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Abstract 

More than a decade after a Nobel Prize was awarded for discovery of the ubiquitin-proteasome 

system and clinical approval of proteasome and ubiquitin E3-ligase inhibitors, first-generation 

deubiquitylating enzyme (DUB) inhibitors are now approaching clinical trials. However, although our 

knowledge of the physiological and pathophysiological roles of DUBs has evolved tremendously, the 

clinical development of selective DUB inhibitors has been challenging. Here, we discuss these issues 

and highlight recent advances in our understanding of DUB enzymology and biology, as well as 

technological improvements, that have contributed to the current interest in DUBs as therapeutic 

targets in diseases ranging from oncology to neurodegeneration. 
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Introduction 

The sequential enzymatic processes that covalently attach ubiquitin, a 76-residue polypeptide, to 

target proteins – a process known as ubiquitylation - are now well understood (Figure 1a)1. In some 

cases, a single ubiquitin is attached to the target protein, while in others, multiple mono-ubiquitin 

adducts are conjugated to different residues of the target. In many instances, various types of 

ubiquitin chains are produced, wherein one ubiquitin moiety is attached to a free amino group of 

another. This leads to linear ubiquitin chains and chains involving internal ubiquitin lysine residues K6, 

K11, K27, K29, K33, K48, K63, as well as mixed ubiquitin chains containing different linkages, or 

linkages between ubiquitin and ubiquitin-like proteins (Ubls) that include SUMO (small ubiquitin-like 

modifier) and NEDD8 (neuronal-precursor-cell-expressed developmentally downregulated protein-8).  

 

These different types of ubiquitin/Ubl modifications, sometimes referred to as “the ubiquitin code”, 

have specific and diverse effects on protein and cell physiology. For example, such modifications can 

target proteins that are damaged, improperly folded, or have intrinsically short half-lives for 

degradation via the ubiquitin-proteasome system (UPS)2. Here, appropriately polyubiquitylated 

proteins are recognized and degraded by the 26S macromolecular proteasome complex3 via 

mechanisms that have been extensively reviewed elsewhere4,5. In other instances, ubiquitylation 

regulates protein interactions, localisation and enzymatic activities, thereby affecting cellular 

processes including transcription, DNA-damage signalling and DNA repair, cell cycle progression, 

endocytosis, apoptosis and various others6-9. Such control mechanisms often involve ubiquitin-binding 

proteins, many of which exist in eukaryotic cells10. The recent demonstration of post-translational 

modification of ubiquitin itself provides an additional layer of regulation that impacts on various 

cellular processes11. 

 

Like other posttranslational modifications, ubiquitylation is reversible, with peptidases termed 

deubiquitylating enzymes (DUBs) cleaving ubiquitin from substrate proteins, editing ubiquitin chains 

and processing ubiquitin precursors12. Some DUBs and related enzymes are involved in editing or 

processing Ubls and their conjugates13; prime examples of these being the SENP (sentrin/SUMO-

specific protease) proteins that process SUMO precursors and SUMO-conjugates14. DUBs are classified 

into six families based on sequence and domain conservation (Figure 1b): USPs (ubiquitin specific 

proteases), UCHs (ubiquitin COOH- terminal hydrolases), MJDs (Machado-Josephin-domain containing 

proteases), OTUs (ovarian tumour proteases), MINDY (motif interacting with ubiquitin-containing 
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novel DUB family) and JAMMs (JAB1/MPN/MOV34 family). SENPs and the first five DUB families are 

cysteine peptidases, while JAMMs are zinc metallo–peptidases. 

 

Ubiquitylation and related processes control myriad aspects of human cell biology and physiology, and 

defects in such processes contribute to many diseases. Accordingly, DUB deregulation contributes to 

various sporadic and genetic disorders. Notable examples include: the UCH family member BAP1, 

mutated in melanoma, mesothelioma and renal-cell carcinoma15; USP6, translocated in aneurysmal 

bone cysts16; USP7, mutated in neurological disorders17; USP8 whose mutations cause Cushing’s 

disease (CD)18,19; USP9X, whose mutations produce developmental disorders20 and whose expression 

is dysregulated in cancer21; USP15, amplified in certain glioblastoma, breast and ovarian cancers22; and 

CYLD, commonly mutated in cylindromatosis23. Deregulation of MJD family DUBs has also been linked 

to diseases associated with polyglutamine amplification. For example, expansion of DNA "CAG" 

trinucleotide repeats in ATAXIN-3 (ATXN3) causes Machado-Joseph disease24.  Furthermore, 

mutations in the JAMM family member AMSH (STAMBP) cause microcephaly-capillary malformation 

syndrome25. 

 

There has been growing interest in exploiting components of the ubiquitylation machinery as 

therapeutic targets26. While there has been strong progress in developing small-molecule inhibitors of 

ubiquitin/Ubl E1 enzymes27 , the highly pleiotropic nature of E1s means that such drugs will likely be 

confined to acute settings, such as in the treatment of aggressive cancers. Given their greater numbers 

and diversity, E2s, E3s and DUBs offer the potential for developing drugs with more specific effects. In 

particular, being a group of diverse enzymes with well-defined catalytic clefts, DUBs are intrinsically 

attractive as potential drug targets26. However, as we discuss further below, until recently the 

development of selective DUB inhibitors has been limited by insufficient understanding of DUB 

biology, difficulties in establishing robust biochemical assays suitable for compound screening, 

limitations in cellular and in vivo models to assess DUB activity or inhibition, and the pleiotropic nature 

of various small-molecule DUB inhibitors. With many of these issues now being largely overcome, the 

rate of progress of DUB drug discovery has quickened over the past few years, with various selective 

compounds being described and characterized by both academic groups and companies. 

 

In this review, we discuss how DUBs and their deregulation impact on human disease, particularly 

cancer, neurodegeneration and inflammation (Table 1), and highlight the therapeutic potential for 

pharmacological modulation of DUB activities. Recent advances in assay development and screening 
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technologies, which are enabling researchers and drug developers to overcome recurrent challenges 

in the clinical translation of DUB inhibitors, are also discussed. 

 

DUBs in oncology  

Accumulating evidence implicates DUBs in tumorigenesis at multiple levels (Figure 2). First, DUBs such 

as BAP1, UCHL1 and CYLD have been described as displaying intrinsic oncogenic or tumour suppressor 

activities28. Second, some DUBs such as USP22 are connected to controlling key epigenetic changes 

that promote tumour development29. Third, through their deubiquitylating activities, various DUBs, 

such as USP7 and USP28 have been reported to regulate the levels and/or activities of various 

oncogene or tumour suppressor proteins30,31. Fourth, DUBs modulate other therapeutically relevant 

cellular components and processes, such as the ubiquitin proteasome system (e.g. USP14 and 

UCHL5)32, stem-cell renewal (e.g. USP16 or USP22)29,33, DNA-damage responses and repair (e.g. USP1, 

USP11)9, immuno-oncology (e.g. USP7)34, or receptor tyrosine kinases (e.g. USP8, USP9X)35,36. 

Consequently, and as described in more detail below, various DUBs are emerging as attractive targets 

for the development of novel cancer therapies.   

 

Proteasomal DUBs 

The successful targeting of the proteasome for cancer therapy is underlined by the clinical success of 

Bortezomib, a broadly acting proteasome inhibitor, in refractory multiple myeloma37 or mantle cell 

myeloma38. However, three DUBs associated with proteasome functions, POH1, USP14 and UCHL5 

(UCH37), may represent more specific anticancer targets. To facilitate the degradation of proteasome-

targeted substrates, these specialised DUBs remove ubiquitin moieties that would otherwise impede 

entry into the 20S proteasome catalytic core39.  

