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Biomaterials are now being used or evaluated clinically as implants to supplement the 
severe shortage of available human donor organs. To date, however, such implants have 
mainly been developed as scaffolds to promote the regeneration of failing organs due to 
old age or congenital malformations. In the real world, however, infection or immunological 
issues often compromise patients. For example, bacterial and viral infections can result 
in uncontrolled immunopathological damage and lead to organ failure. Hence, there is a 
need for biomaterials and implants that not only promote regeneration but also address 
issues that are specific to compromised patients, such as infection and inflammation. 
Different strategies are needed to address the regeneration of organs that have been 
damaged by infection or inflammation for successful clinical translation. Therefore, the 
real quest is for multifunctional biomaterials with combined properties that can combat 
infections, modulate inflammation, and promote regeneration at the same time. These 
strategies will necessitate the inclusion of methodologies for management of the cellular 
and signaling components elicited within the local microenvironment. In the development 
of such biomaterials, strategies range from the inclusion of materials that have intrinsic 
anti-inflammatory properties, such as the synthetic lipid polymer, 2-methacryloyloxyethyl 
phosphorylcholine (MPC), to silver nanoparticles that have antibacterial properties, to 
inclusion of nano- and micro-particles in biomaterials composites that deliver active 
drugs. In this present review, we present examples of both kinds of materials in each 
group along with their pros and cons. Thus, as a promising next generation strategy to 
aid or replace tissue/organ transplantation, an integrated smart programmable platform 
is needed for regenerative medicine applications to create and/or restore normal func-
tion at the cell and tissue levels. Therefore, now it is of utmost importance to develop 
integrative biomaterials based on multifunctional biopolymers and nanosystem for their 
practical and successful clinical translation.
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inTRODUCTiOn

Transplantation with donor organs or tissues is often the only 
treatment available for patients with end-stage organ damage 
leading to failure. However, the demand for donor organs is 
manyfold higher than the supply of donated organs. According 
to US Department of Health and Human Service, an average of 
79 people receive organ transplants each day while 22 others die 
while waiting to be transplanted, due to the acute shortage of 
high quality-donated organs.1 Even if donor organs are available, 
problems such as graft-versus-host disease and rejection leading 
to graft failure still need to be solved. An alternative to donor 
organ transplantation is use of bioengineered artificial organs or 
multicomponent tissues as replacements. Tissue engineering and 
regenerative medicine are, therefore, rapidly growing areas (Stock 
and Vacanti, 2001).

In many cases, organ failure is due to congenital defects or 
aging. However, infections caused by viruses and bacteria can 
cause uncontrolled damage leading to organ failure. Current 
examples include pandemics such as the severe acute respiratory 
syndrome (SARS) that broke out in 2003. SARS was caused by 
a coronavirus and patients who died were otherwise healthy 
young adults whose immune system mounted an inflamma-
tory response resulting in the destruction of pulmonary stem 
cells that led to death of the patients (Holmes, 2003). Even in 
the common influenza, in severe cases, upregulation of matrix 
metalloproteinase (MMP)-9 has been shown to result in tissue 
destruction in various organs (Wang et  al., 2010). Bacterial 
infections often progress in a slower manner than viral ones. One 
area where bacterial infections are particularly problematic is in 
chronic skin wounds, such as non-healing ulcers and skin burns. 
In the eye, ulcers and burns along with infections are also a source 
of inflammation and tissue destruction. Whether the infections 
and ensuing immunopathological mechanisms that are triggered 
cause acute and rapid organ destruction or chronic problems, 
these are considerations in the development of biomaterials as 
scaffolds or implants that are targeted to promoting regeneration 
under these compromised conditions. There is also a concern of 
biomaterials, which themselves have been associated with infec-
tion and inflammation.

Here, we review the biomaterials that are designed for use in 
compromised patients with inflammation or active infections. 
We present several examples of each of the groups of biomateri-
als, taken from our own research and cases that are documented 
within the literature.

BiOMATeRiALS ASSOCiATeD wiTH 
UnDeSiReD inFLAMMATiOn AnD 
inFeCTiOn

Biomaterials and inflammation
Biomaterials are essentially foreign to the human body and, as 
such, have been associated with triggering inflammation and 
immune reactions. Initial inflammation is necessary for wound 

1 http://www.organdonor.gov/about/data.html 

healing and occurs when biomaterials are in contact with host 
tissues. The milder irritation produced includes mild to moderate 
pain or discomfort, such as itching. Inflammation occurs with a 
more severe response and presents redness, heat, swelling, pain. 
This is a defensive response and occurs to some degree with all 
resorbable materials. Inflammation only becomes a problem if it 
becomes prolonged (chronic) and increases in severity leading 
to immunologically mediated events that lead to destruction of 
the implants or cell/tissue death. Reviews on the inflammatory 
response to biomaterials are available (Anderson et al., 2008 and 
Slee et al., 2014) and will not be discussed here.

