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Abstract The mixing efficiency of a plume in a filling box and an emptying-filling
box is calculated for both transient and steady states. The mixing efficiency of a
plume in a filling box in an asymptotic state is 1/2, independent of the details
of this state or how the plume is modelled. The mixing efficiency of a plume in
an emptying-filling box in steady state is 1 − ξ, where ξ = h/H, the depth of
the ambient layer h normalised by the height of the box H. A deeper mixed layer
therefore corresponds to a higher mixing efficiency. These results shed light on the
interpretation of mixing efficiencies of open and closed systems.

1 Introduction

The characterisation and measurement of turbulent stratified mixing remains a
central problem for developing models of oceans, lakes and the atmosphere [15].
Mixing in stratified flows can be quantified in a variety of ways. One common
means to describe how the density field is modified in a free turbulent flow, such
as a plume, jet, or gravity current, is through use of an entrainment coefficient that
models the incorporation of ambient fluid into the turbulent region. For a plume,
the entrainment coefficient α = ue/U , where U is a streamwise velocity scale for
fluid in the plume and ue is a transverse velocity scale for ambient fluid drawn
into the plume [16]. This description of the turbulent entrainment is suggested by
dimensional analysis and has been used successfully on plumes with a wide range of
length scales [12]. The entrainment coefficient for plumes has recently been linked
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to the production of turbulent kinetic energy [18] and buoyancy variance [4], tying
the entrainment coefficient to both viscous dissipation and irreversible mixing.

Another measure of mixing in a stratified flow is based on the fact that mixing
of a stratification modifies the gravitational potential energy budget. Increases in
potential energy in a stratified flow can be reversible (e.g. in an internal wave) or
irreversible (e.g. when two parcels of fluid mix, changing the density of both), but
only the irreversible increases correspond to mixing. The most common framework
for differentiating between irreversible and reversible changes in potential energy
splits the gravitational potential energy into available potential energy and back-
ground potential energy, described below [14,20]. Irreversible mixing increases the
background potential energy of the system. Stratified mixing can then be char-
acterised by the mixing efficiency, which compares the energy used in irreversible
diabatic mixing to the energy that was available for mixing [17]. In this paper,
we use an energetics framework to examine mixing in the filling box and the
emptying-filling box.

The background potential energy, Eb, is the gravitational potential energy of
the system if every parcel of fluid were allowed to rise or fall without changing
its density until the system reaches a state of minimum gravitational potential
energy. This minimum potential energy is equivalent to the potential energy of
the fluid volume if the rearranged density profile increases monotonically in the
direction of the gravitational vector [14]. In a closed system, the gravitational
potential energy of this rearranged profile can only increase as a result of mixing,
i.e. changing the density of fluid parcels, which raises the centre of mass of this
reference state. As mixing is irreversible, for an open system in steady state, net
buoyancy fluxes across the boundaries must result in a reduction of the background
potential energy at the same rate that mixing increases the background potential
energy within the system.

The available potential energy, Ea, of a given state is the energy that would
be released by rearranging fluid parcels into a state of gravitational equilibrium
and is energy that is available to do work in the system. It is non-zero when the
profile is not in a state of gravitational equilibrium, such as if kinetic energy in the
flow moves a parcel of fluid away from its height of neutral buoyancy. Available
potential energy can also be added directly to the flow by introducing buoyancy
forcing or advection of fluid across the boundaries of the system.

The energy consumed by mixing can be measured using the background po-
tential energy, Eb. The energy available for mixing is the sum of kinetic energy,
Ek, and available potential energy, Ea, present in the system. As we will consider
an unsteady flow in this paper, we make use of the instantaneous mixing efficiency,
which can be expressed as