 

The JAMM metallo-protease POH1 has been highlighted as a potential therapeutic target through 

studies showing that its levels inversely correlate with survival of multiple myeloma patients and that 

its depletion impairs proliferation of multiple myeloma cells40.  In addition, nuclear POH1 is elevated 

in hepatocellular carcinomas and correlates with E2F1 overexpression and tumour growth41.  POH1 

has also been reported to regulate the ubiquitylation and stability of the oncogene, receptor tyrosine 

kinase ERBB242. Furthermore, as POH1 has been connected to promoting cellular responses to DNA 

double-strand breaks, particularly by the process of homologous recombination, POH1 inhibition 

could potentially sensitise cancer cells to DNA-damaging agents and/or preferentially kill cancer cells 

that rely strongly on homologous recombination43.  
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Another potential anticancer therapeutic target is USP14, which is primarily associated with the 

proteasome 19S regulatory particle, where it potentiates ubiquitin recycling44. USP14 is not 

constitutively active but reversibly associates with the 19S RPN1 subunit, which enhances its activity45. 

USP14 inhibits proteasomal degradation of ubiquitin-protein conjugates by trimming ubiquitin chains 

on protein substrates prior to their degradation46. USP14 expression is upregulated in non-small cell 

lung cancer, especially in adenocarcinoma47, and its levels are reportedly elevated in ovarian cancer 

samples48. In line with this, USP14 is connected with several important signalling pathways, for 

example as a substrate of AKT that mediates intracellular signalling for growth factors49 and a 

modulator of dishevelled, a key positive regulator of Wnt signalling50.  

 

Like USP14, the DUB UCHL5 reversibly interacts with the proteasome51, binding to the RPN13/ADMR1 

receptor52 in a manner that enhances UCHL5 isopeptidase activity51,53. A key function of UCHL5 is to 

remove distal ubiquitin moieties from polyubiquitylated proteins, thereby liberating proteins from 

destruction54, or facilitating destruction of certain substrates, as described for inducible nitric oxide 

synthase and IκB-α55. It therefore appears that, like USP14, UCHL5 suppresses the destruction of 

certain proteins, while promoting degradation of others. Notably, RNA interference studies showed 

that depletion of either USP14 or UCHL5 alone had no detectable effect on cell growth, proteasome 

structure or proteolytic capacity, but did accelerate cellular protein degradation53. By contrast, 

depletion of both DUBs decreased protein degradation, suggesting that they have overlapping 

functions. UCHL5 is over-expressed in epithelial ovarian cancer, which is associated with advanced 

tumour progression and poor clinical outcome56. UCHL5 is also over-expressed in hepatocellular 

carcinoma, and was shown to promote cell migration and invasion57.  

 

These proteasome-associated DUBs represent attractive drug targets, as their inhibition might have 

substantial effects on cancer-cell physiology but with fewer toxicities than are seen with drugs 

targeting core proteasome catalytic function58. Indeed, VLX1570 (Table 2), the most advanced 

reported DUB inhibitor, which was recently in Phase I trials (now suspended) for treatment of multiple 

myeloma and solid tumours59, has been described to target USP14 and UCHL560. VLX1570 is a ring-

expanded version of the compound b-AP15 (VLX1500) identified from cell-based screens looking for 

compounds inducing p53-independent apoptosis. Cells treated with b-AP15 accumulate polyubiquitin 

chains61, and it has been claimed that b-AP15 targets USP14 and possibly also UCHL560. This compound 

was reported to be reversible and reasonably selective against other DUBs60 in a cell-based activity 

probe assay, with an IC50 of ~2 µM against purified 19S proteasome DUB activities. b-AP15 has strong 

activity when tested in various in vivo solid tumour models59, including multiple myeloma62, but it 
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remains to be seen whether VLX1570 selectivity will be sufficient to deliver on its promise as a next-

generation proteasome inhibitor. Cleave Biosciences has also published a series of patent applications 

describing compounds that inhibit JAMM proteases, providing potential angles for developing 

selective POH1 inhibitors (Table 2)63-65. 

 

DUBs linked to DNA repair 

One hallmark of cancer is the down-regulation, loss or deregulation of certain DNA repair and DNA-

damage response (DDR) pathways and/or strong reliance on such pathways66,67.  DNA repair and DDR 

mechanisms are regulated by post-translational modifications, such as ubiquitylation, with many DUBs 

strongly linked to such processes9,68.  

 

One example of this is USP1, a DUB identified as a regulator of FANCD2 ubiquitylation, a key protein 

involved in the Fanconi anemia (FA) pathway of DNA crosslink repair69,70. USP1 influences 

accumulation of the FA core complex at DNA-damage sites and deubiquitylates FANCD2/FANCI in a 

cell-cycle dependent manner69. USP1 also removes mono-ubiquitin from PCNA, a DNA-replication 

component that also functions in DNA repair by translation synthesis71. Other USP1 activities include 

functioning in a feedback loop to limit DDR CHK1 protein kinase activity72 and regulating cellular 

differentiation in osteosarcoma cells by deubiquitylating and hence affecting the stability of ID 

(inhibitors of DNA binding) proteins73. In vitro, USP1 activity is greatly stimulated by UAF1 (WDR48), 

enhancing USP1 catalytic turnover (kcat) but not affinity (Km) for mono-ubiquitylated substrates74. 

Selective USP1 inhibitors with sub-micromolar potency have been identified75, with one, pimozide, 

shown to re-sensitise platinum-resistant non-small lung cancer cells and promote FANCD2 and PCNA 

mono-ubiquitylation75. However, while these studies indicated on-target effects, DUB selectivity 

profiling suggested that pimozide might be less selective than initially described76. Optimisation of 

certain USP1 screening hits has generated additional molecules77, most notably a selective pyrimidine-

core compound, ML323 (Table 2). This molecule allosterically blocks complex formation between 

UAF1 and USP178, potentiates cisplatin cytotoxicity and increases PCNA and FANCD2 mono-

ubiquitylation in cells77. So far, however, little progress has been made in advancing selective USP1 

inhibitors into clinical development.  

 

Another DUB linked to DNA repair is USP11, which was initially described to complex with the DDR 

tumour suppressor BRCA2 to promote the DNA double-strand break repair pathway of homologous 

recombination79. Depletion of USP11 has been shown to sensitize cells to AZD2281/olaparib, which 

inhibits the DDR enzyme PARP80. Recently, an interaction between BRCA1 and PALB2 – which 
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functionally cooperate with BRCA2 in DNA repair – was shown to be under ubiquitin control, with 

PALB2 ubiquitylation suppressing its interaction with BRCA1 in a manner counteracted by USP1181.  

The only currently reported USP11 inhibitor is the topoisomerase inhibitor mitoxantrone (Table 2)82. 

While the authors reported low nanomolar potency in a pancreatic ductal adenocarcinoma cell 

survival model, no further development of this compound has been reported. Given the apparent 

amenability of USP11 to small-molecule inhibition, it is notable that USP4, a DUB closely related to 

USP11, was recently shown to play important roles in the DDR via promoting early stages of 

homologous recombination83.  

 

USP9X21, which maintains DNA replication-fork stability and DNA-damage checkpoint responses by 

regulating the protein CLASPIN during S-phase84, may represent another potential therapeutic target. 

USP9X has been shown to affect radiosensitivity in glioblastoma cells by MCL1-dependent and -

independent mechanisms85. The best-described USP9X inhibitor is WP1130 (Table 2), identified in a 

screen for JAK2 inhibitors, which was shown to inhibit USP9X as well as other DUBs (USP5, USP14 and 

UCHL5)86,87. The covalent mechanism-of-action of this compound was shown via mass spectrometry 

to be reversible76. 

 

Regulation of oncogenes and tumour suppressors 

Various DUBs have been reported to have connections to tumour suppressor or oncogenic functions, 

and may therefore represent potential therapeutic targets88.  

