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In previous work, a new model of driver steering control in-
corporating sensory dynamics was derived and used to ex-
plain the performance of drivers in a simulator with full-
scale motion feedback. The present paper describes further
experiments investigating how drivers steer with conflicts be-
tween their visual and vestibular measurements, caused by
scaling or filtering the physical motion of the simulator rel-
ative to the virtual environment. The predictions of several
variations of the new driver model are compared with the
measurements to understand how drivers perceive sensory
conflicts. Drivers are found to adapt well in general, un-
less the conflict is large in which case they ignore the phys-
ical motion and rely on visual measurements. Drivers make
greater use of physical motion which they rate as being more
helpful, achieving a better tracking performance. Sensory
measurement noise is shown to be signal-dependent, allow-
ing a single set of parameters to be found to fit the results
of all the trials. The model fits measured linear steering be-
haviour with an average ‘variance accounted for’ of 86%.

1 Introduction
During driving, multiple sources of sensory information

are used to maintain an understanding of the state of the ve-
hicle [1]. However, the role played by sensory dynamics in
shaping the responses of drivers is poorly understood. This is
particularly important for interpreting results of experiments
carried out in virtual environments such as driving simula-
tors, where the physical motion is in conflict with the visual
information displayed to the driver. Due to the increasing use
of driving simulators for evaluation of vehicle performance
there is significant motivation for understanding how sensory

conflicts affect drivers’ perception and control.
In previous work, a new model of driver steering control

was developed incorporating models of the driver’s sensory
systems and assuming optimal integration of noisy sensory
measurements [2]. An identification procedure was devel-
oped to find values of the physical parameters of the model
which matched results from an experiment carried out in
a driving simulator [3]. The model was able to represent
the experimental results well, and the parameter values were
found to be physically plausible when compared with esti-
mates found from a review of the literature on sensory dy-
namics [1].

The experiment carried out in [3] was carefully designed
so that the lateral and yaw motion applied to the driver in
the moving-base simulator matched the motion of the sim-
ulated vehicle at full scale. Therefore the information per-
ceived by the driver’s visual and vestibular systems was co-
herent, without any sensory conflicts. Studies summarised
in [1] indicate that humans generally integrate coherent sen-
sory information in a statistically optimal fashion [4, 5], and
use an internal model of their surroundings to predict future
system states [6]. This is reflected in the driver model by
a Kalman filter, assuming that the driver’s internal model
closely matches the real driver-vehicle system, with any dis-
crepancies represented by Gaussian process noise.

Using a driving simulator allows the inputs to the
driver’s visual and vestibular systems to be controlled sepa-
rately, making it easier to identify the separate control actions
resulting from the different sensory measurements. In partic-
ular, trials with no physical motion allow the visual system
to be explored in isolation. However, subjecting the driver to
different visual and physical motion causes conflicts between
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Fig. 1: Structure of plant in the driver model, adapted from [2]

the senses. Studies surveyed in [1] indicate that incoherent
sensory information is not always integrated optimally, al-
though exactly how sensory conflicts are resolved is not fully
understood. The aim of the present work is to investigate
how drivers steer with conflicting sensory information.

The driver model is reported in full detail in [2] but for
clarity is briefly summarised in Section 2. The procedures for
experiments carried out to measure drivers’ control actions
with scaled or filtered motion are described in Section 3, and
the parameter identification procedure used to fit the driver
model to the experimental results is discussed in Section 4.
The results are presented in Section 5, and a single set of
model parameter values is identified to fit the results of all the
experiments in Section 6. The implications of the results are
discussed in Section 7, and the main conclusions are given in
Section 8.

2 Driver model
In this section the driver model reported in [2] is sum-

marised, including adjustments made to represent a driver’s
steering behaviour in a simulator with scaled or filtered phys-
ical motion.

2.1 Model structure
The overall structure of the driver steering control model

is shown in Figure 2. It is based on a linear quadratic Gaus-
sian (LQG) control strategy, representing the hypothesis that
on average the driver performs as well as possible based
on the information perceived through their sensory systems.
The dynamics of the driver and vehicle are contained within
the plant, which is perturbed by white noise target and dis-
turbance signals wt , wv and wω. An optimal plant input δ̂ is
calculated by an LQR controller, minimising the cost func-
tion:

J =
∞

∑
k=0

{
qee(k)2 +qδδ̂(k)2

}
(1)

Kalman filter 
HKF(s)

LQR gain
−KLQ

Internal 
model

Plant

plant
outputs

measurement 
noise

+

+

state 
estimate

process 
noise

+

+

target disturbances 

x

δ y

plant 
input

w
wt wv wω

v

^

^

Fig. 2: Structure of the driver model, reproduced from [2]

which is a dimensionless weighted sum of the plant input
and the path-following error e. The weight qe is set to 1 m−2

since only the relative values are important. The optimal
plant input is perturbed by process noise w, representing un-
certainties and random noise in the driver’s control response.
The LQR controller acts on an estimate x̂xx of the plant states,
which is calculated by a Kalman filter based on measure-
ments of δ̂ and the noisy plant outputs (yyy+ vvv).

The structure of the plant is shown in Figure 1. It con-
tains models of the driver’s neuromuscular and sensory dy-
namics as well as the vehicle dynamics and distributions of
the target and disturbance forcing functions ft, fv and fω. In
the experiments described in Section 3 the physical motion
was scaled or filtered relative to the visual motion. This is
represented by motion filters Hma(s) and Hmω(s).

The driver’s neuromuscular dynamics are given by a
second-order filter [7]:

Hnm(s) =
ω2

nm

s2 +2ζnmωnms+ω2
nm

(2)

Transfer functions for the otoliths and semi-circular canals



(SCCs) in the driver’s vestibular system are taken from [8]:

Hoto(s) =
0.4(10s+1)

(5s+1)(0.016s+1)
(3)

HSCC(s) =
458.4s2

(80s+1)(5.73s+1)
(4)

The driver’s visual system is described in Section 2.2. Sen-
sory measurements are delayed by visual and vestibular de-
lays τvi and τve. To measure visual delays more reliably, tri-
als were carried out where the drivers were only shown the
current target position rather than the full target path, mean-
ing that they could not preview upcoming target values. Pre-
liminary analysis of the results showed that when using the
slow vehicle with preview, drivers sometimes appeared to
follow a ‘shifted’ version of the target. An additional pa-
rameter Tt is defined to model this effect, such that the driver
attempts to follow ft(t−Tt) rather than ft(t).

