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Highlights: 

 The Wide Field-of-View Nematode Tracking Platform is a novel multiparametric 

tracking platform that can monitor more than 5.000 animals in parallel. 

 The platform is optimised for extracting features important for characterising the 

behaviour of C. elegans, a widely used model organism in biomedical research. 

 The platform provides a high power of detection and statistical power, allowing 

reliable detection of even small changes in worm behaviour and reducing the risk of 

false positive results.  

 The capabilities of the platform are demonstrated by screening potential drug leads for 

neurodegenerative disorders such as Parkinson's and Alzheimer’s disease. 

 Full details are provided to build the platform, and open source codes are provided to 

analyse the resulting data, making it readily accessible to the community.  
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Abstract: 

Background 

The nematode worm C. elegans is a model organism widely used for studies of genetics and 

of human disease. The health and fitness of the worms can be quantified in different ways, 

such as by measuring their bending frequency, speed or lifespan. Manual assays, however, are 

time consuming and limited in their scope providing a strong motivation for automation.  

 

New method 

We describe the development and application of an advanced machine vision system for 

characterizing the behaviour of C. elegans, the Wide Field-of-view Nematode Tracking 

Platform (WF-NTP), which enables massively parallel data acquisition and automated multi-

parameter behavioural profiling of thousands of worms simultaneously.  

 

Results 

We screened more than a million worms from several established models of 

neurodegenerative disorders and characterised the effects of potential therapeutic molecules 

against Alzheimer’s and Parkinson’s diseases. By using very large numbers of animals we 

show that the sensitivity and reproducibility of behavioural assays is very greatly increased. 

The results reveal the ability of this platform to detect even subtle phenotypes. 

 

Comparison with existing methods 

The WF-NTP method has substantially greater capacity compared to current automated 

platforms that typically either focus on characterising single worms at high resolution or 

tracking the properties of populations of less than 50 animals. 

 

Conclusions 

The WF-NTP extends significantly the power of existing automated platforms by combining 

enhanced optical imaging techniques with an advanced software platform. This approach will 

further extend the scope and utility of C. elegans as a model organism.  

 

Keywords: Neuroscience; C. elegans; Automation; Drug Discovery; 

Biophysics 
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1. Introduction 

 

Characterized by its simple anatomy, short lifespan, and well-established genetics, the 

nematode worm Caenorhabditis elegans has become a powerful model organism in 

biomedical research, in particular for genetic studies (Dillin et al., 2002; Hamilton et al., 

2005; Jorgensen and Mango, 2002; Kim and Sun, 2007; Lee et al., 2003; Morley et al., 2002; 

Nollen et al., 2004; Sarin et al., 2008; Van der Goot et al., 2012; Van Ham et al., 2010; 2008) 

and drug screening (Alavez et al., 2012; Habchi et al., 2016; 2017; Perni et al., 2017; Wu et 

al., 2006). These worms are small (ca. 1 mm in length), transparent, easy to manipulate, with 

a short maturation period of 3 days from egg to adult at 25 °C, and a life-span between 2 and 

3 weeks, characteristics which facilitate the rapid study of multiple aspects of their biology 

(Brenner, 1974). Nevertheless, they have a cellular complexity and tissue-specific protein 

expression profile comparable to that of higher organisms. As a result, C. elegans is 

commonly employed as a model organism for the characterization of the molecular 

mechanisms underlying neurodegeneration, in particular protein aggregation (Habchi et al., 

2016; Link, 1995; Morley et al., 2002; Nollen et al., 2004; Perni et al., 2017; Van Ham et al., 

2008). In this context, it has been widely employed as a molecular tool for the identification 

of age-related genes and pathways (Dillin et al., 2002; Hamilton et al., 2005; Jorgensen and 

Mango, 2002; Kim and Sun, 2007; Lee et al., 2003; Morley et al., 2002; Nollen et al., 2004; 

Sarin et al., 2008; Van der Goot et al., 2012; Van Ham et al., 2008; 2010) and also for the 

definition and characterization of promoters and inhibitors of protein aggregation (Gidalevitz 

et al., 2009; Morley et al., 2002; Van Ham et al., 2010), as well for monitoring the effects of 

small molecules (Alavez et al., 2012; Morley et al., 2002; Nollen et al., 2004; Van der Goot et 

al., 2012; Van Ham et al., 2008; 2010) on such processes. 

The health and fitness of C. elegans has conventionally been quantified in liquid media by 

counting the number of body bends per minute (BPM) (Gidalevitz et al., 2009; Morley et al., 

2002; Van Ham et al., 2010), or by measuring the speed of movement of the worms (Machino 

et al., 2014; Nussbaum-Krammer et al., 2015; Swierczek et al., 2011). Other key readouts in 

such studies are lifespan and paralysis which have, for example, recently led to major 

discoveries in the field of ageing, including the identification of specific genes (Hsin and 

Kenyon, 1999; Kenyon, 2010; Klass, 1983) and compounds (Alavez et al., 2012) modulating 

longevity, the link between oxidative stress and mitochondrial function (Dillin et al., 2002; 

Hamilton et al., 2005; Jorgensen and Mango, 2002; Kim and Sun, 2007; Lee et al., 2003; 
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Sarin et al., 2008), and the triggers for neurodegenerative disease (Chiti and Dobson, 2006; 

Knowles et al., 2014; Soto, 2003). Although manual measurements of body bends and speed 

of swimming movement have yielded many important insights (Alavez et al., 2012; 

Gidalevitz et al., 2009; Morley et al., 2002; Nollen et al., 2004; Nussbaum-Krammer et al., 

2015; Van der Goot and Nollen, 2013), such studies are often hindered by difficulties in 

acquiring high quality data with sufficient statistical power to enable subtle behavioural 

patterns to be identified and measured, not least as a result of limitations in the numbers of 

animals that can be efficiently investigated. Manual assays remain low throughput, highly 

labour intensive and time consuming, and are prone to errors and to intrinsic human biases. 

