAVS (C-1), 

18 Santa Cruz Biotechnology, Dallas, TX) in TBSS at 1:80 dilution for 1.5 h at 37˚C. After 

19 four 5-min washes with TBSS, the cells were incubated with goat anti-mouse IgG 

20 conjugated to Alexa Fluor 488 (Molecular Probes, Eugene, OR) at 1:80 dilution for 1 h 

21 at room temperature, washed with TBSS, and mounted for imaging with ProLong Gold 

22 Antifade Mountant with DAPI (ThermoFisher). For anti-TOM20 staining cells were 

23 fixed and blocked the same way as for anti-MAVS staining. TOM20 was stained with 
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1 rabbit anti-TOM20 polyclonal IgG antibody (TOM20 (FL-145), Santa Cruz 

2 Biotechnology) in TBSS at 1:80 dilution for 1.5 h at 37˚C. After washing with TBSS, 

3 the cells were incubated with goat anti-rabbit IgG conjugated to Alexa Fluor 555 

4 (Molecular Probes) at 1:80 dilution for 1 h at room temperature, washed with TBSS, 

5 and mounted for imaging with ProLong Gold Antifade Mountant with DAPI 

6 (ThermoFisher). For the MAVS costaining with IRF-3 and MDA5 cells were fixed, 

7 permeabilized, and blocked as for anti-MAVS staining above. IRF-3 and MDA5 were 

8 stained with rabbit anti-IRF3 polyclonal IgG (IRF-3 (FL-425), Santa Cruz 

9 Biotechnology) and rabbit anti-MDA5 polyclonal IgG (Enzo Life Sciences, 

10 Farmingdale, NY), respectively, at 1:80 dilution in TBSS for 1.5 h at 37˚C. After 

11 washing with TBSS, the cells were incubated with goat anti-rabbit antibody conjugated 

12 to Alexa Fluor 647 (Molecular Probes) at 1:80 dilution for 1 h at room temperature, and 

13 then mounted for imaging with ProLong Gold Antifade Mountant with DAPI 

14 (ThermoFisher).

15 Mitochondrial remodeling analysis. Widefield images were acquired at 100x 

16 magnification with an inverted Nikon TE2000 microscope equipped with a Niji LED 

17 light source (Bluebox Optics, Huntingdon, UK), a 100x/1.49NA oil objective (Nikon, 

18 Tokyo, Japan) and NEO scientific CMOS camera (Andor, Belfast, UK). A custom 

19 ImageJ macro script (Mitochondria_remodelling_analysis.ijm in Supplementary Data) 

20 was written to analyze mitochondrial distance, area and length parameters with ImageJ 

21 [54]. More specifically, distance from the nucleus was measured as the shortest distance 

22 from each TOM20 fluorescence pixel to a DAPI fluorescence pixel. Second, the fraction 

23 of the cytosolic area occupied by mitochondria was measured in each cell. Third, the 

24 length of mitochondrial compartments was measured by skeletonizing the mitochondrial 
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1 fluorescence signal, segmenting the skeleton at branchpoints and measuring the length 

2 of each resulting segment. These measurements were performed on 28 cells without 

3 poly(I:C) and 11 cells with poly(I:C) treatment.

4 MAVS-MDA5 interaction analysis. The averaged distances of the collective points in 

5 the MDA5 and MAVS fluorescence signals after treatment with poly(I:C) or a control 

6 plasmid was calculated with the Interaction Analysis plugin for ImageJ from 

7 MosaicSuite (MOSAIC Group, Dresden, Germany) [35]. Colocalization was measured 

8 by calculating the Pearson correlation coefficient with the Coloc 2 plugin in ImageJ.

9 Confocal fluorescence imaging. Confocal imaging (Figs. 1B, 1D, 2, 3) was carried out 

10 on a Zeiss (Oberkochen, Germany) LSM 780 or Leica (Wetzlar, Germany) TCS SP8 

11 laser scanning inverted microscope with a 40x/1.3 NA or 63x/1.4 NA oil immersion 

12 objective lens. The Zeiss was equipped with diode 405 nm, Argon multiline, DPSS 561 

13 nm and HeNe 633 nm laser lines. The Leica was equipped with diode 405 nm and NKT 

