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ABSTRACT 

Objectives: A narrative review of the pathophysiology linking altered airway pressure and intracranial 

pressure (ICP) and cerebral oxygenation. 

Data Sources: Online search of PubMed and manual review of articles (laboratory and patient studies) 

of the altered airway pressure on ICP, cerebral perfusion or cerebral oxygenation.  

Study Selection: Randomized trials, observational and physiological studies.  

Data Synthesis: In the normal brain, positive pressure ventilation (PPV) does not significantly alter ICP, 

cerebral oxygenation or perfusion. In injured brains, the impact of airway pressure on ICP is variable 

and determined by several factors; a cerebral venous Starling resistor explains much of the variability. 

Negative pressure ventilation can improve cerebral perfusion and oxygenation and reduce ICP in 

experimental models, but data are limited, and mechanisms and clinical benefit remain uncertain. 

Conclusions: The effects of airway pressure and ventilation on cerebral perfusion and oxygenation are 

increasingly understood, especially in the setting of brain injury. In the face of competing mechanisms 

and priorities, multimodal monitoring and individualized titration will increasingly be required to 

optimize care. 
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INTRODUCTION - Mechanical ventilation is a core management of patients with acute intracranial 

hypertension; while the relationships among ventilation, PaCO2 and intracranial pressure (ICP) are well 

understood, the impact of altering airway pressure (Paw) is less well appreciated. It is often assumed 

that raising Paw will invariably elevate ICP, but recent data indicate that this is not always the case. The 

effect of altering Paw depends on several factors (e.g. respiratory mechanics, lung recruitability, baseline 

ICP), and the resulting ICP may be unchanged, increased or decreased. Furthermore, the impact on 

cerebral oxygenation is often unknown. This Review considers the pathophysiology linking altered Paw 

and ICP, the impact of pleural and venous pressures, and the consequences for cerebral oxygenation. 

Data from patient (Table 1) and laboratory (Table 2) studies are synthesized, and the importance of 

titrating Paw against individual responses considered. 

 

PUBLICATION SEARCH STRATEGY - Words used were "airway pressure, positive pressure ventilation, negative 

pressure ventilation, mechanical ventilation, PEEP, ICP, cerebral perfusion pressure, cerebral 

oxygenation, brain tissue oxygenation, cerebral blood flow". References from articles were also 

searched to identify additional studies. 

 

BASIC CONCEPTS - The Monroe-Kellie doctrine dictates that the contents of the cranium consist of the 

combined volume of the brain, the blood and the cerebrospinal fluid (CSF); and, because the skull is 

rigid (and its contents non-compressible), increases in the volume of the contents exponentially 

increases the ICP (Figure 1). Since the components are non-compressible and the overall volume cannot 

be increased, an increase in intracranial mass (edema, hydrocephalus, tumor, hematoma, etc.) results 

in displacement of the fluid components (i.e. blood and CSF) out of the cranium (1). Once the capacity 

to displace CSF and blood volume is exhausted, additional increases in any of the intracranial contents 

is associated with precipitous increases in ICP (1).  

An increase in Paw increases pleural pressure, which in turn elevates central (and jugular) venous 

pressure. Because increased jugular venous pressure impedes cerebral venous return, the cerebral 

blood volume (CBV) -and the ICP- increases (2). Raised ICP may occur because of greater intracranial 
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blood volume due to greater arterial inflow, or less venous outflow (3, 4). 

The effectiveness of the transmission of Paw to the pleural space and the intra-thoracic veins depends 

on the relative compliance of the lung and chest wall (5); transmission of pressure from the thoracic 

veins to the neck and cranial veins can be impeded by head position, or by the effect of a cranial ‘Starling 

resistor’ (6).  

A Starling resistor is a collapsible tube on which the external pressure exceeds the outflow pressure 

(Figure 2), and depending on that pressure difference, provides a ‘variable’ resistor. The anatomic basis 

is the cranium (i.e. a sealed, rigid compartment that determines the external pressure), the non-

collapsible cerebral artery (upstream), the non-collapsible superior sagittal sinus (downstream), and the 

intervening collapsible cerebral veins. 

