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Abstract 

A recently reported method, based on the Cramér-Rao Lower Bound theory, for 

optimising sampling patterns for a wide range of nuclear magnetic resonance (NMR) 

experiments is applied to the problem of optimising sampling patterns for 

bi-exponentially decaying signals. Sampling patterns are optimised by minimizing the 

percentage error in estimating the most difficult to estimate parameter of the 

bi-exponential model, termed the objective function. The predictions of the method are 

demonstrated in application to pulsed field gradient NMR data recorded for the two-

component diffusion of a binary mixture of methane/ethane in a zeolite. It is shown that 

the proposed method identifies an optimal sampling pattern with the predicted objective 

function being within 10% of that calculated from the experiment dataset.  The method is 

used to advise on the number of sampled points and the noise level needed to resolve 

two-component systems characterised by a range of ratios of populations and diffusion 

coefficients. It is subsequently illustrated how the method can be used to reduce the 

experiment acquisition time while still being able to resolve a given two-component 

system. 
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1. Introduction 

Bi-exponentially decaying signals are common in many areas of science and 

engineering, such as in photoluminescence [1, 2] and reaction kinetics [3, 4]. In NMR 

applications, bi-exponential models have been assumed to be a good approximation for 

T2 and T1ρ signal decays and signal attenuations recorded during diffusion measurements 

[5-9]. The fitting of bi-exponential decays is a long-standing challenge and remains a 

subject of debate [10-14] because of the relatively large uncertainty related to the 

estimated parameters of the model. 

In a recent work [15], a systematic, statistical approach, based on the Cramér-Rao Lower 

Bound (CRLB) theory [16], was described for optimising sampling patterns in a wide 

range of NMR experiments. The findings of the CRLB theory were validated against 

pulsed field gradient (PFG) NMR diffusion experimental data of an emulsion system, 

characterised by a lognormal distribution of droplet sizes. In this work, the same method 

is applied to the problem of optimising the sampling pattern for the most accurate 

estimation of the parameters of a bi-exponential model. The findings of the CRLB theory 

are validated against PFG NMR diffusion experimental data acquired for a binary 

gaseous mixture of methane/ethane adsorbed in a zeolite. Zeolites are increasingly being 

used to separate gaseous hydrocarbon mixtures in the gas processing industry [17, 18]. 

The CRLB theory is subsequently used to determine the conditions under which a system 

characterised by a bi-exponentially decaying signal is resolvable. 

The paper is structured as follows. Section 2 outlines the application of the CRLB theory 

to a bi-exponentially decaying signal. The experimental methods are described in Section 

3. Section 4 presents the results and discussion. 

2. Theory 

A noisy, bi-exponentially decaying signal, ŷi, is described as: 

�̂�𝑖 = 𝑦𝑖 + 𝜖𝑖 = 𝑤1 exp(−𝑏𝑖𝐷1) + 𝑤2 exp(−𝑏𝑖𝐷2) + 𝜖𝑖 ,  (1) 

where yi is the noise-free signal; bi represents the sampling pattern; w1 and w2 are the 

populations of the two components; D1 and D2 are the decay rate constants, where for 
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convenience D1 < D2; and ϵi represents the noise related to each signal data point. It is 

assumed that ϵi are random and independently normally distributed with zero mean and 

variance σ
2
 (Gaussian noise). The noise variance depends on the scaling of the signal; in 

this work, the stated value of σ corresponds to a scaled signal of maximum 1, which 

corresponds to w1 + w2 = 1. The noise-free signal, yi, depends on 4 parameters, θl 

(l = 1, 2, 3, 4): w1, w2, D1 and D2. In the presence of noise, the estimate of these 

parameters becomes uncertain and there is an uncertainty associated with the estimate of 

each parameter. A common characteristic of this uncertainty is the standard deviation, 

std(θl), a lower limit of which is given by the Cramér-Rao Lower Bound (CRLB) theory: 

std(𝜃𝑙) ≥ √(𝐹−1)
𝑙,𝑙

 ,  (2) 

where F is the Fisher Information Matrix [19]. Given the assumption that the noise 

random variables are independently normally distributed with zero mean and variance σ
2
, 

the Fisher Information Matrix is simplified to [20]: 