Biomaterials and Biodevices-Related 
infections
As foreign materials that have been introduced into the body, 
biomaterials would also be a potential source of infection. 
Biomaterials made from metals, ceramics, and polymers are 
now in routine clinical use and have been linked to infection 
(Buhmann et al., 2016 and Busscher et al., 2012). For example, 
approximately 60,000 deaths per year have been reported in the 
USA due to device-related infections from urinary catheters and 
central venous catheters, and those made from polyurethane 
have been shown to constitute an entry pathway into body for 
bacteria (O’Grady et al., 2002). Bacteria will compete with cells to 
adhere to surface of biomaterials, as many of them have similar 
mechanism of attachment as cells, except they are better adapted 
for survival on non-viable surfaces. Common bacterial infections 
on polymeric biomaterials come from Staphylococcus epidermidis 
(S. epidermidis) from skin and Staphylococcus aureus (S. aureus), 
which is often found on metallic biomaterials. Some of these bac-
teria may be resistant to antibiotics (different surface expression). 
These have been found on artificial hearts, synthetic vessels, joint 
replacement implants, fixation devices, IV catheters, urologic 
devices, and contact lenses (Holzapfel et  al., 2013). Ceramics 
and metals are relatively resistant to infection, but if there are 
imperfections on the surface or microfractures, pathogens, such 
as bacteria, can establish a colony (Holzapfel et al., 2013).

A group of aliphatic polymers, such as polyethylene, polytetra-
fluoroethylene, polypropylene, and also polyvinylidene fluoride, 
have selective affinity toward endotoxins (Davies, 1999). Thus, 
they have the potential to facilitate the microenvironment for 
tissue regeneration by adsorbing the endotoxins. However, due 
to absence of hydrophilic ionizable groups, they cannot be used 
directly before further biocompatible functionalization. Charged 
polymers with effective functional groups can selectively bind 
and remove endotoxins from the systems. One such example 
is positively charged acrylic cellulose with DEAE or QAE 
functional groups that can significantly absorb endotoxins (Hou 
and Zaniewski, 1990). This could be an important aspect while 
designing advanced biomaterials for clinical translations.

extracellular Matrix and Pathogenic 
Transmission
More recently, biomaterials from natural sources have gained 
significant interest as scaffolds for promoting regeneration. 
In  particular, the decellularization of organs and tissues to 
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obtain scaffolds composed extracellular matrix (ECM) compo-
nents have gained considerable popularity (Faulk et  al., 2014). 
Such scaffolds have been shown to be conducive to regenera-
tion. However, these are either derived from human cadaveric 
sources or from xenogeneic sources. Both sources carry a risk 
for pathogenic transmission. Xenogeneic scaffolds have an 
additional risk of inducing allergic or inflammation reactions. 
Bone allografts are known to transmit several deadly viruses like 
hepatitis, tuberculosis (TB), and human immunodeficiency virus 
(HIV-1) (Vincent, 2012). Similarly, corneas have been reported 
to transmit hepatitis B virus (HBV), rabies, cytomegalovirus 
(CMV), Creutzfeldt–Jakob disease (CJD), and herpes simplex 
virus (HSV), apart from different bacteria and fungi (Lee et al., 
2007). Furthermore, heart valves have been shown to transmit 
TB and HBV (Zou et al., 2004). Skins from seropositive donors 
were associated with HIV-1 and CMV transmission (Eastlund, 
1995). Therefore, critical care and appropriate safety measures, 
such as rigorous screening, are required during the process of 
transplanting decellularized organs.

BiOMATeRiALS THAT MODULATe 
inFLAMMATiOn

Despite being necessary during the early stages of wound healing, 
inflammation plays a major role in the rejection of biomaterial 
implants. Dysregulated and excessive or chronic inflammation 
has a negative impact on the wound healing processes. Therefore, 
strategies to modulate excessive inflammation are needed. Through 
the use of biomaterials to control the release of anti-inflammatory 
therapeutics, increased control over inflammation is possible in a 
range of pathological conditions. However, the choice of biomate-
rial (natural or synthetic) and its form (solid, hydrogel, or micro/
nanoparticle) is dependent on both the cause and tissue location 
of inflammation. These considerations also influence the nature 
of the anti-inflammatory therapeutic that is incorporated into the 
biomaterial to be delivered. There are two groups of biomaterials: 
those that possess intrinsic anti-inflammatory properties and 
those that are designed to incorporate anti-inflammatory agents. 
Examples of each group are given below.