η =
ĖbĖa + Ėk


(1)

for a closed system, where Ėb is the rate of change of background potential energy
(positive when irreversible mixing takes place) and Ėa + Ėk is the rate of change of
available energy. For a closed system, Ėb, Ėa and Ėk represent rates of conversion
within the system. For an open system, where mass or energy transfers across the
boundaries are permitted, these represent sources or sinks of energy that must also
be taken into account.
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In situations where the mixing is buoyancy-driven (i.e. the source of energy in
the system is initially entirely Ea), high mixing efficiencies have been observed,
with values of the cumulative mixing efficiency greater than 75% measured in
experiments of Rayleigh–Taylor instability [6], and tending towards 100% in ex-
periments of horizontal convection [9]. In some cases of buoyancy-driven stratified
mixing, the mixing efficiency depends on the density profile in regions remote
from where the mixing takes place [7]. Nevertheless, the mixing efficiency is of-
ten discussed in the literature as if it were a constant value or some property
of the turbulence itself, therefore it is useful to examine and understand cases
where this is not true, to extend our intuition about such cases. The filling box
and the emptying-filling box are both simple, well-defined systems in which the
steady-state dynamics are well understood, making them useful test-cases.

A simplified model of a plume within a closed container is known as a ‘filling
box’, sketched in figure 1a. Without loss of generality, we will assume that the
plume originates from a point source of pure buoyancy and falls through a box
that is of heightH. As a result of entrainment into the plume, a stable stratification
will develop in the box [1]. This stable stratification can be predicted using plume
theory, which assumes that entrainment of fluid from the ambient into the plume
at some height is proportional to the mean vertical velocity in the plume at that
height [16]. Time-dependent density profiles for a plume in a box have also been
derived, along with approximate analytic expressions for the density profile [21].
The density profile in a filling box reaches an asymptotic state, at which point the
shape of the density profile is no longer changing with time, although the mean
density in the box is still increasing [1].

Fig. 1 Filling box and emptying-filling box: (a) A point source of pure buoyancy (whose
specific buoyancy flux is F0) produces a plume in a closed box of height H. This plume falls to
the floor, entraining fluid as it falls, creating a stratified layer that fills the box. This diagram
shows the filling box at early times, before the stratified layer has filled the box. At late
times an asymptotic steady state is established. (b) Steady state of an emptying-filling box
containing a point source of pure buoyancy. The flow through the upper and lower openings is
matched by the flow in the plume as it crosses the interface into the buoyant mixed layer. H is
the vertical separation between the openings, h is the distance from the upper opening to the
interface. The buoyant mixed layer and ambient densities are labelled ρm and ρa respectively.

The emptying-filling box (Fig. 1b) is a conceptual extension of the filling box,
which introduces openings through the top and bottom [13]. Due to the stratifica-
tion within the box, there is a resulting pressure difference between the openings
that drives a ventilation flow. Ambient fluid enters the box through the open-
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ing at the top and mixed fluid exits through the opening at the bottom. The
emptying-filling box can reach a steady state when the removal of dense fluid by
the ventilation flow is balanced by addition of dense fluid in the plume to a well-
mixed layer. For a single source of buoyancy, the steady state consists of a layer
of ambient fluid of thickness h and density ρa that sits above a dense mixed layer,
which has constant density ρm > ρa. The depth of the mixed layer within the box
is independent of the magnitude of the source buoyancy flux and controlled only
by the entrainment coefficient α of the plume and a ratio of the height of the box
to a quantity A∗, which is a function of the areas of the two openings [13].

The emptying-filling box is a common model for buoyancy-driven natural ven-
tilation and has been used to study steady states [13] and transients [11,3,19].
Natural ventilation of buildings makes use of wind or temperature differences to
drive ventilation flow, rather than mechanical forcing [12]. Displacement ventila-
tion uses existing buoyancy sources to draw cool, fresh air into a building through
an opening near the floor, while removing warm air through an opening near the
ceiling. Note that in the example shown in Fig. 1, the plume is dense and falls
into a less dense ambient, whereas in natural ventilation warm plumes would rise
through a cool ambient.

In this paper, we examine how the mixing efficiency and entrainment coefficient
associated with a plume in a filling box and an emptying-filling box relate to the
turbulent mixing that takes place. In §2 we examine the filling box, calculating
the mixing efficiency for both the asymptotic state (§2.1) and the transient state
(§2.2). In §3, we examine the emptying-filling box, again analysing the mixing
efficiency of both the steady state (§3.1) and the transient state (§3.2). We discuss
the difference in mixing efficiencies of open and closed systems in §4.

