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Abstract
Objective
To determine whether longitudinal change in white matter structural network integrity predicts
dementia and future cognitive decline in cerebral small vessel disease (SVD). To investigate
whether network disruption has a causal role in cognitive decline and mediates the association
between conventional MRI markers of SVD with both cognitive decline and dementia.

Methods
In the prospective longitudinal SCANS (St George’s Cognition and Neuroimaging in Stroke)
Study, 97 dementia-free individuals with symptomatic lacunar stroke were followed with annual
MRI for 3 years and annual cognitive assessment for 5 years. Conversion to dementia was
recorded. Structural networks were constructed from diffusion tractography using a longitu-
dinal registration pipeline, and network global efficiency was calculated. Linear mixed-effects
regression was used to assess change over time.

Results
Seventeen individuals (17.5%) converted to dementia, and significant decline in global
cognition occurred (p = 0.0016). Structural network measures declined over the 3-year
MRI follow-up, but the degree of change varied markedly between individuals. The degree
of reductions in network global efficiency was associated with conversion to dementia
(B = −2.35, odds ratio = 0.095, p = 0.00056). Change in network global efficiency mediated
much of the association of conventional MRI markers of SVD with cognitive decline and
progression to dementia.

Conclusions
Network disruption has a central role in the pathogenesis of cognitive decline and dementia
in SVD. It may be a useful disease marker to identify that subgroup of patients with SVD who
progress to dementia.
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Cerebral small vessel disease (SVD) is the most common pa-
thology underlying vascular dementia. Characteristic MRI
appearances include white matter hyperintensities (WMH), la-
cunar infarcts, cerebral microbleeds (CMBs), and diffuse white
matter damage on diffusion tensor imaging (DTI). Each is in-
dividually associated with cognition, but how these associations
result in dementia is incompletely understood.1,2 A popular hy-
pothesis is that cognitive impairment results from disconnection
of cortical-subcortical and cortical-cortical connections,3–5 lead-
ing to disruption of large-scale brain networks underlying cog-
nitive domains affected by SVD, such as executive function and
processing speed.3 This hypothesis implies that network con-
nectivity will mediate associations between conventional SVD
brain pathologies and cognitive impairment.

Structural brain networks can be measured in humans using
magnetic resonance (MR) tractography, derived from DTI
data.6 Cross-sectional studies suggest network disruption has
an important role in cognitive impairment in SVD,5,7,8 and
have shown reduced network integrity at baseline predicts
future dementia. However, such association data cannot prove
causality, and there are no longitudinal data showing whether
change in MR network parameters over time predicts change
in cognition and future dementia risk.

In the St George’s Cognition and Neuroimaging in Stroke
(SCANS) Study, patients with symptomatic SVDwere followed
up with annual MRI for 3 years and cognitive testing for 5 years.
We determined whether longitudinal change in network meas-
ures predicted future dementia and cognitive decline. We also
determined whether change in network measures mediated the
association between conventional MRI markers of SVD and
cognitive decline, to investigate whether network disruption
might have a causal role in cognitive decline.

Methods
Standard protocol approvals, registrations,
and patient consents
The study was registered (ukctg.nihr.ac.uk; study ID: 4577)
and approved by a local research ethics committee (London–
Wandsworth). Participants provided written informed consent.

Study participants
One hundred twenty-one patients were recruited between
2007 and 2010 from stroke services at 3 hospitals covering
a geographically contiguous region of South London.

Inclusion criteria were a clinical lacunar stroke syndrome9

with MRI evidence of an anatomically appropriate lacunar
infarct (defined as a high-signal lacunar infarct on diffusion-
weighted imaging or a cavitated lacune on T1-weighted
[T1w] imaging of maximum diameter ≥1.5 cm), in addition
to confluent WMH of Fazekas grade 2 (early confluent) or
higher.10 The following exclusion criteria were applied: (1)
any other stroke mechanism including intra/extracranial
large artery stenosis >50%, cardioembolic source, subcortical
infarcts >1.5 cm in diameter as these are often embolic, or
any cortical infarcts; (2) history of major neurologic or
psychiatric condition excepting depression; (3) nonfluent in
English; (4) not suitable for MRI; and (5) unable to give
informed consent.

Study design
In this prospective cohort study, participants completed 1
baseline and 3 annual follow-up assessments comprising clini-
cal assessment,MRI, and cognitive assessment. Subsequently, 2
further annual cognitive assessments were conducted.

Baseline assessments were conducted aminimum of 3months
after the most recent stroke to reduce the influence of acute
ischemia on MRI and cognition measures. Those who expe-
rienced a subsequent clinical stroke could remain in the study
provided the new stroke was lacunar.

We report results from participants with MRI follow-up data.
Of 121 patients recruited, 103 attended more than one as-
sessment. Eighteen completed only one assessment because
of death (n = 7), study withdrawal (n = 6), relocation (n = 1),
lost to follow-up (n = 2), or withdrawal from full neuro-
psychological testing (n = 2). Of the 103 participants with
follow-up, MRI follow-up was available for 99. Two further
participants had technically inadequate diffusion MRIs, leaving
97 included in this analysis.