2.2 Visual system
In previous studies the driver’s visual system has been

modelled as a straight-line preview of the upcoming road
path, measuring the lateral displacements between the target
path and a line projected ahead of the vehicle up to a preview
horizon Tp [9, 10]. This is a simple description, however it is
only valid for targets close to a straight line and it does not
separate the visual measurements of lateral and yaw motion,
which has been argued to be important [11]. A more realistic
model is shown in Figure 3, based on an intrinsic coordinate
description [12]. The simulated driver measures the first lat-
eral displacement e and the angles φ0 to φNp of each target
segment, which are measured relative to the vehicle’s yaw
angle. Assuming small target and vehicle yaw angles, the
previewed angles are given by:

φn(k) =
ft(k+n+1)− ft(k+n)

UTs
−ψ(k) (5)

where ft is the lateral displacement of the target path, ψ and
U are the vehicle yaw angle and longitudinal speed and Ts
is the sample time. The driver measures a vector φφφ of (Np +
1) = (Tp/Ts+1) previewed angles with RMS noise Vφ plus a
measurement of e with RMS noise Ve.

The simulated driver’s control action should not change
with Tp if the target is a straight line or cannot be previewed,
as the visual system will simply take more measurements of
the yaw angle ψ as Tp increases. However, the Kalman filter
will combine these additional measurements using a max-
imum likelihood estimation (MLE) method to give a more
accurate estimate of ψ, so the previewed angle noise magni-
tude Vφ must be adjusted to compensate for this. The Kalman
filter combines (Np +1) measurements with variance V 2

φ
us-

ing MLE, giving a combined estimate with a variance of:

σ
2
φ =

(
Np+1

∑
i=1

1
V 2

φ

)−1

=
V 2

φ

Np +1
(6)
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Fig. 3: Model of the driver’s visual system

The combined variance σ2
φ

should be independent of preview
time, which can be achieved by choosing the noise Vφ on
each previewed angle so that:

Vφ = σφ

√
Np +1 (7)

Drivers may also take measurements of lateral and yaw ve-
locities using their visual system, however for simplicity
these are neglected.

2.3 Perception of motion scaling or filtering
It is assumed that drivers subjected to full scale phys-

ical motion are able to develop an accurate internal model
of the plant. However, since humans in some circumstances
exhibit suboptimal integration of conflicting sensory infor-
mation [1], several variations of the model are developed to
represent different assumptions about the driver’s perception
of motion scaling or filtering. These variations are all based
on internal model estimates H ′ma(s) and H ′mω(s) of the mo-
tion filters, which are not necessarily equal to the real filters
Hma(s) and Hmω(s).

The implemented driver model variations are sum-
marised in Table 1. The relationships shown for the lateral

Table 1: Variations of the driver steering control model, with
different internal models of the motion scaling factors

Model Internal model lateral motion filter

M0 H ′ma(s) = 0

M1 H ′ma(s) = 1

M2 H ′ma(s) = Hma(s)

M3 H ′ma(s) = K′ma (optimised)

M4 H ′ma(s) =


HHP1(s) Hma(s) = HHP2(s)
HHP2(s) Hma(s) = HHP1(s)
Hma(s) otherwise



motion filter Hma(s) apply similarly to the yaw motion fil-
ter Hmω(s). In model M0 the internal model motion filters
are 0, so the simulated driver ignores any perceived physi-
cal motion. In model M1 the internal model motion filters
are 1, so the simulated driver is not aware that the physical
motion is scaled or filtered. In model M2 the correct scaling
factors or filters are used in the internal model, representing
a driver who can perceive and account for any scaling or fil-
tering. In model M3 the internal model filters are defined as
gains K′ma and K′mω, which are optimised as part of the pa-
rameter identification procedure to fit the measured steering
angles. Finally, for the filtered motion trials an additional
model M4 is defined, which assumes correct scaling factors
but switches the two high-pass filters HHP1(s) and HHP2(s)
(defined in Section 3.5), to investigate the extent to which
drivers can perceive subtle differences in motion filters.

3 Sensory conflict experiments
To investigate how drivers steer when there are con-

flicts between the information perceived by their visual
and vestibular systems, experiments were carried out in a
high-fidelity, high-bandwidth, moving-base driving simula-
tor. Measurements of the simulator’s motion confirmed that
lateral and yaw motions within the frequency range impor-
tant for human perception were reproduced accurately. Each
experiment was comprised of trials lasting 120 s, in which
the drivers had to follow a randomly deviating target line
(close to a straight line) while random disturbances were
added to the vehicle’s lateral and yaw velocities as shown
in Figure 1. The target line was either fixed to the road, al-

Line moves 
over road

ft(t)

ft

With preview

No preview

Fig. 4: Visual display of target line to drivers, with and with-
out preview. Note that the display used in the experiments
was much more realistic than these illustrative images.

Table 2: Vehicle parameter values used in experiment

Parameter m lf lr Cf Cr I G U

Units kg m m kN/rad kN/rad kgm2 – m/s

Slow (S) 650 1.85 1.65 100 230 450 30 10

Fast (F) 650 1.85 1.65 100 230 450 150 40

Fast (F2) 650 1.85 1.65 100 230 450 30 40

lowing drivers to preview future target values, or a straight
line which moved over the road, removing preview so that
visual delays could be measured more easily (see Figure 4).

The first experiment (from [3]) used unity gains on all
motion to measure driver performance without sensory con-
flicts. Details of the analysis and results of this ‘full motion’
experiment are reported in [3]. In the next two experiments
the lateral and yaw motion were scaled by constant scaling
factors; one experiment focussed on trials where the driver
could not preview the upcoming target path and the other
involved only trials with preview. The fourth experiment in-
vestigated the effect of filtering the motion as well as scaling.
For ease of reference to the trials in the four different exper-
iments, each trial is labelled with a letter and a number, e.g.
trial B8. The letter refers to the experiment, with A = full
motion , B = scaled motion without preview, C = scaled mo-
tion with preview and D = filtered motion. The trials are then
numbered sequentially within each experiment.