2 The Filling Box

2.1 Mixing efficiency of the asymptotic state

The (closed) filling box reaches an asymptotic state [1], in which the density gradi-
ent in the interior is a function of height z only, and the rate of change of density is
both spatially uniform and constant, i.e. ∂ρ(z, t)/∂t is constant. Thus irreversible
mixing in the filling box arranges itself so that the rate of change of density is
uniform in space.

If the plume has specific buoyancy flux F0 (m4s−3) and the room has constant
cross-sectional area, then the rate of change of density at all heights in the box is

∂ρ

∂t
=

ρ̂F0

gV
(2)

where ρ̂ is a reference density, g is gravitational acceleration and V is the volume
of the filling box. If we assume the volume of the plume is small compared with
V , and that fluid in the filling box is everywhere close to its equilibrium level,
then the rate at which the potential energy of fluid in the box (i.e. the background
potential energy) increases owing to irreversible mixing is given by

Ėb = g



V

∂ρ

∂t
z dV − ρ̂F0z0 =

ρ̂F0H

2
, (3)
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where the bottom of the box is at z0. This expression is obtained by comparing
the background potential energy in the system with a hypothetical state in which
the density anomaly added by the plume falls to the bottom of the box without
dilution by mixing. The expression for the rate Ėb in (3) may be readily evaluated
without loss of generality by defining the origin (z0) to be zero at the bottom of
the box.

The buoyancy forcing that maintains the plume is the only source of energy
for the filling box. The rate of addition of available potential energy by the plume
source is equal to the change in potential energy if the buoyancy released by the
plume were to traverse the depth of the box without mixing, a process equivalent
to sorting the unstable density profile. The rate at which available potential energy
is supplied to the system by the buoyancy source is

Ėa = ρ̂F0H. (4)

This buoyancy forcing results in parcels of fluid close to the plume source that
are buoyant, i.e. they have available potential energy. These parcels of fluid pass
through the box depth, converting available potential energy to kinetic energy in
the process. Turbulence and density gradients arise on small scales, and energy is
consumed by irreversible mixing and viscous dissipation.

The turbulent mixing efficiency η for the asymptotic state of a filling box can
thus be estimated as the ratio of the rate of irreversible mixing, Ėb, and the rate
of release of available potential energy,

η =
1

2
. (5)

In using this result to characterise turbulent mixing in the filling box, it is assumed
that the kinetic energy dissipated from the mean overturning flow is negligible (i.e.
Ėk ≪ Ėa). The contribution to irreversible mixing associated with molecular dif-
fusion down the mean background gradient through the box depth is also assumed
to be unimportant.

Equation 5 is an interesting result in that the mixing efficiency of the asymp-
totic state is not a function of the entrainment coefficient or any other parameter.
It is also independent of the model used to describe the plume and only requires
that an asymptotic state is reached, without depending on any of the details of
that state. A mixing efficiency of 1/2 has been found in other flows [5] where mix-
ing is driven by available potential energy – the maximum for any 1D monotonic
unstable stratification [7, Appendix A].

2.2 Mixing efficiency of the transient state

We can also examine the time dependent evolution of an axisymmetric plume in
a box [1]. An axisymmetric plume is maintained below a point source and, at any
height z, the vertical velocity and buoyancy are assumed to have mean Gaussian
profiles, where w, F and b are the maximum vertical velocity, maximum buoyancy
and Gaussian half-width, respectively. As in our last example, we consider a dense
plume in a less dense ambient.

The equations that govern the time evolution of the density profile as the
box fills are given by Worster and Huppert, who also calculated an approximate
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analytical solution [21]. We follow their analysis to compute the density profile in
the tank as a function of height and time ρ(z, t). The dimensionless quantities for
height, density, time, buoyancy flux, volume flux, and momentum are defined as

ζ = zH−1, δ = 4π
2
3α

4
3H

5
3F

− 2
3

0 g
ρ− ρ̂

ρ̂
,

τ = 4π
2
3α

4
3H

2
3A−1F

1
3
0 t, f =

1

2
πF−1

0 b2wF,

q =
1

4
π

1
3α− 4

3H− 5
3F

− 1
3

0 b2w, m =
1

2
π

1
3α− 1

3H− 2
3F

− 1
3

0 bw.