As previously described,11,12 not all of these participants
completed all annual assessments: 20/97 had 12-month
MRI follow-up and 11/97 had 24-month MRI follow-up. A
total of 249.4 person-years were observed for MRI and 376.1
person-years for cognitive assessments. The mean ± SD
duration of MRI follow-up was 2.57 ± 0.84 years, and 5th and
95th percentiles were 1.01 and 3.38 years; for cognitive
follow-up, these were 3.88 ± 1.55 years, and 5th and 95th
percentiles were 1.00 and 5.23 years. Linear mixed models
were used to account for variability in time of assessment and
missing data.

Glossary
AAL = automated anatomical labeling; CMB = cerebral microbleed; DSM-V = Diagnostic and Statistical Manual of Mental
Disorders (Fifth Edition);DTI = diffusion tensor imaging; EPI = echo planar image; FA = fractional anisotropy; FLAIR = fluid-
attenuated inversion recovery; LMER = linear mixed-effects regression; MD = mean diffusivity; MR = magnetic resonance;
NPH = normalized peak height;OR = odds ratio;ROI = region of interest; SCANS = St George’s Cognition and Neuroimaging
in Stroke; SVD = small vessel disease; T1w = T1-weighted; WMH = white matter hyperintensity.
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Cognitive assessment
A battery of well-established, standardized tasks sensitive to the
cognitive impairments seen in SVD was administered. Full
details have been published previously.11,13 Tasks are described
in table e-1 (links.lww.com/WNL/A463). Task performance
was converted to an age-scaled z score using the participant’s
baseline age and published normative data. We analyzed the
mean average of these scores as an index of global cognitive
function.

Conversion to dementia
Dementia was diagnosed using the DSM-V14 definition of
major neurocognitive disorder and was present if individuals
met at least one of the following criteria:

1. A diagnosis of dementia made in a memory clinic or
equivalent clinical service.

2. After review of medical records and cognitive assessments
by a neurologist and clinical neuropsychologist who were
both blind to all MRI and risk factor information and who
both agreed that the clinical picture met DSM-V criteria
for dementia.

3. A Mini-Mental State Examination score consistently <24,
indicative of cognitive impairment15 and reduced capabilities
in daily living asmeasured by a score ≤7 on the Instrumental
Activities of Daily Living.16

In all cases, the presence or absence of dementia was determined
by consensus between a neurologist (H.S.M.) and clinical neu-
ropsychologist (R.G.M.) blinded to participant identity and to
the MRI results.

MRI acquisition
A 45-minute multimodal, whole-brain MRI protocol was ac-
quired using a 1.5T Signa HDxt MRI system (General Electric,
Milwaukee,WI) withmaximum gradient amplitude of 33mT/m
and a proprietary head coil. The following whole-brain sequen-
ces were obtained: axial fluid-attenuated inversion recovery
(FLAIR), coronal spoiled gradient recalled echo 3-dimensional
T1w, and gradient recalled echo T2*-weighted sequence. Full
acquisition details have been previously published.5,13 There
were no upgrades to the scanner or software over the course of
the study.

Diffusion acquisition and preprocessing
Diffusion data comprised axial single-shot diffusion-weighted
spin-echo planar imaging with isotropic resolution (2.5 mm3)
and 25 diffusion gradient directions at b = 1,000 s/mm2 in
positive and negative gradient directions. Eight echo planar
images (EPIs) were acquired without a diffusion gradient (b =
0 s/mm2). These images were coregistered and the average
was taken to give a T2-weighted EPI, which we term the “b0”
image.

Diffusion preprocessing has been described in full previously.5

In brief, diffusion-weighted images were realigned to remove
eddy current distortions, and slices with signal loss caused by

motion were identified and excluded from further analysis.
Diffusion-weighted volumes with opposite gradients were
geometrically averaged to eliminate gradient cross-terms. Dif-
fusion tensors were then fitted using the least-squares method.

Longitudinal MRI processing
We applied an image registration pipeline, optimized for
longitudinal research, which reduces bias induced by in-
dependently processing images at each time point.17 For each
participant, longitudinal template images were independently
created for 2 MR modalities: T1w anatomical images, and b0
EPI from the diffusion sequence. Templates were constructed
using the buildtemplateparallel.sh tool (v0.0.14),18 part of the
Advanced Normalization Tools software package (stnava.
github.io/ANTs/).19 Two participants were excluded from
analysis because of a failure of this processing pipeline to ac-
commodate large magnetic susceptibility-related distortions in
the diffusion acquisitions.

Tissue segmentation and WMH measurement
Coregistered T1w and FLAIR images were segmented into
gray matter, normal-appearing white matter, CSF, and WMH
tissue components using a 2-step technique adapted and
optimized to our population and previously described.20,21 In
brief, T1w and FLAIR images were coregistered and an initial
joint segmentation was conducted, followed by warping to
a group template. Tissue probability maps in this group space
were then calculated and used to refine segmentations in
native space. Finally, an extraventricular CSF tissue class was
manually defined (including cavitated lacunes and enlarged
Virchow-Robin spaces) and used to generate repaired tissue
maps for gray matter, normal-appearing white matter, CSF,
and WMH.