 

p53 regulation: Several DUBs have been linked to regulation of the tumour suppressor protein p53, 

which plays pivotal roles in cellular stress responses and is lost or mutated in many cancers89. Human 

HDM2 is a RING-type ubiquitin E3 ligase and key negative regulator of p53, via its ability to ubiquitylate 

p53 and target it for degradation90. By cleaving ubiquitin chains on HDM2 (or its mouse counterpart 

MDM2), USP7 counteracts HDM2 proteasomal degradation, leading to p53 suppression through 

increased ubiquitylation and degradation91,92. In theory, therefore, USP7 inhibition should trigger 

HDM2 degradation, p53 stabilisation and ultimately activation of apoptotic pathways in tumour 

cells93. Additional USP7 targets have also been described, such as PTEN, FOXO4 and FOXP334,94,95, 

suggesting alternative therapeutic mechanisms for USP7 inhibitors. USP7 has also recently been 

shown to promote DNA replication via acting as a deubiquitylase for the Ubl, SUMO96. 

 

The first published sub-micromolar USP7 inhibitor, HBX4110897, was shown to be a rather non-specific 

inhibitor of DUBs76. Recently, more selective amidotetrahydroacridine derivatives such as HBX19818 
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and HBX28258 were identified, although these exhibited fairly low potency98. Despite this, HBX19818 

was shown to covalently bind the USP7 catalytic Cys in preference to other cysteinyl groups, and to 

stabilise p53 and promote G1 arrest and apoptosis in cells98. Progenra’s thiophen chemical series also 

provided relatively non-specific USP7 inhibitors, including the compounds P5091 and P2207799. In 

multiple myeloma cells, P5091 stabilised p53 and inhibited tumour growth, while in animal models, 

P5091 was well-tolerated, inhibited tumour growth, and prolonged survival99. More recent in vivo 

studies using P22077 within an orthotopic neuroblastoma mouse model showed significant inhibition 

of xenograft growth100. While these findings are encouraging, little is known about the binding modes 

of these compounds and whether they can be further optimised into more “drug like” entities. 

Recently, Almac Discovery and Genentech reported that fragment-based screens provided hits as 

starting points for USP7 discovery programmes101. Optimisation of one hit, ADC-01, assisted by X-ray 

crystallography, produced the non-covalent, highly selective USP7 inhibitor ADC-03 (Table 2). 

 

The stability of p53 has also been recently reported to be regulated by the DUB, ATXN3102.  ATXN3 was 

shown to bind and deubiquitylate p53, resulting in p53 stabilisation. Deletion of ATXN3 resulted in 

destabilisation of p53, while ectopic expression of ATXN3 induced expression of p53 target genes and 

promoted p53-dependent apoptosis. How and whether ATXN3 inhibitors could be exploited to treat 

cancer or other diseases remains to be established. 

 

USP28 is another DUB that has recently been connected to p53, which functions together with the 

protein 53BP1 to promote p53-mediated transcriptional responses103. Furthermore, USP28 is mutated 

in human cancer cells, and is reported to antagonise the tumour suppressor FBW731, highlighting the 

potential for USP28 inhibitors in various cancers, especially colorectal104. USP28 is also reported to 

antagonise ubiquitin-dependent degradation of the oncogene product MYC as well as c-JUN and 

NOTCH105. While no USP28 inhibitors have yet been reported, it seems likely that drug-discovery 

activities are underway. 

 

HIF1α and USP20: Another tumour suppressor protein, which has been linked to DUB activity, is 

the von Hippel-Lindau tumour suppressor protein (pVHL), which ubiquitylates hypoxia-inducible 

factor 1α (HIF1α) when cellular oxygen levels are normal, leading to the degradation of HIF1α. USP20, 

also known as VHL protein-interacting deubiquitinating enzyme 2 (VDU2), is reported to 

deubiquitylate a number of proteins, including HIF1α. USP20-mediated deubiquitylation of HIF1α 

prevents proteasomal degradation, allowing for transcription of hypoxic response genes. Thus, 
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inhibition of USP20 has potential for suppressing proliferation of hypoxic tumour cells. GSK presented 

brief details of its search for USP20 inhibitors at a conference in 2012 (Table 2)106. 

 

 

EGFR and USP8: Ubiquitylation serves as a signal that delivers membrane receptors from the cell 

surface to lysosomes, and in mammalian cells this has been most intensively studied for epidermal 

growth factor receptor (EGFR). Upon EGF binding, activated EGFR is rapidly internalized and 

transported, via early and late endosomes, to lysosomes where EGFR is degraded. USP8, also known 

as UBPY, deubiquitylates EGFR on early endosomes, rescuing EGFR from degradation107,108.  In several 

cancers, including lung, breast and glioblastoma, EGFR is amplified or mutated in the tyrosine kinase 

domain, resulting in deregulation of receptor signalling that drives uncontrolled proliferation of 

tumour cells109. USP8 inhibitors (e.g. HBX90659) of a similar structural class to those identified for 

USP7110 have been reported (Table 2). Moreover, a derivative of these compounds was shown to be 

efficacious in mouse models of lung cancer111. 

 

TGF-β and USP15: USP15 regulates the TGF-β (transforming growth factor beta) pathway and is 

believed to be important for the proliferation of glioblastoma cells22. USP15 binds to the SMAD7–

SMAD E3 ligase complex and deubiquitylates and stabilises the type I TGF-β receptor, leading to 

enhanced TGF-β signalling.  The USP15 gene is amplified in glioblastoma, breast and ovarian cancers, 

and high expression of USP15 correlates with high TGF-β activity22. Depletion of USP15 reduces the 

oncogenic capacity of patient-derived glioma-initiating cells due to the diminished TGF-β signalling, 

suggesting therapeutic potential for development of USP15 inhibitors.  In addition, USP15 has been 

shown to deubiquitylate receptor-activated SMADs (R-SMADs)112, another set of TGF-β signalling 

pathway components. 

 

Other oncogenic DUBs: The DUB UCHL1, normally expressed only in neurons and neuro-endocrine 

tissues113,114, is highly expressed in many cancers, with its expression correlating with poor 

prognosis115. While there are reports that UCHL1 has a tumour suppressive role, most evidence 

supports its role as an oncogene115. Indeed, in a transgenic mouse model with constitutively activated 

UCHL1, sporadic tumours developed in many tissues116. Moreover, in vitro tumorigenesis studies 

showed that UCHL1 expression stimulated oncogenesis and an invasive phenotype117-119, while UCHL1 

depletion had anti-tumour effects and blocked cell migration in a lung cancer cell line117. The precise 

mechanism by which UCHL1 contributes to tumorigenesis remains unclear, although reports suggest 

that it contributes to cell survival signalling, cell cycle regulation, DNA repair, and regulating pools of 
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free ubiquitin in ways that affect protein degradation and function115. UCHL1 inhibitors have been 

described, the most potent being isatin acyl-oximes (LDN-57444, Table 2) with some selectivity over 

UCHL3120. In addition, a series of pyridinones have been identified as moderate UCHL1 inhibitors121. 

Enzyme kinetic studies revealed that these compounds are uncompetitive inhibitors and are selective 

for UCHL1, exhibiting no inhibition of other cysteine hydrolases tested. A weak tripeptide fluoromethyl 

ketone (FMK) inhibitor was subsequently shown through crystallographic studies to bind within the 

UCHL1 active site, irreversibly modifying the active-site cysteine122.  Mission Therapeutics has also 

developed several series of potent and selective UCHL1 inhibitors123,124. While no UCHL1 inhibitors 

have demonstrated anti-tumour activity in vivo, inducible depletion of UCHL1 has been shown to 

cause disease regression in an orthotopic multiple myeloma model125. 