Therefore, there are strong motivations to replace manual counting with reproducible, bias-

free, time and cost effective automated measurements.  

Several laboratories have recently developed innovative solutions that allow high-sensitivity 

measurements and accurate tracking for both single (Faumont et al., 2011; Leifer et al., 2011; 

Stirman et al., 2011; Tsibidis and Tavernarakis, 2007; Wang and Wang, 2013; Yemini et al., 

2013) and multiple (Ramot et al., 2008; Restif et al., 2014; Swierczek et al., 2011) worms. 

The most recent developments have greatly improved the reproducibility and sensitivity in the 

studies of C. elegans relative to conventional manual procedures (Husson et al., 2012). There 

are, however, further exciting opportunities for enhancing the level of automation of 

behavioural screening of C. elegans. Such opportunities include the development of new 

approaches for the simultaneous analysis of the behavioural parameters of an entire 

population of worms, and connecting in a robust way paralysis and behavioural assays. In this 

context, a number of technical difficulties need to be overcome, such as the background 

clutter of existing worm tracks and eggs on the culture medium, and the identification of 

interactions or crossover events between animals. It is also important to be able to track a 

large number of worms that bend at high speed (up to 2 bends / second for young animals). 

Moreover, as a result of the high intrinsic variability of worm behaviour (Lublin and Link, 

2013), drug treatment studies often lead to subtle phenotypic changes, and require a large 

number of animals to be screened in order to acquire robust datasets. Furthermore, recent 

studies have shown that a high power of detection (POD) is necessary to detect with 

confidence any significant change in behaviour and to limit false positive results (Petrascheck 

and Miller, 2017). 

Our approach to overcoming such technical challenges has involved the development of a 

wide field-of-view nematode-tracking platform (WF-NTP), which enables the simultaneous 
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investigation of multiple phenotypic readouts on large worm populations. The WF-NTP was 

initially developed for drug screening purposes; although it has proved to have much more 

general applications including the characterisation of mutant strains and very detailed 

behavioural studies. The WF-NTP monitors up 5000 animals in parallel, and the phenotypical 

readout includes multiple parallel parameters. We used modular optical and mechanical 

components, giving the tracker the potential to be readily customized in the future for even 

more complex behavioural studies, such as the analysis of chemotaxis and learning, and for 

genetic studies, including high-throughput RNAi screens. During its development stage, this 

platform has already brought significant advantages to AD (Aprile et al., 2017; Habchi et al., 

2016; 2017) and PD (Perni et al., 2017) drug discovery programmes, helping the assessment 

of candidate compounds and the development of effective protocols for drug screening. 

 

2. Materials and methods 

2.1 Machine vision hardware 

A GS3-U3-60QS6M 1" Grasshopper USB 3.0 monochrome camera (Point Grey, Richmond, 

CA; 14 bits; 2736 x 2192 pixels) was combined with a 16mm focal length high resolution lens 

f/1.8 - f/16 to image a 6-14 cm plate or a multi-well device under brightfield illumination (8" 

x 8" white AI side-fired backlight) (Edmund Optics Ltd.). All tracking was performed on 

custom assembled computer with an Intel® Core™ i7-5960X @ 3.00GHz processor and 64 

GB of RAM. Images were recorded using the FlyCapture Software Development Kit (SDK) 

USB 3.0 (Point Grey Research Inc, Richmond, Canada).  

 

2.2 Image analysis 

Custom software written in Python (Python Software Foundation, Wilmington, Delaware, 

USA) was used to generate a GUI to set up image processing and experimental parameters, 

such that once tracking is completed the software captures frames stored with the camera in 

the .avi format. Our software is called WF-NTP and is available under an open-source license 

(GPL); the version used in this study is available as Supplementary Software 1. Python is 

required to run and to modify the WF-NTP code. Our code initially detects and subtracts the 

background signal, consisting of non-moving objects such as small particles and shadows 

from the agar plate, and offers an alternative approach to removing the background without 
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using temporal information. The method begins by defining a Gaussian adaptive threshold of 

the image. Through this process essentially all worms are identified, but with a high level of 

false-positive pixels. Afterwards, all pixels marked as worms are then recalculated by 

interpolating from pixels not marked as worms. After this operation, the remaining labelled 

regions are identified as individual worms and the positions of those regions are then stored 

for each frame. The eccentricity of each tracked worm, a measure of the ratio of the major and 

minor ellipse axes, can then be used to estimate the extent of worm bending as a function of 

time. The software also outputs in parallel with the analysis a thresholded video, which allow 

the user to readily check for the robustness of the single worms tracking and of the parameters 

used for the tracking. Metrics generated through this strategy include body bends, speeds, 

paralysis rates, area per animal, and mean errors. The fingerprint tool creates a radar chart of 

selected strains and parameters when loading the text files, which are created during the 

analysis, into the fingerprint software.  

 

2.3 C. elegans cultures 

Standard conditions were used for the propagation of C. elegans (Brenner, 1974). Briefly, the 

animals were synchronized by hypochlorite bleaching, hatched overnight in M9 buffer (3 g/l 

KH2PO4, 6 g/l Na2HPO4, 5 g/l NaCl, 1 µM MgSO4), and subsequently cultured at 20 °C on 

nematode growth medium (NGM) (CaCl2 1 mM, MgSO4 1 mM, cholesterol 5 µg/ml, 250 µM 

KH2PO4 pH 6, Agar 17 g/L, NaCl 3 g/l, casein 7.5 g/l) plates seeded with the E. coli strain 

OP50. Saturated cultures of OP50 were grown by inoculating 50 mL of LB medium (tryptone 

10 g/l, NaCl 10 g/l, yeast extract 5 g/l) with OP50 and incubating the culture for 16 h at 37 

°C.  NGM plates were seeded with bacteria by adding 350 µl of saturated OP50 to each plate 

and leaving the plates at 20 °C for 2–3 days. On day 3 after synchronization, the animals were 

placed on NGM plates containing 5-fluoro-2′deoxy-uridine (FUDR) (75 µM, unless stated 

otherwise) to inhibit the growth of offspring.  