Conventional MRI markers of SVD

Brain volume
Tissue segment volumes were calculated from the tissue
segmentation maps calculated above. In this study, we ana-
lyzed total parenchymal brain volume.

Hippocampus volume
Jacobian determinant images were calculated from the trans-
formations to the standard space template21 described above.
Hippocampal regions of interest (ROIs) from the automated
anatomical labeling (AAL) atlas22 were used to mask the ja-
cobian images and the jacobian determinants summed to give
the total degree of expansion or contraction in the hippo-
campus for each participant. Multiplying this quantity by the
volume of the ROI produces the estimated hippocampal
volume.

White matter hyperintensities
WMHwere assessed by the total volume of the WMH tissue
class. To adjust for the effects of head size and brain atrophy
on lesion volume, we analyzed WMH load by expressing
WMH volume as a fraction of the volume of total white
matter.
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Lacunes of presumed vascular origin
A consultant neuroradiologist evaluated T1w and FLAIR
images for cavitated lacunes of presumed vascular origin.2

Lacunes were defined as CSF-filled cavities 3 to 15 mm in
diameter, with a surrounding rim of FLAIR hyperintensity.2

Based on the results of previous studies,13,23 we analyzed the
log10-transformed total lacune count.

Cerebral microbleeds
CMBs were identified on gradient echo images using the
Brain Observer MicroBleed Rating Scale as previously de-
scribed.13 All baseline CMBs were identified by a single
consultant neuroradiologist. Presence and number of new
CMBs in follow-up images were identified by a single trained
rater. Based on the results of previous studies,13,23 we ana-
lyzed the log10-transformed total CMB count.

DTI measures
The diffusion tensor was decomposed into maps of di-
rectional invariants fractional anisotropy (FA) and mean
diffusivity (MD). Histogram analysis was then applied (as
previously described12) to provide whole-brain measures of
FA and MD in white matter. In previous work, we found
normalized peak height (NPH) of the MD histogram to be
the most sensitive measure of ultrastructural change in SVD.12

Therefore, we restricted our analysis of DTI data to this
measure. The NPH of the MD histogram represents the
fraction of the white matter that falls into the peak bin of the
histogram. Larger values of MD-NPH indicate that a greater
proportion of white matter holds healthy MD values.

Network construction
Brain network construction requires the definition of nodes
(brain regions) and edges (connections).

Network nodes
Network nodes were defined using the AAL atlas22 of 90 regions
(45 bilateral regions, comprising 40 cortical and 5 subcortical),
labeled on the Colin27 T1w image. To minimize registration
error to this atlas, we constructed an intermediate study-specific
T1w template, using subject-template T1w images, as follows.
First, signal intensity in regions of white matter lesion in the T1w
images were repaired using the SLF toolbox (atc.udg.edu/nic/
slfToolbox).24 Second, repaired images were iteratively registered
to create an initial study-specific template.18 The resulting group
template image was then registered to the Colin27 T1w image.

Finally, node ROIs were defined by applying a single com-
posite transform bringing the AAL labels through the fol-
lowing transformation spaces: Colin27 → Group Template
(T1w)→ Subject Template (T1w)→ Subject Template (b0-
epi) → native time point (b0-epi). Labels were transformed
using multilabel gaussian interpolation.

Network edges
Whole-brain deterministic tractography was applied to the
diffusion tensor using the method of Basser as previously

described.13 In brief, streamlines were seeded on a super-
resolution 0.5-mm3 grid where FA ≥0.2. Step size was
0.5 mm and termination criteria were FA <0.2 and angle
>45.0°. The streamlines were length thresholded between 20
and 250 mm.

Network edges were defined for each pair of atlas regions (A,
B) where one or more streamlines terminated with one end in
A and another in B. Weights were calculated for each edge
from the number of streamlines,5 modified from Hagmann
et al.,6 with adjustments to correct for distance traveled and
the seeding scheme as follows: for each streamline connecting
2 ROI pairs, the inverse length (in millimeters) was calculated
and summed. The sum of such inverse lengths was divided by
2 to correct for the number of seeds per millimeter of
streamline length. To reduce the effects of low-weight, false-
positive connections, a threshold (weight ≥1) was adopted.
We omit adjustment of each edge weight for the average
volume of ROIs as, for a given tract size, this would over-
weight connections between smaller unimodal regions and
correspondingly under-weight the connections of network
hubs, which connect to multiple areas.