 

Another DUB associated with oncogenesis is USP22, the catalytic subunit of a deubiquitylase module 

in the SAGA (Spt-Ada-Gcn5-acetyltransferase) complex. The best-characterised substrates for SAGA 

include several acetylation sites in histone H3 and a ubiquitylation site in histone H2B, post-

translational modification of which regulates gene expression29. USP22 has strong links to 

oncogenesis29, having been identified in microarray screens as part of an 11-gene ‘death from cancer’ 

signature for highly aggressive, therapy-resistant tumours. USP22 was later shown to act as an 

oncogene product, regulating cell cycle progression, proliferation and apoptosis126. Increased 

expression of USP22 has been connected with poor prognosis in several cancers including liver127, 

colorectal127, breast128, oesophageal squamous-cell carcinoma129 and oral squamous-cell carcinoma130. 

If USP22 DUB activity can be linked to survival and progression of these cancers, then inhibitors may 

provide attractive prospects for new therapies. 

 

Cancer immunotherapy 

Given the role of ubiquitin modifications and DUBs in many inflammatory processes (see below) as 

well as the renewed interest in targeting the immune system to fight cancer, the anti-neoplastic 

potential of therapeutically inhibiting DUBs involved in the immune system is being investigated. 

Amongst these is USP7, which positively regulates the stability of FOXP3, a critical transcription factor 

controlling the differentiation of regulatory T cells (Treg)34. In a search for DUBs that contribute to 

GATA3 stabilisation in Foxp3-expressing cells, both USP7 and USP21 were shown to upregulate 

GATA3-mediated activity using a reporter assay131. Furthermore, depletion of USP21 in Treg cells 

resulted in downregulation of FOXP3, compromised expression of Treg signature genes and impaired 

their suppressive activity132. As Treg cells restrict anti-tumour immune responses and promote tumour 

survival133, these results suggest that depletion of FOXP3 in Treg cells by targeting USP7 and USP21 
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offer promise for anti-cancer immunotherapies. In this regard, Mission Therapeutics is investigating 

USP7 as an immuno-oncology target and has developed USP7 inhibitors (Mission Therapeutics 

Pipeline available from:  http://missiontherapeutics.com/programmes/). 

 

DUBs in neurodegenerative disease 

Identification of ubiquitin in protein aggregates associated with neurodegenerative pathologies such 

as neurofibrillary tangles in Alzheimer’s disease, Lewy bodies in Parkinson’s disease or intranuclear 

inclusions in heridetary polyglutamine expansion disorders, has prompted much interest in 

understanding how ubiquitylation and deubiquitylation affect such aggregates134. DUB function in the 

central nervous system has been described in detail elsewhere135,136, therefore below we focus on a 

select number of DUBs connected to neurodegenerative disease. 

 

Mitochondrial quality control 

Mitochondrial dysfunction and UPS impairment have been described as hallmarks of aging137, and 

have been implicated in the etiopathogenesis of many age-related diseases, particularly 

neurodegenerative disorders such as Alzheimer’s and Parkinson’s. In accord with this connection, 

ubiquitylation has close links to mitochondrial function, with the UPS maintaining mitochondrial 

homeostasis by regulating organelle dynamics, the mitochondrial proteome and mitophagy138. 

Conversely, mitochondrial dysfunction can impair cellular protein homeostasis by generating oxidative 

damage. Notably, mutations in the ubiquitin E3 ligase Parkin are causally associated with certain cases 

of familial Parkinson’s disease139. As Parkin ubiquitylates mitochondrial components, thus promoting 

turnover of mitochondria by lysosome-mediated mitophagy, defective mitophagy and accumulation 

of defective mitochondria that cause enhanced oxidative stress could be an underlying cause of 

Parkinson’s disease140,141. A corollary of this is that Parkin activation – or inhibition of factors 

counteracting Parkin – could provide opportunities for disease alleviation.  

 

A screen for DUBs that oppose Parkin function identified the mitochondrial-associated DUB USP30 as 

an antagonist of Parkin-mediated mitophagy142,143, with USP30 depletion significantly decreasing 

mitochondrial numbers in cells, a phenotype that was rescued by wild-type but not catalytically 

inactive USP30. Furthermore, USP30 depletion in vivo provided stress protection in Drosophila 

melanogaster models of Parkinson’s disease (park25 or pink1B9). In line with such findings, USP30 

depletion in human HeLa cells led to elongated and interconnected mitochondria144, suggesting a role 

for USP30 in regulating mitochondrial fusion/fission. Current models invoke USP30 functioning under 

normal physiological conditions to prevent inappropriate mitophagy. However, in response to stresses 
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such as membrane depolarization, Parkin is recruited to mitochondria to promote mitophagy145. 

Accordingly, under conditions of mitochondrial dysfunction – such as are caused by defects in Parkin 

(or its positive regulator PINK1), USP30 is thought to counteract clearance of damaged mitochondria, 

leading to a build-up of metabolically and energetically deficient cells142. It is thus hypothesised that, 

in the context of certain mitochondrial dysfunctions, USP30 inhibition would have therapeutic 

benefits. So far, only one chemical inhibitor of USP30 has been described, 15-oxospiramilactone (Table 

2), which induced mitochondrial elongation in Mfn1-knockout mouse fibroblasts, with no effect on 

cell viability146. Mission Therapeutics is exploring USP30 inhibition for the treatment of Parkinson’s 

disease and other mitochondrial disorders, and has published several patent applications describing 

USP30 inhibitors124,147. 

 

Two other DUBs connected to mitophagy are USP8 and USP15. Notably, USP8 depletion was found to 

delay Parkin translocation onto depolarized mitochondria, as well as mitochondrial clearance, and 

USP8 displayed an ability to remove K6 ubiquitin chains from Parkin in vitro148.  In addition, USP8 has 

been shown to remove ubiquitin K63 chains from -synuclein149, a protein known to aggregate, often 

in a ubiquitylated form, in neuronal inclusion bodies (Lewy bodies) associated with neurodegenerative 

diseases such as Parkinson’s disease. Depletion of USP8 in either human cells or Drosophila resulted 

in increased lysosomal degradation of α-synuclein149. Meanwhile, USP15 was identified as a Parkin-

interacting protein that co-localizes with mitochondria150. In cells over-expressing Parkin, over-

expression of wild-type but not catalytic-dead USP15 strongly inhibited mitophagy143,150. Furthermore, 

depleting endogenous USP15 enhanced mitophagy in HeLa cells, in a human dopaminergic neuronal 

cell line and in primary fibroblasts from human patients150. USP15 does not deubiquitylate Parkin 

under basal conditions or when cells are treated with mitochondrial depolarizing agents. It also does 

not appear to affect Parkin translocation to mitochondria150, although it can oppose Parkin-mediated 

mitochondrial ubiquitylation. Finally, USP15 loss in Drosophila was found to rescue both locomotor 

defects and accumulation of dysfunctional mitochondria in flight muscles of parkin knock-out flies143. 

Collectively, these findings highlight the potential for USP8 and USP15 inhibitors in Parkinson’s disease 

and perhaps other diseases associated with mitochondrial dysfunction. 