 

For multi-well studies, worms were transferred from seeded NGM plates at the L4 stage to the 

multi-well plates. Worms were suspended in a solution of S Medium at 75 worms/mL 

containing 5 mg/mL OP50, FUDR (final concentration 120 M) that was introduced to each 

well from a concentrated 0.6 mM solution to prevent the development of future generations. 

The compound was added in appropriate quantities of water (in the case of thioflavin-t) or 

0.6% DMSO (in the case of curcumin and bexarotene) at the late L4 stage such that the 
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concentration of OP50 became 4 mg/mL. Videos for the determination of motility were then 

recorded at day 5 of adulthood. This protocol was adapted from previous studies (Habchi et 

al., 2017) and optimized for analysis of motility.  

 

2.4 Strains of C. elegans 

The following strains of C. elegans were used: zgIs15 [P(unc-54):: αsyn::YFP]IV (OW40), 

where α-synuclein fused to YFP relocates to inclusions, which are visible as early as day 2 

after hatching and that increase in number and size during aging of the animals up to late 

adulthood (Day 17) (Van Ham et al., 2008); rmIs126 [P(unc-54)Q0::YFP]V (OW450), in 

which YFP alone is expressed and remains diffusely localized throughout aging(Van Ham et 

al., 2008); dvIs14 [(pCL12) unc-54::beta 1-42 + (pCL26) mtl-2::GFP] (Cl2120), where mtl-

2::GFP produces strong constitutive intestinal expression of GFP at all developmental stages 

and also expresses human A42. In this strain, accumulation of A42 aggregates and their 

associated toxicity is enhanced at temperatures higher than 20 C (Fay et al., 1998); dvIs50 

[pCL45 (snb-1::Abeta 1-42::3' UTR(long) + mtl-2::GFP]I, which shows pan-neuronal 

expression of human A42 peptide and constitutive intestinal expression of GFP from a 

marker transgene; the strain shows deficits in chemotaxis, associative learning, and body 

bends in liquid, and incomplete sterility due to germline proliferation defects and embryonic 

lethality (Wu et al., 2006); dvIs100 [unc-54p::A-beta-1-42::unc-54 3'-UTR + mtl-2p::GFP] 

(GMC101), which produces constitutive expression of GFP in intestinal cells; unc-54p::A-

beta-1-42 which expresses full-length human A42 peptide in bodywall muscle cells that 

aggregates in vivo; shifting L4 or young adult animals from 20 C to 25 C causes paralysis 

(McColl et al., 2012). dvIs15 [(pPD30.38) unc-54(vector) + (pCL26) mtl-2::GFP] (Cl2122) 

was used as a control strain for CL2120, GMC101 and CL2355, and shows an apparently 

wild type phenotype (Fay et al., 1998; McColl et al., 2012; Wu et al., 2006).  

 

 

2.5 Manual motility assay 

Animals of different ages were placed in a drop of M9 buffer and allowed to recover for 30 s 

(to avoid the observation of behaviour associated with stress) after which the number of body 

bends was counted for either 30 s or 1 min.  For blinded motility assays, adult animals were 

randomly picked from the treated and untreated populations and measured for motility 
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without knowledge of the concentration of the added compound. 50 animals were counted in 

each experiment unless stated otherwise; the experiments were carried out in triplicate and the 

data from one representative experiment are shown in each figure. Statistical analysis was 

performed using Graphpad Prism software (GraphPad Software, San Diego, CA, USA) 

(Gidalevitz et al., 2009). 

 

2.6 Automated motility assay on agar plates 

All C. elegans populations were cultured at 20 °C and developmentally synchronized from a 4 

h egg-lay. At 64-72 h post egg-lay (time zero) individuals were transferred to FUDR plates, 

and body movements were assessed over the times indicated. At different ages, the animals 

were washed off the plates with M9 buffer and spread over an OP-50 unseeded 9 cm plate, 

after which their movements were recorded at 20 fps using the WF-NTP for 30 s, or 1 min. 

Up to 1000 animals were counted in each experiment unless stated otherwise, and one 

experiment that is representative of the three types of measurement is shown. Videos were 

analysed using a custom made tracking code which measures different metrics, including 

body bends/min, swimming speed, and paralysis assays; we considered that worms showing 

less than 5 body bends /min and moving at less than 1 mm / min to be paralysed. The software 

is provided as open-source and can be downloaded online as Supplementary Software 1.  

 

2.7 Automated motility assay on multi-well plates 

For screening the multiwell plates, worms were stored at 20 °C prior to the L4 stage and at 20 

°C or 23.5 °C thereafter for OW40 or GMC101 worms, respectively; these temperatures were 

found sufficient to induce a phenotype. Prior to screening, a bench top plate shaker was used 

at 750 rpm for 1 min to distribute sedimented OP50 and induce full worm motility. 

Immediately after shaking, the worms were staged on the platform and the file collection was 

initiated 60 s after shaking for 2 min at 20 fps. 24 wells were analysed per condition 

corresponding to approximate 250 worms. 

 

2.8 Analysis of Collision Rates and Recording Times. 

All C. elegans populations were cultured at 20 °C and developmentally synchronized from a 4 

h egg-lay. At 64-72 h post egg-lay (time zero) c. a. 5000 wild type worms were transferred to 

FUDR plates and allowed to develop until D4 of adulthood. The D4 adults were washed off 
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the FUDR with M9 buffer and concentrated via centrifugation. The supernatant was then 

removed and the worms were then resuspended in 3 ml M9 before being counted to determine 

their concentration. The worms were then transferred onto 9 cm OP50 unseeded NGM plates, 

after which their movements were recorded at 20 fps for 1 min and their number was analysed 

using the WF-NTP . The parameter “memory” was also set at 0 or 40 frames, to determine the 

collisions rate modification in its presence of absence, respectively. For measurement of the 

BPM over time, worm movements were recorded at 20 fps using the WF-NTP platform for 

30s, 60s, 120s and 180s, after which their motility was analysed. Up to 1000 worm per 

condition were screened. 