A linear single-track vehicle was used, with parameters
summarised in Table 2. The forcing function spectra were:

H f t(s) =
(

s
s+0.1

)2( 2
s+2

)2

(8)

H f v(s) =
(

3
s+3

)2

sH f t(s) (9)

H f ω(s) =
(

3
s+3

)2( s2

U

)
H f t(s) (10)

and the corresponding variances Wt, Wv and Wω of the white
noise sources are listed in the following sub-sections.

3.1 Test subjects and procedure
The experiments were each carried out by five drivers,

one of whom was a professional test driver. The test subjects
were the same across all four experiments. Each subject car-
ried out 51 trials, giving a total of 8.5 hours of driving mea-
sured across a range of scenarios. Within each experiment
the order of the trials was randomised. As well as collecting
quantitative data such as the steering angle and vehicle mo-
tion, in the scaled motion experiment with preview and the
filtered motion experiment the drivers were asked for sub-
jective feedback about each trial. The drivers were asked to
rate from -5 to 5 how useful the physical motion was in con-
trolling the vehicle (i.e. 0 neutral, 5 very useful and -5 very



distracting). They were also encouraged to give comments
on what they perceived, their choice of control strategy and
how well they felt able to adapt to the sensory conflict and
control the vehicle.

Assuming a linear driver model is a reasonable fit to the
control behaviour of the drivers, and that all drivers were
adopting a similar control strategy, the time-domain steer-
ing signals can be averaged over the five drivers to give a set
of average responses for each trial. Comparison of parameter
values identified for individual drivers and averaged signals
in the full motion experiment showed that this approach is
reasonable [3]. The averaged signals have less noise in the
measurements than the individual signals, therefore this data
is used to identify parameter values for a typical driver.

3.2 Full motion (experiment A)
The full motion experiment consisted of fourteen trials

with a range of conditions, designed to investigate the extent
to which drivers can update their internal model to account
for different vehicle speeds and target and disturbance condi-
tions. The conditions are summarised in Table 3. In all trials
the motion filters were unity gains (Hma(s) = Hmω(s) = 1).
Fast (F) and slow (S) vehicles were used in the experiment,
with parameters summarised in Table 2. For each exper-
iment, several combinations of forcing function amplitude
were tested with and without preview [3].

Table 3: Experimental conditions for each full motion trial

Wt Wv Wω

Trial Vehicle (m*) (m/s*) (rad/s*) Preview

A1 F 1.58 0 0 7

A2 F 1.58 0 0 3

A3 F 0 1.58 0 0

A4 F 0 0 1.58 0

A5 F 0 1.11 1.11 0

A6 F 0.79 0.79 0.79 7

A7 F 0.79 0.79 0.79 3

A8 S 1.58 0 0 7

A9 S 1.58 0 0 3

A10 S 0 1.58 0 0

A11 S 0 0 1.58 0

A12 S 0 1.11 1.11 0

A13 S 1.11 1.11 1.11 7

A14 S 1.11 1.11 1.11 3

3.3 Scaled motion without preview (experiment B)
In experiment B the physical motion was scaled relative

to the virtual vehicle motion, and the drivers were not able
to preview future target information, allowing visual delays
to be identified more easily. In total thirteen trials were car-
ried out, with conditions summarised in Table 4. In addi-
tion, two of the trials from the full motion experiment (A6
and A13) are included in the analysis as they represent in-
teresting edge cases within the scope of trials where con-
stant scaling factors were applied to the motion. To limit
the scope of the experiment the forcing function variances
Wt, Wv and Wω were always varied in the same propor-
tion, such that Wt = KFF × 1 m*, Wv = KFF × 1 m/s* and
Wω = KFF× 1 rad/s*. An asterisk after a unit indicates that
the signal is shaped by systems such as sensory transfer func-
tions or forcing function filters.

In trials A6 and B1–B4, the fast vehicle was used and
various lateral motion scaling factors were tested, with trial
B4 having no physical motion at all. Trials A13 and B5–B8
were the same but with the slow vehicle (and slightly differ-
ent amplitudes). In trials B9–B13, the forcing functions were
scaled up by a factor of five so that the lateral displacements
of the vehicle were larger, giving vehicle motion of a more
realistic amplitude. The lateral motion was scaled down by a
factor of five to stay within the simulator limits, while differ-

Table 4: Experimental conditions for each scaled motion
trial, without preview. Trials A6 and A13 from the full mo-
tion experiment are included in the analysis for comparison.

Motion filters

Trial Vehicle KFF Hma(s) Hmω(s) Preview

A6 F 0.79 1 1 7

B1 F 1.11 0.5 1 7

B2 F 1.11 0.2 1 7

B3 F 1.11 0 1 7

B4 F 1.11 0 0 7

A13 S 1.11 1 1 7

B5 S 1.11 0.5 1 7

B6 S 1.11 0.2 1 7

B7 S 1.11 0 1 7

B8 S 1.11 0 0 7

B9 F2 5.53 0.2 1 7

B10 F2 5.53 0.2 0.5 7

B11 F2 5.53 0.2 0.2 7

B12 F2 5.53 0.2 0 7

B13 F2 5.53 0 0 7



Table 5: Experimental conditions for each scaled motion
trial, with preview

Motion filters

Trial Vehicle KFF Hma(s) Hmω(s) Preview

C1 F2 5.53 0 0 3

C2 F2 5.53 0 0.5 3

C3 F2 5.53 0 1 3

C4 F2 5.53 0.1 1 3

C5 F2 5.53 0.2 1 3

C6 F2 5.53 0.2 0.5 3

C7 F2 5.53 0.2 0.2 3

C8 F2 5.53 0.2 0 3

C9 F2 5.53 −0.1 0 3

C10 F2 5.53 −0.1 1 3

C11 F2 5.53 −0.15 −0.15 3

C12 F2 5.53 0.15 −0.15 3

ent yaw scaling factors were tested. These trials were carried
out with the fast vehicle, although to make it easier to follow
this larger amplitude target the steering ratio G was scaled
down by a factor of five, giving the F2 vehicle summarised
in Table 2.

3.4 Scaled motion with preview (experiment C)
Experiment C consisted of twelve trials which also in-

vestigated scaled motion, but allowed the driver to preview
the upcoming target to reflect a more realistic driving sce-
nario. Because the aim of this set of trials was to reflect more
realistic driving conditions, the larger forcing function mag-
nitudes used in trials B9–B13 were used throughout the ex-
periment, and the fast (F2) vehicle was also used for all trials.
The conditions for the scaled motion experiment with pre-
view are given in Table 5. Before the experiment the drivers
carried out a practice trial with the same conditions as trial
A7, as a reminder of the procedure of the experiment. In
trials C9–C12 negative scaling factors were applied to the
motion, to investigate how drivers cope with conflicts in the
direction of visual and physical motion. Because some of the
motion conditions were rather unnatural, practice runs last-
ing 30 s were carried out before each trial to give the drivers
additional time to settle into a control strategy.