Evidence for this phenomenon comes from hemodynamic (6-8) and imaging (9) studies. In graded 

elevations in ICP, the Paw was altered (6, 7) (Figure 2) and an abrupt drop in venous pressure (a ‘resistor’) 

demonstrated by passing a catheter from the cerebral vein into the sagittal sinus (6). Raised ICP 

compressed the cerebral veins and decreased downstream venous pressure; thus, the increased 

pressure gradient between the cerebral vein and the sagittal sinus constitutes a vascular ‘waterfall’ 

impeding the transmission of central venous pressure (CVP) into the cranium and regulating outflow. In 

this scenario, increases in Paw will be incompletely transmitted and will not (or only marginally) further 

increase ICP (6, 7). However, if Paw exceeds a threshold, the CVP (and downstream venous pressure) 

exceeds the ICP; this opens the resistor and establishes a direct (venous) connection between the thorax 

and the cranium: here, elevating Paw raises ICP.  

Finally, decreased venous return also lowers the cardiac output, which if it reduces systemic arterial 

pressure, will lower the cerebral perfusion pressure (CPP). If cerebral autoregulation is intact, CBF may 

be maintained despite a lower CPP, but if impaired, decreased CPP may lower cerebral blood flow (CBF) 

and CBV, and thereby decrease ICP. Brain injury raises the lower limit of CPP at which autoregulation is 

active (10-12), resulting in differential effects on ICP with reductions in CPP that depend on how much 

CPP has already been reduced. Above the (elevated) lower limit of autoregulation, reduced CPP will 

result in vasodilatation, which in a non-compliant intracranial cavity will increase ICP and further reduce 
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CPP (and potentially CBF). Reduced CPP below the lower limit of autoregulation will not trigger 

autoregulatory vasodilatation -and regardless of ICP- will nonetheless reduce CBF. CBF appears not to 

be closely related to cardiac output (13). A conceptual framework of the integrated regulation of brain 

perfusion suggests that CBF is regulated by multiple factors including sympathetic activity, renin–

angiotensin action, cardiac output, blood pressure, metabolic products, nitric oxide etc. (14).  

The concept of intracranial compliance is important. Impaired compliance is not synonymous with 

elevated ICP. Although comparable in shape, individual patient ventricular volume-pressure curves may 

demonstrate important differences. A similar level of ICP might occur in the face of a higher vs. a lower 

compensatory reserve. Measurement of intracranial compliance is performed (in experimental models) 

by injecting a known (small) amount of fluid into the CSF and noting the increment in ICP.  

Thus the two key determinants of the impact of elevating PEEP are the intracranial compliance, and 

the 'net' change of CBV, which is determined by the relative inflow (regulated by preload, cerebral 

autoregulation, respiratory mechanics, CO2, etc.) and outflow (regulated by CVP, Starling resistor, etc.; 

Figure 1).  

 

POSITIVE PRESSURE VENTILATION - This can be divided into two components: static (i.e. PEEP or continuous 

positive airway pressure, CPAP), and dynamic (i.e. the changes with each tidal volume); an increase in 

either will increase mean Paw, but can have different hemodynamic consequences (15). Increased ‘static’ 

pressure causes a proportionate decrease in cardiac output, whereas increased dynamic pressure has 

minimal impact on cardiac output until a threshold is reached. Elevated static pressure elevates systemic 

venous pressure whereas increased dynamic pressure can lower it (15). Nonetheless, most studies focus 

on the effects of static Paw (usually PEEP) on ICP, cerebral perfusion and oxygenation. ICP elevation 

(variable, not sustained) may accompany elevation of peak Paw (16). 

Normal Brain: Few data exist describing the influence of Paw on ICP in patients without intracranial 

pathology (unsurprising - ICP not ordinarily be monitored). Using non-invasive assessment of ICP (e.g. 

transcranial Doppler, optic nerve sheath diameter) in patients undergoing elective surgery, PEEP of 8 

cmH2O (Paw increase  4 cmH2O) has minimal impact on ICP (17, 18). 
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The impact Paw on cerebral perfusion and oxygenation has been examined in patients without brain 

injury during elective surgery (17-23). The most common non-invasive assessment of cerebral perfusion 

is Transcranial Doppler (TCD) ultrasound (19, 24-26), while cerebral oxygenation is estimated using near-

infrared spectroscopy (NIRS) (18, 20-23, 27). Increased Paw can increase (28), decrease (29), or not alter 

(30) CBF velocity; however, even if velocity is altered, regional oxygenation is usually maintained (31). 