 

2.9 Paralysis Rates in Response to paralysing agents 

Adult worms were washed off the FUDR plates at day 4 of adulthood using 15 ml of M9 

buffer and were subsequently concentrated to 4 worms / µL; the worms were then transferred 

to 1.5 ml microcentrifuge tubes with 400 worms per sample. Paralysing agents were added to 

the worms at 0, 0.1, 0.5, 1, 5, 10 and 50 µM for Sodium Azide and 0, 1, 5, 10, 50, 100 and 

500µM for Levamisol (total volume 1ml) and incubated at room temperature for 10 mins on 

an orbital shaker at 755 RPM to prevent sedimentation. After incubation samples were 

washed with M9 buffer and screened at 20 fps using the WF-NTP for 1 min. Videos were then 

analysed and we considered worms showing less than 5 body bends /min and moving at less 

than 1 mm / min to be paralysed. 

 

2.10 Biological and Technical Replicas 

To assess technical reproducibility, all C. elegans populations were cultured at 20 °C and 

developmentally synchronized from a 4 h egg-lay. At 64-72 h post egg-lay (time zero) 5000 

worms were transferred to 5 FUDR plates, and body movements were assessed at day 4 of 

adulthood. Here, animals on each plate were washed off using M9 buffer and spread over an 

unseeded 9 cm NGM plate in 5 ml M9 buffer, after which their movements were recorded at 

20 fps using the WF-NTP for 1 min. Up to 1000 animals were counted in each experiment 

unless stated otherwise. Videos were analysed using a custom tracking code which evaluates 

different metrics, including frequency of body bends, swimming speed, and paralysis assays; 
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we considered that worms showing less than 5 body bends /min and moving at less than 1 mm 

/ min to be paralysed. 

The same process was followed for assessing biological reproducibility, however, for these 

experiments only 1000 worms from separate synchronisation procedure were taken and 

screened on day 4 of adulthood. This was repeated for 4 separate synchronisation steps, each 

originating from a different batch of worms. 

 

3. Results 

3.1 Development of the Wide Field-of-View Tracking Platform 

In order to overcome the technical challenges in automated tracking, we developed a platform 

that allows data acquisition on a full Petri dish or multi-well plate while still maintaining a 

resolution appropriate for the simultaneous tracking of multiple nematodes and for defining 

multiple phenotypes for each animal. This approach has the advantage of offering much 

higher rates of throughput, while at the same time facilitating the screening of dilute 

suspensions of worms over a larger surface area, reducing significantly the chance of overlap 

and collisions. 

To image a given object, the choice of the light source, the optical components and the 

detector are strongly interrelated. We used an array of LEDs coupled to a diffuser to produce 

uniform illumination over an area of 20 cm by 20 cm with minimal heat production. The 

uniformity of light diffusion, compared to conventional lamps, improves the contrast of the 

image, avoids blooming and shadowing, and the low heat illumination avoids stressing the 

worms and affecting their behaviour during observation. The imaging was achieved with 

combination of 8 lens components (Figure 1), which allow operation with dishes of different 

sizes (such as 6, 9 cm and 14 cm) and multi-well plates. The imaging objective minimizes 

errors of parallax and perspective and ensures adaptable magnification, field-of-view and 

focal length. Finally, a camera with high resolution, high sensitivity and rapid imaging rate 

was used as the detector (see Materials and Methods for technical details). Through this 

strategy, we achieved data acquisition over surfaces as large as 20 cm in diameter, while 

maintaining high resolution and high imaging rates.  
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The imaging platform designed in this work also allows simultaneous detection of nematodes 

both swimming in liquid and when crawling in a thin layer of bacteria on an agar surface. 

Data for swimming worms were acquired continuously at a time resolution of 20 - 30 frames 

per second (fps), and 3 - 7 fps for studies focused on crawling. Data for movement on a 

surface were typically obtained by imaging an area of over 250 cm2, with a lateral resolution 

down to 35 m, allowing the imaging of 6, 9 or 14 cm agar plates or a multi-well plate 

(Figure 1a and Figure 2b). To image different fields of view depending on the choice of 

plate, the distance between the sample and the imaging lens can also easily be varied (Figure 

1a and Figure 1, S1). Moreover, the modular structure of the tracking platform makes it 

easily accessible, reproducible and highly customizable (Figure 1, S1). 

 

3.2 Worm Tracking Software Platform 

The software packages that are generally employed for visual analysis of nematodes use static 

background subtraction, which works well but can have limitations in cases where not all the 

worms are alive and moving significantly in the time-frame of the recording (Husson et al., 

2012). Indeed, if any worms are paralysed or dead, this approach can skew the final statistics, 

as background subtraction can include images of immobile animals. Moreover, the inclusion 

of paralysis and death rates in the analysis of worm populations is particularly important in 

the case of screens for potential therapeutic leads, as molecules designed to improve worm 

fitness are also likely to influence survival and paralysis rates (Ramot et al., 2008).  

We have therefore developed a software package available on an open source basis and 

completely customizable (Software 1). It detects and subtracts background images (i.e. of 

objects other than those of the worms) from the set of video images, by means of an adaptive 

threshold filter (Figure S1). The procedure first defines a Gaussian adaptive threshold of the 

image, and then recalculates all the pixels identified to show nematodes by interpolating from 

those pixels that do not show images of worms. We chose this approach to avoid removing 

the immobile worms as part of the background signal, and it offers a strategy for the removal 

of background noise without using temporal information. In this way, paralysed worms can be 

analysed in parallel with moving ones and included in the final statistics (See Materials and 

Methods for details). The software also provides access to a simple process of removing all 

the non-moving particles through a more conventional approach. While it is critical in studies 

associated with drug discovery to include paralysed animals to achieve a robust analysis, this 
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alternative methodology can be employed as internal, complementary validation of the 

results, or in studies where the behaviour of the fraction of worms that are moving is of 

primary interest. These methods of subtracting background effects are identified here as ‘z-

filtering’ and ‘keep dead’ methods, and they can also be run in parallel. 