3.5 Filtered motion (experiment D)
Experiment D was designed to investigate the extent to

which drivers can perceive and compensate for motion filters
of varying complexity. Two high-pass filters were used, the
first HHP1(s) being a first-order high-pass filter with a cutoff

Table 6: Experimental conditions for each trial with filtered
motion

Motion filters

Trial Vehicle KFF Hma(s) Hmω(s) Preview

D1 F2 5.53 0 0 3

D2 F2 5.53 0.2 1 3

D3 F2 5.53 HHP1(s) 1 3

D4 F2 5.53 HHP2(s) 1 3

D5 F2 5.53 0.2 HHP1(s) 3

D6 F2 5.53 0.2 HHP2(s) 3

D7 F2 5.53 HHP1(s) HHP1(s) 3

D8 F2 5.53 HHP2(s) HHP2(s) 3

D9 F2 5.53 HHP2(s) HHP1(s) 3

D10 F2 5.53 0.5HHP1(s) HHP1(s) 3

D11 F2 5.53 0.5HHP2(s) HHP1(s) 3

D12 F2 5.53 HHP1(s) −0.2 3

frequency of 15 rad/s:

HHP1(s) =
s

s+15
(11)

This filter removes a significant proportion of the primary dy-
namic response of the vehicle. The second filter HHP2(s) in-
cludes a notch at 4 rad/s, which gives extra phase lead at high
frequencies and allows the cutoff frequency for the high-pass
filter to be reduced to 8 rad/s:

HHP2(s) =
(

s2 +2s+16
s2 +8s+16

)(
s

s+8

)
(12)

The filters were chosen to give significantly different phys-
ical motion. A Bode diagram comparing the two filters is
shown in Figure 5. The conditions for each of the filtered
motion trials are given in Table 6. There were twelve trials
consisting of different combinations of motion gains and the
two high-pass filters. Preview was included in all of the fil-
tered motion trials, and drivers had 30 s of practice before
the start of each trial. Trials D1 and D2 had the same condi-
tions as trials C1 and C5, however they were repeated in the
filtered motion experiment.

4 Parameter identification
Parameter values for the driver model are found using an

identification procedure to fit the results of the experiments
described in Section 3. Values are optimised to minimise
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the RMS difference between measured and modelled steer-
ing angles. To avoid identifying local minima in the search
space or biasing the results by choosing a particular start-
ing point, a global optimisation method (genetic algorithm)
is used. A second optimisation is then carried out begin-
ning from the best solution from the first stage, using a gra-
dient search method (Matlab’s fmincon function) to find a
more accurate optimal parameter set. Simulations showed
that this procedure is able to find the correct parameter val-
ues accurately given the number of trials and participants in
these experiments and the levels of noise measured in the
results. The fit of each of the model variations described
in Section 2.3 is optimised to test which definition of the
driver’s internal model best represents the measured steer-
ing behaviour of real drivers. In addition, the Box-Jenkins
method is used to fit general polynomial transfer functions
to the measurements, giving an approximate upper bound on
linear driver steering behaviour.

Some of the parameter values are fixed during the iden-
tification procedure. The target shift Tt is set to zero for all
trials without preview or using the fast vehicle, which covers
all of the trials in the new experiments. The process noise
W is found in [3] to depend linearly on the RMS steering
angle δ. Therefore a constant signal-to-noise ratio SNRW is
defined, where:

SNRW = RMS(δ)/W (13)

Based on the results from [3], SNRW is set to 0.57.
The identification procedure is run for each trial to

find the ten remaining parameter values: Steering cost qδ,
vestibular measurement noise Va and Vω, visual measurement
noise σφ and Ve, time delays τvi and τve, preview time Tp and
neuromuscular parameters ωnm and ζnm. For models M3 and
M0, when the lateral or yaw scaling is zero the corresponding
noise values Va and Vω do not affect the simulated steering
behaviour. Furthermore, when both scaling factors are zero
the vestibular delay τve does not affect the simulated steer-
ing behaviour, and for trials without preview Tp also does not

affect the simulated steering behaviour, as explained in Sec-
tion 2.2. This reduces the number of parameters that need to
be identified for certain trials. For model M3 there are two
additional parameters to identify: the internal model scaling
factors K′ma and K′mω. When the driver is using both visual
and vestibular information to work out the states of the vehi-
cle it is difficult for the identification procedure to separate
the responses to the two sets of sensory information. There-
fore, parameter values are first identified for trials with no
physical motion, and identified noise parameters for the vi-
sual system (Ve and σφ) are held constant while identifying
the remaining parameter values for the other trials.

5 Results
This section presents the results of the identification pro-

cedure for each experiment. The results for experiment A are
presented last because parameter values found in the analysis
of experiment B are used in the identification procedure for
experiment A.

5.1 Scaled motion without preview (experiment B)
The identification procedure is run first with the visual-

only trials B4, B8 and B13. The visual noise amplitudes Ve
and σφ are then held constant within each of the three sets
of five trials (A6 & B1–B4, A13 & B5–B8, B9–B13) which
used the same vehicle. The method relies on the assumption
that the visual noise amplitudes are approximately constant
within each set of five trials, which is reasonable as the trials
within each set have the same vehicle parameters and forcing
function amplitudes (except trial A6), so the characteristics
of the visual motion perceived by the drivers should be sim-
ilar within each set.

The agreement between the measured and predicted
steering angles using the different variations of the driver
model is quantified for each trial by calculating the variance
accounted for (VAF), which gives the percentage of the vari-
ance in the measured steering angle δexp which is matched
by the model prediction δsim:

VAF =

(
1− ∑k

{
δexp(k)−δsim(k)

}2

∑k
{

δexp(k)
}2

)
×100% (14)

The results are shown in Figure 7. The highest VAF values
are found for model M3, which is expected as all the other
model variations are contained within the structure of model
M3. Model M0 has the lowest VAF values in all trials, show-
ing that the drivers were making use of the physical motion
to control the vehicle. For all trials one of models M1 and
M2 fits the results almost as well as model M3, however the
two models fit better for different trials. For trials A6 and
B1–B4, which used the fast vehicle with small forcing func-
tions, model M1 fits the best, indicating that the drivers were
not aware of the scaling applied to the motion. For trials A13
and B5–B8, representing the slow vehicle with small forcing
functions, models M1 and M2 both fit the results well. For
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results of the trials with scaled motion, without preview

trials B9-B13, which used the fast vehicle with large forc-
ing functions, model M2 fits the results best, showing that
with larger forcing functions the driver is able to estimate the
correct motion scaling factors.