To accurately measure CBF using TCD, the diameter of the imaged artery must be constant (32). In 

the setting of intact autoregulation (no brain injury), the cerebral artery may constrict (or dilate) to 

maintain constant CBF (33), because the cardiac output fluctuates with Paw. However, while the middle 

cerebral artery diameter is sensitive to exercise (34), PaCO2 (35, 36) and hypoxemia (37), it is unknown 

if it responds to altered Paw.  

Injured Brain – ICP: In patients with brain injury, ICP may be normal (or normalized by medical 

management), or elevated. The responses of ICP to increases in Paw are not predictable based on its 

initial level (38, 39). Some studies report that increased PEEP may have no impact on ICP if not initially 

elevated, but may have impact if initially elevated (39). However, the opposite has also been reported: 

raised Paw had no impact on already elevated ICP, but increased it if initially normal (38). Finally, 

increased Paw may decrease ICP (40).  

In attempting to reconcile these disparate reports, three issues are key. First, the ability to perform 

interventional testing in patients with intracranial hypertension is limited, as such patients are 

vulnerable. Second, assessment is confounded by analgesics, sedatives, anesthetics and anticonvulsants, 

as well as deliberate control of blood pressure, blood gases, acid-base status, plasma osmolality, glucose 

and temperature (41-44). Third, intracranial veins can behave as either veins in series without threshold 

flow characteristics (45), or as a ‘Starling Resistor’ (6, 7). If intrathoracic pressures are transmitted into 

the intracranial veins, this can increase the volume of intracranial blood (even if only slightly). If an 

incremental increase in the volume of the intracranial contents exceeds the ‘compensatory reserve’, ICP 

will rise precipitously (1). In summary, modest levels of positive Paw can potentially increase ICP, but may 

conversely have no significant effects. 

Injured Brain – Cerebral Perfusion and Oxygenation: There are few reports of the effects of altered Paw 
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on cerebral perfusion or oxygenation, likely in part, because accurate non-invasive assessment is not 

generally available. The most widely used non-invasive assessment of CBF is TCD and, as with ICP, results 

are variable (46-48). Although widely used in non-brain injured patients, non-invasive assessment of 

cerebral oxygenation (e.g. NIRS) has not been well investigated.  

Direct measurement of CBF using intracranial flow probes (49), radioactive microspheres (50, 51) or 

arterial flow probes (52), suggest decreased (52) or unchanged (49-51) ICP following increases in Paw. 

However, in patients with subarachnoid hemorrhage, increases in PEEP (5-20 cmH2O) that are sufficient 

to decrease mean arterial pressure (MAP), reduce regional CBF and brain tissue oxygenation (49). More 

recent multimodal monitoring that incorporates ICP, cerebral perfusion and cerebral oxygenation may 

provide better insight (53, 54). In summary, altered Paw may change cerebral perfusion or oxygenation 

before any change in ICP can be observed; such effects have not been extensively investigated and, at 

the bedside, are likely under-recognized. Ultimately, the focus must be on identifying vulnerable regions 

and determining the impact on perfusion or oxygenation in these areas.  

Compliance of the Lung and the Chest Wall: Understanding the relationships between respiratory 

mechanics and vascular physiology may help predict how changes in Paw will influence ICP (48, 55, 56).  

Increases in Paw are transmitted to the pleural space and raise the Ppl, which in turn raises the CVP. The 

elevation in CVP reflects a reduced venous return, and the lowered CO can initiate autoregulatory 

cerebral vasodilation and increase ICP. Elevated CVP can also directly increase ICP by decreasing jugular 

venous outflow; or, in the presence a Starling resistor, open the resistor, increase outflow and lower ICP 

(15, 57). 