(6)

The non-dimensionalised governing equations are

dq

dζ
= m,

dm2

dζ
=

qf

m2
,

df

dζ
= q

∂δ

∂ζ
,

∂δ

∂τ
= q

∂δ

∂ζ
. (7)

These are equations for the fluxes of volume, momentum, and buoyancy in the
plume, respectively, and describe the evolution of the density profile in the ambient.
We solve Eqns. 7 numerically using a layered Germeles model and a second order
Runge-Kutta scheme [10]. At each time-step, a new layer is introduced to the
bottom of the density profile, with the volume and density in the layer computed
from the turbulent plume equations (for more details see [10,19]). The change in
volume of other layers due to exchange with the plume is calculated from mass
conservation, with the assumption that the volume taken up by the plume is much
smaller than the volume of the box. The evolution of the dimensionless density
profile is plotted in Fig. 2a. The position of the upper edge of the mixing region
ζ0, – also known as the first front – is plotted in Fig. 2b.

Fig. 2 Filling box: (a) Dimensionless density profile at τ = 0.25, 1, 2, 4, 12, (b) mixing effi-
ciency η (blue, dashed) and the height of the stratified layer ζ0 (orange, solid) against time
non-dimensionalised by a filling box time scale, as defined in Eq. 6.

Calculation of the instantaneous mixing efficiency requires the rate of supply of
available potential energy in the system and the rate of increase of background po-
tential energy. In the non-dimensionalised problem all rates of energy transfer are
in effect normalised by the rate of supply of available potential energy. Therefore
the mixing efficiency is equal to the rate of increase of the normalised background
potential energy, which is equal to the rate of increase of the normalised potential
energy. We will assume the box volume is large compared to the volume taken up
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by the plume and therefore neglect the contribution of fluid in the plume to the
potential energy budget.

The evolution of the mixing efficiency as the box fills is shown in Fig. 2b. At
early times the mixing efficiency is low as parcels of fluid that are mixed in the
plume are dense and always fall to the stratified layer at the bottom of the box,
having transferred all their available potential energy into kinetic energy that is
then dissipated viscously. The mixing efficiency increases monotonically with the
height of the stratified layer, tending towards a maximum value of 1/2. At late
times, the increase in density of the box induced by the presence of the buoyancy
source is equally distributed through the full depth.

Another way of thinking about this is that a parcel of dense fluid introduced
at the top of the box has an initial centre of mass associated with the anomalous
density at z = H. The resulting density change in the box is uniform as the parcel
falls through the depth (assuming the fall time scale is much less than the fill-
ing time scale). Therefore the final centre of mass associated with the uniformly
redistributed density anomaly is z = H/2, or equivalently, half the initially avail-
able potential energy has been transformed by mixing into background potential
energy.

3 The Emptying-Filling Box

3.1 Mixing efficiency of the steady state

A plume model based on the use of an entrainment constant can be used to model
the flow in an emptying-filling box. It has been shown, both theoretically and in
laboratory experiments, that the emptying-filling box establishes a steady state
[13]. In the steady state, the depth of the upper layer satisfies


ξ5

1− ξ

1/2

=
A∗

C3/2H2
, (8)

where ξ = h/H is the dimensionless depth of the ambient layer, C = π


5
2πα

 1
3

6α
5

 5
3

for an axisymmetric plume with Gaussian profiles, A∗ = a1a2/


1
2 (a

2
1/c+ a22), a1

and a2 are the areas of the upper and lower openings, and c is an order one constant
associated with the loss coefficients of the two openings [11]. As the dimensionless
effective opening area A∗ is reduced towards zero, the dimensionless depth of the
ambient layer ξ decreases. When A∗ is increased, the dimensionless depth of the
ambient layer increases towards one.

The steady state reached in the emptying-filling box has constant background
potential energy, in contrast to the filling box. The rate of removal of background
potential energy from the system by the flow through the box is exactly offset by
irreversible mixing.