14 Super K pulsed white light (470-670 nm) lasers. On the Zeiss, DAPI/Alexa Fluor 405 

15 (405 nm excitation), Fluorescein/ATTO488 (488 nm excitation), mApple (561 nm 

16 excitation), Alexa Fluor 647/SiR-647 (633 nm excitation) and differential interference 

17 contrast (DIC) images were collected and analyzed with ZEN 2009-2011 (Zeiss) and 

18 ImageJ [54]. On the Leica, Alexa Fluor 405 (405 nm excitation), GFP/ATTO488 (488 

19 nm excitation) and Alexa Fluor 647 (633 nm excitation) images were collected and 

20 analyzed with LAS AF (Leica). Images were deconvolved with Huygens Professional 

21 (Scientific Volume Imaging, b.v., Hilversum, The Netherlands).

22 Structured Illumination Microscopy (SIM). Cells were plated as a monolayer on high 

23 performance Zeiss cover glasses (18 x 18 mm, 0.17 mm thickness, type 1.5 H, ISO 
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1 8255-1 with restricted thickness-related tolerance of ± 0.005 mm, refractive index = 

2 1.5255 ± 0.0015) in 6-well CytoOne TC-Treated tissue culture plates (STARLAB, 

3 Milton Keynes, UK). Cells were stained and mounted as described above. Images were 

4 acquired on a Zeiss ELYRA S.1 system with a pco.edge 5.5 scientific CMOS camera 

5 using a 63x/1.4 NA oil immersion objective lens. For optimal lateral spatial sampling a 

6 1.6x intermediate magnification lens was used, resulting in a pixel size of 64 nm. 

7 Excitation was achieved with a 488 nm laser and emission was filtered with a 495-550 

8 nm band pass filter. Modulation of the illumination light was achieved using a physical 

9 grating with 28 µm spacing. This patterned illumination was shifted through 5 phases at 

10 each of 3 rotational angles per image. Raw data were processed using ZEN software.

11 STimulated Emission Depletion (STED) microscopy. Cells were plated as a 

12 monolayer on high performance Zeiss cover glasses (as above) in 6-well CytoOne TC-

13 Treated tissue culture plates (STARLAB). Cells were stained and mounted as described 

14 above. Images were acquired on a Leica TCS SP8 STED confocal system with time-

15 gated HyD GaAsP detectors using a 100x/1.4 NA oil immersion objective lens. 

16 Excitation was achieved with an NKT Super K pulsed white light (470 – 670 nm) laser 

17 tuned to 488 nm and STED was induced with a 592 nm laser (~40 MW cm-2). A time 

18 gate window of 2 – 6 ns was used to maximize STED resolution. 20 nm pixels were 

19 used to ensure adequate spatial sampling to support maximal expected resolution. 

20 Images were deconvolved with Huygens Professional.

21 STochastic Optical Reconstruction Microscopy (STORM). In STORM, fluorophores 

22 are induced to switch, or “blink” between fluorescent and dark states. With a 

23 sufficiently small fraction of fluorophores in the fluorescent state at any given time, 
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1 spatial overlap between adjacent fluorophores is avoided and the positions of individual 

2 fluorophores can be determined with high precision using the point-spread function of 

3 each fluorophore [38]. STORM images are generated by plotting the positions of each 

4 fluorophore blinking event as points in the image plane and applying to each point a 

5 blurring factor corresponding to the localization precision for that point. The appearance 

6 of the images also depends on the efficiency of fluorescent labeling and the extent of 

7 fluorophore bleaching during the experiment.

8 Cells were plated as a monolayer on high performance CellPath (Newtown, UK) HiQA 

9 Coverslips (No. 1.5 H, 24 mm Ø) in 6-well CytoOne TC-Treated tissue culture plates 

10 (STARLAB). Cells were stained as described above. Alexa Fluor 647-labeled samples 

11 were imaged in the following buffer condition: 10% w/v glucose, 0.5 mg ml-1 glucose 

12 oxidase (Sigma-Aldrich, St. Louis, MO), 40 µg ml-1 catalase (Sigma Aldrich), and 0.1 

13 M β-mercaptoethylamine (MEA) (Sigma-Aldrich) in PBS, pH adjusted to 7.4 with 

14 concentrated HCl. To minimize air oxidation of the fluorophore, the imaging well was 

15 filled to full capacity with the imaging buffer and sealed with a cover glass. Imaging 