A graphical user interface (GUI) (Figure 1, S1) was also developed to facilitate the analysis 

of the defined locations of regions of interest (ROIs) and to identify quickly and easily 

behavioural changes in high-throughput screens, particularly in multi-well plates. In addition, 

a subset of utilities was also generated to visualize and interpret the data (See Materials and 

Methods for details), such as a “plot path” tool, which makes it possible to plot the 

movements of the individual nematodes, and to facilitate the visual analysis of their motion. 

In order to reduce further the problem posed by worm overlap and crossover, the code 

provides a computational solution for worms that overlap for a few frames; this issue can be 

regulated by means of the parameter labelled as “memory”, and accessible in the GUI. As a 

further internal quality control check for the tracking of individual animals, the code outputs a 

video that shows the behaviour of individual worms. Moreover, it is possible to output an 

example of thresholding prior to initiating the analysis (Figure 1, S2), in order to ensure that 

the algorithm is set up in an optimal manner. Finally, our analysis acts to avoid the 

underestimation of errors resulting from worms that appear to be “new” worms because of 

collisions and overlap; the software also provides an upper limit on the errors by considering 

the maximum number of worms detected in a single frame, rather than the total number of 

worms detected in the entire video (see Material and Methods for details).  

 

3.3. Analysis of Statistical Power 

Many of the current worm-tracking platforms focus on the observation of the behaviour of 

single worms by imaging at high resolution (Faumont et al., 2011; Hardaker et al., 2001; 

Husson et al., 2012; Leifer et al., 2011; Stirman et al., 2011; Tsibidis and Tavernarakis, 2007; 

Wang and Wang, 2013; Yemini et al., 2013). Others are designed to enable automated 

simultaneous tracking of up to about 50 animals at a lower resolution (Chalasani et al., 2007; 

Husson et al., 2012; Ramot et al., 2008). The use of a real-time strategy has enabled up to 100 

worms to tracked in parallel (Swierczek et al., 2011), and this approach has also addressed the 

issue posed by acquiring and storing long high-resolution videos, which involves very large 

files, by eliminating the need for such storage. In the present work, our aim has been to 
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develop a platform to provide both massively parallel tracking capabilities and the possibility 

of storing the data for subsequent analysis, while still maintaining the high resolution and 

sensitivity that is required for statistically significant analyses (Petrascheck and Miller, 2017). 

The WF-NTP platform described here can readily track up to 5,000 animals in parallel 

(Figure 1-2), thereby increasing throughput by about three orders of magnitude relative to 

manual approaches and by about 50 times compared to existing trackers (Husson et al., 2012): 

(Figure 2). As the standard error of the mean (SEM) of a given measurement is proportional 

to the inverse of the square root of the sample size, an increase in the number of individuals 

that can be tracked therefore results in a significant reduction of statistical errors.  

 

3.4. Multi-Parametric Analysis  

The application of this novel tracking procedure allows the extraction and analysis of parallel 

multi-parametric features describing the behaviour of a population of nematodes, such as their 

bending frequency, size, speed and paralysis rates (Gidalevitz et al., 2009; Morley et al., 

2002; Van Ham et al., 2010) together with recently defined behavioural parameters such as 

bending amplitude(Nahabedian et al., 2012), which can be used to reveal new aspects of 

disease-associated phenotypes. The multi-parametric analysis enables evaluation of the 

complex phenotypes of the worms; indeed it has recently been described how multi-

parametric analysis can reveal undiscovered correlations between different aspects of worm 

behaviour, for example between the velocity of the animals and their lifespan (Hahm et al., 

2015). To this end, we have included in the GUI the option to characterize quantitatively the 

unique behavioural patterns of C. elegans, by the means of fingerprints and behavioural maps 

(Figure 1b-d), which can be generated easily to provide a visual representation of multiple 

quantified metrics describing the behaviour of the animals, such as body bend frequency, 

paralysis rate, bend amplitude, displacement per bend, speed of movement and size. 

Furthermore, this multi-parametric analysis allows the combination of the different metrics 

into a single value, which we call the total fitness, representing the overall vitality of a very 

large population of worms (Figure 1d). Indeed, recent studies highlight the key importance of 

multi-parametric behavioural profiling for achieving an accurate and sensitive 

characterization of mutant strains (Faumont et al., 2011; Leifer et al., 2011; Stirman et al., 

2011; Tsibidis and Tavernarakis, 2007; Wang and Wang, 2013; Yemini et al., 2013), as well 

as illustrating the importance of multi-parametric analysis. Finally, we anticipate that further 
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development of the open source software will extend significantly the number of phenotypes 

that can be distinguished, hence making C. elegans fingerprinting yet more sensitive and 

representative of the complex behaviour shown by C. elegans. 

 

 

 

 

3.5. Application of WF-NTP to the Study of Models of Neurodegenerative Diseases 

We have show in Figure 2 the dramatic reduction in the standard error of the mean that 

results from an increase in the population size that is enabled by the use of the WF-NTP 

platform. In order to explore the biological relevance of this reduction in error we have 

applied the WF-NTP to the characterization of a number of well established behavioural 

metrics, including paralysis rate, bend frequency and speed of movement, to several well-

established worm models of neurodegenerative disorders (Figure 3-5); these models include 

one related to Parkinson’s disease (PD) (Van Ham et al., 2008), and three to Alzheimer’s 

disease (AD) (Fay et al., 1998; McColl et al., 2012; Wu et al., 2006), in which the worms 

were grown at different temperatures in order to induce changes in motility. In the PD model, 

-synuclein is overexpressed in the body-wall muscle cells, the same location in which the 

42-residue form of the amyloid- peptide (A42) is over-expressed in the three AD models. 

The expression of these aggregation-prone proteins in body wall muscles, as well as in 

neurons (Lublin and Link, 2013), has been shown to result in a decrease in motility with age 

relative to control worms. The differences in phenotypes between worm models of 

neurodegenerative disorders can however be quite subtle and difficult to detect due to the 

intrinsic high variablity that exists within a given worm population. 