Biomaterials with intrinsic  
Anti-inflammatory Properties
Some biopolymers, and in particular, polysaccharides, have inher-
ent anti-inflammatory properties. For example, chitosan, a linear 
polysaccharide composed of randomly distributed β-(1–4)-linked 
d-glucosamine and N-acetyl-d-glucosamine derived from crus-
tacean shells, has long been reported to have anti-inflammatory 
properties. Song et  al. studied the anti-inflammatory effects of 
the chitosan–gelatin hybrid materials cross-linked with genipin. 
They concluded that the anti-inflammatory effects of genipin 
could be due to its effect on the NO/iNOS pathway and inhibi-
tion of the mRNA expression of COX-2 and IL-6 within activated 
macrophages (Song et  al., 2011). Chitosan-based materials are 
believed to be anti-inflammatory based on their ROS scavenging 
properties (Je and Kim, 2006). Other biopolymers, primarily 
polysaccharides from plants, such as mushrooms (Elsayed et al., 

2014) and seaweed (Rodrigues et al., 2012 and Park et al., 2011), 
are being examined for their anti-inflammatory properties. It is 
possible for these in the future to be tested as biomaterials.

Polyethylene glycol (PEG) and its nano-conjugated deriva-
tives have also been shown to possess anti-inflammatory 
properties (Dobrovolskaia and McNeil, 2007). For example, 
PEG has been hybridized by incorporation of peptides, such 
as GRGDSPG, to form hydrogels with anti-inflammatory 
properties. GRGDSPG-containing peptides have been reported 
to protect MIN6 mouse pancreatic islet-derived cells from 
cytokine-induced cell death when functionalized to encapsu-
late these cells. These peptide-containing hydrogels in con-
junction with the interleukin-1 receptor inhibitory peptide 
(IL-1RIP) FEWTPGWYQPY-NH2 were particularly effective 
in protecting the islet cells (Su et al., 2010).

integrative Anti-inflammatory Materials
Implantation of tectonic patches made from interpenetrating 
networks of collagen and 2-methacryloyloxyethyl phosphoryl-
choline (MPC) into three patients in a small hospital-based 
study under compassionate use revealed that this material was 
able to stably restore the integrity of the damaged corneas of 
patients with chronic ulceration or erosion of the epithelium due 
to stroma damage, thereby relieving patients from pain, discom-
fort, and photophobia (Buznyk et al., 2015). MPC has also been 
shown to have anti-inflammatory properties in other systems. 
For example, MPC-polymer has been shown to be useful for oral 
care. It protects from oral infection by preventing the adherence 
of periodontal pathogen and succeeding inflammatory reaction 
and, thus, protects gingival epithelium to maintain oral epithelial 
function (Yumoto et al., 2015).

Hyaluronic acid (HA) hydrogels have been widely used as 
scaffolds for promoting regeneration because of their reported 
anti-inflammatory nature (Nakamura et al., 2004; Hirabara et al., 
2013). TNF-α antibody-conjugated HA hydrogels have been 
shown to reduce IL-1β concentration and macrophage infiltration 
when applied to burn wounds. This, in turn, reduced the thick-
ness of the non-viable tissue (Friedrich et al., 2014). HA-based 
scaffolds with mesenchymal stem cells completely eliminated 
the inflammatory process when transplanted in pig models of 
myocardial infarction (Muscari et al., 2013).

To reduce the foreign body reaction (FBR), plasmid-encoded or 
virus-encapsulated IL-10 can efficiently downregulate the inflam-
matory response against collagen scaffolds, when transplanted 
subcutaneously in rats (Van Putten et al., 2009; Holladay et al., 
2012). Combined glycosaminoglycan high sulfated hyaluronan 
with collagen scaffold reduced the secretion of pro-inflammatory 
cytokines and increased the anti-inflammatory cytokines, when 
macrophages were cultured on the implants (Kajahn et al., 2012) 
in in vitro-mimicked conditions of sterile tissue injury.