16 was performed with an N-STORM microscope (Nikon) equipped with an Apochromat 

17 TIRF 100x/1.49 NA oil immersion objective lens, a single photon detection iXon Ultra 

18 DU897 EMCCD camera (Andor), and 405 nm (30 mW) and 647 nm (170 mW) laser 

19 lines. To acquire single-molecule localizations, samples were constantly illuminated 

20 with the 647 nm laser at 2-3 kW cm-2. To maintain adequate localization density, the 

21 405 nm laser was used to reactivate the fluorophore. During imaging, Perfect Focus 

22 System was used to maintain the axial focal plane. 7 – 10 x 104 frames were collected 

23 for each field of view at a frame rate of 50-70 Hz. STORM images were reconstructed 

24 with NIS Elements Advanced Research (Nikon): lateral drift correction was performed 
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1 using automated cross-correlation between frame sets and each localization point in the 

2 reconstructed image was shown as a normalized Gaussian, the width of which 

3 corresponded to the localization uncertainty calculated using the Thompson-Larson-

4 Webb equation [55]. Each STORM image contained 1-2 million molecules within a 

5 single cell. 

6 Fourier ring correlation (FRC). The effective optical resolution of the STORM 

7 images was assessed using the FRC method proposed by Nieuwenhuizen et al. (2013) 

8 using the Matlab code provided [39] (frc_analysis.m in Supplementary Data). An FRC 

9 threshold of 1/7 (0.143) was used to determine the resolution of each rendered STORM 

10 image.

11 Cluster analysis of MAVS immunofluorescence in STORM images. Cluster analysis 

12 was performed to assess the size of fluorescent foci from immunolabeled MAVS in the 

13 STORM images. Using a custom C++ script (nestedclusteranalysis.cpp in 

14 Supplementary Data), each image was divided into 3 x 3 µm windows covering the field 

15 of view and windows with a mean fluorescence intensity greater than an 

16 arbitrary threshold—half of the mean fluorescence intensity of the whole image—were 

17 selected for analysis (Fig. 5C-E). Cluster analysis was performed by fitted a hierarchical 

18 nested cluster model, or clusters of clusters model, to the pair correlation function (or 

19 radial distribution function), defined as the average number of points located in a ring of 

20 radius r centered around each point and normalized by the expected intensity taking into 

21 account the border of the window of analysis [44, 56]. The nested cluster model was 

22 fitted to the pair correlation curve using a least squares approach. The selected model 
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1 comprised two clusters (smaller “inner” clusters that cluster into larger “outer” clusters) 

2 defined by four parameters (μ1, σ1, μ2, σ2) through the following equation:

3 𝑔nested (𝑟) = 1 +  
1
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4 with σ1 and σ2 corresponding to the outer and inner cluster sizes, respectively.

5 Simulated rendering of immunolabeled MAVS fibrils. The atomic coordinates of an 

6 mouse antibody molecule (PDB code 1IGY) [57] were manually docked with UCSF 

7 Chimera [58] to an arbitrary epitope on the MAVS CARD coordinates (PDB code 3J6J) 

8 to simulate a primary antibody-MAVS complex. Two additional antibody molecules 

9 were then docked to two different arbitrary epitopes in the constant region (Fc domain) 

10 of the primary antibody. The helical symmetry of the MAVS CARD filament 

11 determined by cryo-electron microscopy (cryoEM) image reconstruction [19] was then 

12 applied consecutively to the atomic coordinate of the complex to generate a 200 nm 

13 MAVS CARD filament with bound primary and secondary antibodies. The simulated 

14 epitopes and orientations of the antibodies were selected to minimize steric clashes after 

15 the helical symmetry of the MAVS CARD filament was applied. A custom C++ code 

16 was used to render the atoms of the lysine residues, the sites of fluorophore conjugation, 

17 of each secondary antibody in the filament. Each atom was rendered on a two-

18 dimensional image at a 5 nm scale with a given observation probability ranging from 

19 20% to 100%, in order to emulate different antibody labeling efficiencies. The resulting 

20 image was then blurred in order to take into account the localization uncertainty of the 

21 STORM single-molecule localizations events, approximately 10 nm.
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1 Dual-luciferase reporter cell signaling assay. MAVS KO MEFs or STING KO MEFs 

2 were transfected with wild-type MAVS or MAVS-∆TM and poly(I:C) with the Neon 

3 transfection system as described above, using the same conditions as for light 

4 microscopy, except that plasmids encoding firefly luciferase under an interferon-β (IFN-

