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Abstract

Automatic spoken language assessment systems are gaining
popularity due to the rising demand for English second lan-
guage learning. Current systems primarily assess fluency and
pronunciation, rather than semantic content and relevance of
a candidate’s response to a prompt. However, to increase re-
liability and robustness, relevance assessment and off-topic re-
sponse detection are desirable, particularly for spontaneous spo-
ken responses to open-ended prompts. Previously proposed ap-
proaches usually require prompt-response pairs for all prompts.
This limits flexibility as example responses are required when-
ever a new test prompt is introduced.

This paper presents a initial study of an attention based
neural model which assesses the relevance of prompt-response
pairs without the need to see them in training. This model uses
a bidirectional Recurrent Neural Network (BiRNN) embedding
of the prompt to compute attention over the hidden states of a
BiRNN embedding of the response. The resulting fixed-length
embedding is fed into a binary classifier to predict relevance of
the response. Due to a lack of off-topic responses, negative ex-
amples for both training and evaluation are created by randomly
shuffling prompts and responses. On spontaneous spoken data
this system is able to assess relevance to both seen and unseen
prompts.
Index Terms: Spoken Language Assessment, Relevance As-
sessment, Deep Learning

1. Introduction
Automatic assessment systems are becoming attractive with a
growing demand for assessment of English as an additional lan-
guage [1]. They allow language assessment programmes to
economically scale their operations whilst decreasing through-
put time and provide testing on demand. Spoken language profi-
ciency is assessed based on a candidate’s responses to a series of
question prompts, such as ’describe a difficult situation at work,
why was it difficult?”. These assessment systems operate on
features derived from recordings of the candidate’s responses.
Automatic speech recognition (ASR) is used to transcribe the
responses to provide structured features, in addition to features
derived directly from the audio. Modern systems, such as ETS’
SpeechRater [2] and Pearson’s AZELLA [3], typically only as-
sess pronunciation and fluency. Although these are highly cor-
related with spoken language proficiency, reliable and robust
high-stakes assessment requires the assessment of the semantic
content, construction and relevance of the response to the ques-
tion prompt. Such a system should assess whether the candidate
has given an off-topic response, either due to misunderstanding
the question and/or memorizing a response. This is the problem
addressed in this paper.

A standard approach to assessing topic relevance and off-
topic response detection, both for essays and speech, is based on
measuring the similarity between a response and the test ques-
tion or prompt. Commonly, this is done by measuring the simi-
larity between vector representations of responses and prompts,
such as TF-IDF, Latent Semantic Analysis (LSA) [4, 5] or
Latent Dirichlet Allocation (LDA) [6, 7]. There are two ma-
jor deficiencies with this approach. Firstly, it is based on bag-
of-words vector representations which lose sequential informa-
tion important to evaluating the semantic content of responses.
Secondly, such systems require having prompt-response pairs
for all prompts in the test and can only assess relevance to
prompts which they have seen in the training data. The ap-
proach proposed in [8] overcomes the first limitation. It uses
a topic adapted Recurrent Neural Network Language Model
(RNNLM) to rank the topic-conditional probabilities of a re-
sponse sentence. However, this approach still requires having
prompt-response pairs for all prompts and cannot assess rele-
vance to new and previously unseen test prompts. Furthermore,
re-training the system may be computationally costly. This lim-
its the flexibility and increases the cost of deployment of such
systems, as it is necessary to collect example responses to newly
introduced prompts in order to have a system which is able to
detect off-topic responses to these prompts. This work aims to
overcome this limitation.

Recent work in the fields of Neural Machine Translation
and Question Answering [9, 10] has come up with a number
of attention-based deep learning architectures. Their key ad-
vantage is their ability to use an attention mechanism to extract
relevant information from a variable-length sequence model in
the form of a fixed-length embedding, conditioned on another
embedding. This approach was used by [9] to achieve break-
through results in English-to-French machine translation. Such
approaches have also been successfully applied to assessment
of multiple-choice questions [11]. In a related piece of work, a
Recurrent Neural Network was used to extract optimal sequence
features from spoken assessment in [12].