We calculate the rate of removal of potential energy from the system by recog-
nising it must be equal to the instantaneous rate of increase in potential energy
if the through flow were momentarily halted (while holding the other parameters
constant). In calculating this rate we neglect the volume of gravitationally unstable
fluid in the plume and consider only the globally stable two-layer stratification in
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the box. The potential energy (which is equal to the background potential energy)
of the box at time t is

Eb(t) =
g(ρm − ρa)(H − h)2

2
+

gρaH
2

2
. (9)

For convenience, the vertical origin has been taken to be located at the bottom of
the box. If the ventilation flow were switched off, but the plume forcing maintained,
after a short time ∆t the background potential energy would be

Eb(t+∆t) =
g(ρm − ρa)(H − h+∆tQ)2

2
+

gρaH
2

2
, (10)

where Q is the flow rate of fluid across the interface in plume. The rate of removal
of background potential energy from the system by the through flow is given by

Eb(t+∆t)− Eb(t) =
g∆tQ

2
(ρm − ρa)(2(H − h) +∆tQ). (11)

Dividing by ∆t and taking the limit ∆t → 0, gives the instantaneous increase in
background potential energy as

Ėb = g(ρm − ρa)(H − h)Q. (12)

As buoyancy is conserved, g(ρm − ρa)Q = ρ̂F0, therefore

Ėb = (H − h)ρ̂F0. (13)

This is the energy input required to maintain the height of the mixed layer against
the action of the through flow. The result in (13) is independent of the choice of
vertical origin.

The mixing efficiency is the ratio between the rate of increase in background
potential energy and the rate at which available potential energy is supplied to the
system (Eq. 1). We assume that any kinetic energy associated with the openings
is dissipated without mixing the density profile, therefore the energy available for
mixing is the available potential energy. Substituting the values for the background
potential energy (Eq. 13) and available potential energy (Eq. 4), we find

η = 1− ξ, (14)

where ξ = h/H is the non-dimensional depth of the ambient layer. If there is a
thick mixed layer (i.e. a thin ambient layer, ξ = h/H → 0), the mixing efficiency
increases towards 1, while if the mixed layer thickness decreases (i.e. the ambient
layer depth increases), the mixing efficiency decreases towards zero.

We can understand this by considering the balance between available potential
energy and kinetic energy in the flow. As the plume falls, fluid loses available
potential energy to kinetic energy, until the plume reaches the mixed layer. When
the plume enters the mixed layer little further mixing can occur as the mean
density in the plume is equal to the density of the mixed layer. If the mixed layer
is relatively thin the plume falls almost the entire height of the box before being
arrested, losing almost all available potential energy to kinetic energy, which is
then dissipated, resulting in a low mixing efficiency.
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Fig. 3 Emptying-filling box in steady state: Mixing efficiency η, as a function of the opening
area A∗, box height H, and entrainment coefficient α.

By substituting for the layer depth in Eq. 14 and Eq. 8, the mixing efficiency
may be expressed implicitly as a function of the dimensionless effective opening
area A∗, box height H and the entrainment coefficient α,

η

(1− η)5
=

1

3π2


5

6

4 (Hα)4

A∗2 (15)

The behaviour of η as a function of Hα√
A∗ is plotted in Fig. 3. Dimensional analysis of

the problem shows that the mixing efficiency is a function of the non-dimensional
groups A∗/H2 and α. The above analysis has identified the form of this function.

The entrainment coefficient is often considered as a constant for a plume, but
in other flows the entrainment coefficient is different from the value measured for
plumes [8]. As a thought experiment we can examine the effect on the mixing
efficiency of varying the entrainment coefficient while holding A∗/H2 constant.
Decreasing the entrainment coefficient reduces the mixed layer depth and decreases
the mixing efficiency. However, the value of the mixing efficiency is not solely
determined by the entrainment coefficient, as the full range of values from 0 to 1
is theoretically possible by varying only A∗.