5 β) promoter and Renilla luciferase under a constitutive promoter (Promega, Madison, 

6 WI) were also included in the transfection. Cells were transfected and seeded in 

7 quadruplet sets for each condition in 96-well clear bottom black polystyrene microplates 

8 (Corning, Corning, NY) at 5 – 6 x 103 cells per well. Cells were lysed and the lysates 

9 transferred to all-white 96-well flat solid bottom plates suitable for tissue culture and 

10 luminescence measurements (Greiner Bio-One, Kremsmünster, Austria). Sample 

11 preparation from cell lysates and luciferase luminescence measurement were performed 

12 according to the manufacturer’s protocol for the Dual-Luciferase Reporter Assay 

13 System (Promega). IFN-β-dependent induction of firefly luciferase was measured in cell 

14 lysates 16 h post-induction with a PHERAstar (Ortenberg, Germany) FSX microplate 

15 reader with dual sample injection. IFN-β signaling activity was measured as the ratio of 

16 firefly luciferase luminescence to Renilla luciferase luminescence.

17 Quantification of cell death. Depolarization of the inner mitochondrial membrane was 

18 quantified by staining cells with 40 nM of 3,3′-dihexyloxacarbocanine iodide (DiOC6, 

19 Sigma-Aldrich) or 6 mg ml-1 propidium iodide (PI) for 1.5 h in PBS. DiOC6 and PI 

20 fluorescence was quantified by flow cytometry. Quantification was set at 5,000 for cell 

21 count and FL1 (530 nm) and FL3 (670 nm) were used to acquire DiOC6 and PI signals, 

22 respectively. Data were acquired on an LSR II flow cytometer (BD Biosciences, San 

23 Jose, CA) and analyzed with FlowJo (TreeStar, Ashland, OR).
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1 Statistical analysis. No statistical methods were used to predetermine sample size, 

2 experiments were not randomized, and the investigators were not blinded to 

3 experimental outcomes. Unless otherwise noted, errors are presented as the standard 

4 deviation of the mean of four replicates conducted in a single independent experiment. 

5 Statistical significance was calculated with Prism 8 (GraphPad Software, San Diego, 

6 CA) using an unpaired t-test without prior assumptions regarding the standard 

7 deviations of each set of quadruplet measurement. Statistical significance was assigned 

8 as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001, n = 4.
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16 Figure Legends

17 Fig. 1. Super-resolution and confocal fluorescence microscopy of MAVS signaling 

18 complexes on the outer mitochondrial membrane upon activation with poly(I:C) RNA 

19 or a West Nile reporter virus. (A) Stimulated emission depletion microscopy (STED) of 

20 MAVS and TOM20 in NIH 3T3 cells infected with a GFP-labeled West Nile reporter 

21 virus (WN replicon), with immunofluorescently labeled MAVS in green and TOM20 

22 immunofluorescence in red, or with the MAVS staining, TOM20 staining or the GFP 

23 infection marker shown separately in grey. Yellow results from green-red overlap and is 

24 indicative of MAVS-TOM20 colocalization. Scale bars: 10 µm in the overview panel, 1 

25 µm in the inset panels. (B) Confocal images of MAVS and TOM20 in wild-type MEFs, 
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1 with MAVS (green) and TOM20 (red) immunofluorescence, or with TOM20 staining 

2 shown separately in grey. Cells were transfected with either poly(I:C) RNA (+poly(I:C)) 

3 or an empty plasmid (-poly(I:C)) to control for the effects of transfection. Scale bar: 10 

4 µm. (C) Structured illumination microscopy (SIM) of MAVS immunofluorescence 

5 (green) in MAVS KO MEFs cotransfected with MAVS and poly(I:C) RNA 

6 (+poly(I:C)), or MAVS and a control plasmid (-poly(I:C)). Scale bars: 10 µm in the 

7 overview panel, 2 µm in the inset panel. (D) Confocal images of TOM20 in MAVS KO 

8 MEFs transfected with either poly(I:C) RNA (+poly(I:C)) or an empty plasmid (-

9 poly(I:C)) but no plasmid encoding MAVS, with immunolabeling of MAVS (green) and 

10 TOM20 (red), or with TOM20 staining shown separately in grey. DAPI nuclear staining 

11 is shown in blue (panels B-D). Scale bar: 10 µm. (E) Average distance of TOM20 