This paper presents an initial investigation of a novel neu-
ral attention-based model for assessing the relevance of spon-
taneous spoken responses to open ended prompts without the
need to see them in training. This model uses a Bidirectional
Recurrent Neural Network (BiRNN) embedding of a prompt to
attend over a BiRNN embedding of a response. The resulting
fixed-length prompt-conditional response embedding is fed into
a binary classifier to predict the relevance of the response to the
prompt. The model is trained on ASR transcriptions of spoken
responses. Due to a lack of off-topic responses, negative exam-
ples for both training and evaluation are created by randomly
shuffling prompts and responses. The model is evaluated us-
ing the area under a binary classification receiver-operator curve
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(ROC AUC) metric. The ability of this model to assess the rel-
evance and detect off-topic responses to prompts which were
both seen, and crucially, not seen in the training data is demon-
strated on spoken data from the Cambridge Business Language
(BULATS) exam.

The rest of this paper is structured as follows: section 2 in-
troduces and describes the proposed model, section 3 describes
the data and experimental setup, section 4 contains the results
and analysis, and section 5 is the conclusion.

2. Model

This section describes the proposed neural attention-based
model for assessing the relevance of responses to prompts. The
model is illustrated in Figure 1. It consists of four components;
a prompt encoder, a response encoder, an attention mechanism
and a binary classifier.

The proposed model assesses the relevance of responses to
prompts by using the prompt to extract information from the
response which is used to assign a relevance score. This is
accomplished by learning to dynamically compute a represen-
tation (embeddings) of the prompt using the prompt encoder.
This prompt embedding is used to attend over a representation
(embedding) of the response via an attention mechanism, which
should highlight the parts of the response most relevant to the
prompt. Based on this information, a binary classifier assigns
the probability of the response being relevant to the prompt.

The prompt (eq. 1) and response (eq. 2) encoders are Bidi-
rectional Recurrent Neural Networks (BiRNN) [13] with LSTM
recurrent units [14, 15] which process the words of the prompt
and response, respectively. The prompt and response are rep-
resented by the word sequences wp = {wp1 , · · · , w

p
L} and

wr = {wr1, · · · , wrT }. The prompt embedding h̃p is computed
by concatenating the final forward in time

−→
h p
L and backward in

time
←−
h p

1 hidden states of the prompt encoder (eq. 3). The for-
ward in time

−→
h r
t and backward in time

←−
h r
t hidden states of the

response encoder are concatenated at every time step to produce
a hidden state h̃rt (eq. 3), which contains information about how
the complete surrounding context relates to the current word.

hp1:L = LSTM
p(wp; θp)

hr1:T = LSTM
r(wp; θr)

h̃p =

[−→
h p
L←−

h p
1

]
h̃rt =

[−→
h r
t←−

h r
t

]
(1)
(2)

(3)

A fixed-length prompt-conditional embedding c of the re-
sponse is computed as a weighted sum of the hidden states h̃rt
of the response encoder given a set of attention weights αt via
an attention mechanism (eq. 5). The attention weights for each
hidden state are computed as a softmax (eq. 6), where the logits
are given by a similarity function between the prompt embed-
ding and the response hidden state. The similarity function (eq.
7) computes how strongly a hidden state of the response encoder
relates to the embedding of the prompt. The parameters of the
attention mechanism are θa = {ve,Λ1,Λ2, b}. This similarity
function was used in [9] for neural machine translation. Alter-
native attention mechanisms, with different similarity functions
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Figure 1: Neural attention-based response-prompt relevance
model.

[16] and attention sharpening [10] could potentially be used.

c =

T∑
t=1

αth̃
r
t

αt =
exp(st(h̃

p, h̃rt ))∑T
τ=1 exp(sτ t(h̃

p, h̃rτ ))

st(h̃
p, h̃rt ) = v

T
e tanh(Λ1h̃

p + Λ2h̃
r
t + b)

(4)

(5)

(6)

The fixed-length response embedding c is the fed into
a binary classifier f (eq. 7) which outputs the probability
P(rel|wr,wp) of the response relating to the question. In this
work f is a deep neural network (DNN) with parameters θf .

P(rel|wr,wp) = f(c; θf ) (7)

This model is trained using minibatch stochastic gradient
descent with a logistic loss error function (eq. 8) over all param-
eters θ = {θp,θr,θa,θf}. The model is trained on a balanced
data set of prompt-response pairs containing both positive and
negative examples of relevance.