 

Further highlighting connections between Parkinson’s disease and DUBs, ATXN3 has been shown to 

interact with Parkin in a manner that counteracts Parkin auto-ubiquitylation151.  In addition, USP7 was 

recently shown to remove K63-linked ubiquitin chains from -synuclein149, a protein that aggregates 

and accumulates in Lewy bodies, which are hallmarks of Parkinson’s disease.  
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USP14  

As described above, USP14 removes ubiquitin from certain substrates targeted to the proteasome, 

thus rescuing such substrates from degradation and maintaining free ubiquitin pools54,152. IU1 (Table 

2), a reversible small-molecule USP14 inhibitor, was shown to target the USP14 catalytic site46 and 

promote degradation of several over-expressed proteins whose accumulation is linked to 

neurodegenerative diseases, such as Tau, TDP-43 and ATXN3. Notably, IU1 only promoted degradation 

in Usp14+/+ murine embryonic fibroblasts46 but not in Usp14-/- cells, suggesting that this compound 

functions specifically through USP14. Furthermore, IU1 reduced accumulation of menadione-induced 

oxidized proteins and ameliorated menadione or hydrogen peroxide-induced cell death in human 

HEK293 cells46. Proteostasis Therapeutics (in collaboration with Biogen) is developing USP14 inhibitors 

for the clearance of aggregation-prone proteins, including α-synuclein in Parkinson’s disease and Tau 

in Alzheimer’s disease (http://www.proteostasis.com/product-pipeline/usp14/), and has published 

several patent applications describing USP14 inhibitors153-155. 

 

Despite the growing interest in USP14 as a therapeutic target in cancer and neurodegeneration, the 

fact that its loss causes severe morbidity and postnatal lethality requires further investigation, 

especially in regards to its role in neuromuscular junctions: the neuromuscular phenotype of USP14 

deficient axJ mice is rescued by neuronal-specific expression of USP14156. Furthermore, the extent to 

which USP14 contributes to the clearance of proteins involved in neurodegeneration in vivo remains 

controversial157. The development and use of USP14 inhibitors in disease-relevant models may shed 

further light on such issues, and hopefully will define potential therapeutic windows for USP14 

inhibition in disease settings. 

 

USP16  

Down syndrome is a congenital disorder driven by triplication of human chromosome 21, on which 

the USP16 gene resides. USP16 has been reported to regulate cell-cycle progression and gene 

expression through deubiquitylation of histone H2A158. Defects in haematopoietic stem-cell self-

renewal in a Down syndrome mouse model were rescued by reducing USP16 expression to levels 

similar to those in control mice159. In addition, USP16 over-expression in normal human fibroblasts 

and neural progenitors lead to reduced cell expansion159, similar to the strong proliferation defects 

observed in human Down syndrome fibroblasts160. Thus, USP16 is a key regulator that controls stem 

cell self-renewal and senescence in Down syndrome, suggesting that inhibitors of USP16 might 

provide therapeutic benefits to such individuals. 
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DUBs in immunity and inflammation 

Pathogens are recognised by several families of pattern-recognition receptors (PRR), and activate 

various signal-transduction cascades via the retinoic acid–inducible gene 1–like receptor (RLR), 

nucleotide-binding oligomerization domain-like receptor (NLR) and the toll-like receptor (TLR)161.  

These signalling events mediate induction of inflammation that is important for recruiting immune 

cells to sites of infection.  Ubiquitylation is a critical post-translational modification in this process161.  

Non-degradative K63- and M1-linked ubiquitin chains mediate the key upstream event of recruiting 

the TGF-activated kinase (TAK1) and the IB kinase (IKK) complexes, respectively162. K63 

polyubiquitination activates the TAK1 kinase complex, which phosphorylates IKK at key serine 

residues in the activation loop, resulting in IKK activation and transcriptional activation of target genes 

which include mediators of immune and inflammatory responses as well as feedback inhibitors of the 

NF-kB pathway163.  Negative regulators include DUBs that cleave K63 and linear chains such as A20, 

CYLD and OTULIN (also known as FAM105B or Gumby)161,164,165. 

 

The TNFAIP3 gene, which encodes the A20 protein, is probably the best-characterized DUB linked to 

inflammation166. A20 plays a key role in restricting TLR signalling and maintaining immune homeostasis 

through deubiquitylation of NF-B signalling factors such as NEMO, RIPK1 and TRAF6167. In addition, 

A20 can bind polyubiquitin chains through its zinc finger domain, allowing for interaction with 

ubiquitylated NEMO protein. This ubiquitin-induced recruitment of A20 to NEMO is sufficient to block 

IKK phosphorylation by its upstream kinase TAK1, preventing NF-B activation168. Thus, A20 deficiency 

promotes local or systemic inflammation in vivo, underscoring why inactivating TNFAIP3 mutations 

have connections with both inflammatory and autoimmune syndromes169.  

 

CYLD is another DUB known to negatively regulate ubiquitylation of RIG-1 (one of the major RLRs) and 

RIG-I mediated IFN gene induction170,171.  CYLD binds to RIG-I and inhibits ubiquitylation and signalling 

functions of RIG-I.  CYLD also inhibits the ubiquitylation of TBK1 and IKK which contributes to the 

negative regulation of IFN responses171 Consistently, CYLD deficiency causes constitutive activation of 

TBK1 and IKK in dendritic cells.  Despite enhanced RIG-I signalling, CYLD-deficient cells and mice are 

more susceptible to VSV infection due to attenuated signalling and antiviral gene expression induced 

by IFN, suggesting a positive role for CYLD in regulation of type I IFN receptor function161. 

 

Ubiquitin M1-linked chains are generated by the linear ubiquitin chain assembly complex (LUBAC) 

consisting of HOIP, HOIL-1 and SHARPIN. LUBAC is recruited to many immune receptors, and 
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ubiquitylates target proteins, including RIPK1, RIPK2, MyD88, IRAKs and NEMO172,173. Genetic loss of 

LUBAC components leads to immunodeficiency174 and inflammatory phenotypes in mice175-178, and 

mutations in LUBAC components also cause inflammatory conditions in humans179,180. Hence, loss of 

M1-linked chains imbalances immune signalling.  OTULIN is the only DUB known to specifically cleave 

M1 linkages181,182. Accordingly, a homozygous hypomorphic mutation in human OTULIN has recently 

been shown to cause a potentially fatal auto-inflammatory condition termed OTULIN-related 

autoinflammatory syndrome (ORAS)183. 

 

Similar to ubiquitin, the Ubl ISG15 (interferon-stimulated gene 15) plays a key role in cellular signalling 

in response to pathogens.  Conjugation of ISG15 to various cellular substrates is reversed by the 

interferon (IFN)-inducible isopeptidase USP18. USP18 is upregulated after viral infection, type I and 

type III IFNs, lipopolysaccharide, tumour necrosis factor alpha or genotoxic stress. In addition to its 

isopeptidase activity, USP18 negatively regulates type I and type III IFN signalling by blocking the type 

I IFN receptor 2 subunit184. 

 

Inflammatory and autoimmune disorders  

Debilitating autoimmune diseases range from those with genetic components such as Crohn’s disease, 

diabetes mellitus type 1, Graves disease and rheumatoid arthritis185, to sporadic conditions including 

celiac disease, inflammatory bowel disease, multiple sclerosis, psoriasis, and systemic lupus 

erythematosus. In addition, chronic inflammatory diseases are characterised by a prolonged and 

persistent pro-inflammatory state, and include autoimmune disease as well as metabolic syndromes, 

neurodegenerative disease, chronic obstructive pulmonary disease and cardiovascular disease. 

 

Following PRR stimulation, dendritic cells secrete various cytokines that regulate the differentiation 

of CD4+ T cells to different subsets of helper T (Th) cells, including inducible Treg cells, T follicular 

helper cells, and Th1, Th2, Th9 and Th17 cells186. Th17 cells mediate pro-inflammatory functions 

through the secretion of pro-inflammatory cytokines, including IL-17A, IL-17F, and IL-22187. Moreover 

Th17 cells have been implicated in the development of autoimmune diseases such as multiple 

sclerosis, rheumatoid arthritis and systemic lupus erythematosus 188. 