12 fluorescence from the nucleus, defined as DAPI fluorescence. (F) Quantification of the 

13 fraction of the cytosolic area occupied by TOM20 fluorescence, from bright field 

14 immunofluorescence imaging (100x magnification) of 39 cells (28 -poly(I:C), 11 

15 +poly(I:C)). (G) Average length of mitochondrial compartments measured as the length 

16 of unbranched segments of skeletonized TOM20 fluorescence, from the same images 

17 used in (F). Statistical significance in panels (E-G) was calculated using a one-sided t-

18 test. Statistical significance was assigned as follows: *, P < 0.05; **, P < 0.01; ***, P < 

19 0.001, n = 32.

20 Fig. 2. Immunofluorescence microscopy showing mitochondrial morphology and 

21 cellular localization of IRF3 and MDA5 upon MAVS activation with poly(I:C) RNA. 

22 Scale bars are 10 µm. (A) Baseline mitochondrial morphology of wild-type MEFs 

23 without any transfection of plasmid DNA or poly(I:C) RNA. Immunolabeled MAVS 

24 and TOM20 are in green and red, respectively (left), and separately in grey (center and 

25 right). (B) Nuclear translocation of IRF3 on MAVS activation with poly(I:C) RNA. 

26 Representative image of MAVS KO MEFs cotransfected with either wild-type MAVS 

27 and a control plasmid (-poly(I:C)) or with wild-type MAVS and poly(I:C) RNA 
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1 (+poly(I:C)). MAVS and IRF3 immunofluorescence signals are green and red, 

2 respectively. DAPI nuclear staining is blue. (C) Representative image of MAVS KO 

3 MEFs transfected either with wild-type MAVS and a control plasmid (-poly(I:C)) or 

4 with wild-type MAVS and poly(I:C) RNA (+poly(I:C)). MAVS and IRF3 signals are 

5 green and red, respectively. (D) Interaction analysis of MAVS and MDA5 fluorescence. 

6 The average distance between MDA5 and MAVS points was 32% smaller in cells 

7 transfected with MAVS (1.03 µm) versus cells transfected with control plasmid DNA 

8 (1.36 µm). Error bars represent the standard deviation (SD) from the mean; n = 4. 

9 Statistical significance (*, P = 0.019) was calculated in Prism 8 with a 1-sided t-test.

10 Fig. 3. Comparison of MAVS immunofluorescence in wild-type MEFs and MAVS KO 

11 MEFs transfected with MAVS. (A) Numbers of MEFs expressing MAVS (positive) and 

12 lacking MAVS expression (negative) after (co)transfection with poly(I:C) (+poly(I:C)) 

13 or a control plasmid (-poly(I:C)). MAVS immunofluorescence was quantified with the 

14 General Analysis tool in Nikon Elements. A threshold of 215 arbitrary fluorescence 

15 intensity units (A.U.) was used as the cutoff for MAVS-positive cells. The transfection 

16 efficiency was approximately 50%. (B) Average MAVS immunofluorescence intensity 

17 of endogenous and transfected MAVS in MEFs (co)transfected with poly(I:C) 

18 (+poly(I:C)) or a control plasmid (-poly(I:C)). (C) The population distribution of the 

19 mean immunofluorescence intensity of MAVS-positive cells, plotted as the normalized 

20 number of cells versus fluorescence intensity from 150 to 450 A.U. in 50-A.U. bins.

21 Fig. 4. Stochastic optical reconstruction microscopy (STORM) of MAVS signaling 

22 complexes. Scale bars: 5 µm in the overview panels, 250 nm in the inset panels. (A-E) 

23 Five representative MAVS KO MEF cells transfected with MAVS and stained with an 

24 anti-MAVS antibody conjugated to Alexa Fluor 647. The boxed regions are shown 

25 enlarged in the lower panels of each overview panel (white box, middle panel; grey box, 

26 lower panel). (F-J) Five representative MAVS KO MEF cells cotransfected with 

27 MAVS and poly(I:C) RNA. The boxed regions are shown enlarged in the lower panels 
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1 of each overview panel (white box, middle panel; grey box, lower panel). (K) Simulated 

2 renderings of immunofluorescence from MAVS fibrils with different antibody labeling 

3 efficiencies. An atomic model of a 200 nm MAVS CARD fibril was generated with one 

4 primary antibody and two secondary antibodies bound to each MAVS protomer (see 

5 Methods). The atoms of the lysine residues of each secondary antibody (the sites of 

6 fluorophore conjugation) were rendered with the same localization uncertainty as in the 

7 STORM images above. To emulate different antibody labeling efficiencies, the 

8 simulated immunolabeled fibrils were rendered with a given observation probability for 

9 each atom of 20%, 40%, 60%, 80% or 100% (from left to right in the panel). (L) A 200 

10 nm MAVS CARD fibril rendered for reference on the same scale as the filaments in (J), 

11 without secondary antibodies and without blurring from localization uncertainty.