L(θ) = 1

N

N∑
i=1

ti log(P(rel|wr
i ,w

p
i ))

+ (1− ti) log(1− P(rel|wr
i ,w

p
i ))

(8)

2.1. Relation to Previous Work

Previously proposed methods, such as [4, 17, 18, 19, 20, 8]
require an active set of question or prompt representations to
be maintained. Typically, these are vector representations of
topic based on TF-IDF, LSA or LDA [6, 7]. These are com-
monly constructed from example responses to the questions or
prompts. Thus if a new prompt is introduced, there is a need
to collect example responses and to re-train the model, both
of which could be expensive and time-consuming, limiting the
flexibility of deployment of such models.

The primary advantage of the proposed attention-based rel-
evance model is that, unlike previous methods, it does not need
to maintain an active set of topic (prompt) embeddings, but
can automatically embed any prompt into the appropriate space



via the prompt encoder. This also eliminates the need to pre-
compute a set of topic representations from examples responses.
All components of the model are trained jointly, which allows
them to learn the necessary representations and transformations
which make this possible. This allows the model to assess the
relevance of responses to newly introduced prompts without the
need to collect example responses to the new prompt or for the
model to be re-trained. However, the model needs to be trained
to generalize well in order to effectively handle unseen prompts,
especially if they are quite different to the prompts seen in the
training data.

Previous Deep Learning based approaches to off-topic re-
sponse detection [8], which were also evaluated on the BU-
LATS data used in this work, constructed a topic-adapted
RNNLM which is conditioned on an active, fixed set of LSA
topic embeddings trained separately on example responses.
This is a discriminative sentence model conditioned on the topic
P(wr|wp). Topic relevance is assessed via the approximation
in eq. 9. By using a uniform prior P(wp) over topics, it is possi-
ble to induce an implicit generative model over topics via Bayes
rule. Since a single response may be related to multiple topics
to different degrees, relevance is assessed by taking the top-N
highest ranking probabilities.

P(rel|wr,wp) ≈ P(wp|wr) ≈ P(wr|wp)∑
∀p P(w

r|wp)
(9)

In contrast, the proposed model calculates P(rel|wr,wp)
directly, and there is no need to use ranking to assess topic rel-
evance. Furthermore, the proposed model does not have an ex-
plicit model of topic P(wp|wr). Since a response can be rel-
evant to varying degrees to several different topics, a potential
disadvantage of the proposed model is that a certain amount
of confusion can be introduced by having negative examples
which are very similar to the positive example.

3. Data and Experimental Setup
A series of experiments were run to assess the ability of the
proposed automatic systems to rate the relevance of responses
to prompts. Data from the Business Language Testing Service
(BULATS) English tests was used for training and test. The text
for each response was generated using an ASR system. The
1-best recognition hypothesis was then passed to a relevance
assessment system, which decided whether the candidate had
spoken off topic by assigning a probability of whether the re-
sponse was relevant to the prompt. To avoid a data mismatch,
the recognition hypothesis was used both in training and test.

3.1. BULATS Test Format and Data

The BULATS Online Speaking Test has five sections [21]. This
work focuses on the 3 sections where open ended prompts
(which appear on screen) elicit spontaneously constructed re-
sponses:

C Candidates talk about a work-related topic (e.g. the per-
fect office).

D Candidates must describe a graph such as a pie or a bar
chart related to a business situation (e.g. company sales).

E Candidates are asked to respond to 5 open-ended
prompts related to a single context prompt (e.g. a set
of 5 questions about organizing a stall at a trade fair).

The 3 sections consist of 7 prompts in total.

Data #Topics #Resp. #Words #Resp./ Avg.Resp.
Topic Length

TRN 379 292.9K 13.4M 772.8 45.7
EVAL1 92 1319 64.7K 14.3 49.1
EVAL2 179 1445 59.6K 8.1 41.3
EVAL3 180 1496 63.8K 8.3 42.6
ALL 222 4260 188.1K 19.2 44.2
Table 1: Topic, response and word statistics of the prompt-
response data sets based on 1-best recognition hypotheses.