Network analysis
For each brain network, network efficiency analysis was ap-
plied along with calculation of network properties including
number of edges, average edge weight, and total network
strength (sum of edge weights) using the brain connectivity
toolbox (brain-connectivity-toolbox.net).25 Our analyses fo-
cus primarily on network global efficiency, because this cap-
tures topological network information and has shown
promise in previous investigations of SVD.5,7

Statistical analysis
Data processing and analysis was performed in the R language
and environment for statistical computing (v3.2.3; r-project.
org/). For the analyses described below, all bivariate rela-
tionships, and model residuals, were visually inspected and
assumptions tested. Variance inflation factors were within
commonly accepted limits (<4).

Longitudinal change
To study change over time, we used linear mixed-effects re-
gression (LMER) with random effects of intercept and linear
slope (with respect to time), with the lme4 package (v1.1-
11).26 LMER accounts for the hierarchical nature of the data,
allowing imbalance, data missing at random, and variability in
the timing of assessments.27 The fixed effect of time repre-
sents the group average annualized change of the variable,
which we tested for statistical significance using Satterthwaite
approximation to the degrees of freedom. For subsequent
analyses, random effects of intercept and slope were extracted
for each participant.27 This separates results into a baseline
score and annualized change while retaining the practical
benefits of LMER. This was conducted for all continuously
varying variables. For 2 count measures (lacune count, CMB
count), we dichotomized change.
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Correlates of network change
Relationships between the amount of change in the net-
work and conventional MRI variables were explored using
multiple linear regression with the network variable as the
dependent and MRI variables as predictors. We first ex-
plored pairwise (single predictor) relationships and then
identified the independent predictors of network change
using forward stepwise model selection. Selection steps
proceeded on the basis of minimizing model Akaike in-
formation criterion.

Relationships with outcome
To assess the relationships between network integrity and
dementia, binary logistic regression models were fitted with
conversion status the dependent variable. For the global
cognitive function index, linear regression models were fitted
with annualized change the dependent variable. As above,
single variable relationships were estimated first, followed by
a stepwise model selection to identify the independent con-
tributions in a best fitting model.

For models with dementia as the dependent variable, linear
mixed-effects estimates for predictors were separately calcu-
lated to exclude MRI data acquired after conversion to de-
mentia (n = 3 participants, n = 3 observations). This ensured
that the MRI data used to predict dementia was acquired
before diagnosis of dementia.

Finally, we tested the mediation hypothesis, looking at whether
changes in the brain network explained relationships between
other MRI variables and the outcome variables. Causal medi-
ation models (analogous to the Sobel test) were estimated
using the mediation package for R (v4.4.5)28 employing
a nonparametric bootstrap with 10,000 samples.

Data availability
The identified summary data used in this analysis will be shared
with other researchers on request via the corresponding author.

Results
Baseline demographics and clinical descriptives are presented
in table 1.

Clinical endpoints during follow-up
During 5-year follow-up, 8 of 97 participants died (8.2%).
Causes of death were cancer (n = 1), respiratory (n = 1),
intracerebral hemorrhage (n = 2), other health-related cause
(n = 2), and not known (n = 1). There were 7 stroke events
during follow-up. Four participants experienced new lacunar
stroke, of whom 3 withdrew following the stroke because of
disability. Three participants experienced intracerebral hem-
orrhage, of which 2 were fatal as above.

Outcome measures
There was a significant decline in cognitive test performance
over 5 years (table 2). However, cognitive change varied

markedly between individual participants, with some showing
marked decline and others stable performance.

Follow-up data on progression to dementia was available for all
97 participants. All participants were dementia-free at baseline.
Seventeen (17.5%) of 97 patients converted to dementia dur-
ing the 5-year follow-up. Dementia diagnosis was based on
clinical diagnosis (n = 8), review ofmedical records (n = 3), and
meeting dementia thresholds for Mini-Mental State Examina-
tion and Instrumental Activities of Daily Living scores (n = 6).
Mean ± SD time to dementia conversion was 3.3 ± 1.4 years.

Longitudinal change in network measures
There was significant decline in all structural network meas-
ures during follow-up (table 2). The degree of change in
network measures varied markedly between individuals
(figure 1). For network global efficiency (baseline mean ±
SD = 7.94 ± 2.30), average annual decline was −0.1764, but
individual estimates varied between −0.448 and 0.103 con-
sistent with at least some participants having stable network
global efficiency.

Longitudinal change in other MRI markers
Conventional radiologic markers of SVD showed significant
change during follow-up (table 2). WMH lesion volume in-
creased, total parenchymal brain volume decreased (indicative
of atrophy), and NPH of the MD histogram decreased (in-
dicating a greater proportion of white matter had abnormal
diffusivity values). A total of 69 new lacunes were observed on
MRI, occurring in 26 of 97 participants. In contrast, only 4 of
these were associated with symptomatic lacunar stroke during
the study and, of these, one was outside the MRI follow-up
period (i.e., between 3 and 5 years). There were 162 new
CMBs in 34 of 97 participants. In contrast, no significant
changes over time in hippocampal volume were observed;
therefore, only baseline values were considered further.