12 Fig. 5. Resolution assessment and cluster analysis of STORM images. (A) Fourier Ring 

13 Correlation (FRC) curves were calculated for each STORM image shown in Fig. 4 (see 

14 Methods). An FRC value of 0.143, indicated by a horizontal purple line, was used as the 

15 threshold to measure resolution. (B) Effective resolution of each STORM image 

16 calculated from the FRC curves (FRC = 0.143). Cluster analysis of MAVS 

17 immunofluorescence in the STORM images. (C) Each image was divided into tiled 3 x 

18 3 µm windows covering the field of view. Windows with a mean fluorescence intensity 

19 greater than half the mean intensity of the whole image were selected for analysis 

20 (shaded in blue). (D) A nested two-cluster model (red curve) fitted to the pair 

21 correlation function (PCF, blue curve), shown for representative individual cluster 

22 analysis windows from images of poly(I:C)-treated and control samples. (E) Box plots 

23 of the four parameters fitted in the cluster analysis, μ1, σ1, μ2, σ2, as defined in the 

24 Materials and Methods. The cluster density parameters, μ1 and μ2, were normalized 

25 against the mean intensity of the cluster analysis window, Iwin. Statistical significance in 

26 panels was calculated using a 1-sided t-test.
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1 Fig. 6. The MAVS transmembrane domain is required for mitochondrial remodeling, 

2 signaling and cell death activities of MAVS. (A) STED of MAVS-∆TM and TOM20 in 

3 MAVS KO MEFs transfected with either MAVS-∆TM and poly(I:C) RNA (+poly(I:C)) 

4 or with MAVS-∆TM and a control plasmid (-poly(I:C)), with immunolabeling of 

5 MAVS-ΔTM (green), TOM20 (red) and DAPI staining (blue), or with TOM20 staining 

6 shown separately in grey. Only one of the two cells in the poly(I:C)-treated panel is 

7 positive for MAVS-ΔTM. Scale bar: 10 µm. (B) IFN-β dual-luciferase reporter assays 

8 in MAVS KO MEFs (left) and STING KO MEFs (right) co-transfected with plasmids 

9 encoding MAVS, poly(I:C) or control DNA, firefly luciferase under an IFN-β-inducible 

10 promoter and Renilla luciferase under a constitutive promoter. Relative luciferase 

11 activity was calculated as the ratio of firefly luciferase luminescence to Renilla 

12 luciferase luminescence. Error bars represent the standard deviation (SD) from the 

13 mean. Statistical significance was calculated with Prism 8 using an unpaired t-test 

14 without prior assumptions regarding the standard deviations. Statistical significance was 

15 assigned as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001, n = 4. MAVS KO MEFs, 

16 P = 0.0072 for the;  STING KO MEFs, P = 0.014. (C) Flow cytometry of DiOC6-

17 stained MAVS KO MEFs cotransfected with wild-type MAVS or MAVS-ΔTM and 

18 poly(I:C) or a control plasmid. 35% of cells transfected with poly(I:C) and wild-type 

19 MAVS had a loss of inner mitochondrial membrane potential 16 h post-transfection, 

20 versus 17% of cells transfected with poly(I:C) and MAVS-∆TM, and 3-4% of cells 

21 transfected with a control plasmid instead of poly(I:C). (D) Flow cytometry of PI-

22 stained MAVS KO MEFs cotransfected with wild-type MAVS or MAVS-ΔTM and 

23 poly(I:C) or a control plasmid. 34% of cells transfected with poly(I:C) and wild-type 

24 MAVS had reduced nuclear DNA content 16 h post-transfection, versus 24% of cells 

25 transfected with poly(I:C) and MAVS-∆TM, and 13-16% of cells transfected with a 

26 control plasmid instead of poly(I:C).
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