 

USP4 has been shown to stabilise the nuclear receptor RORt in Th17 activated T cells, and has been 

proposed as a possible therapeutic target for rheumatoid arthritis189. Yang et al., reported that USP4 

is highly expressed in Th17 cells and its depletion resulted in decreased RORt as well as IL-17A 

expression189. In addition, use of the reported USP4 inhibitor Vialinin A (Table 2) also diminished RORt 
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and IL-17A expression190. Furthermore, expression of USP4, IL-17A and IL-17F mRNA have been shown 

to be significantly elevated in CD4+ T cells from rheumatoid arthritis patients compared to healthy 

controls189, providing further evidence for a role of USP4 in rheumatoid arthritis. 

 

TRABID (also known as ZRANB1), is required for TLR-mediated expression of the inflammatory 

cytokines IL-12 and IL-23 in dendritic cells191. TRABID is proposed to deubiquitylate and stabilise the 

histone demethylase, JMJD2D, which regulates histone modification at the Il12 and Il23 promoters to 

facilitate recruitment of the NF-B family member c-Rel191. Conditional deletion of TRABID in dendritic 

cells impairs IL-12 and IL-23 production and the generation of Th1 and Th17 subsets of inflammatory 

T cells, rendering mice refractory to the induction of experimental autoimmune encephalomyelitis 

(EAE)191. 

 

Another DUB associated with the activity of Th17 cells is USP18.  Although this DUB has been 

extensively studied in the context of viral infection, Liu et al., demonstrated that USP18 regulates the 

TAK1-TAB interaction, which is required for Th17 differentiation and autoimmune response192. 

Consistent with this, USP18-deficient mice were resistant to EAE192.  

 

T cell receptor signalling has been shown to be facilitated by the DUB, CEZANNE1 (OTUD7B), which 

binds and deubiquitylates zeta-chain associated protein (ZAP70), thus preventing the interaction of 

ZAP70 with negative-regulatory phosphatases193.  ZAP70 is a cytoplasmic protein tyrosine kinase that 

plays a critical role in T-cell signalling.  ZAP70 is recruited to phosphorylated sites on the T cell receptor 

where it is subsequently phosphorylated by the SRC kinase LCK.  Phosphorylation of ZAP70 is required 

for full activation and downstream phosphorylation of adaptor proteins, which facilitate T cell 

signalling194.  In addition, CEZANNE1 deficient mice exhibit attenuated T cell responses to bacterial 

infection and were refractory to EAE193. While young CEZANNE1 knockout mice had similar naïve and 

memory-like T cells compared to wild-type mice, older mice deficient for CEZANNE1 had reduced IFN-

 producing Th1 cell subsets193. 

 

Similar to Th17 cells, Th1 cells have the capacity to cause inflammation and autoimmune disease.  The 

development, differentiation and function of Th1 cells is driven by the T-box transcriptional factor T-

bet, which promotes Th1 immune response primarily through promoting expression of the cytokine 

IFN-195. The DUB USP10 has been shown to deubiquitylate and stabilise T-bet, resulting in enhanced 

secretion of IFN-196. In addition, USP10 mRNA expression was found to be elevated in PBMCs from 

patients with asthma compared to healthy donors196. 
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While it is currently unclear why so many DUBs are involved in the regulation of immune responses, 

it is possible that different DUBs function in distinct cell types. Many published studies are based on 

cell lines and over-expression systems, and the expression of endogenous DUBs in various immune 

cells will be an important area for future investigation. Similarly, the generation of genetic models and 

the development of inhibitors for Cezanne1, TRABID, USP4, USP10 and USP18 will help determine 

their therapeutic potential. 

 

DUBs with links to infectious diseases 

As described below, there is growing interest in DUBs as potential therapeutic targets for various 

infectious diseases of man and other animals. Such potential is being explored both by developing 

compounds that inhibit the activity of pathogen-encoded DUB-like proteins, or target host-cell DUBs 

that control the pathogen life cycle or infectivity. 

 

Viral infections 

Ubiquitylation is important for modulation of protein–protein interactions, including the activation of 

innate immune signalling pathways, so perhaps not surprisingly, various viruses encode DUBs as a 

strategy to inhibit ubiquitin and ISG15-dependent antiviral pathways197. Severe acute respiratory 

syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are 

two of the six known human coronaviruses. Both are highly pathogenic, with the potential for human-

to-human transmission, and contain papain-like cysteine proteases termed SARS-CoV PLpro and 

MERS-CoV PLpro, respectively. In addition to processing viral polyprotein, these proteases remove 

ubiquitin and ISG15 from host cell factors, resulting in antagonism of the host antiviral immune 

response198. Hence, both SARS-CoV PLpro and MERS-CoV PLpro have been proposed as important 

antiviral targets. The X-ray structures of both proteases have shown similarity to the USP family of 

DUBs199-201. 

 

OTU domain-containing proteases from diverse RNA viruses, including the nairoviruses Crimean-

Congo hemorrhagic fever virus and Dugbe virus, the papain-like protease (PLP2) domain of the 

arterivirus equine arteritis virus, and the protease (PRO) domain of the tymovirus turnip yellow mosaic 

virus can hydrolyze ubiquitin and ISG15 from cellular target proteins197,202. Many positive-strand RNA 

viruses, including arteriviruses and tymoviruses, encode polyproteins that are post-translationally 

cleaved by internal protease domains. In accord with this, both arterivirus PLP2 and tymovirus PRO 
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are critically required for viral replication due to their primary role in polyprotein maturation197. Thus, 

viral OTU proteases may represent promising therapeutic targets. 

 

Bacterial infections 

Bacteria employ a repertoire of effector proteins that target the eukaryotic ubiquitin system to 

promote bacterial pathogenicity. Pruneda et al. have recently characterised protease activity from 

human bacterial pathogens including Salmonella (SseL), Escherichia (ElaD), Shigella (ShiCE), Chlamydia 

(ChlaDUB1), Rickettsia (RickCE), and Legionella (LegCE)203. LegCE showed no proteolytic activity; SseL, 

ElaD, and ShiCE demonstrated ubiquitin-specific protease activity; while ChlaDUB1 and RickCE cleaved 

both ubiquitin and, to a lesser extent, NEDD8-modified peptides. Interestingly, these DUBs encoded 

by human pathogens showed strong preference for K63-linked chains, only targeting K48 and K11 

chains at later time points or higher enzyme concentrations.  Therefore, bacterial DUBs are potential 

therapeutic targets. 

 

Parasitic infections 

In addition to expressing DUBs that target host functions, similar to viruses and bacteria, eukaryotic 

parasites also possess Ubl pathways of their own. The use of ubiquitin-based activity probes to identify 

DUBs in Plasmodium falciparum led to the identification of PfUCH54, which was shown to have 

deubiquitylating activity and also an ability to remove adducts of the Ubl, NEDD8204. Further 

investigation of the parasite Toxoplasma gondii using a similar strategy identified four DUBs, one of 

which was orthologous to mammalian UCHL3205. Structural studies on PfUCHL3 explained the dual 

specificity of the enzyme, and PfUCHL3 was found to be required for parasite survival206. Distinct 

differences in the ubiquitin binding site between PfUCHL3 and its human counterpart suggest that this 

parasitic DUB can be selectively targeted by inhibitors. Based on the above findings, it will be of great 

interest to further explore anti-infective opportunities for DUB inhibitors. 