Prediction of dementia and cognitive decline
A greater decline in network global efficiency over the 3-year
MRI follow-up period was significantly associated with both
conversion to dementia (B = −2.35, odds ratio [OR] = 0.095,
p = 0.00056) and with global cognitive decline (β = 0.398, p <
0.0001) over the 5-year follow-up period.

Baseline network global efficiency also predicted both de-
mentia and cognitive decline with higher efficiency associated
with lower risk of conversion to dementia (B = −1.06, OR =
0.347, p = 0.0056) and slower global cognitive decline (β =
0.347, p = 0.00076).

Further analysis demonstrated it was the change in network
parameters, rather than baseline values, that was driving the
associations. The association between baseline score and
outcome was no longer significant after controlling for the
associationwith change in network global efficiency (dementia:
B = −0.89, OR = 0.41, p = 0.08; global cognition: β = 0.16,
p = 0.17). In contrast, significant associations remained with
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Table 1 Demographic and clinical details of study participants

Included (n = 97) Not included (n = 24) Test statistic

Demographic and risk factors

Age, y 68.8 (10.1) 74.7 (6.6) t53.1 = −3.49, p = 0.001

Sex, male, n (%) 66 (68.0) 12 (50.0) χ2 = 2.00, p = 0.16

Ethnicity, white British, n (%) 70 (72.2) 14 (58.3) χ2 = 1.14, p = 0.3

Hypertension, n (%) 90 (92.8) 22 (91.7) χ2 = 0.03, p = 1

Statin therapy, n (%) 83 (85.6) 20 (83.3) χ2 = 0.08, p = 1

Diabetes, n (%) 18 (18.6) 6 (25.0) χ2 = 0.50, p = 0.6

Body mass index, kg/m2 27.0 (5.1) 27.5 (3.6) t40.3 = −0.53, p = 0.6

Smoking, n (%)

Never 42 (43.3) 13 (54.2) χ2 = 1.33, p = 0.6

Ex 34 (35.1) 8 (33.3) —

Current 21 (21.6) 3 (12.5) —

BP, mm Hg

Systolic 148.2 (21.4) 140.4 (21.2) t29.6 = 1.53, p = 0.14

Diastolic 82.1 (10.8) 75.9 (9.5) t32.3 = 2.65, p = 0.012

Clinical

mRS score, n (%)

0 32 (33.0) 6 (25.0) χ2 = 12.42, p = 0.015

1 41 (42.3) 7 (29.2) —

2 13 (13.4) 2 (8.3) —

3 10 (10.3) 6 (25.0) —

4 1 (1.0) 3 (12.5) —

No. of strokes (%)

1 75 (77.3) 19 (79.2) χ2 = 1.10, p = 0.6

2 18 (18.6) 3 (12.5) —

>2 4 (4.1) 2 (8.3) —

Time to last stroke, wk 25 (106) 209 (354) W = 767, p = 0.01

Executive function index −0.75 (1.05) −1.49 (0.99) t34.7 = 3.17, p = 0.003

Processing speed index −0.92 (0.85) −1.25 (1.05) t29.3 = 1.41, p = 0.17

Memory index 0.02 (0.98) −0.43 (1) t34.7 = 1.98, p = 0.055

Global cognition index −0.51 (0.82) −1.01 (0.87) t34.0 = 2.54, p = 0.016

MRI measures

TPBV, mL 1,039.3 (103.3) 1,070.9 (120.7) t30.1 = −1.16, p = 0.3

HV, mm3 6,269.0 (93.4) — —

WML load, % 3.510 (2.44) 3.77 (2.56) t32.1 = −0.44, p = 0.7

Lacune count 4.21 (5.74) 4.08 (4.01) W = 1,061, p = 0.5

CMB count 0.00 (2.00) 0.00 (1.50) W = 1,220, p = 0.7

Continued
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change in network global efficiency after controlling for base-
line network global efficiency (dementia: B = −2.28, OR= 0.10,
p = 0.0012; global cognition: β = 0.31, p = 0.004).

Given this pattern of results, we subjected this relationship to
mediation analyses and found a statistically significant pro-
portion of the association between baseline network global
efficiency and outcomewasmediated by subsequent changes in
network global efficiency (dementia: 0.50 [0.22, 1.04], p <
0.0001 (figure 2); cognitive function: 0.48 [0.10, 0.99], p =
0.012). Figure 3 illustrates these effects by dividing participants
into 3 groups according to the amount of annualized change in
network global efficiency (low, middle, and high change). The
proportion of the sample converting to dementia was related to
the degree of network decline: low change (n = 1/32, 3%),
middle change (n = 4/32, 12.5%), high change (n = 11/33,
34%). For global cognition, the average fitted slopes for middle
network decliners (−0.034) were closer to the high network
decliners (−0.046) than the low network decliners (−0.0002).

Comparing network global efficiency with
other MRI measures as predictors of dementia
and cognitive decline
In table 3, we display associations with outcome for network
global efficiency and for conventional MRI measures. On
univariate analysis, multiple MRI markers were associated
with progression to dementia and cognitive decline (table 3).
However, on multivariable analysis, the only independent
associations were change in network global efficiency for
progression to dementia, and change in network global effi-
ciency and both baseline lacune count and lacune progression
for cognitive decline.