Identified measurement noise amplitudes for the trials
carried out in this experiment are plotted against the cor-
responding RMS signal amplitudes in Figure 6. The noise
amplitudes generally increase linearly with signal ampli-
tude. This supports the hypothesis that measurement noise
is signal-dependent, matching studies which found that sen-
sory just-noticeable-difference (JND) values follow Weber’s
law [13–15]. For the acceleration a and visual angles φφφ, very
large noise amplitudes are identified for the lowest signal
amplitudes. When the noise level is much larger than the
signal, the driver places very little weight on that measure-
ment. Therefore the results indicate that there are thresholds
below which drivers are unable to perceive each sensory sig-
nal. This result is also found in previous studies of human
sensory perception [1].

Holding the noise amplitude constant below the thresh-
old level gives similar results since the noise amplitude is still
much larger than the signal amplitude. The noise character-
istics of each sensory channel can therefore be described by

a signal-to-noise ratio (SNR) and a threshold η, for example:

Va =


RMS(ave)

SNRa
RMS(ave)> ηa

ηa

SNRa
RMS(ave)< ηa

(15)

Similar relationships are defined for ωve and evi. Since the
previewed target angles φφφvi are a vector of length (Np +1) at
each time step, the RMS value is taken over the whole vector:

σφ =


RMS(φφφvi)

SNRφ

RMS(φφφvi)> ηφ

ηφ

SNRφ

RMS(φφφvi)< ηφ

(16)

Previous studies modelled signal-dependent noise with an
amplitude which varies over time with the instantaneous sig-
nal amplitude [16]. However this approach makes the control
and state estimation calculations significantly more compli-
cated. It is reasonable to assume that the driver estimates
constant noise amplitudes V based on the RMS signal ampli-
tudes over a period of time, such as a single trial.

To investigate whether this signal-noise relationship can
describe driver steering performance across a range of con-
ditions, a single set of parameter values is identified to fit the
results of all of the trials from this experiment. Model M2
is used as this gives the best fit to the results with the more
realistic, larger forcing functions. SNRs are found from the
reciprocals of the gradients of the trend lines shown in Fig-
ure 6. Thresholds are chosen to be the lowest RMS signal
amplitude for which the identified noise magnitude isn’t sig-
nificantly above the trend line. For the angular velocity ω

and path-following error e these values are simply the low-
est signal amplitudes, as the trials did not have low enough
amplitudes to fall below threshold levels. The remaining pa-
rameter values which are identified are: steering cost weight
qδ, visual and vestibular delays τvi and τve, and neuromuscu-
lar frequency ωnm and damping ζnm. Three values of qδ are
identified, one for the fast vehicle with small forcing func-
tions (trials A6 and B1–B4), one for the slow vehicle (trials
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A13 and B5–B8) and one for the fast vehicle with large forc-
ing functions (trials B9-B13).

The resulting VAFs for each trial using the optimised
single parameter set are compared against the Box-Jenkins
upper bound and the separate parameter sets found for each
trial in Figure 8. The single parameter set fits the results
very well, almost as well as the separate parameter sets. This
shows that the signal-dependent description of the driver’s
sensory noise levels allows the model to predict variations in
control behaviour with different signal amplitudes. The re-
sults do not fit quite as well for the first five trials (the fast
vehicle with small forcing functions), which may be related
to the poor fit of model M2 under these conditions. The pa-
rameter values identified to fit all of the trials from this ex-
periment are τvi = 0.20 s, τve = 0.22 s, ωnm = 16.6 rad/s,
ζnm = 0.224 and qδ = 0.0478, 0.0356 and 0.210 rad*−2 for
the F, S and F2 vehicles.

5.2 Scaled motion with preview (experiment C)
For the scaled motion experiment with preview, delays

τvi and τve are fixed at τvi = 0.20 s and τve = 0.22 s (the val-
ues identified in Section 5.1), as delays are more difficult to
identify for preview trials since the driver can use previewed
information to plan steering actions in advance. Parameter
values are first identified for the trial with no physical motion
(C1) and the visual noise amplitudes are fixed at the identi-
fied values when running the identification procedure across
the remaining trials. For this experiment the preview time Tp
is also allowed to vary between 0 and 2 s.

The resulting VAFs for each variation of the driver
model are shown in Figure 9. In contrast to the results with-
out preview, model M1 is the worst fit across all trials. Model
M2 in general fits very well, with the VAFs almost the same
as model M3. For some of the trials model M0 fits as well
as model M2, in particular for the last four trials where there
was negative scaling. This indicates that the drivers ignored
the physical motion in these trials and controlled the vehicle
mainly using visual measurements. This agrees with studies
which have found that humans sometimes ‘veto’ sensory in-
formation which does not fit with other measurements [17].

The VAFs are lower for the last four trials in general, which
may be because the drivers were not able to make optimal
use of such counter-intuitive physical motion.

The difference in VAFs between models M2 and M0 can
be used as a measure of the extent to which drivers used the
physical motion in a given trial. The difference should not be
less than zero, as a similar control strategy to model M0 can
be achieved for model M2 by having large vestibular noise
amplitudes. Another useful metric is the driver’s success in
tracking the line in each of the trials, which can be measured
by finding the RMS path-following error e = ( ft− y). The
drivers were also asked to give subjective ratings of the ex-
tent to which the physical motion was helpful for the task.
The ratings were given on a scale of -5 to 5, with positive
values meaning the physical motion was helpful and nega-
tive values meaning the physical motion was unhelpful. The
VAF difference, RMS path-following error and driver sub-
jective ratings are compared in Figure 10. There is a clear
correlation between the three metrics. Figure 10a shows that
the higher the drivers rated the physical motion, the more
they used their vestibular measurements to control the vehi-
cle. For unhelpful physical motion (rated below zero) the
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Fig. 10: Correlation between metrics for scaled motion ex-
periment with preview: RMS path-following error; differ-
ence in VAF values between models M2 and M0; and aver-
age driver subjective ratings.



drivers appear to have ‘vetoed’ the physical motion and fo-
cussed on visual measurements only. Figure 10b shows that
the subjective ratings also correlate with path-following er-
ror, with drivers able to follow the target more closely for
physical motion which was rated as more useful.