The training (TRN) data set is used as the source of prompt-
response pairs for training the model. It contains 13.4M words
in 292.9K responses covering 42K candidates. There are a
total of 379 unique prompts in TRN. Each prompt relates to
one topic, making the terms interchangeable. For multi-part
prompts, each part is considered a distinct topic. For each of
the topics (prompts) there are an average of 772.8 example re-
sponses, with an average response length of 45.7 words. TRN
consists of candidates from a wide range of L1 (native) lan-
guages, with the largest proportion being Gujarati L1 candi-
dates.

The evaluation data sets, described in table 1, are designed
to have an (approximately) even distribution over CEFR grades
levels [22] as well as over the different topics (prompts). EVAL1
is composed of only Gujarati L1 speakers, EVAL2 of only Span-
ish L1 candidates and EVAL3 is composed of Arabic, Dutch,
French, Polish, Thai and Vietnamese L1 candidates. The evalu-
ation data set ALL is the combination of EVAL1-3.

3.2. Training Data Construction

As the data is taken from tests run with human examiners the re-
sponses are virtually all on topic. To produce negative, off topic
training examples, the responses and prompts for both training
and evaluation were shuffled. As was shown in [8], responses
to prompts from the same section tend to be more similar so
are more confusable. Thus, two topic shuffling strategies are
considered: Naive, where prompts are shuffled across all sec-
tions; and Directed, where prompts are shuffled only within the
same section [8]. Naive topic shuffling represents a more likely
scenario, as real off-topic responses are unlikely to come from
the same section. The data sets were balanced, so that for ev-
ery response there are as many matched positive examples as
there are mismatched negative examples in the training data.
Thus, if more than one negative example is shown for a partic-
ular response, the positive example would be over-sampled the
corresponding number of times. For multi-part prompts, which
contain a main prompt that describes the overall question, and
several (5 in this case) sub-prompts, all sub-prompts were pre-
appended with the main prompt. These sub-prompts are consid-
ered distinct topics. During training, sub-prompts to the same
overall prompt are considered competing negative examples to
each other during shuffling.

3.3. ASR System

A speaker independent hybrid deep neural network - hidden
Markov model (DNN-HMM) system is used for ASR [23]. The
acoustic models are trained on 108.6 hours of BULATS test data
(Gujarati L1 speakers) using the HTK v3.5 toolkit [24, 25].
A Kneser-Ney trigram language model is trained on this data
and is then interpolated with a general English language model



trained on a large broadcast news corpus, using the SRILM
toolkit [26]. This ASR system has a word error rate of 32%
on a Gujarati L1 ASR development set taken from the BULATs
data. Performance on other L1s varies from 42-53%.

3.4. Model and Training Hyper-parameters

The proposed relevance assessment model was implemented
in Tensorflow [27]. It consists of 2 BiRNN encoders with
400 LSTM recurrent units with hyperbolic tangent (TanH) non-
linearities, 200 for the forward states and 200 for the backward
states. The model was trained for 5 epochs with the Adam opti-
mizer [28], with an initial learning rate of 1e-3, and an exponen-
tially decaying learning rate with decay factor 0.96 per epoch.
Dropout regularization [29] was used with a keep probability
of 0.8, dropout was applied to all layers except for the LSTM
hidden-to-hidden connections and the word embeddings. The
binary classifier was a DNN with 2 hidden layers of 200 recti-
fied linear (ReLU) units and with a 1-dimensional logistic out-
put. The word embeddings, shared by both the response and
prompt BiRNNs were initialized from an RNNLM language
model trained on the TRN responses and were kept fixed during
training. Four main models are examined in this work: models
N1 and D1, with Naive and Directed topic shuffling of training
data, respectively, and 1 negative example per response, and
models N5 and D5, with Naive and Directed topic shuffling
of training data, respectively, and 5 negative examples per re-
sponse. N1 and D1 take roughly 2.5 hours to train while N5
and D5 take 12 hours to train in an nVidia GTX 980M graphics
card.

3.5. Assessment Criteria

The models are evaluated using the area under a Receiver-
Operator Characteristic (AUC), which plots the True Positive
vs. the False positive rate at different decision thresholds. In
order to be able to do this, negative examples (true negatives)
need to be introduced into the evaluation data sets. This is done
using the same method as for training, with one positive and
one negative example for every response, both with Naive and
Directed shuffling. It must be noted, that results are based on a
particular instance of shuffling the prompts for evaluation.