Investigating mediation via changes in
network global efficiency
We assessed whether change in network global efficiency medi-
ated the relationship between change in conventional MRI fea-
tures of SVD and outcome. Table 4 shows estimated parameters
from mediation analyses, with example path diagrams presented

Table 1 Demographic and clinical details of study participants (continued)

Included (n = 97) Not included (n = 24) Test statistic

FA 0.295 (0.026) 0.299 (0.029) t26.1 = −0.60, p = 0.6

MD, mm2/s × 1023 0.785 (0.031) 0.793 (0.035) t25.7 = −0.96, p = 0.3

Abbreviations: BP = blood pressure; CMB= cerebralmicrobleed; FA =median fractional anisotropy; HV = hippocampal volume;MD=medianmean diffusivity;
mRS = modified Rankin Scale; TPBV = total parenchymal brain volume; WML = white matter lesion.
Descriptive statistics of centrality and variability for participants in the SCANS Study, grouped by inclusion status. Statistical tests for group differences are
presented in the last column. The presented values are n (%) for categorical data with an exact χ2 test; mean (SD) for approximately normal continuous data
with a Welch t test; and median (interquartile range) for nonnormal continuous data with a Mann-Whitney-Wilcoxon test. The p values are uncorrected for
multiple comparisons. HVs not calculated in excluded participants.

Table 2 Average annualized change in network parameters,MRImeasures, and cognitive function in small vessel disease

Baseline (SD) Average change (SE) % Change (SE) t Value p Value

E (global) 7.94 (2.30) −0.1764 (0.0249) −2.22 (0.31) −7.08 <0.0001

E (local) 11.94 (3.28) −0.2783 (0.0442) −2.33 (0.37) −6.30 <0.0001

#Edges 406.7 (77.4) −7.553 (0.881) −1.86 (0.22) −8.58 <0.0001

Mean edge weight 15.60 (2.19) −0.1008 (0.0332) −0.65 (0.21) −3.03 0.0034

Network weight sum 6,468.0 (1,944.5) −156.24 (16.97) −2.42 (0.26) −9.21 <0.0001

WMH load 3.57 (2.54) 0.7641 (0.0602) 21.4 (1.69) 12.69 <0.0001

TPBV 1,038.0 (104.1) −13.634 (0.787) −1.31 (0.08) −17.32 <0.0001

HV 6,269.0 (93.4) 7.59 (5.93) 0.12 (0.09) 1.28 NS

DTI (MD-NPH) 1.52 × 10−2 (2.8 × 10−3) −3.71 × 10−4 (3.12 × 10−5) −2.44 (0.21) −11.91 <0.0001

Global cognition −0.675 (0.844) −0.0292 (0.0088) 4.33 (1.30) −3.32 0.0016

Descriptive statistics for network measures at baseline, and estimates of average annualized change with SEs from linear mixed-effects models. Baseline
values are mean (SD); average change is per-annum estimate (SE). Percentage change is average change relative to the baseline mean. The p values use
Satterthwaite approximation to the degrees of freedom.
DTI (MD-NPH) = normalized peak height of the mean diffusivity histogram from the diffusion tensor imaging; #Edges = number of network connections; E
(global) = network global efficiency; E (local) = network local efficiency; global cognition = z scored cognitive index; HV = hippocampal volume (mm3); mean
edgeweight = average edgeweight for present edges; networkweight sum= sum total of edgeweights in network; NS = nonsignificant result (p > 0.05); TPBV =
total parenchymal brain volume (mL); WMH load = white matter hyperintensities as a proportion of total white matter volume.
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in figure 3. Mediation analysis was performed for all MRI varia-
bles significantly associated with outcomes in the single predictor
models (table 3).

For all MRI predictors of conversion to dementia and change
in global cognitive function, a significant proportion of the
total effect was mediated by changes in network global effi-
ciency. Only one direct effect, indicating the effect of the
predictor after controlling for changes in network global ef-
ficiency, was significant—that of the baseline number of
lacunes for changes in global cognitive function (table 4).

Discussion
In this prospective cohort of patients with symptomatic SVD,
we were able to detect change in structural networks, with
a significant decline in all network parameters, over a 3-year
follow-up period during which annual MRI was performed.

The rate of decline in network global efficiency independently
predicted conversion to dementia and cognitive decline over
the 5-year follow-up period. Associations observed for other
MRI markers, particularly WMH volume and lacunes, were
mediated by their relationship with network changes. Our
data are consistent with network disruption having a central
role in the mechanism of cognitive decline in vascular cog-
nitive impairment due to SVD. Furthermore, it suggests the
rate of change in network global efficiency may be a useful
marker to predict risk of progression to dementia.