𝐹𝑙1,𝑙2 =
1

𝜎2
(∑ (

𝜕𝑦𝑖

𝜕𝜃𝑙1

𝜕𝑦𝑖

𝜕𝜃𝑙2
)𝑖 ) . (3) 

The elements of F, as described by Eq. (3), are obtained through partial differentiation of 

the noise-free signal defined in Eq. (1): 

𝜕𝑦𝑖

𝜕𝑤1
= exp(−𝑏𝑖𝐷1) ,  (4a) 

𝜕𝑦𝑖

𝜕𝑤2
= exp(−𝑏𝑖𝐷2) ,  (4b)  

𝜕𝑦𝑖

𝜕𝐷1
= −𝑤1𝑏𝑖exp(−𝑏𝑖𝐷1) , (4c) 

𝜕𝑦𝑖

𝜕𝐷2
= −𝑤2𝑏𝑖exp(−𝑏𝑖𝐷2) . (4d) 

It follows that the uncertainty associated with the estimate of each parameter depends on 

σ, w1, w2, D1, D2 and, most importantly, on the sampling pattern, bi. Given the noise 

standard deviation, σ, and an experimental system (characterised by w1, w2, D1 and D2), 

the error associated with the estimate of each parameter depends solely on the sampling 

pattern, bi. Therefore, by optimizing the sampling pattern, it is possible to decrease to a 

minimum the uncertainty associated with the estimate of a given parameter, hence, 

making the estimate of that parameter as accurate as possible. 
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The sampling pattern that minimises the uncertainty related to one of the parameters 

does not necessarily minimise the uncertainty related to the other parameters. Therefore, 

an objective function to be minimised needs to be defined. The method presented in this 

work can be easily adapted to different objective functions. Here, it is chosen to 

minimise:  

𝜒 = max𝑙[std(𝜃𝑙)/𝜃𝑙] × 100% , (5) 

which practically means minimising the percentage error of the most difficult to estimate 

parameter of the model. 

1.  

2.  

3. Materials and methods 

3.1. Sample preparation and data acquisition 

A PFG NMR diffusion experiment was conducted on a binary gaseous mixture adsorbed 

on a porous material. The gases used were methane (BOC, >99% purity) and ethane (Air 

Liquide, >99.99%)). The porous material used was a microporous -zeolite (BEA), 

supplied by Tosoh Corporation. Zeolite crystals of mean crystallite size of 15 μm and 

Si:Al ratio 124 were used. The crystals were packed into a cylindrical column of height 

10 mm and diameter 5 mm. The adsorption of the gases in the zeolite was carried out on 

a Schlenk vacuum line; further details are found elsewhere [21]. Each individual gas 

adsorbed in the -zeolite, methane or ethane, is characterised by a diffusion attenuation 

that is well described by a single exponential decay [21].  

The PFG NMR experiment was performed on a Bruker DMX300 spectrometer, operating 

at a resonant frequency of 300.13 MHz for 
1
H observation, at a temperature of 20 ± 

0.5 °C. The maximum gradient amplitude available was 1176 G cm
-1

 and the 

radiofrequency (r.f.) coil had a diameter of 5 mm. The 13-interval bipolar gradient 

stimulated echo PFG NMR pulse sequence [22], illustrated in Fig. 1(a), was used for 
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diffusion measurements. The relevant NMR acquisition parameters used, annotated in 

Fig. 1(a), were T = 100 ms, δ = 0.25 ms and τ = 0.46 ms. The echo time, τ, was 

minimised to increase the signal-to-noise ratio and to reduce relaxation weighting. The 

small remaining relaxation weighting does not affect the following analysis. 248 gradient 

strength values, gi, spaced equidistantly in the range 1.5-50 G cm
-1

, were used. This 

dataset was used in two ways. First, the full dataset provided an estimate of the ground 

truth values of the populations and the diffusion coefficients for the methane/ethane 

mixture in the zeolite. Second, sub-sets of the acquired data points, which form sampling 

patterns, were used to test the performance of CRLB method in being able to predict the 

correct objective function, as defined in Eq. (5). The diffusion data cannot be resolved 

spectroscopically and, therefore, the signal attenuation data reported in Fig. 1(b) include 

the attenuating signal for both chemical species present.  The attenuation is well 