5.3 Filtered motion (experiment D)
For the third experiment the time delays are once again

fixed at τvi = 0.20 s and τve = 0.22 s. Parameter values are
first identified for the zero-motion trial (D1) and the visual
noise amplitudes are then fixed when identifying parameter
values for the remaining trials. The identification procedure
is run for model variations M0, M2, M3 and M4. Model M1
is not used due to the poor performance seen in the scaled
motion trials with preview.

The resulting VAFs are shown in Figure 11. Compared
to the other experiments there is less variation in VAF val-
ues between the trials, and also less variation between mod-
els. Model M3 is always close to the best-fitting model. In
contrast to the other experiments, model M3 does not con-
tain all other model variations as it assumes the motion is
scaled rather than filtered. The fact that model M3 still fits
well could indicate that the driver cannot determine the com-
plexities of a motion filter and instead assumes the motion is
scaled. However, model M2 performs similarly in trials D1,
D2 and D6–D12. There is not enough difference between
the simulated control strategies in these trials to determine
the extent to which the driver is aware of the filtering. It
should be noted that model M3 has more scope to adapt to
fit the measured results due to the two extra parameters K′ma
and K′mω, so the high VAF may be a result of over-fitting.

Model M3 does have a significantly larger VAF than
model M2 in trials D3 and D4. These are trials where the
yaw motion was at full scale, so would have been very large
in comparison to the lateral motion. It is possible that the
full-scale yaw motion dominated the drivers’ perception, and
they were not able to pay enough attention to the lateral mo-
tion to determine the motion filters, instead assuming the mo-
tion was scaled. Model M4 also has higher VAFs than model
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the results of the trials with filtered motion

M2 in trials D3 and D4, however model M2 fits better than
M4 for trials D6–D9. The results do not conclusively show
the extent to which drivers can compensate for complicated
filter dynamics, since there is no clear pattern to which of
models M2 and M4 fits the results best.

Model M0 is always the worst-fitting of the models.
This indicates that the driver is making use of the physical
motion perceived through their vestibular organs. The only
trials where the other models do not fit better than model
M0 are trials D1, where there was no physical motion, and
D2, where the motion was scaled rather than filtered. It is
therefore evident that drivers are able to use filtered physi-
cal motion to inform their steering control strategy. General
comparison of the VAF values shown in Figure 11 with the
values found for the scaled motion trials in the previous ex-
periments (shown in Figures 7 and 9) shows that the VAF
values are around 5% lower on average for the filtered mo-
tion trials. This shows that the drivers did not match the mod-
elled optimal controller as well in this experiment. This may
be because the complexity of the motion filters made it more
difficult for the drivers to build up an accurate internal model.
It is interesting that trials D1 and D2 have lower VAF values
than the equivalent trials C1 and C5 with the same condi-
tions. Because the trial order was randomised in each ex-
periment, exposure to trials with filtered motion could have
affected the drivers’ confidence in their internal models even
for trials with scaled motion.

5.4 Full motion (experiment A)
The identification procedure is run once again for the tri-

als from the full motion experiment described in [3], to com-
pare the fit of the different model variations. Since there are
no trials without physical motion and the forcing function
amplitudes varied across the trials, the visual noise ampli-
tudes are identified separately for each trial. The identifica-
tion procedure is run for the trials without preview initially,
then the time delays are fixed at τvi = 0.20 s and τve = 0.22 s
while parameter values are identified for trials with preview.

The resulting VAF values are shown in Figure 12. Re-
sults for models M1 and M2 are identical, since the trials
all had scaling factors of 1. The results for model M3 are
no better than models M1 and M2, showing that the drivers
were aware that the motion was not scaled. Model M0 fits as
well as the other models for trials A1–A4 and A8–A11 which
had one forcing function at a time, indicating that the drivers
did not use the physical motion much for these trials. How-
ever for trials A5 and A12, where there were disturbances on
both v and ω, model M0 fits slightly worse than the others.
This shows that the physical motion is useful for determin-
ing the difference between v and ω disturbances. Model M0
fits much worse in trials A6–A7 and A12–A14, so with both
target and disturbance forcing functions the physical mo-
tion is very useful to the drivers. The VAFs for model M2
are very close to the upper bound given by the Box-Jenkins
model. They are closest to the Box-Jenkins upper bound for
trials with only one forcing function (A1–A4 and A8–A11),
but not quite as close for trials involving a combined target-
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following and disturbance-rejection task. This shows that in-
creasing the complexity of the task reduces drivers’ ability to
perform it in an optimal manner.

5.5 Noise parameters and subjective ratings
In Section 5.1 identified sensory noise amplitudes are

found to depend linearly on RMS stimulus amplitude for
scaled motion trials without preview, as shown in Figure 6.
Results for the scaled motion trials with preview and filtered
motion trials are also found to fit the signal-dependent noise
model, with signal-to-noise ratios (SNRs) similar to those
seen for the trials without preview. However, SNRφ is larger
for trials with preview than trials without preview. This dif-
ference may be a result of the different information being
measured in the two cases, which may be because different
information is measured in the two cases; without preview
the driver only measures the vehicle yaw angle whereas with
preview they also measure target path angles. There is no
clear correlation between RMS signal amplitudes and sen-
sory noise amplitudes for the full motion trials. For the other
experiments trials without physical motion can be used to in-
vestigate the visual system in isolation, allowing the separate
roles of the visual and vestibular systems to be studied. This
is not possible for the full motion trials, resulting in unreli-
able estimates of the sensory noise amplitudes.

In Section 5.2 a correlation is found between driver sub-
jective ratings, path-following error and the VAF difference
between models M2 and M0, shown in Figure 10. Subjective
ratings were not collected for the full motion or scaled mo-
tion without preview experiments. In the scaled motion with
preview and filtered motion experiments the drivers’ perfor-
mance correlates with their subjective ratings, with drivers
able to follow the target line more closely for more highly
rated motion conditions. However the correlation between
subjective ratings and VAF difference is not seen for the fil-
tered motion trials. This could be because the added com-
plexity of the motion filters made it more difficult for the
drivers to evaluate the motion conditions reliably compared
to the scaled motion trials.