The first ‘linkage’ is the impact of Paw on Ppl. The transmission of changes in Paw to the pleural space 

depends on the relative compliance of the lung and the chest wall. If the lung compliance is high and 

the chest wall compliance is low, then the transmission is highly ‘efficient’ (5). This can be 

conceptualized as an elevation in Paw maximally extending through the highly compliant lung to the 

pleural space, but because expansion of the pleural space is prevented by a non-compliant chest wall, 

the Ppl rises in close approximation to the Paw. By contrast, if the lung is non-compliant, the transmission 

of a change in Paw is poor; moreover, even if Paw transmission is efficient, a highly compliant chest wall 
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can dissipate swings in Ppl (Figure 3).  

The local static pressure in any part of the pleural space (Ppl) depends on the body position, the 

contents of the thorax and abdomen, and the distance between the dependent and nondependent 

thoracic margins (58). In normal lung a ‘swing’ in pleural pressure (e.g. inspiratory or expiratory effort) 

is transmitted -almost instantaneously- to all parts of the pleural space; this reflects normal or, ‘fluid 

like’ lung behavior (59). However, if injury or atelectasis is present, the transmission of swings in Ppl 

through abnormal areas may be impaired; this reflects ‘solid like’ lung behavior (60). Thus, with 

dependent atelectasis, a deflection in Ppl near the diaphragm caused by spontaneous inspiratory effort 

will be poorly transmitted to the rest of the pleural space (61). In contrast, with positive pressure 

ventilation and dependent atelectasis, dynamic changes in Paw will be greatest in the pleura around 

ventilated regions; but will not be effectively dissipated and not impact on venous pressure as effectively 

as with normal lungs.  

Ppl is contiguous with the pericardial space (62), thus an increase in Ppl increases CVP. Increased PEEP 

raises the mean systemic and the right atrial pressures to the same extent, thereby maintain an 

unchanged gradient for venous return (63). However, cyclic positive pressure reduces venous return, 

notwithstanding an unchanged mean Paw (64).  

The transmission of CVP to the internal jugular vein is direct (65), but the vein can collapse and 

regulate an abrupt decrease in downstream pressure (CVP) from an accompanying increase in the 

gradient between CVP and the pressure in the internal jugular vein (e.g. negative pressure ventilation, 

vigorous spontaneous breathing). By contrast, an increase in CVP can be transmitted to the internal 

jugular vein without being impeded by such an extracranial 'waterfall' (65), provided any intracranial 

resistor is overcome (6, 7).  

 

Impact of Concomitant Medical Management: A stepwise approach to escalating treatment intensity 

has evolved (66, 67) and may impact the effects of mechanical ventilation. For example, sedation or 

barbiturate coma can induce a redistribution of intravascular volume and increase the risk of arterial 

hypotension due to vasodilatation. Hyperosmolar agents (e.g. mannitol) acutely increase intravascular 
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volume, but subsequent diuresis causes hypovolemia, which can amplify the depressant effects of 

positive-pressure ventilation on hemodynamics and cerebral perfusion (68).  

 

Impact on Clinical Outcomes: Although associations between intermediate (patho)physiological 

endpoints (e.g. ICP, CBF, PtiO2) and clinical outcomes (e.g. mortality, disability) have been shown (44, 

69), the impact of altered Paw on clinical outcomes is rarely investigated, probably because mechanical 

ventilation is a 'support' rather than a therapy. In respiratory failure mechanical ventilation is more likely 

seen as a central modality, and studies in respiratory failure generally exclude patients with brain injury. 

However, a ventilation strategy that improves intermediate endpoints may facilitate optimal brain 

recovery and improve outcome. 

 

Management of Concomitant ARDS and Intracranial Hypertension: Favorable effects of PEEP must be 

balanced with impact on hemodynamics and cerebral perfusion. The impact of PEEP on ICP are lessened 

if lung compliance is low (Figure 3). However, ‘trade off’ of lung protection (permitting some 

hypercapnia) and brain protection (avoiding abrupt hypercapnia, sometimes rapidly inducing 

hypocapnia) need to be considered (Figure S1, supplement). With elevated PEEP, individual titration 

may be essential. 

 

Monitoring and Individualization: The effect of positive-pressure ventilation on ICP (and probably on 

cerebral perfusion and oxygenation) is determined by several factors including the nature of the lesion 

(e.g. traumatic brain injury, subarachnoid hemorrhage, thrombotic stroke), concomitant conditions (e.g. 

coexisting ARDS, septic shock), and adjunct therapies (Figure S1, supplement). Because of the 

‘interdependence’ among these parameters, no single value can be considered in isolation, and the net 

impact may be difficult to predict. Thus, individualized monitoring and titration is key.  