 To address this issue, the use of the WF-NTP has enabled us to collect in parallel data that 

relate to several different behavioural metrics, including bending, swimming speed and 

paralysis rate (Figure 3-4) for the PD (Van Ham et al., 2008) and the three AD (Fay et al., 

1998; McColl et al., 2012; Wu et al., 2006) disease models and their controls; in all four 

disease models phenotypical changes were evident in the three behavioural parameters studied 

(Figure 3-4). In particular, we were able to observe clear behavioural differences between a 

strain in which A42 is over-expressed in the nervous system (Machino et al., 2014; Wu et al., 

2006) and the control animals (Figure 3). These results are particularly significant as the 
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phenotype induced by A42 expression, and in general by pan-neuronal expression, is known 

to be particularly mild and very challenging to detect (Machino et al., 2014). Furthermore, in 

another set of experiments with temperature sensitive A42 worms (McColl et al., 2012), we 

were able to detect subtle differences in the motility induced by very small changes in 

temperature (Figure 4). In all these studies, we were able to carry out behavioural studies and 

to acquire simultaneusly paralysis rate information, and then to generate a time-course 

multiparametric behavioural maps that relate the different metrics to each other, revealing 

previously unrecognised phenotypic profiles (Figures 3-4). 

  

3.6. Applications in Molecular Screening 

Our initial focus was to optimize the WF-NTP platform for high-throughput studies aimed 

towards molecular screening in the context of drug discovery. Indeed, in a previous paper, we 

identified a novel potential therapeutic compound for AD (Habchi et al., 2016) but we 

realised from this study that in order to achieve the throughput needed to screen a large 

number of molecules with sufficient statistical significance (Figure 5), it would be necessary 

to improve substantially the sampling size (N>200) compared to that achievable by using 

manual assays. As a consequence of the high throughput achieved by the platform described 

in the present paper, the limiting factor becomes the number of worms that can be prepared by 

conventional synchronous worm population techniques, rather than the number whose 

behaviour can be analysed. Moreover, the combination of a wide field-of-view microscope 

and multi-well plates or Petri dishes brings the great advantage of the ability to screen 

simultaneously populations of worms exposed to a wide variety of conditions, rather than 

carrying out such experiments sequentially, ensuring a higher degree of control over temporal 

and environmental factors.  

To assess further the performance of the platform we investigated the influence on the models 

of Parkinson’s disease (PD) (Van Ham et al., 2008) and Alzheimer’s disease (AD) (Fay et al., 

1998; McColl et al., 2012; Wu et al., 2006) described above of three compounds, thioflavin-

T(Alavez et al., 2012), curcumin (Alavez et al., 2012) and bexarotene (Habchi et al., 2016; 

Wood, 2016), whose effects on protein aggregation have been studied previously using both 

manual (Alavez et al., 2012) and automated (Habchi et al., 2016) methods. Analysis of the 

effects of bexarotene in vitro showed that this compound has substantial effects on the 

primary nucleation step in the aggregation of A42 (Habchi et al., 2016) and in vivo studies 
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have indicated that this compound affects both the degradation and clearance of A42 amyloid 

deposits in C. elegans (Habchi et al., 2016) and mice (Cramer et al., 2012). In addition, both 

thioflavin-T and curcumin have been found to extend lifespan in a variety of worm models of 

neurodegenerative diseases (Alavez et al., 2012). In the study reported here, worms 

expressing human A42 (McColl et al., 2012) were treated at the last stage of development 

before adulthood (the L4 stage) with up to 100 µM concentrations of curcumin, 200 µM 

concentrations of thioflavin-T (Figure 5), and up to 10 M concentrations of bexarotene 

(Figure 5). Motility was determined using the protocols described above, and a well-defined 

dose-dependent relationship between treatment and the recovery of motility was observed for 

all three compounds (Figure 5). Additionally, worms expressing -synuclein (Van Ham et 

al., 2008) were also treated with the same concentrations of thioflavin-T, and again a strong 

recovery of motility was observed compared to untreated worms, with a clear dose 

dependence (Figure 5).  

The videos recorded for these experiments were further analysed to compare the WF-NTP 

procedure with conventional manual assays, which count body bends. For each compound, 

and at each concentration, 50 worms were selected at random and their motilities scored. 

Manual counting showed that addition of thioflavin-T and curcumin increased motility, 

although with inconsistent dosage effects for A42 worms, but failed to identify with 

statistical significance that thioflavin-T influences motility in either system (Figure 5). In all 

cases, by contrast, the use of the WF-NTP showed well-defined enhancements in motility 

with clear dose dependences, stressing the advantages of the analysis of large populations in 

behavioural studies of C. elegans.   

 

 

4. Discussion and Conclusions 

Recent technological developments have begun to address the need for automated methods in 

C. elegans research, and a number of digital tracking platforms have been developed in the 

past few years to characterize worm behaviour in a significantly more detailed manner than is 

possible by means of manual methods (Buckingham and Sattelle, 2009; Feng et al., 2004; 

Hardaker et al., 2001; Husson et al., 2012; Nussbaum-Krammer et al., 2015; Stroustrup et al., 

2013; Tsechpenakis et al., 2008), and hence to facilitate screening for behavioural phenotypes 

with greatly reduced requirements for input from the user (Chalasani et al., 2007; Leifer et al., 
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2011; Stroustrup et al., 2013; Swierczek et al., 2011; Yemini et al., 2013). One limitation of 

current automated methods for analysing the behaviour of C. elegans has been the number of 

worms that can be monitored and tracked simultaneously at high resolution, and the 

computational challenges posed by the overlap of animals during experiments has reduced the 

reliability of tracking procedures. Thus, for example, uniform illumination turns out to be an 

important feature, and the combination between optical and software development has been 

vital in this context.  