6 Single set of parameter values
In total, 51 trials were carried out across four experi-

ments to investigate the role of sensory dynamics in a driver’s
control of a vehicle. The new driver model aims to repli-
cate the processes carried out by the driver in order to predict
steering control behaviour over a range of conditions. For the
model to have predictive ability it is necessary to find a fixed
set of parameters to fit the results from all the experiments
as closely as possible. The four trials with negative scaling
are excluded, since drivers were found to veto the vestibular
information under these unnatural conditions. Model M2 is
used throughout, as this variation gives the best overall fit to
the results from different trials.

6.1 Procedure
In Section 5.1, sensory noise amplitudes are found to de-

pend linearly on stimulus amplitudes, with thresholds below
which the noise amplitudes remain constant. The noise char-
acteristics for each sensory channel are therefore described
by a signal-to-noise ratio (SNR) and a threshold η. The
driver model depends on 16 variable parameters:

Steering cost weight: qδ

Sensory SNRs: SNRa, SNRω, SNRφ, SNRe
Process noise SNR: SNRW
Sensory thresholds: ηa, ηω, ηφ, ηe
Visual and vestibular delays: τvi, τve
Neuromuscular frequency and damping: ωnm, ζnm
Preview time: Tp
Target shift: Tt (only used for slow vehicle with preview)

In addition, separate values of SNRφ are identified for the
trials with preview (SNRφp) and the trials without preview
(SNRφNP), as σφ is found in Section 5.2 to be much larger
for trials with preview. The same threshold ηφ is used for
both cases.

To reduce the risk of over-fitting and find more reliable
parameter estimates, the procedure is carried out in several
steps which minimise the number of parameters identified
at any one time. The steering cost weight qδ is a choice of
the driver rather than a physical parameter, and varies sig-
nificantly between trials. Separate values of qδ are therefore
found for each trial using an initial estimate of the other pa-
rameter values, and these values of qδ are then held constant
throughout the remaining identification procedure. The ini-
tial estimate is formed from the parameters found to fit the
scaled motion trials without preview in Section 5.1, plus val-
ues of Tt =−0.55 s (from [3]), Tp = 1 s (from the values iden-
tified for previous trials) and SNRφ = 0.841 for the preview
trials (the average of the scaled and filtered motion results).
Noise amplitudes in the model can be used to estimate the
amount of driver noise measured in the steering angle, which
can be compared to the modelling error to check the noise
parameters are sensible. The process noise SNR (SNRW )
is therefore held constant during the parameter identification
procedure, after which the predicted and measured noise am-
plitudes are compared. SNRW is then adjusted and the iden-
tification procedure is repeated iteratively until the predicted



and measured noise amplitudes are similar.
The number of parameters identified at one time can

be reduced further by running the procedure for carefully
chosen subsets of the trials before optimising across all tri-
als. Firstly, parameter values are identified for trials with no
physical motion, so that parameters Va, Vω, ηa, ηω, τve and
Tt are not needed. The preview time Tp is fixed at a value
of 1 s. Identifying parameters for the trials with no physical
motion allows the visual system to be studied in isolation,
giving more reliable estimates of the visual noise amplitudes.
Therefore, values of SNRe, SNRφ, ηe and ηφ identified for
the trials with no motion are held constant over the rest of
the procedure. Next, parameter values are identified for all
the trials without preview, so that Tp and Tt are not needed.
These trials allow the delays τvi and τve to be estimated more
reliably, as the driver cannot use preview to compensate for
delays in their visual system. Therefore the values of τvi and
τve are fixed while the remaining eight parameters are opti-
mised to fit all of the trials. Finally, all of the parameters
except for SNRW , Tp, Tt, τvi and τve are optimised to fit the
results of all the trials, using Matlab’s fmincon function and
starting from the values identified in the previous stage.

6.2 Results
The resulting VAF values using the identified parameter

set are plotted in Figure 13. As expected, the fit is worse for
the single parameter set than for the separate parameter sets.
However, in general the model fits well, with an average VAF
across all trials which is 86% of the upper bound given by the
Box–Jenkins results. The model does not fit as well for trials
C9–C11 and C2–B4, which are also the worst-fitting trials
using separate parameter sets. In general the model fits better
for trials with scaled motion than with filtered or full motion.
This could be because the full motion trials had unrealisti-
cally small forcing functions, and in the filtered motion trials
the drivers were not able to build up accurate internal models
of the motion filtering.

In addition to generating a noise-free steering angle pre-
diction, the model can also estimate the amplitude of driver
noise referred to the steering angle. This estimate can be
compared with the measured noise level to check that the
noise parameters give physically realistic values. The mea-
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individually for each trial and the Box-Jenkins upper bound.
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Fig. 14: Bounds for ratio of measured to predicted noise am-
plitude. Predicted noise amplitude is defined by the identi-
fied single set of parameter values, measured noise ampli-
tude is defined as RMS(δsim−δexp) for the upper bound and
RMS(δBJ−δexp) for the lower bound.

Table 7: Single set of parameters identified to fit the results
of all trials carried out across all four experiments. Model
variation M2 is used for all trials.

Parameter SNRa SNRω SNRφp SNRφNP SNRe SNRW τvi τve

Units – – – – – – s s

Value 0.390 0.406 1.46 0.415 0.901 2.28 0.19 0.23

Parameter Tt Tp ωnm ζnm ηa ηω ηφ ηe

Units s s rad/s – m/s2* rad/s* rad m

Value -0.26 0.87 14.3 0.537 0.221 0.0235 0.0129 0.0559

sured noise is estimated by finding the difference between the
measured and modelled steering angle (δsim−δexp), however
if the modelling error is significant this may give an overesti-
mate. An alternative method is to find the difference between
the measured steering behaviour and the Box-Jenkins predic-
tion (δBJ− δexp), however this gives an underestimate since
the Box-Jenkins model fits the results better than the para-
metric driver model. Nonlinear driver behaviour is assumed
to be negligible. Using both methods to give upper and lower
bounds, the ratios between the measured and predicted noise
levels are plotted in Figure 14. The upper and lower bounds
are close together, giving an accurate estimate of the noise
level in the experiments. On average the ratio is close to 1,
showing that the noise parameters in the model are realistic,
although the model underestimates the amount of noise in
the target-only trials with preview (A2 and A9).