 

NEGATIVE PRESSURE VENTILATION - Negative intrathoracic pressure decreases the impedance to venous 

return which may in turn decrease ICP. The increased venous return may increase cardiac output and 
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potentially increase MAP, and the latter may increase cerebral perfusion (70-74). 

Two types of negative thoracic pressure devices are described: the intrathoracic pressure regulator, 

and the inspiratory impedance threshold device. These can decrease ICP in brain injury following 

experimental cardiac arrest (70-72). The regulator decreases ICP in an experimental brain injury (73), 

and in patients (74). However, the effect of negative thoracic pressure on cerebral oxygenation is 

unknown (74). Continuous negative abdominal pressure (CNAP) has been reported as an adjunct to 

conventional ventilation for intra-abdominal hypertension (75-77). Subsequently, different forms of 

CNAP have been shown to selectively recruit basal atelectasis, increase end-expiratory lung volume and 

improve oxygenation (60, 78-80). Although CNAP can decrease intra-abdominal and intrathoracic 

pressure, the overall impact of CNAP on ICP, and cerebral perfusion or oxygenation is not well studied. 

In experimental intra-abdominal hypertension, CNAP reduced both intra-abdominal pressure and ICP 

(77). Negative pressure ventilation is not widely used and experience is limited. 

 

IMPORTANT UNKNOWNS - Although the effect of positive Paw on ICP has been widely studied, it is poorly 

understood, especially regarding regional cerebral oxygenation. Negative pressure ventilation may 

decrease ICP and possibly increase cerebral perfusion and oxygenation, but the impact -and 

determinants- need to be better understood. Finally, the effects of Paw on the brain in patients with 

different mechanisms of (and therapies for) brain injury, need individual design and assessment of long-

term impact.  

 

CONCLUSIONS: The effect of Paw on ICP is determined by several factors, and the net impact may be 

unpredictable. In the face of competing mechanisms and a spectrum of priorities, individualized 

titration is required to optimize care, especially in patients with severe respiratory failure (e.g. ARDS). 
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FIGURE LEGENDS 

Figure 1 - Relationships among Changes in Airway Pressure and Intracranial Pressure: An increment of 

airway pressure, if transmitted to the pleural cavity, will increase pleural pressure. The transmission is 

determined by the mechanics of the lung and the chest wall. The increase in pleural pressure impedes 

venous return, which can reduce cardiac preload (and output), as well as cerebral venous outflow (and 

this may increase cerebral blood volume; CBV). Reduced cardiac output may reduce CBV due to 

decreased cerebral artery inflow, and this is regulated by sympathetic activity, renin–angiotensin action, 

blood pressure, metabolic products, nitric oxide etc. A conceptual framework of the integrated 

regulation of brain perfusion has been proposed (Meng L et al: Anesthesiology, 2015, 123:1198-1208). 

If increased airway pressure accompanies an increase in minute ventilation, hypocapnic alkalosis may 

in addition cause cerebral vasoconstriction. The net impact on ICP reflects the balance of changes in 

CBV caused by altered (venous) outflow and (arterial) inflow. 

 

Figure 2 - Intracranial Starling Resistor: An intracranial Starling resistor consists of a ‘rigid’ cerebral 

artery, sagittal sinus and a compressible cerebral vein. In this system, a pressure gradient (caused by the 

higher CSF pressure external to the cerebral vein, arrow) regulates cerebral venous outflow. Elevated 

intracranial pressure (ICP) compresses the cerebral veins and increases upstream venous pressure (Pv) 

while the sagittal sinus pressure (Pss) is not impacted by the raised ICP (the sinus wall is rigid). Thus, the 

increased pressure gradient between the cerebral vein and the sagittal sinus constitutes a vascular 

'waterfall' (arrows in Panel A), and this external vascular compression impedes the transmission of 

central venous pressure (CVP) into the cranium. Under these circumstances, increased airway pressure 