Biomaterials Developed as Delivery 
Systems to Control inflammation
Not all biomaterials in clinical use are inherently anti-inflamma-
tory in nature. However, they have been used to deliver a wide 
variety of therapeutic agents that were developed to control 
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inflammation. The need for delivery agents stems from the 
fact that most therapeutic agents on their own fail to achieve 
a high enough local concentration to exert their effects. One 
approach to address this problem is the use of biomaterials as 
delivery agents and reservoirs for the therapeutic agent(s) and, in 
particular, provide sustained release of effective concentrations 
for prolonged periods of time. For example, the incorporation of 
stromal cell-derived factor-1 alpha (SDF-1α) into PLGA scaffolds 
reduced inflammation when transplanted into the subcutaneous 
cavity of Balb/C mice to improve both the tissue response and 
regenerative potential of tissue engineering scaffolds by reducing 
the local inflammation. It decreased the number and responses 
of mast cell near the implants together with reduced expression 
of IL-1α, IL-6, and TNF-α and increased VEGF expression 
(Thevenot et al., 2010).

A PLLA scaffold releasing Ibuprofen was shown to reduce 
IL-6 and TNF-α expression leading to decreased inflammatory 
responses and improved muscle regeneration (Yuan et al., 2014). 
Dexamethasone incorporated hydrogels reduced TNF-α and IL-6 
expression from macrophages that ultimately reduced inflamma-
tory response in lipopolysaccharide-stimulated primary mouse 
macrophages in vitro (Ito et al., 2007). Gelatin hydrogels incor-
porating mixed immunosuppressive triptolide-micelles and bone 
morphogenic protein-2 (BMP-2) downregulated the expression 
of pro- and anti-inflammatory cytokines, including IL-6 and 
IL-10, and reduced local inflammation responses and enhanced 
bone regeneration in rat model (Ratanavaraporn et al., 2012).

Although a plethora of potential delivery systems have been 
reported, only a few anti-inflammatory drug delivery materials 
are currently used in the clinic. One of these is a system for 
sustained delivery of dexamethasone (Ozurdex, Allergan Inc., 
Irvine, CA, USA). The implant is introduced into the posterior 
segment of the patient’s eyes with various pathologic conditions, 
including diabetic macular edema, non-infectious intermediate 
uveitis, and birdshot chorioretinopathy, and has been shown to 
exhibit a good safety profile and promising results in edema and 
inflammation control (Cao et al., 2014; Dugel et al., 2015; Walsh 
and Reddy, 2016). Further clinical trials are ongoing to confirm 
these initial results (ClinicalTrials.gov identifier: NCT01801774, 
NCT02736175, and NCT02547623).2

BiOMATeRiALS THAT MODULATe 
inFeCTiOn

Biomaterials with intrinsic Anti-infective 
Properties
Just like there are biomaterials with innate anti-inflammatory 
behavior, there are biomaterials that have intrinsic anti-infective 
properties, and there are those that are effective as carriers of 
antibacterial and antiviral agents or other bioactives developed 
to combat infectious agents. There is a wide range of these and 
only a selected few examples are provided below. Biomaterials 
containing sulfated groups are known to have anti-infective 
properties. These include antibacterial as well as antiviral 

2 https://clinicaltrials.gov/ 

properties. The best-known are the marine-derived sulfated 
polysaccharides derived from brown seaweeds (Phaeophyceae 
such as Fucus, Laminaria, and Ascophyllum). These macromol-
ecules include alginates and fucoidans (Berteau and Mulloy, 
2003; Marguerite, 2014).

Among the properties attributed to fucoidans is its antiviral 
activity (Damonte et al., 2004). Fucoidans isolated contain mainly 
O-sulfated α-l-fucosides but they also contain acetyl groups and 
other types of saccharides and proteins (Morya et al., 2012). Our 
group had examined the possibility of reproducing the antiviral 
properties of fucoidans in synthetic mimics and confirmed that 
the sulfation was essential for activity against viruses, such as 
Herpes Simplex Virus serotype 1 (HSV-1) (Tengdelius et  al., 
2014). However, we also found that the activity of synthetic 
fucoidan was similar to that of other sulfated polysaccharides, 
such as heparin and dextran sulfate, while non-sulfated control 
synthetic fucoidans or polyacrylamide did not block viral activity. 
We, further, showed that synthetic O-sulfated fucoidans blocked 
HSV-1 activity during the viral adsorption step, reacting with 
viral particles to prevent their entry into cells (Tengdelius et al., 
2014). More recently, we examined the anti-HSV-1 efficacy of 
another fully synthetic sulfated biomaterial, polystyrene sul-
fonate [poly(sodium 4-styrenesulfonate) (PSS)]. We developed 
theranostic contact lenses, i.e., contact lenses that could detect 
and modulate HSV-1 infection. Here, PSS was used as coatings to 
effectively provide antiviral activity (Mak et al., 2015).

nanomaterials with Antimicrobial 
Properties
A wide range of nanomaterials, from carbon nanotubes (CNTs) 
and fullerenes to dendrimers and metal nanoparticles has been 
shown to have intrinsic anti-infective properties against bacte-
ria, viruses, and other pathogens (reviewed in Rai et al., 2015). 
Table 1 provides a list of various nanoparticle systems and their 
reported antimicrobial (antibacterial) activities.