The values of the identified parameters are given in Ta-
ble 7. These parameters can be used to simulate driver steer-
ing control under a variety of conditions and, supported by
the VAF values shown in Figure 13, they should be able to
give a good approximation to measured control behaviour.



7 Discussion
A series of experiments was carried out to determine

how drivers steer when the motion of the vehicle sensed
through their vestibular organs doesn’t match what they see
with their visual system. The driver steering control model
derived in [2] can be used to predict the observed steering be-
haviour. Several variations of the model are defined in Sec-
tion 2.3, based on different assumptions about the driver’s in-
ternal model of motion scaling or filtering. Parameter values
are identified for each model variation to give the best possi-
ble fit to measured results, as discussed in Section 4. In gen-
eral model variation M2 fits the measurements best, showing
that drivers are generally able to develop an internal model of
the scaling or filtering applied to the motion, and adapt their
control strategy to make optimal use of this knowledge. For
trials carried out using the fast vehicle with scaled motion,
no preview and small forcing functions, model M1 fits bet-
ter, indicating that drivers may not be aware of any motion
scaling when the forcing functions are small. In some tri-
als model M0 fits as well as the other models, showing that
the drivers were not making significant use of the physical
motion perceived through their vestibular organs.

The difference in VAF values between models M2 and
M0 can be used to quantify the extent to which drivers use
their vestibular measurements. In Section 5.2 a correlation
is found between this measure, the average subjective rat-
ings given by the drivers for how useful the physical motion
was in controlling the vehicle, and the RMS path-following
error which measures how closely the drivers followed the
target. Drivers used higher rated physical motion more, ig-
noring or ‘vetoing’ physical motion which they considered
to be unhelpful. They also achieved a better tracking per-
formance for physical motion which they rated more highly.
These results show that it is important for the driver to be
subjected to realistic physical motion to achieve their best
driving performance, and this has important implications for
experiments carried out in driving simulators. The fact that
the results of the model correlate with both the opinions and
performance of the drivers is encouraging, as it shows that
the model is a reasonable description of how vehicle motion
is perceived by drivers in reality. It also shows that the model
may be used to give a quantitative estimate of how useful the
physical motion is to the driver, without having to rely on
subjective feedback.

Process noise amplitude W has previously been found
to be linearly dependent on RMS steering angle [3]. In Sec-
tion 5.1 this signal-dependence is also seen for the measure-
ment noise, with a threshold below which the noise ampli-
tude remains constant. This is similar to sensory threshold
measurements from the literature, summarised in [1]. Stud-
ies have measured thresholds below which motion cannot be
perceived, and this has been linked to noise in the sensory
systems [18]. Just-noticeable difference (JND) values have
also been found to increase linearly with stimulus amplitude,
following Weber’s law [13–15]. Using this linear relation-
ship between stimulus and noise amplitudes, a single set of
parameter values is identified in Section 6 to fit the results of
all 51 trials carried out over four experiments. The steering

Table 8: Comparison of identified sensory thresholds with
estimates from literature [1]

Parameter ηa ηω ηφ (no preview) ηφ (preview) ηe

Units m/s2* rad/s* rad rad m

Identified 0.221 0.0235 0.0129 0.0129 0.0559

Literature 0.015 0.0093 0.0005 – 0.0360

angles simulated using the single parameter set fit the mea-
sured results well, with VAFs 86% of the upper bound on
average. The driver model can therefore be used with these
parameter values to predict driver steering behaviour under
various conditions.

The values of the identified parameters can be compared
with results from the literature to investigate whether they
are compatible with studies of human sensory systems, sum-
marised in [1]. There is some disagreement in the literature
as to whether vestibular or visual delays are longer, however
the identified delay values of τvi = 0.19 s and τve = 0.23 s
indicate that the vestibular delay is slightly longer. This re-
sult supports studies which suggest that vestibular processing
takes longer than visual processing [19]. The identified pre-
view time Tp is 0.87 s, which is slightly shorter than the 1 s
measured in eye-tracking studies [20]. This shortened pre-
view horizon may compensate for the fact that the noise on
the previewed angles is constant, whereas in reality the un-
certainty of visual measurements is likely to increase with
distance ahead of the driver.

The identified sensory noise thresholds are compared
against estimates from the literature in Table 8. The iden-
tified thresholds are in general much larger than the val-
ues found in the literature. This could be for several rea-
sons. Firstly, the values from the literature were calculated
from threshold measurements taken in passive conditions,
focussing on one stimulus at a time. Studies have found that
thresholds increase during an active control task and when
multiple stimuli are presented together [21, 22]. Secondly,
the identified noise parameters correspond to the noise added
to each sensory signal, however by integrating the informa-
tion perceived over time humans can develop more accu-
rate sensory estimates. Taking account of these effects, the
identified threshold values are reasonable in comparison with
knowledge of sensory systems from the literature.

8 Conclusion
A series of experiments has been carried out to inves-

tigate how drivers respond to conflicts between their visual
and vestibular measurements. The results are compared with
estimates from the driver model derived in [2] to understand
the mechanisms underpinning drivers’ perception and con-
trol strategies. In general, drivers are found to develop an
internal model of the motion scaling or filtering, and adjust
their control actions accordingly. Drivers are able to do so
more effectively with scaled motion than with filtered mo-



tion, indicating that their ability to compensate for motion
filtering depends on the filter’s complexity. With large dis-
crepancies between the perceived physical and visual motion
such as negative scaling, drivers ‘veto’ the physical motion
and rely solely on visual measurements.

Drivers were found to make greater use of physical mo-
tion which they gave a higher subjective rating, achieving a
better path-following performance. This highlights the im-
portance of physical motion perception in allowing drivers
to perform at their best, and must be considered carefully
when designing experiments in a driving simulator. Sensory
measurement noise is signal-dependent, with thresholds be-
low which noise magnitudes are constant. A single set of
parameters has been found for the driver model which fits
experimental results across all 51 trials carried out over 4
experiments, with variance accounted for (VAF) values on
average 86% of the linear upper bound. These parameters
also give estimated noise magnitudes which match the val-
ues measured in the experiments well. The driver model can
be used with these parameter values to predict driver steering
control behaviour over a wide range of conditions.
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