 

Therapeutic challenges, emerging technologies and compounds 

Despite the significant and growing attractiveness of DUBs as drug targets, DUB-focused drug 

discovery has been challenging, with researchers in this arena facing various obstacles. First, while 

DUBs have clear catalytic pockets that a priori appear suitable for drug development, a key challenge 

has been to identify potent compounds that show selectivity amongst related DUBs and have 

properties commensurate with their development for clinical use. Second, ubiquitylation and 

deubiquitylation are intracellular processes that, at least at present, are only amenable to classical 

small-molecule chemical approaches. Third, because most DUBs execute the transfer of ubiquitin 



19 

molecules via a reactive thiol group, most standard assays used to identify inhibitors are prone to non-

selective redox or alkylating false positives207. Fourth, the mechanisms-of-action of DUB enzymes are 

often complex, involving regulation of enzymatic activity through allosteric effects and/or substrate-

mediated catalysis, with many DUBs alternating between active and non-active conformations (see 

below)208,209. This makes it challenging both to design predictive biochemical assays and develop drug-

like compounds. Finally, DUBs often display specificity for ubiquitin chains as well as the target 

proteins. Hence, to optimise the likelihood of identifying genuine inhibitors, it is prudent to develop 

bespoke primary screening and secondary assays that recapitulate the most physiological substrate 

and ubiquitin-linkage setting for each DUB. 

 

Despite the above issues, DUBs are fundamentally catalytically-driven proteins with known enzymatic 

functions, and as such present researchers with the opportunity to identify small-molecule inhibitors 

either within the active site or at adjacent allosteric pockets. Indeed, over the past few years there 

has been an increasing rate of progress in successfully screening for and evolving small-molecule DUB 

inhibitors, with the most developed of these now moving towards or into clinical evaluation (for 

examples, see Table 2).  

 

Understanding DUB-substrate interactions 

Understanding the mechanism-of-action of individual DUBs is important when initiating any screening 

and subsequent drug-discovery campaign. DUBs are generally isopeptidases that, in most cases, 

catalyse a proteolytic reaction between a lysine Ɛ side chain and a carboxyl group corresponding to 

the ubiquitin C-terminus209. The last two C-terminal amino acid residues are glycines (Gly75-Gly76) 

that lack side chains, resulting in a narrow linker on either side of the isopeptide bond, which is 

mirrored in a long and narrow DUB catalytic cleft209. Moreover, cysteinyl-protease DUB catalytic 

activity tends to rely on two or three crucial residues comprising a catalytic diad or triad, generally 

constituted by a His side-chain that, by lowering the pKa of the catalytic Cys, leads to a nucleophilic 

attack on the ubiquitin-substrate isopeptide linkage12. Collectively, these properties bring complexity 

to identifying selective small-molecule inhibitors that target DUB catalytic sites and are likely to 

restrict the breadth of series that are suitable for developing potent and selective DUB inhibitors. 

The Proteostasis thiophene pyrimidine-cored USP14 inhibitors are known to bind in the ubiquitin 

pocket and prevent the ubiquitylated substrate binding210. However, the majority of historical and 

current DUB drug-discovery programmes have focused on chemical series that include the provision 

of an active “warhead” that forms a reversible or irreversible covalent adduct with the DUB catalytic 

cysteine. The high reactivity of some of these warheads, which include oxidative, alkylating and 
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arylating moieties210, is likely to limit drug selectivity, may hamper the development of acceptable 

pharmacokinetic and pharmacodynamics parameters, and may also pose risks of idiosynchratic 

toxicities in patients.  

 

For this reason, less reactive warheads are being explored that are closely related to warheads utilised 

by non-DUB cysteine protease inhibitors in the clinic. For example, the USP8 inhibitor identified from 

a library of amidomethyl methyl acrylates (Compound 6)211 contains a Michael acceptor group also 

found in Rupintrivir, an inhibitor of rhinovirus 3C protease and a GSK cathepsin C inhibitor210. In 

addition, USP9X inhibitors WP1130 and EOA1342143212 contain a Michael acceptor group similar to 

that found in a Principia Biopharma Bruton’s tyrosine kinase (BTK) inhibitor210. However, these 

examples are few in number, and the compounds are weak DUB inhibitors. Mission Therapeutics has 

discovered covalent active-site series that are ‘drug-like’, unrelated to any previously described DUB 

inhibitor, and which achieve sub-micromolar cell-based potencies and exhibit good oral 

bioavailability123,124,147.  

 

Allosteric regulation: implications 

Most peptidases, including many cysteine proteases, recognise a small linear polypeptide motif and 

cleave either before or after the peptide bond213. DUBs, however, are more complex. Most DUBs, 

cleave an isopeptide linkage between the side-chain of a lysine residue and ubiquitin’s carboxyl-

terminal glycine, with the isopeptide linkage providing specificity and flexibility to the mechanism of 

proteolysis214. Also, DUBs need to accommodate a substantial globular post-translational modification 

(ubiquitin, Ubl, or ubiquitin/Ubl chains) into their catalytic site215. Furthermore, unlike most other 

cysteine peptidases, the catalytic triad of cysteinyl peptidase DUBs is not usually in a “functional” 

configuration, with allosteric regulation being required to render DUBs fully functional and processive. 

Such allosteric regulation can be substrate-mediated (e.g. OTULIN)181, triggered by intra-molecular 

reorganisation (e.g. USP7)216 or induced by key cofactors (as for USP1)74. In addition, several DUBs are 

associated with multi-protein complexes such as the proteasome217, p97/VCP218, or the COP9 

signalosome219. These associations can allosterically regulate the affinity of DUBs for their 

substrates208,220 and in some instances DUBs coexist in the same complex as the ubiquitylation 

machinery221. The above issues must therefore be carefully considered when establishing screening 

and compound-evaluation assays for a DUB. Some DUB inhibitors have been suggested to target 

allosteric sites, such as the USP1 inhibitor ML32378. 

 

Screening technologies  
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Approximately twenty years ago, a general assay was established for measuring DUB enzyme activity 

based on the substrate, ubiquitin C-terminal 7-amido-4-methylcoumarin (Ub-AMC). This substrate is 

efficiently cleaved/hydrolysed by various DUBs, releasing a highly fluorescent AMC moiety. While this 

assay has been used in various DUB inhibitor screens, for example to identify USP1222 and USP7207,223,224 

inhibitors, one significant drawback is that it is prone to fluorescence interference exhibited by many 

small molecules225. Moreover, AMC and alternative tags such as Rhodamine and TAMRA, which have 

been employed because they are less prone to fluorescence artefacts, contain a peptide linkage and 

thus differ quite significantly from most natural DUB substrates. Processing of such substrates thus 

requires the DUB to function in a non-physiological manner, thereby potentially diminishing prospects 

for identifying compounds that will operate in cellular or therapeutic settings. 

 

A further challenge for development of DUB inhibitor screening assays is oxidative hydrolysis of the 

active-site cysteinyl residue of purified DUBs in biochemical buffers. This sensitivity requires use of 

protective reducing agents such as dithiothreitol (DTT), usually in millimolar concentrations, to 

maintain DUB enzymatic activity. Altering the concentration or type of reducing agent (for example, 

2-mercaptoethanol, cysteine, glutathione or TCEP) can considerably affect inhibition obtained for hit 

compounds207.  Following a high-throughput screen to identify USP7 inhibitors, Wrigley et al., (2011) 

evaluated the ability of compounds to inhibit USP7 in the presence of different reductants207. Many 

compounds showed the greatest inhibition in the absence of any reductant, being less potent in the 

presence of cysteine or glutathione, and least potent in the presence of DTT or TCEP. A further subset 

of molecules showed an alternative profile, only demonstrating inhibition in the presence of DTT or 

TCEP. A final set of molecules only inhibited USP7 when no additional reductant was added. Together, 

these data demonstrate the critical nature of the reducing environment on DUB activity and inhibition. 

Thus, most screens based on high concentrations of reducing agents and using first-generation 

fluorescent substrates generate high false-positive rates, an issue that has likely been the most 

significant challenge in identifying genuine and selective DUB inhibitors. 