The best-known metallic nanoparticles with antibacterial 
activity are the silver nanoparticles (AgNPs) and silver in general. 
These are known for their antibacterial and antiviral properties. 
Use of silver in medical implants has a long history of medical 
use. Colloidal silver has been approved for wound treatment since 
the 1920s and registered as a bactericidal substance since 1954 
(Nowack et al., 2011; Reidy et al., 2013). New solutions combine 
regeneration and antimicrobial effects to allow faster and safer 
recovery from injury. Silver containing wound dressings include 
Acticoat®, a commercial wound dressing utilizing nanocrystaline 
silver (Khundkar et al., 2010), Actisorb®, which contains a silver-
nylon cloth, and Calgitrol Ag® that utilizes silver-alginate (Simon 
et  al., 2016). Silver ions have been shown to have toxicity on 
cells and also in  vivo. However, it has been shown that silver 
nanoparticles produced as naked particles and coated with 
collagen or LL-37 peptide have reduced cytotoxicity on human 
skin epidermal cells compared to ionic silver (Alarcon et  al., 
2015). However, they were effective against bacteria tested, such 
as S. aureus (strain ATTC 25923), S. epidermidis (strain Se19), 
Escherichia coli (strain CFT073), and Pseudomonas aeruginosa 
(strain PA01). Methicillin-resistant S. epidermidis (MRSE) and 
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TABLe 1 | Type of various nanoparticles and their applications in antimicrobial and antiviral treatment.

Type of nanoparticles Antimicrobial activity Reference

Metallic nanoparticles
ZnO, CuO, Fe2O3 E. coli, P. aeruginosa, S. aureus, B. subtilis Azam et al. (2012)
Silver, titanium dioxide, silica dioxide nanoparticles S. mutans Besinis et al. (2014)
Sliver E. coli, P. aeruginosa, S. aureus Guzman et al. (2012)
Silver (biological) E. coli, S. aureus, E. faecalis Barbinta-Patrascu et al. (2014)
Silver (biological and chemical) E. coli, S. aureus Bawskar et al. (2015)
Collagen-AgNP hydrogels S. aureus, S. epidermidis, E. coli, P. aeruginosa Alarcon et al. (2015)

Carbon nanotubes (CNTs)
Single/multi-walled CNTs L. acidophilus, B. adolescentis, E. coli, E. faecalis, S. aureus Chen et al. (2013)
AgNPs decorated CNTs E. coli, S. aureus Dinh et al. (2015)
Chitosan-CNT hydrogels S. aureus, E. coli, C. tropicalis Venkatesan et al. (2014)
Gelatin-CNTs K. pneumoniae, E. coli Spizzirri et al. (2015)
Functionalized fullerenes E. coli, C. albicans, S. aureus Mizuno et al. (2011); Tegos et al. (2005)
Dendrimers S. aureus, P. aeruginosa, E. coli Lind et al. (2015)

Type of nanoparticles Antiviral activity Reference

Silver nanoparticles (AgNPs)
AgNPs HIV-1 inhibition Elechiguerra et al. (2005); Gaikwad et al. 

(2013); Hu et al. (2014); Lara et al. (2010)PVP-stabilized AgNPs HSV and HPIV
Mercaptoethanesulfonate-capped AgNPs HSV-1 Baram-Pinto et al. (2010)
AgNPs/chitosan composites H1N1 influenza Xiang et al. (2011); Mori et al. (2013)
Polysaccharide-coated AgNPs Tacaribe virus Speshock et al. (2010)