3.2 Mixing efficiency of the transient state

We can create a simple model for the transient density profile in an emptying-
filling box by adding an equation for the ventilation rate to our model from §2.2
[2]. The ventilation rate is driven by the pressure difference between the top and
bottom openings, which is determined by the density profile in the tank. In our
model, the ventilation rate is given by

Qv = A∗
 H

0
g′ dz

 1
2

, (16)

where g′ is the reduced gravity [19]. When we non-dimensionalise (as in Eq. 6),
Eq. 16 becomes

qv =
1

8π

A∗

α2H2

 1

0
δ dζ

 1
2

(17)
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where qv is the non-dimensional ventilation rate and δ is the density at height ζ. A
similar model for the emptying-filling box was used by Sandbach and Lane-Serff,
who used a modified version of the equation that links plume volume flow rate
and layer heights in the ambient [19].

In our model, we calculate the effect of the plume on the stratification in the
box as before (§2.2). The ventilation flow is included by shifting the stratification
down by ζv = qv∆τ and then removing a layer of dimensionless thickness ζv from
the bottom. The potential energy of the box Ebox and the change in potential
energy before and after the ventilation occurs are calculated at each time step.

Fig. 4 Emptying-filling box for A∗C−3/2H−2 = 0.02: (a) Dimensionless density profile in
an emptying-filling box at τ = 0.5, 1, 2, 5, 20, (b) mixing efficiency of an emptying-filling box

η (solid, blue), normalised rate of change of potential energy inside the box Ėbox (dashed,

orange), normalised rate of loss of potential energy due to ventilation Ėvent (dashed, yellow)
and the height of the stratified layer 1− ξ (dotted, green) against non-dimensional time.

The evolution of the density profile for A∗

C3/2H2 = 0.02 is plotted in Fig. 4a. A
stratified layer grows until the stack pressure difference across the box is sufficient
to drive a strong enough ventilation flow through the box to match the flow into
the mixed layer by the plume. There is some overshoot of the steady state mixed
layer height (cf. τ = 5 and τ = 20). By τ = 20 the box has essentially reached a
steady state two-layer stratification.

We calculate the potential energy of the evolving stratification in the box,
Ebox. The evolution of the normalised Ėbox is plotted in Fig. 4b (dashed, red). At
early times, Ėbox is positive as the potential energy of the box grows with time.
At τ ≈ 2 the rate of increase of potential energy reaches a peak. At late times the
box is in steady state, therefore the potential energy of fluid in the box does not
change with time and Ėbox = 0. Our energetics analysis reveals that the rate of
change of potential energy of fluid in the box peaks before the height of the mixing
region reaches its maximum.

The rate of potential energy loss due to ventilation, Ėvent, is equal to the rate
of potential energy increase if the ventilation flow was momentarily switched off
in the model (e.g. if the lower vent were closed). The evolution of the normalised
Ėvent is plotted in Fig. 4b (dashed, yellow). There is initially little stratification
within the box to drive a ventilation flow, therefore Ėvent is small. As a stratified
layer builds up, a ventilation flow is established and Ėvent increases.
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The total rate of change of background potential energy for the system is
Ėb = Ėbox + Ėvent. The instantaneous mixing efficiency of the transient case can
be calculated from Ėb. As we have normalised quantities by the available potential
energy input, for our system η = Ėb. The instantaneous mixing efficiency, η, is
plotted in Fig. 4b (solid, blue). Note that although the stratified layer height in the
box overshoots, the mixing efficiency increases monotonically up to a maximum
value of 1 − ξ. At early times the mixing efficiency is dominated by the growing
stratification in the box, with little loss of background potential energy due to the
ventilation flow. At τ > 2 the rate of change of background potential energy, and
therefore the value of the mixing efficiency, begins to be dominated by the venti-
lation flow rate, which increases monotonically. The mixing efficiency approaches
1− ξ as the box approaches a steady state.

4 Discussion

As our purpose for this paper is to extend understanding of the mixing efficiency,
we will discuss various ways to interpret and compare the two examples described
above.