A solution adopted by many laboratories has been to focus on tracking single worms at high-

resolution (Faumont et al., 2011; Leifer et al., 2011; Stirman et al., 2011; Tsibidis and 

Tavernarakis, 2007; Wang and Wang, 2013; Yemini et al., 2013) with the aid of automated 

stages, which can be programmed to follow the movement of isolated animals (Faumont et 

al., 2011; Hardaker et al., 2001; Husson et al., 2012; Leifer et al., 2011; Stirman et al., 2011; 

Tsibidis and Tavernarakis, 2007; Wang and Wang, 2013; Yemini et al., 2013). This approach 

has allowed extreme precision in the analysis of the behaviour of individual worms, although 

the total throughput remains low. Despite these important developments, a very high-

throughput phenotypical analysis is required for some processes, such as screening potential 

drugs, involving high-resolution imaging of multiple animals as well as obtaining good 

statistics and taking account of the extremely high heterogeneity in the behavior of worm 

populations (Lublin and Link, 2013). A further challenge is the very large quantity of data 

associated with this type of analysis, and one solution to this problem has been to develop 

real-time strategies (Swierczek et al., 2011), which have been shown to allow the 

determination of behavioural parameters for up to 120 animals, although storing the videos 

for subsequent data analysis is not possible with such approaches (Husson et al., 2012). 

In the present paper we have described the development and application of a tracking 

approach, the WF-NTP method, to monitor and to analyse multiple features of the behaviour 

of C. elegans populations in an automated manner. This approach allows simultaneous multi-

parametric monitoring of up to 5000 animals, and in order to analyse their behaviour in the 

most efficient manner, we have combined a wide field of view imaging platform with the 

development of a machine vision software platform. This platform allows direct and 

simultaneous evaluation of the bending frequency, bending amplitude and displacement per 

bend (a direct measure of how far a worm can propel itself forward while swimming), as well 

as the speed of movement, body size and rate of paralysis within very large worm 

populations. Although the high spatial and temporal resolution of the videos necessary for this 
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type of analysis can result in very large file sizes, our platform can work with compressed 

videos. The technical developments that we have incorporated in this approach include 

reducing the issue of overlap and crossovers of individual worms by the means of a very wide 

field of view allowing experiments to be performed with low worm densities. 

The WF-NTP approach can provide parallel and multi-parametric analysis of the 

characteristic behaviour of C. elegans populations with very high sensitivity and 

unprecedented statistical significance. The results demonstrate the importance of wide field-

of-view data acquisition to increase greatly the numbers of animals that can be monitored in a 

single experiment, effectively decreasing the experimental errors and greatly improving the 

statistical validity of the studies. Critically, our tracking procedure also has the advantage of 

allowing paralysis studies to be performed in parallel with other behavioural measurements, 

thus avoiding the final statistics becoming skewed by the presence of immobile animals. 

Indeed, we show that the inclusion of paralysed animals significantly improves the resolution 

needed for identifying potential drug candidates, even in large populations of worms. These 

methods can be employed for the hundreds of worm strains that are currently available and 

that could be studied under a wide range of conditions. 

We have validated the WF-NTP method by examining several models of neurodegenerative 

diseases and found that subtle behavioural effects, which are not readily detectable by using 

approaches with lower statistical power, can be reliably observed with WF-NTP, such as the 

identification of behavioural deficits induced by the pan-neuronal expression of the 

Apeptide, or by subtle variations in temperature, or by an increase in fitness induced by 

the administration of small molecules such as bexarotene (Figure 5). The technical details 

provided in this manuscript and the supplementary information (Figure S1) will enable 

researchers readily to reproduce and adapt the platform and the modular structure of its 

optical components. In addition, the software that we provide as an open source code 

(Supplementary code 1) makes the approach readily accessible for appropriate modifications 

and implementation, such as the incorporation of mechanosensory or optogenetic stimuli, and 

hence will make the platform suitable for laboratories studying more complex aspects of the 

behaviour of C. elegans. 

In summary, we believe that the WF-NTP platform will be of great value to laboratories 

currently involved in studies of C. elegans, and will be applicable to a wide array of 

investigations, ranging from developmental studies to drug discovery. On the basis of the 
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results we present in this paper, this approach should make it possible to characterise effects 

that are not readily detectable using conventional methods. In addition, in the light of its ease 

of use, low cost and convenient graphical interface, we also anticipate that laboratories that 

are not specialised in studies of C. elegans will readily be able to incorporate the use of this 

model organism in their research programmes. 
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Figures: 

 

 

 

Figure 1. Overview of Wide Field-of-view Nematode Tracking Platform (WF-NTP). (a) 

Details of tracker geometry: worms crawling or swimming on agar plates are imaged from 

below using a machine vision camera mounted on an imaging lens. Multiple trackers can be 

easily assembled and used to image 6, 9 and 14 cm agar plates or multi-wells plates. (b) 

Examples of the main tracking steps are shown (See Materials and Methods for details). (c) 

The behavioural map shows a worm model of Alzheimer’s disease (AD) (McColl et al., 2012) 

(violet) and related controls (green) maintained for 12 days at 24 C, and shows the variations 

of the speed of movement, bend frequency and paralysis rate, related to day 0 wild type 

worms. In this model the temperature increase leads to age dependent progressive muscle 

paralysis. The outer numbers indicate the days of adulthood of the study. (d) An example of 

fingerprinting of worm phenotypes and generation of the related “total fitness” score; metrics 

of the control CL2122 worms (McColl et al., 2012) are shown in green and GMC worms 

(McColl et al., 2012), which express A42 in the muscle cells (AD), are shown in violet. In 

comparison to healthy controls, overexpression of the A42 peptide in muscle cells causes a 

significant decrease in speed, bends per minute (BPM), bend amplitude, and bend 

displacement (which measures how far a worm propels itself with a single body bend), 

together with a decrease in the moving fraction (the paralysis rate) and the size of the worms. 
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These parameters can be readily monitored in parallel by using the WF-NTP. The fingerprint 

and the total fitness score were produced for animals at day 5 of adulthood. 