Gold nanopartices (AuNPs)
Glucose-coated AuNPs HIV treatment Chiodo et al. (2014)
AuNPs conjugated with peptide triazoles HIV treatment Bastian et al. (2015)
Sulfated ligands-coated AuNPs HIV treatment Di Gianvincenzo et al. (2010)
Fluorescein-labeled oligomannoside AuNPs HIV treatment Martínez-Avila et al. (2009); Arnáiz et al. (2012)
Mercaptobenzoic acid-coated AuNPs HIV treatment Bowman et al. (2008)
Mercaptoethane sulfonate-capped AuNPs HSV-1 Baram-Pinto et al. (2010)
Solid lipid nanoparticles (SLN) Hepatitis B virus (HBV) Zhang et al. (2008)
Quantum rods (QRs) HIV-1 Mahajan et al. (2010)
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methicillin-resistant S. aureus (MRSA) have been reported to be 
successfully inhibited by “NanoSilver” embedded bone cement 
in an in  vitro model with human osteoblasts, whereas similar 
cement with gentamicin could not able to prevent the infection 
with such resistant strains (Alt et al., 2004). Within our group, we 
have developed simple composite collagen-based hydrogels that 
have included silver nanoparticles with antibacterial properties 
as corneal implants (Alarcon et al., 2016).

Antiviral nanosystem
Nanoparticles and their different composites have also had 
antiviral activity (Table 1). They have now been shown to inter-
act with the HIV-1 virus in a size-dependent manner possibly 
through the gp120 subunit of the viral envelope glycoprotein 
(Di Gianvincenzo et al., 2010; Lara et al., 2010).

Like antibiotics, however, resistance to silver has been found 
in bacteria. The reports, to date, point to the resistance being 
plasmid-based, and not all bacteria examined have been shown to 
harbor these plasmids. Overall, the incidence of silver resistance 
remains low compared to antibiotic resistance (Griffith et al., 2015).

Composite Biomaterials as Delivery 
Systems
Nanoparticles have also been used as carriers for bioactives and 
antiviral drugs. For example, silver and gold coated with sulfated 

ligands developed have been shown to exert their anti-HIV 
activity by inhibiting the binding of HIV gp120 on the host cell 
receptors at early stage of viral replication (Di Gianvincenzo 
et  al., 2010; Lara et  al., 2010). Several studies have evaluated 
the potential antiviral efficacy of antiviral drug delivery systems 
against HIV-1 infection (Bowman et  al., 2008; Mahajan et  al., 
2010; Chiodo et al., 2014; Bastian et al., 2015) or HBV, showing 
promising results in terms of enhanced antiviral potency or effi-
ciency in delivery of the drugs/peptides used. Zhang et al. showed 
that adefovir dipiroxil (ADV), a nucleotide analog with potent 
antiviral activity against chronic HBV, loaded in solid lipid NPs 
significantly lowered HBV DNA levels compared with free ADV 
(Zhang et al., 2008).

We have previously reported collagen implants containing 
silica nanoparticles releasing LL37 peptide that has anti-HSV-1 
antiviral properties (Lee et al., 2014). Other more sophisticated 
composite biomaterials have been developed as local antibiotic 
carriers system that offer regulated release of antibiotics in 
specific tissues and implant. An example of such biomaterials 
is TiO2-NiFe2O4 nanoparticle system that comprise particles 
with photocatalytic shells and magnetic cores, to form remov-
able antimicrobial photocatalyst system that can be extracted 
from the sprayed surface (infected region) after exposure (Rana 
et  al., 2005). Biocompatible, injectable polymeric carriers, e.g., 
Pluronic® F127 that can respond in situ to physiological stimuli 
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have also been developed for controlled drug release (Simões 
et al., 2012). To combat with the increasing concern of antibiotic 
resistance, composite nanosystems that combine conventional 
antibiotics with nanoparticles have been reported to successfully 
inhibit drug resistant microbes compared with antibiotics alone 
(Campoccia et al., 2010). Several approaches are going on with 
antibiotic-loaded biomaterials for local infection prophylaxis, 
and one such example that is available for use in the clinic is 
poly(d,l-lactide) (PDLLA) coating. The idea is to turn an implant 
into a drug delivery device.3

We have summarized the different functional aspects and the 
major concern in developing the biomaterials for their successful 
clinical translation (Figure 1).

3 www.synthes.com 

COnCLUSiOn

In conclusion, biomaterials are now being developed to address 
issues of infection and inflammation in compromised patients. 
These include those materials with inherent anti-inflammatory 
or anti-infective properties as well as materials bioengineered to 
deliver those properties. Several examples of each have now reached 
the pre-clinical and clinical evaluation stages and show promising 
results. However, this area is still in its infancy, and the search for 
biomaterials and implants that can promote regeneration while 
addressing localized infection and inflammation continues.
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