described by the bi-exponential model described in Eq. (1), with bi = γ
2 gi

2 
δ

2 
(4T + 6τ -

 2/3δ) [22], where γ is the gyromagnetic ratio of 
1
H nuclei. The estimated model 

parameters, which are used as ground truth for the following analysis, are: 

w1 = 0.199 ± 0.001 (ethane population), D1 = (9.24 ± 0.07) × 10
-9

 m
2
 s

-1 
(ethane diffusion 

coefficient), w2 = 0.801 ± 0.001 (methane population) and, 

D2 = (1.42 ± 0.01) × 10
-7 

m
2
 s

-1 
(methane diffusion coefficient). The quoted uncertainty 

corresponds to the standard deviation of the bi-exponential fit. The residuals of the fit 

presented in Fig. 1(b) do not show any systematic deviation and correspond to a noise 

standard deviation of σ = 0.0032.  The uncertainty related to each of the parameters is 

small because of the low σ and the large number of points in the decay. 

3.2. Generation of sampling patterns 

A sampling pattern for the acquisition of the PFG NMR data consists of the choice of the 

sampling points, bi, at which the attenuation of the NMR signal is acquired. This 

involves choosing the number of data points, n, and their respective values. For a given 

number of points, n, the optimal choice of bi would require setting the partial derivatives 

of the expression in Eq. (5) with respect to each individual bi to zero and solving the set 

of resulting n simultaneous non-linear equations; this is computationally intractable. As 

a result, this paper focuses on finding the optimal sampling pattern for the class of linear 

sampling patterns, defined as: 
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𝑏𝑖 = 𝑏1 + (𝑏𝑛 − 𝑏1) (
𝑖−1

𝑛−1
)
𝑟

,  (6) 

where b1 and bn are the first and last sampling points and r determines the density 

distribution of the sampling points. The class of logarithmic sampling patterns [15] was 

also investigated, but the optimised logarithmic sampling pattern had the same value of χ 

as the optimised linear sampling pattern; this is consistent with the work of Reci 

et al. [15]. Therefore, only the class of linear sampling patterns is considered here.   

Sampling a larger number of points, n, leads to a more accurate estimate of the model 

parameters. Therefore, the comparison between the predictions of the CRLB theory and 

experimental results is performed with respect to sampling patterns of a particular 

number of sampling points, n = 32. Other values of n could have been chosen, but n = 32 

is a commonly used experimental value. Using the smallest possible value for b1 is 

supported by the results of other works [23, 24]. Therefore, the smallest experimentally 

used value, b1 = 4.9 × 10
5
 m

-2
 s, was used when validating the predictions of the CRLB 

theory against experimental data. Having fixed n and b1, optimising the linear sampling 

pattern consists of optimising bn and r.  

The comparison between the predictions of the CRLB theory and experimental results 

was performed as follows. Using a range of bn from 5.4 × 10
7
 to 4.8 × 10

8
 m

-2
 s and a 

range of r from 0.6 to 10, 10
4
 linear sampling patterns were constructed using Eq. (6). 

For each of these constructed sampling patterns, the CRLB theory was used to predict 

the objective function, χ, defined in Eq. (5). This was compared to the objective function 

obtained from the experimental data which was calculated as follows. The closest 

experimental 32 bi points (out of the total 248 experimental sampling points acquired) to 

the numerically constructed sampling patterns were selected. The experimental 

attenuation data corresponding to these 32 points was fitted to a bi-exponential decay 

and confidence intervals for each parameter, θl, were extracted. The standard deviations 

in the estimation of each parameter, std(θl), were then calculated from the confidence 

intervals using a z-test and these values were used to calculate the experimental objective 

function, χ. 
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3.  

4. Results and discussion 

In Section 4.1, the predictions of the CRLB theory (described in Section 2) are validated 

against the experimental data acquired for the methane/ethane system, using the 

procedure outlined in Section 3.2. The CRLB theory is then used in Section 4.2 to advise 

on which bi-exponential systems, characterised by w1 and D2/D1, can be resolved and 

under which conditions they can be resolved, in terms of the noise standard deviation, σ, 

and the number of sampled points, n. 