(Paw) will not be transmitted via increased CVP into the cranium and will not elevate ICP. Above a 

threshold level, the CVP exceed Pss and thus Pv, and this will open the resistor and establish a direct 

(venous) connection between the thorax and the cranium. In this setting, increased Paw elevates ICP 

(Panel A). The ‘vascular waterfall’ is seen on angiography as a decreased vein diameter (with increased 

velocity), and the smaller caliber vessel is termed the ‘void sign’ (arrows in Panel B). Panel A - Modified 

from Luce et al: J Appl Physiol Respir Environ Exerc Physiol, 1982, 53: 1496-1503. Panel B - Reproduced 
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from Simone et al: Panminerva Med, 2017, 59: 76-89. Abbreviations: CVP central venous pressure, ICP 

intracranial pressure, MAP mean arterial pressure, Paw airway pressure, Pss sagittal sinus pressure, Pv 

(cerebral) venous pressure. 

 

Figure 3 - Transmission of Deflections in Airway Pressure to the Pleural Space: The transmission of a 

positive deflection of Paw to the pleural cavity is determined by both the compliance of the lung and the 

chest wall (Panel A). The transmission is more effective when the chest wall is stiff and/or the lung is 

compliant, resulting in a larger deflection or ‘swing’ in Ppl in response to a positive pressure inflation 

(Panel B). In the presence of injury or atelectasis, the transmission of ‘swings’ in Ppl through abnormal 

lung regions may be impaired (so called ‘solid like’ lung behavior). Therefore, during positive pressure 

ventilation, dynamic changes in Ppl are greater in the pleural space surrounding ventilated regions, than 

in the non-ventilated (e.g. dependent, atelectatic) regions (Panel C). Abbreviations: Paw airway pressure, 

Ppl pleural pressure. 
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On-Line Supplement 

Figure S1 - Algorithm for Management of Mechanical Ventilation Strategy in Concomitant Brain Injury 

and ARDS *This threshold has not been validated. Because SaO2 90% appears to be the threshold of 

hypoxic cerebral vasodilatation (Anesth Analg. 85:817-820, 1997) and there is significant heterogeneity 

in vascular responses in traumatic brain injury, it may be prudent to target SaO2 95% in such patients. 

Further study is needed. Abbreviations: ARDS Acute Respiratory Distress Syndrome, CBF Cerebral Blood 

Flow, CPP Cerebral Perfusion Pressure, ECCO2R Extracorporeal CO2 Removal, ECMO Extracorporeal 

Membrane Oxygenation, ICP Intracranial Pressure, PBW Predicted Body Weight, PEEP Positive End-

Expiratory Pressure, SaO2 arterial oxygen saturation. Adapted from Oddo et al: Intensive Care Med, 2016; 

42:790-793. 
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Table 1 MAIN IMPACT OF INCREASING AIRWAY PRESSURE OR PEEP IN PATIENTS WITH BRAIN INJURY 

AUTHOR (#) YEAR SUBJECTS MAIN IMPACT OF INCREASING AIRWAY PRESSURE OR PEEP 

ICP INCREASED 

Ludwig (16) 2000 TBI (n=10) PEEP increases ICP; Increasing peak Paw increases variability of ICP, CPP and VmMCA 

Burchiel (55) 1981 TBI (n=16), SAH (n=2) PEEP increases ICP; decreases CPP if cerebral compliance low & lung compliance normal 

Shapiro (81) 1978 TBI (n=12) PEEP increases ICP in 50% of patients 

Muench (82)  2005 SAH (n=10) PEEP increases ICP; decreases rCBF and PtiO2.  

Mascia (47) 2005 TBI & ARDS (n=10) ICP, VmMCA and SjO2 unchanged if lungs recruitable; deteriorate if lungs unrecruitable 

Cooper (83) 1985 TBI (n=33) PEEP increases ICP (not if baseline ICP elevated) 

McGuire (38)  1997 N/Surg (n=18) PEEP increases ICP (not if baseline ICP elevated) 

Apuzzo (39) 1977 N/Surg (n=25) PEEP increases ICP if cerebral elastance elevated 

Cunitz (84)  1979 N/Surg (n=24) PEEP increases ICP 

Lima (85) 2011 ICH (n=25) PEEP increases ICP (not CPP) 

Videtta (86) 2002 N/Surg (n=20) PEEP increases ICP (not CPP) 

NO IMPACT ON ICP 

Solodov (87) 2016 ICH (n=39) PEEP non-significant increase in ICP (no effect on CPP) 

Zhang (88) 2011 TBI & ARDS (n=9) No change in ICP or CPP 

Martinez-Perez (89)  2004 TBI & ARDS (n=7) No changes in hemodynamic or cerebral parameters  

Caricato (48) 2005 TBI, SAH (n=21) PEEP reduces CPP and VmMCA if respiratory compliance normal; no impact on ICP or SjO2. 