We observed a wide range of trajectories of cognitive decline.
Some participants experienced no or minimal cognitive de-
cline, while others had a rapid decline with progression to
dementia; the overall dementia rate was approximately 20%
over the 5-year follow-up period. This wide range of cognitive
outcomes emphasizes the need for techniques to identify
which patients are likely to progress to dementia, both to
provide risk prediction information and to identify high-risk

Figure 1 Evolution of network summary measures over time from baseline assessment

(A) Network global efficiency, (B) average local network efficiency, (C) number of network edges, and (D) average edge weight (for present edges). Colored
circles linked by lines indicate values for individual participants. The black line shows the group average result—the fixed-effect estimates from the linear
mixed-effects regression (see table 2).
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individuals for therapeutic interventions. Our results dem-
onstrate that decline in network global efficiency predicts
progression to dementia, independently of common MRI
markers, and thus may allow identification of that subset of
individuals who are at risk of dementia. These findings suggest
that the structural network acts as an intermediate (a medi-
ator) between multiple MRI correlates of SVD and clinical
outcome. Network measures may be a useful way of in-
tegrating information from multiple MRI parameters of SVD
into a single predictive score.

Our work adds to the literature by showing that the rate of
change in network global efficiency is the primary driver of
network decline. Although associations were also found with
baseline network global efficiency, these disappeared once the
changes were controlled for. This suggests that the association
between outcome and baseline network global efficiency is
likely attributable to more severe disruption at baseline being
a marker of an increased risk of more rapid progression. Of
note, in this study in those who progressed to dementia while
MRI follow-up was continuing, we included only network
measures prior to the diagnosis of dementia in our predictive
models, and therefore showed that change in network global
efficiency before onset of dementia predicted dementia risk.

In previous cross-sectional investigations of SVD, measures of
network global efficiency have been shown to mediate the
relationship betweenMRI markers of SVD and the severity of
cognitive impairment.5,7 However, differentiating causality
from association is impossible in cross-sectional studies.

Prospective longitudinal studies in which one can determine
whether change in one parameter predicts change in another
provide stronger support for a causal relationship. Our lon-
gitudinal findings support the hypothesis that conventional
MRI markers of SVD (such as white matter lesions and la-
cunar infracts) cause cognitive decline via disruption of
complex brain networks.

Future research could be improved by using MRI with higher
field strength and spatial resolution with isotropic voxel
dimensions for all sequences.29 However, a major strength of
the study was highly consistent data obtained from the same
scanner without upgrade or change over the full data collec-
tion period.

We studied a group of individuals who hadmoderate to severe
symptomatic SVD. By our inclusion criteria of taking patients
with both definite ischemic (lacunar stroke) and confluent
WMH, we aimed to identify patients in whom ischemic
processes were likely to be the cause of their SVD and of any
cognitive impairment, but our results require replication in
participants with less severe SVD. Although we selected
a population in whom SVD was likely to be the primary driver
of cognitive impairment and dementia, it is well recognized
that at post mortem, many such patients have a mixed picture
with both vascular and Alzheimer pathology. To assess the
potential role of Alzheimer pathology, we measured hippo-
campal volumes and found this was not a predictor of de-
mentia in our population. This is in contrast to a population
with milder SVD, in which baseline hippocampal volumes and

Figure 2 Effects of different amounts of annualized change in network global efficiency on the outcome measures

Conversion to dementia (A) and change in global cognition (B). Individuals were divided into 3 equal-sized groups on the basis of the annualized change in
network global efficiency (cut points: −0.139, −0.193) with the followingmedian ± interquartile range annualized changes: low decline group (black lines) −0.10
± 0.05, middle decline group (blue lines) −0.17 ± 0.01, and high decline group (red lines) −0.23 ± 0.06. Separate survival curves (A) or linearmixedmodel group
average intercepts and slopes (B) are plotted for each group.
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network integrity both predicted dementia.30 It is possible
that the more severe SVD in the SCANS population means
this is therefore the predominant pathology causing dementia
in this population, while in cases with milder radiologic
changes of SVD, coexistent Alzheimer pathology has a rela-
tively more important role.31

A weakness of the study was participant withdrawal. The
dropout rate was comparable to other longitudinal aging
studies20; however, patients without complete follow-up
were older and more disabled,32 which may bias results
toward an underestimation of MRI and cognitive pro-
gression rates.

We did not study a control group, and therefore cannot be
certain that the observed changes are not, to some extent,
attributable to the effects of aging. However, the relationship
between change in networks and dementia in this sample

implies a key role for network disruption in cognitive decline
in patients with SVD. Furthermore, the rates of change in the
MRI markers we assessed in this study are lower than in
a healthy, aging cohort of similar age imaged on the same
scanner.33

In vivo structural networks derived from tractography have
been shown to be reproducible,34 but there are limitations.35

Spatial resolution limits diffusion tractography to assessment
of larger white matter fascicles, and the directionality of
connections and their true functional status cannot be
inferred from diffusion data. Furthermore, diffusion MRI
data are noisy and tractography algorithms display com-
pounded noise the further they travel, meaning connections
are systematically more difficult to track (and correspond-
ingly less reproducible) over longer physical distances. Some
common anatomical motifs such as crossing/kissing fibers
are ambiguous to tractography algorithms, with particular