4.1. Validation of the CRLB theory against experimental data 

The comparison of the objective function, χ, as predicted by the CRLB theory and as 

calculated from the experimental data is shown in Fig. 2. Small values of χ indicate a 

good sampling pattern. Fig. 2(a) shows the contour map of χ as a function of the linear 

sampling pattern parameters bnD1 and r, as predicted by the CRLB theory. Fig. 2(b) 

shows the corresponding contour map obtained from the experimental data. There is very 

good agreement between the CRLB and experimental contour maps. On average, there is 

< 10% difference between the corresponding χ values of the two maps, thereby 

validating the application of the CRLB theory to the optimization of sampling patterns 

for bi-exponentially decaying signals.  

For a given value of r, for example r = 1 (corresponding to equidistant points), the value 

of the objective function is large at small bnD1 because late decay points are not sampled 

and, therefore, the uncertainty related to estimating the slower diffusing component 

(ethane) is large. The value of the objective function is also large at very large bnD1 

because early decay points are not sampled properly. Therefore, the uncertainty related 

to estimating the faster diffusing component (methane) is large. As a result, for any 

given r, there is an optimum bnD1 which minimises the objective function. For a given 

bnD1, for example bnD1 = 2.5, the value of the objective function is large at small r 

because early decay points are sampled sparsely. Therefore, the uncertainty related to 

estimating the faster diffusing component (methane) is large. The value of the objective 
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function is also large at very large r because late decay points are sampled sparsely. 

Therefore, the uncertainty related to estimating the slower diffusing component (ethane) 

is large. As a result, for any given bnD1, there is an optimum r which minimises the 

objective function. In summary, there is an optimum combination (bnD1,r) at which the 

objective function obtains a minimum, which corresponds to the best linear sampling 

pattern. The best linear sampling pattern for 32 sampled points is predicted by the CRLB 

theory at r = 1.07 and bnD1 = 2.34, at which point χ = 1.9%. Therefore, using the best 

linear sampling pattern, the maximum percentage error for any of the estimated 

parameters is 1.9%. 

For completeness, the objective function of a commonly used sampling pattern with 32 

equidistantly sampled points (r = 1), with the largest sampled point being bnD1 = 5 

(typical rule of thumb), is χ = 3.1%. This value of χ is >50% larger than the value 

achieved using the optimised linear sampling pattern (χ = 1.9%). The calculation was 

performed using the CRLB theory for the two-component system under investigation and 

assuming σ = 0.0032. 

The use of the proposed method for optimising the sampling pattern relies on a prior 

knowledge about the diffusion coefficients and the populations. In this work, this 

knowledge was obtained by sampling a large number of points (248) at a low noise 

standard deviation, σ (0.0032). In practice, the acquisition of such a large number of 

points defeats the purpose of optimising the sampling pattern. It is therefore advised to 

sample a small number of points at a high noise standard deviation (through less signal 

averaging). A fit to these experimental data would provide a crude prior knowledge 

about the diffusion coefficients and the populations, which could then be used to 

optimise the sampling pattern using the proposed method. To answer how crude the prior 

knowledge needs to be, a sensitivity analysis similar to the analysis described by 

Reci et al. [15] can be performed.  

4.2. Resolution limit of bi-exponential decays 

In Section 4.1, the CRLB theory predictions were validated against an experimentally 

acquired dataset for the methane/ethane gas mixture in a zeolite; this is a system 

exhibiting two-component diffusion characterised by D2/D1 = 15 (ratio of the largest to 

the smallest diffusion coefficients) and w1 = 0.20 (population of slowest diffusing 
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component), as stated in Section 3.1. The aim of this section is to use the CRLB theory 

to investigate which systems characterised by bi-exponential signal attenuation data, 

characterised by w1 and D2/D1, can be resolved and under which conditions they can be 

resolved, in terms of the noise standard deviation, σ, and the number of sampled points, 

n. 

This question is investigated as follows. For a given experimental system, characterized 

by w1 and D2/D1, and a noise standard deviation, σ, a linear sampling pattern with a 

given number of points, n, and b1D1 = 0 is optimised in terms of r and bnD1. This is 

performed using a similar method to the method used to produce Fig. 2(a). For the 

optimised linear sampling pattern, the value of χ is recorded. This is repeated for 100 

values of w1 in the range 0.0-1.0 (non-inclusive) and 100 values of D2/D1 in the range 

1-1000 (non-inclusive at the lower limit). A contour map of the optimal χ as a function 

of w1 and D2/D1, for the chosen noise standard deviation, σ, and sampling number of 

points, n, is then constructed. At this point, the resolution limit needs to be defined; in 

this work the resolution limit is taken to be χ < 30%; i.e., if the percentage error in the 

estimate of all the parameters is < 30 %, the bi-exponential decay is defined as being 

resolvable. It is noted that a different resolution limit definition is easily implemented. 