4. Experiments
This section presents the results of investigations into the prop-
erties of the proposed model. Subsection 4.1 investigates sev-
eral key properties of the model when all the prompts are seen.
First, the baseline performance of a model trained on data with
Naive topic shuffling and 1 negative example per response. Sec-
ondly, the effect of CEFR grade level [22] on relevance assess-
ment performance is investigated. Thirdly, the effect of using
training data with 5 negative examples per response is assessed.
Finally, the effect of using training data with Directed topic
shuffling is investigated. Subsection 4.2 investigates the per-
formance of the model on unseen topics (prompts).

4.1. Baseline Performance

Table 2 and Figure 2 show the AUC scores for the baseline N1
model for all evaluation data sets. There are several notable
trends in the data. Firstly, overall, the model achieves a high
AUC of 0.95 on ALL evaluation data with Naive topic shuf-
fling, and a lower AUC of 0.90 with Directed topic shuffling.
This supports the findings in [8] which state that it is more dif-

ficult to distinguish prompts from the same section than from
across sections. However, the AUC score of 0.95 reflects the
more likely operating scenario, as Naive topic shuffling is more
representative of real off-topic responses. This trend holds for
all evaluation subsets. The performance on subset EVAL1 was
highest, which reflects both the dominance of Gujarati L1 can-
didates in the training data as well as the better quality of the
ASR transcriptions of responses of Gujarati candidates.

Topic EVAL1 EVAL2 EVAL3 ALLshuffling
Naive 0.97 0.95 0.94 0.95
Directed 0.94 0.89 0.88 0.90

Table 2: Baseline AUC scores for model trained on data with
Naive topic shuffling and 1 negative example per response (N1).

Figure 2: ROC curve for model trained on data with Naive topic
shuffling and 1 negative example per response (N1) evaluated
on ALL eval data.

Table 3 shows how the AUC performance of the baseline
N1 model varies with the CEFR level of the candidates. Clearly,
AUC increases with increasing proficiency level from the low-
est, A1, to the highest, C. This reflects both the increasing com-
plexity of the response, allowing it to be more easily distin-
guished from a response to a different prompt, and the rising
quality of the transcription - it is easier to correctly transcribe
the response of a good candidate using ASR. This trend holds
for all subsets EVAL1-3.

Topic A1 A2 B1 B2 CShuffling
Naive 0.88 0.94 0.94 0.97 0.97
Directed 0.82 0.88 0.91 0.93 0.94

Table 3: Per grade level breakdown of performance on ALL for
model trained on data with Naive topic shuffling and 1 negative
example per response (N1).

The results of the investigation of the effect of using Naive
vs Directed shuffling of training data, as well as the effect of us-
ing more negative-examples per response are presented in Table
4. Using 5 negative examples with Naive shuffling (N5) gives
very high performance on both the Naive, and especially, Di-
rected evaluation data. Clearly, as the model is exposed to a
greater variety of negative examples it learns to generalize bet-
ter. This performance boost relative to the model trained with 1



Figure 3: Comparison of model trained on data with Naive topic
shuffling with 1 (N1) and 5 (N5) negative examples per response
evaluated on ALL eval data.

negative sample is illustrated in Figure 3. The same trend can
be seen for models trained with Directed shuffling of the train-
ing data (D1 and D5). Interestingly, model D1 has similar per-
formance on both evaluation sets, while model N1 has clearly
better performance on the Naive evaluation set. This distinc-
tion is blurred for the N5 and D5 models, both of which have
comparable performance on all evaluation datasets.

Train topic shuffling
Topic Naive Directed
shuffling N1 N5 D1 D5
Naive 0.95 0.97 0.90 0.95
Directed 0.90 0.95 0.91 0.96

Table 4: Comparison of using Naive and Directed training data
and using more negative-examples on ALL evaluation data.