Figure 3 Example path diagrams to illustrate mediation effects

In each path diagram, change in network global efficiency (DE [global]) is considered as a mediator (top box) of significant relationships. Coefficients
associated with the paths (arrows) represent the standardized regression coefficients in the form simple/joint, where “simple” is the coefficient value in the
absence of the other variable, and “joint” is the value in the model that includes both predictor and mediator. The results from the statistical mediation
analysis (table 4) are included in the center of the figure. The indirect path indicates the significance of themediation effect on the predictor, themiddle value
for the indirect path indicates effect of the predictor independent of mediation, and the lower value for the proportion reflects mediation as a fraction of the
sum of direct and indirect effects. WMHL = white matter hyperintensity load.
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limitations for the deterministic tractography used in this
research.26 Methodologic improvements to diffusion imag-
ing and tractography algorithms can address these issues to

some extent,36,37 but many of the improved methods require
data from higher-field-strength scanners, or at higher angular
resolution or over multiple b-shells, which is not available

Table 3 MRI markers of SVD and network parameters MRI as predictors of outcome in SVD—Both baseline values and
change (D) are shown for predictors

Single predictor models Multipredictor models

Coef. SE z/t p Value Coef. SE z/t p Value

Dementia conversion

E (global) −1.06 0.38 −2.77 0.006a — — — —

TPBV −0.65 0.41 −1.58 0.12 — — — —

HV −0.10 0.30 −0.33 0.7 — — — —

WMHL 0.41 0.28 1.48 0.14 — — — —

DTI (MD-NPH) −1.01 0.39 −2.59 0.01a — — — —

Lacunes 0.35 0.30 1.18 0.2 — — — —

CMB 0.32 0.28 1.16 0.2 — — — —

DE (global) −2.36 0.68 −3.45 0.0006a −2.85 1.01 −2.81 0.005a

DTPBV −0.18 0.29 −0.62 0.5 — — — —

DWMHL 0.92 0.32 2.88 0.004a 0.80 0.42 1.88 0.06

DDTI (MD-NPH) −1.42 0.44 −3.21 0.001a −0.86 0.58 −1.48 0.14

DLacune (progression) 0.21 0.31 0.66 0.5 −1.33 0.80 −1.67 0.096

DCMB (progression) 0.37 0.29 1.29 0.2 — — — —

DGlobal cognitive function

E (global) 0.35 0.10 3.49 0.0008a — — — —

TPBV 0.32 0.13 2.47 0.015a 0.18 0.12 1.46 0.15

HV 0.04 0.11 0.39 0.7 — — — —

WMHL −0.24 0.10 −2.44 0.017a — — — —

DTI (MD-NPH) 0.27 0.10 2.67 0.009a — — — —

Lacunes −0.39 0.10 −3.77 0.0003a −0.33 0.11 −3.11 0.003a

CMB −0.22 0.11 −2.00 0.049a 0.19 0.12 1.61 0.11

DE (global) 0.40 0.09 4.45 <0.0001a 0.26 0.10 2.60 0.011a

DTPBV 0.03 0.10 0.27 0.8 — — — —

DWMHL −0.15 0.10 −1.49 0.14 — — — —

DDTI (MD-NPH) 0.25 0.10 2.50 0.014a — — — —

DLacune (progression) −0.40 0.10 −3.96 0.0002a −0.24 0.11 −2.28 0.025a

DCMB (progression) −0.22 0.10 −2.24 0.028a — — — —

Abbreviations: CMB= cerebralmicrobleed; Coef. = coefficient; DTI = diffusion tensor imaging; E = efficiency; HV = hippocampal volume;MD=mean diffusivity;
NPH = normalized peak height; SVD = small vessel disease; TPBV = total parenchymal brain volume; WMHL = white matter hyperintensity load.
Standardized coefficients for MRI predictors of conversion to dementia (top) and for decline in cognitive function (bottom) in SVD. Baseline predictors
are presented first, then change predictors (indicated by D). For dementia, models are binary logistic regression (statistics are z), while linear
regression is used for global cognitive function (statistics are t). Multipredictor models are constructed using stepwise selection based on model
Akaike information criterion. All models adjust for age, sex, and National Adult Reading Test IQ. For dementia, the multipredictor model had an
area under the curve of 0.933. For the multipredictor regression onto global cognitive function change, the model fit was significant: R2 = 0.412,
p < 0.0001.
a Statistically significant predictors (p < 0.05, uncorrected).
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in this clinical sample. There is the potential to extend our
findings by using improved techniques in the future.

This prospective longitudinal study demonstrates that change
in network global efficiency is an independent predictor of
dementia, confirms the central role of network disruption in
the pathogenesis of cognitive decline in SVD, and supports
a disconnection hypothesis of dementia in the disease. While
network analysis currently requires offline image analysis,
MRI to assess network global efficiency may be a useful sur-
rogate marker for future treatment trials in SVD.
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