With the definition of the resolution limit, the contour map is divided into two regions: 

resolvable and non-resolvable, for the chosen values of σ and n. The whole procedure is 

performed for σ = 0.001, 0.005, 0.02, 0.05 and n = 16, 32, 64. The results are presented 

in Fig. 3. 

The first observation from Fig. 3 is that the contour maps are not symmetric about 

w1 = 0.5. The asymmetry suggests that it is easier to resolve bi-exponential decays when 

the slowest diffusing component has the largest population than when the slowest 

diffusing component has the smallest population. This is explained by the fact that the 

most information about the slow diffusing component is contained at the high bi points. 

However, at high bi points, the signal becomes comparable to the noise. Therefore, a 

high population of the slow diffusing component is needed if it is to be resolved. 

Another qualitative observation from Fig. 3 is that to resolve components of similar 

diffusion coefficients, D2/D1 ~ 1, many points at a high signal-to-noise ratio need to be 

acquired. 
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The maps shown in Fig. 3 can be used quantitatively in many ways. For example, the 

methane/ethane gaseous mixture investigated in this paper (D2/D1 = 15, w1 = 0.20) was 

easily resolved (χ = 1.9%) using n = 32 points because the noise standard deviation was 

relatively low (σ = 0.0032). According to Fig. 3(b), the limit of resolution of these 

components for n = 32 points is at σ ~ 0.05. Therefore, this analysis shows that the PFG 

NMR data acquisition time could be accelerated by a factor of ~ 4 (i.e., employing less 

signal averaging), while still keeping the components resolvable (assuming acquisition 

time ∝ √(1/σ) [25]). Accelerating the PFG NMR data acquisition time could be 

important if temporally changing phenomena are being investigated.  

5. Conclusions 

A recently reported method, based on the CRLB theory, was used to design optimal 

sampling patterns for bi-exponentially decaying signals. The optimal sampling pattern 

was defined as the sampling pattern that minimizes the percentage error in estimating the 

most difficult to estimate parameter of the bi-exponential model, termed the objective 

function. The capability of the method to predict the optimal sampling pattern is 

validated with respect to PFG NMR diffusion data of a binary gaseous mixture of 

methane/ethane adsorbed in a zeolite. The predictions of the method about the variation 

of the objective function with the sampling pattern were within 10% of the value of the 

objective function calculated from the experimental dataset.  The method was 

subsequently used to determine under which conditions systems characterised by a bi-

exponentially decaying signal can be resolved. An example was given about how the 

method can be used to reduce the experiment acquisition time, while still being able to 

resolve a two-component system. 
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Figure captions 

Fig. 1. (a) Schematic of the 13-interval bipolar gradient stimulated echo PFG NMR pulse 

sequence used in this work. (b) Experimental PFG NMR diffusion data of a binary 

gaseous mixture of methane/ethane in zeolite BEA, and the corresponding bi-exponential 

fit.  The sampling points, bi, have been non-dimensionalised by the diffusion coefficient 

of the slowest diffusing component, ethane, D1 = 9.24 × 10
-9

 m
2
 s

-1
. Embedded in the 

figure are the residuals of the fit. 

Fig. 2. (a) Contour map of the variation of the objective function, χ, with respect to the 

parameters of the family of linear sampling patterns with n = 32, as predicted by the 

CRLB theory. (b) Contour map of the variation of the objective function, χ, with respect 

to the parameters of the class of linear sampling patterns with n = 32, obtained from the 

experimental data shown in Fig. 1. The best linear sampling pattern in (a) is obtained for 

r = 1.07 and bnD1 = 2.34, and is identified as +, at which point χ = 1.9%. 

Fig. 3. Resolution limit of bi-exponential decays, defined as χ < 30%, for a range of 

experimental systems characterised by w1 and D2/D1 and noise standard deviation, σ, for 

(a) n = 16, (b) n = 32, and (c) n = 64 sampling points. The arrows in the map point 

towards the resolvable region. 
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