4.2. Performance on Unseen Prompts

In the above experiments all the prompts have been seen in the
training data. This section considers the scenario where some
prompts are not seen in training, investigating the proposed
model’s ability to generalize to new prompts. Since real unseen
prompt-response pairs are unavailable, 10-fold cross validation
over prompts (topics) was used on the training and evaluation
data. A fixed block of data, TRN-fixed (Table 5), is never re-
moved from the training data, as it contains topics which dom-
inate the training data and topics which do not appear in the
evaluation set ALL. The TRN-xVal data was used in cross vali-
dation. A subset of ALL, called ALL-sub, without the dominant
topics of TRN, was used for cross validation evaluation. All
parts of related multi-part prompts are held out together.

The training data uses Naive response shuffling with 1 neg-
ative example per prompt, described in section 3.3. However,
evaluation data responses are shuffled differently to the previ-
ous section, for these experiments. The prompts presented to
the model are always either from the subsets which are seen or
unseen in the training data. Evaluation responses are always
new (not reused from the training data, same as in section 4.1),
but can be related to prompts either seen or unseen in training.
Three strategies for shuffling evaluation responses for negative
examples are considered: seen, unseen and balanced. The first
uses responses to seen prompts as negative examples, the sec-

Data #Topics #Resp. #Words
TRN-fixed 178 142.8K 6.8M
TRN-xVal 201 150.1K 6.6M
ALL-sub 201 2955 127.7K

Table 5: Topic, response and word statistics of the prompt-
response data sets used for 10-fold cross validation.

ond uses responses to unseen prompts as negative examples,
and the last is an equal mix of the two. This produces six ex-
periments: seen prompts with seen, unseen and balanced re-
sponse shuffling; unseen prompts with seen, unseen and bal-
anced response shuffling. The first three illustrate how well the
model understands what relates to seen prompts and how well it
generalizes to increasingly differing responses. The latter three
experiments illustrate how well the model generalizes to new,
unseen prompts. Generalization performance is increasingly
stressed with seen, balanced and unseen evaluation response
topic shuffling, since the responses become increasingly unfa-
miliar. Relevance probabilities are combined across all 10 folds
to produce one ROC curve and AUC score for each experiment.
These curves, and the associated AUC scores, represent the ’av-
erage’ AUC on the data.

Figure 4: Average ROC curves for seen and unseen prompts
with balanced response topic shuffling across 10 folds.

Topic Prompts
shuffling Seen Unseen
Seen 0.92 0.78
Balanced 0.92 0.76
Unseen 0.92 0.72

Table 6: Experiments on ALL-sub.

The results presented in Table 6 show that once prompts
have been seen in training data, the model has a clear under-
standing of what is relevant to them and is not sensitive to
the nature of the negative-example responses. However, on
unseen prompts there is a degradation of performance, which
ranges from 0.78 to 0.72 as evaluation response topics shuffling
changes from seen to unseen. Clearly, the model is able to gen-
eralize well to unfamiliar responses, and to a lesser degree, to
new prompts, even in the extreme scenario (0.72 AUC). This
is expected, as the model is exposed to a greater variety of re-
sponses than prompts. ROC curves for performance on seen



and unseen prompts with balanced response topic shuffling are
shown in Figure 4.

5. Conclusions and Future Work
This paper presented an initial study of a novel neural attention-
based model for assessing the relevance of spontaneous spo-
ken responses to open ended prompts. This model uses a
bidrectional recurrent neural network (BiRNN) embedding of a
prompt to attend over a BiRNN embedding of a response. The
resulting fixed-length prompt-conditional response embedding
is fed into a binary classifier to predict the relevance of the re-
sponse to the prompt. Due to a lack of off-topic responses, neg-
ative examples for both training and evaluation are created by
randomly shuffling prompts and responses. The primary advan-
tage of this model is that it is able to assess the relevance and
detect off-topic responses to prompts which were both seen, and
crucially, not seen in the training data.

Improvements could be added to the model in future work.
For example, the model could be trained with dynamic sam-
pling of negative examples during training in order to expose
the model to a greater number of competing examples at lower
computation cost. Furthermore, it is interesting to investigate
what the attention mechanism learns, and how its focus over
particular words in a response varies across prompts. Correla-
tion of response relevance with grade level should be investi-
gated. Due to time constraints, it was not possible to run 10-
fold cross-validation on unseen topics using a model trained
on more than 1 negative example per response. A more ro-
bust method for evaluation, such as using a greater number of
samples, should be considered. The proposed method should be
compared to previously proposed approaches, such as [8].
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