 

Indeed, the non-selective nature of some DUB inhibitors is highlighted in biochemical selectivity-

profiling assays, with relatively few DUB inhibitors reported in the literature showing promise in such 

studies76.  Ritorto et al., (2014) used MALDI-TOF mass spectrometry to screen for DUB activity and 

specificity, by systematically assessing the specificities of 42 recombinant human DUBs against di-

ubiquitin isomers with all possible chain linkages (M1/linear, K6, K11, K27, K29, K33, K48 and K63-

linked)76. Subsequently, they screened a panel of 32 DUBs against nine reported DUB inhibitors. Their 
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findings demonstrated that none of the compounds displayed strong selectivity towards a single DUB, 

and that many inhibited most DUBs on the panel. 

 

Novel technologies based on chemically-synthesised DUB substrates containing isopeptide linkages, 

ubiquitin chains and/or assay technologies less prone to false positives such as luminescence, time-

resolved fluorescence or mass spectrometry are advancing screening campaigns and therefore now 

being exploited76,226-228. For example, a ubiquitin-aminoluciferin substrate was used with a variety of 

DUBs to demonstrate a suitable assay window for high-throughput screening207,229.  Subsequently, 

USP2 was used as a representative DUB to demonstrate statistical robustness of this reagent in a 

screening campaign for inhibitors. We believe that such developments are crucial to optimise the 

prospects for identifying and developing DUB inhibitors for ultimate clinical use. 

 

Monitoring DUB activity/inhibition 

A key issue when studying DUBs and their modulation, in cells, is understanding substrate specificity. 

Some DUBs have preferences for mono-ubiquitylated substrates, while others favour specific 

ubiquitin chain-types, chains bearing mixed linkages, or mixed chains containing ubiquitin and 

Ubls230,231. Furthermore, many DUBs have some specificity for the substrate protein itself, with this 

being mediated through mechanisms often involving regions of the DUB distinct from its catalytic site. 

DUB substrates can be determined by biochemistry, yeast-2-hybrid interactions, proteomic profiling 

and genetics232, but this is often challenging and time-consuming. Clearly, the ability to directly 

monitor DUB activity within a native biological system is essential to understanding the physiological 

and pathological role of individual DUBs as well as the effects of DUB inhibition233. 

 

DUB activity in cells can be monitored by chemical probes that generate readily detectable covalent 

complexes with the DUB catalytic site (recently reviewed in Hewings et al., 2017)234. Activity probes 

label DUBs based on their catalytic site thiol group235, with DUB reactivity towards such probes 

depending on the type of electrophilic warhead fused to ubiquitin. In addition to profiling DUB 

levels/activity and catalytic inhibition, activity probes have also been used to identify DUBs by affinity 

purification/mass spectrometry236. More recently, activity-based probes (ABPs) bearing a fluorescent 

reporter tag have been generated to replace the initial tags (e.g. the HA epitope) to allow fluorescent 

imaging instead of detection by immunoblotting226,227. While production of ubiquitin ABPs was 

historically based on a trypsin-catalysed transpeptidation to modify ubiquitin at its carboxy terminus 

with a vinyl sulfone group, recent approaches involve the full-chemical synthesis of ubiquitin 

ABPs226,237. This advance allows incorporation of modified amino acid residues at any position in the 
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ABPs, whether natural or not. Mass spectrometry has become an important tool to monitor ubiquitin 

adducts as well as changes in ubiquitin levels232,238. Indeed, combining ABPs with immunoblotting or 

mass spectrometry can generate powerful tools for monitoring DUB activity and inhibition by small 

molecules98,239 as well as assessing drug-enzyme target engagement in cells or tissues. For example, 

Altun et al. (2011), used ABPs to demonstrate the selectivity of P22077 for USP7 in cells, in contrast 

to PR-619 which inhibited a broad range of DUBs239. In addition, Reverdy et al., (2012) demonstrated 

the cellular selectivity of HBX19818 for USP7 against a panel of DUBs using ABPs and 

immunoblotting98.  

 

Activity-based proteomic probes have facilitated the development of pharmacologically active 

enzyme inhibitors.  This approach represents a cell-based assay in which treatment with the inhibitor 

is performed on intact cells, allowing for a range of cellular enzymes to be assessed simultaneously239. 

Competition assays between an inhibitor and the ABP lead to a reduced labelling profile for the ABP, 

with loss of signal for ABP-labelled target enzymes allowing assessment of the specificity of inhibition. 

The limitation to this approach, however, is the number of enzymes successfully labelled by the ABP 

and the representation of active enzymes in the cellular proteome. ABPs were used to characterise 

the DUB inhibitors PR-619 and P22077 by immunoprecipitation combined with identification and 

label-free quantification by mass spectrometry based proteomics239. Using this approach, quantitative 

data for 25 cellular DUBs was obtained. PR-619 was confirmed as a broad DUB inhibitor, whereas 

P22077 was found to be a selective inhibitor of USP7 and USP47 that may therefore provide the basis 

for exploring therapeutic opportunities in oncology (see preceding sections and Table 2). 

 

Concluding remarks 

During the past decade, we have witnessed dramatic advances in our understanding of DUB functions, 

mechanisms-of-action, regulation and disease linkages. In parallel, there have been major 

improvements in DUB biochemical assays and screening technologies, leading to the development of 

increasing numbers of small-molecule DUB inhibitors whose selectivity is now being explored, and 

where possible refined. Such inhibitors are providing the basis for drug-like molecules suitable for 

clinical evaluation and are also providing versatile tools to further investigate DUB cell biology, 

regulation and biochemical mechanisms, as well as to test therapeutic hypotheses in disease models. 

Although still too early to predict the extent DUBs will deliver on their broad therapeutic potential, 

the next few years certainly seem set to produce further exciting developments in the arenas of DUB 

biology and drug-discovery. 
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Figure legends 

Figure 1. The ubiquitylation cascade and the deubiquitylase family of proteins. a, Schematic of key 

events in ubiquitylation and deubiquitylation. The E1 enzyme activates ubiquitin in an ATP-

dependent manner, resulting in a covalent thioester linkage between ubiquitin and the E1 cysteine 

residue. Ubiquitin is then transferred to an E2 conjugating enzyme forming a thioester linkage with 

the catalytic cysteine. Finally, an E3 ligase mediates transfer of ubiquitin from the E2 to a substrate, 

usually via a lysine side-chain. In subsequent rounds, ubiquitin molecules can be conjugated to the N-

terminal amino group or lysines on ubiquitin itself to form chains. DUBs remove ubiquitin molecules 

from substrates or process ubiquitin precursors to generate free ubiquitin pools. 
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b, DUB phylogenetic tree. Sequences for full-length DUB and SENP proteins were aligned with 

COBALT, a constraint based alignment tool for multiple protein sequences, and subsequently 

visualised with FigTree v1.4.3. 
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Figure 2.  Various roles of DUBs in oncology. Selected, representative examples of DUBs (light blue 

ovals) involved in distinct cellular pathways and regulation of various ubiquitylated substrates (dark 

blue boxes) related to oncology. The proteasome and associated DUBs facilitate protein turnover and 

recycle ubiquitin. USP28 regulates turnover of the oncogene product c-Myc, ATXN3 controls stability 

of the tumour suppressor p53, and USP7 regulates p53 and its E3 ubiquitin ligase HDM2. USP1, USP4 

and USP11 have important roles in DNA damage repair, while USP9X regulates CLASPIN and is linked 

to replication stress and checkpoint signalling. BAP1 and USP22 participate in chromatin remodelling 

by deubiquitylating histones, and UCHL1 plays a role in AKT signalling. These are representative 

examples only and not meant to be exhaustive. Examples of small-molecule compounds targeting 

these DUBs are shown. 
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Table 1.  DUBs associated with human disease.   
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Table 2.  DUB inhibitors in development.  Chemical structures shown are representative only, and 

additional structures can be found in Kemp, 2016210. 
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