 

 

 

Figure 2. WF-NTP performance and applications. (a) The left panel shows the maximum 

number of animals tracked with the WF-NTP (blue bar), manual (pink bar) and other 

automated platforms (grey bar) and real time (green bar) platforms. The right and bottom 

panels show the correlation between the standard error of the mean (SEM) (related to the 

BPM) and the number of animals analysed. The WF-NTP platform (blue) facilitates the 

tracking of over 5000 worms thereby markedly reducing the SEM (middle and right panels) 

by ca. 14-fold related to a standard sample for manual screening of ca. 25 worms (red) and ca. 

6-fold related to other automated platforms (grey). The plots are representative of the motility 

(BPM) of wild type (N2) worms (Brenner, 1974) at day 6 of adulthood and the errors bars 

represent the SEM. The red area represents the number of animals counted on average for 

manual screenings (<25); the grey area indicates the maximum throughput achievable with 

previously described automated trackers, off-line (<50) and in real time (<120) (Swierczek et 

al., 2011); the light blue areas represent the number of animals that can be analysed with the 

WF-NTP (<5000). For every measurement, the animals were randomly selected between the 

screened worm populations. Data were fitted to 1√(𝑛) (blue line in the bottom panel) for the 

SEM. (b) The WF-NTP can be used in combination with standard procedures for worm 

studies, such as 6, 9 and 14 cm agar plates, and multi-well plates for liquid cultures.  
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Figure 3. Application of WF-NTP for the study of a C. elegans model of PD and AD. (a-

c) Motility (a), speed (b) and paralysis rate (c) decline with ageing for OW40 (PD) and 

OW450 (Van Ham et al., 2008) (control). (d) Behavioural map showing fitness decline with 

ageing for OW40 (Van Ham et al., 2008) (PD) compared to control OW450 worms. The 

fitness of OW40 (PD) worms overexpressing -synuclein:YFP in body wall muscle cells 

(orange) is significantly lower than that of the OW450 (control) (green). (e) For each strain, a 

representative fingerprint plot for day 8 of adulthood, which includes readouts of bends 

(BPM), speed and paralysis rate, is shown, together with the related total fitness score. (f-h) 

Motility (f), speed (g) and fraction not paralysed (h) decline with ageing for CL2120 (Fay et 

al., 1998) worms (A42 muscular-I) and in CL2355 (Wu et al., 2006) (A42 neuronal worms) 

and in comparison to the control CL2122. In CL2120 worms expressing the A42 peptide an 

age-dependent paralysis was observed. In CL2355 worms, the expression of the A42 peptide 

into the neuronal system induces an age dependent paralysis. The trackers show a significant 

difference between the motilities of CL2120 and CL2355 worms when compared to CL2122 

controls (Two way ANOVA, p ≤ 0.0001). The insert shows the behavioural differences in 

worms pan-expressing A42 in the nervous system (Machino et al., 2014; Wu et al., 2006) 
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(A neuronal) (N=1000) versus the control animals and comparison with manual counting 

(N=25). The data were obtained at day 8 of adulthood. (i) Behavioural map showing fitness 

decline with ageing for CL2120 (Fay et al., 1998) and CL2355 (Wu et al., 2006) worms; the 

fitness of CL2120 worms (violet) is significantly higher than that of  the Cl2122 controls 

(grey). Cl2355 worms (light blue) show a milder phenotype when compared to Cl2122 

controls. (j) For each strain, a representative fingerprint plot is shown for day 8 of adulthood, 

which includes readouts of thrashing (BPM), speed, and paralysis rate, and the related total 

fitness score. The quadruple asterisks (****) indicate, p ≤ 0.0001 (Student’s t-test). A two-

way ANOVA was carried out for statistical significance for timecourses (****) indicate, p ≤ 

0.0001, NS = non significant.  
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Figure 4. The use of WF-NTP resolves subtle phenotypical differences induced by small 

temperature variations in A42 worms. In GMC101 (McColl et al., 2012) worms, the 

overexpression of the A42 peptide in muscle cells causes age and temperature dependent 

paralysis. At 20 C the GMC101 worms do not show any differences in motility when 

compared to Cl2122 controls. Raising the temperature above 23.5 C increases significantly 

the severity of the muscle paralysis in GMC101 worms; (a) speed, (b) body bends, (c) 

paralysis rate. (d) The behavioural map and (e) the worm fingerprint at day 3 of adulthood, 

which includes readouts of body bends (BPM), speed, and paralysis rate; (f) the 

corresponding total fitness score. The plot shows the behaviour at day 4 of adulthood. In all 

plots the solid lines represent GMC101 worms and the dashed lines represent CL2122 

controls. Experiments were carried out at 20 C (blue), 23.5 C (green), 24 C (yellow), 24.5 

C (orange), 25 C (red). The single (*) asterisks indicate p ≤ 0.05 (Student-t test), and are 

relative to control CL2122 worms incubated at the same temperature of the GMC101. ****, p 

≤ 0.0001 (Student’s t-test). A two way ANOVA was carried out for statistical significance for 

timecourses,  (****) indicate, p ≤ 0.0001, NS = not significant.  
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Figure 5. Application of WT-NTP in studies of the effect of small molecules on worm 

strains. Analysis of the effects of thioflavin T (0, 10, 25, 100, 200 M), curcumin (0, 10, 25, 

50, 100 M) and bexarotene (0, 1, 2.5, 5, 7.5, 10 µM) on GMC worms (McColl et al., 2012) 

(A42 muscular) (AD) (left and centre panel), and thioflavin-T treatment on OW40 (-

synuclein) worms (Van Ham et al., 2008) (PD) (right panel) using the WF-NTP (N~250, blue) 

and compared to manual counting (N=50, red). All plots show day 5 of adulthood, with the 

averaged motility normalized to the untreated group; the errors show the SEM. The single (*), 

double (**), and quadruple (****) asterisks indicate p ≤ 0.05, 0.01, 0.0001, respectively, and 

are relative to untreated worms. The p values above each group indicate one-tailed correlation 

analyses of the response for WF-NTP and manual counting; ns indicates not significant. 
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