Frost (90) 1977 Coma (n=7) No increase in ICP if normal/low intracranial compliance; no increase ICP in absence of pulmonary disease.  

Nemer (91) 2015 TBI & ARDS (n=20) PEEP increases PtiO2 , no impact on ICP or CPP 

Pulitano (46) 2013 Ped. Tumor (n=21) No change in ICP, CPP or VmMCA 

OTHER EFFECTS 

Georgiadis (92) 2001 N/Surg (n=20) Complex effects, 3 patterns observed 

 
Abbreviations: ARDS (Acute Respiratory Distress Syndrome), CPP (Cerebral Perfusion Pressure), ICH (Intracranial Hemorrhage), ICP (Intracranial Pressure), N/Surg 
(Neurosurgery), Paw (Airway Pressure), Ped. Tumor (pediatric brain tumor), PEEP (Positive End-Expiratory Pressure), PtiO2 (brain tissue oxygenation), rCBF (regional 
cerebral blood flow), SAH (Subarachnoid Hemorrhage), SjO2 (jugular saturation of oxygen), TBI (Traumatic Brain Injury), VmMCA (mean blood flow velocity, middle cerebral 
artery). 
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Table 2 MAIN IMPACT OF INCREASING AIRWAY PRESSURE OR PEEP IN ANIMAL STUDIES 

Author Year Subjects Brain injury MAIN IMPACT OF INCREASING AIRWAY PRESSURE OR PEEP 

ICP INCREASED 

Sun (93) 2014 Dogs  N PEEP increases ICP, Hyperbaric oxygen leads to a smaller ICP increase  

Luce (6) 1982 Dogs  Y PEEP increases ICP (less if baseline ICP elevated) 

Huseby (7) 1981 Dogs Y PEEP increases ICP (less if baseline ICP elevated) 

Doblar (52) 1981 Goats N PEEP increases ICP and decrease CBF, complex impact of mannitol 

Cotev (94) 1981 Dogs Y PEEP increases ICP (more if baseline ICP elevated) 

Huseby (95) 1978 Dogs N PEEP increases ICP, decrease CPP 

Aidinis (96) 1976 Cats, ARDS Y PEEP increases ICP, less impact if lung injury present 

O'Rourke (97)  2007 Sheeps Y Paw increases ICP; mode of ventilation (conventional, HFOV) no impact on ICP, SjO2 or CBF 

Walker (98) 1992 Lambs  N Paw increases ICP and decreases CPP, no impact of ventilation mode (conventional, HFOV) 

NO IMPACT ON ICP 

Muench (49) 2005 Pigs N No impact on ICP, PtiO2 or CBF 

Toung (50)  1988 Dogs N ICP increased by Jugular compression (not by PEEP); No impact on CBF or CMRO2 

Heuer (99) 2012 Pigs Y PtiO2 decreased with increased Paw; CPP, CBF increased with HFOV (ICP unchanged) 

OTHER EFFECTS 

Feldman (100) 1997 Rabbits  Y PEEP reduces Intracranial compliance 

Walfisch (51) 1997 Dogs, ARDS N No impact on CBF 

 

Abbreviations: ARDS (Acute Respiratory Distress Syndrome), CMRO2 (Cerebral Metabolic Rate of Oxygen), CPP (Cerebral Perfusion Pressure), HOFV (High Frequency 

Oscillatory Ventilation), ICP (Intracranial Pressure), Paw (Airway Pressure), PEEP (Positive End-Expiratory Pressure), PtiO2 (brain tissue oxygenation), CBF (Cerebral Blood 

Flow), SjO2 (jugular saturation of oxygen). 
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