The filling box has a maximum mixing efficiency of η = 1
2 that occurs when

the filling box reaches an asymptotic state in which the potential energy of the
box is constantly increasing, but the density profile has reached a self-similar
shape and the density gradient is no longer a function of time. In this asymptotic
state, the rate at which the density changes is independent of height, with the
position of the centre of mass remaining unchanged in the box. In other words,
buoyancy introduced by the plume source travels through a vertical distance that
is on average equal to half the height of the box, resulting in a mixing efficiency
of η = 1

2 . Importantly, this is a result of the uniform distribution of the rate of
density change and is independent of both the exact shape of the density profile
and the value of the entrainment coefficient.

For the emptying-filling box, a true steady state is reached, where both the
density profile and background potential energy are constant. The steady state
consists of an ambient layer and a mixed layer; the density of the mixed layer
is approximately constant and equal to the average density of the plume at the
height of the interface with the ambient layer. The ventilation flow removes mixed
fluid from the bottom of the box and draws ambient fluid into the top of the box.
To keep the box in steady state, buoyancy from the plume mixes with incoming
ambient fluid to maintain the mixed layer. The maximum mixing efficiency is
attained when the mixed layer fills the box. The buoyancy produced by the plume
is then diluted in the vicinity of the source and the mixed fluid effectively remains
near the top of the box. This situation results in a maximum mixing efficiency of
η = 1.

It is instructive to note that reducing the effective opening area A∗ → 0 for
the emptying-filling box does not recover the same mixing efficiency as the filling
box. The filling box is a closed system and the mixing efficiency is limited by
how much mixing can occur. Assuming an asymptotic state is reached (in which
the vertical density gradient remains unchanged at a given height), subsequent
changes in density with time must be uniformly distributed through the depth,
leading to the result that the mixing efficiency is η = 1

2 . However, the through-flow
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in the emptying-filling box allows the system to have a mixing efficiency in excess
of 1

2 - fluid mixed near the plume source enters the well-mixed layer, in which
it can reside at any height without energetic cost. Thus, the mixed fluid can be
interpreted from an energetics perspective as remaining at the top of the mixed
layer, and when the mixed layer nearly fills the box almost all the initial available
potential energy is converted to background potential energy.

Another way of understanding this result is by considering the work that the
plume does on the flow. For the closed circulation to exist in the filling box, the
ambient stratification needs to be continuously displaced in the vertical at all
heights in the box. This circulation requires work against buoyancy throughout
the box and necessarily accounts for a portion of the available potential energy
supplied by the plume source. In contrast, when the emptying-filling box reaches
steady state, there is no recirculation that requires a continual input of energy to
maintain it. Fluid in the plume is buoyant only as it passes through the ambient
layer, and conversion of available potential energy to kinetic energy is therefore
limited to this part of the box. Thus, as the ambient layer thickness decreases
in the emptying-filling box, the plume transforms less of the available potential
energy into kinetic energy, decreasing the proportion of energy that is dissipated
viscously and increasing the mixing efficiency.

In this paper, we have quantified stratified turbulent mixing in filling boxes and
emptying-filling boxes using the mixing efficiency. The entrainment coefficient also
measures mixing in these flows, as it parameterises the approximately self-similar
physics that govern entrainment of ambient fluid into a turbulent free-shear flow, a
process that occurs throughout the depth for a plume in a filling box. The entrain-
ment process is modified in the emptying filling box; incorporation of buoyancy
and momentum (i.e. plume-like behaviour) is confined to the ambient layer, and
buoyancy becomes unimportant in the mixed layer (i.e. jet-like behaviour). In real-
ity, there is a variation of density across the plume cross-section and some mixing
will occur in the mixed layer. Although this effect is likely to have a minor effect
on the overall mixing efficiency, three-dimensional measurements of the buoyancy
field from laboratory experiments or direct numerical simulations could be used
to confirm the expectation. This would be an interesting area for future research.

To summarise, we have seen that a closed system with continuous net buoyancy
forcing can only establish an asymptotic time-evolving density stratification, which
has an energetic cost that tends to lower the mixing efficiency. In contrast, a steady
density stratification can be established in an open system with continuous net
buoyancy forcing. Where that buoyancy forcing produces mixed fluid that is close
to its neutral buoyancy level in the background density distribution, the mixing
efficiency can approach one.
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