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introduction: A strong association exists between hyperglycemia and outcome in 
pediatric traumatic brain injury (TBI). Herein, we describe observations of serum markers 
of glucose metabolism in a cohort of pediatric TBI patients and how these variables are 
related to parameters of intracranial pathophysiology.

Methods: A retrospective analysis was performed on pediatric severe TBI patients 
admitted to Addenbrookes Hospital Paediatric Intensive Care Unit (PICU) between 
January 2001 and December 2013. Demographic, outcome, systemic physiological, 
and cerebral autoregulatory data were extracted for patients who had received con-
tinuous invasive monitoring (ICM+, Cambridge Enterprise, Cambridge, UK). Data were 
analyzed using a mixed linear model.

results: Forty-four patients with an average age of 12.2 years were admitted to the 
PICU with a TBI requiring invasive neurosurgical monitoring. Thirty-two patients (73%) 
survived, with favorable outcomes in 62%. The mean (SD) intracranial pressure (ICP) 
was 17.6  +  9.0  mmHg, MAP was 89.7  +  9.0  mmHg, and pressure-reactivity index 
(PRx) was −0.01 + 0.23 a.u. The mean (SD) serum lactate was 2.2 (3.3) mmol/L. and 
the mean (SD) serum glucose was 6.1 (1.6) mmol/L. Early hyperglycemia was strongly 
associated with both PRx (Pearson correlation 0.351, p  <  0.001) and ICP (Pearson 
correlation 0.240, p = 0.002) death (p = 0.021) and impaired cerebral autoregulation 
(p = 0.02). There was a strong association between ICP and serum lactate (p = 0.001).

conclusion: Increases in systemic glucose are associated with impaired cerebrovasular 
autoregulation after severe pediatric TBI. Moreover, deranged blood glucose is a marker 
of poor prognosis. Further studies are required to delineate putative mechanisms of 
hyperglycemia induced cerebral harm.
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inTrODUcTiOn

In the context of trauma, primary brain injury occurs due to cel-
lular and extracellular matrix disruption from direct mechani-
cal forces at the time of the traumatic incident. Primary brain 
injury then initiates a complex cascade of secondary molecular 
and vascular mechanisms culminating in inflammation, edema, 
impaired cerebral autoregulation, blood–brain barrier disrup-
tion, intracranial hypertension, reduced cerebral perfusion, and 
ultimately neuronal cell death. Secondary brain injury persists 
for weeks and may contribute to a further loss of potentially 
viable cerebral tissue, ultimately worsening neurological 
outcome (1). While primary brain injury is unpredictable and 
irreversible, the sequelae of secondary brain injury may be 
modified by prevention or minimization of recognized exac-
erbating systemic insults, such as hypotension, hypoxia, and 
hyperglycemia (2).

Hyperglycemia occurs frequently in the pediatric traumatic 
brain injury (TBI) population and the occurrence of elevated 
blood glucose values has been linked to increased mortality and 
worse neurological outcomes (3–6). While it is not entirely clear 
whether this association is due to a direct deleterious effect of 
hyperglycemia or simply a marker of illness severity, there is an 
increasing body evidence from the adult TBI population that 
ascribe a putative pathological role to raised blood glucose (2).

In a retrospective observational study of adult TBI our group 
has recently demonstrated an association between elevated blood 
glucose and impaired cerebral pressure-reactivity index (PRx) 
(7). Cerebral pressure reactivity is a fundamental component 
of cerebral autoregulation, whereby cerebrovascular resistance 
is altered in response to changes in cerebral perfusion pressure 
(CPP) (8). The PRx is a surrogate measure of cerebral pressure 
reactivity and calculated as the correlation between arte rial 
blood pressure (MAP) and intracranial pressure (ICP) (9).  
A negative correlation implies active pressure reactivity while a 
positive correlation implies a “pressure passive,” impaired pres-
sure reactivity. Previous studies have shown that a positive PRx is 
associated with disturbance of cerebral autoregulation (10, 11). 
Importantly, PRx has also been demonstrated to independently 
predict outcome after TBI in children (12, 13).

While epidemiological studies have demonstrated that the 
incidence of hospitalization and fatal brain injury is dispro-
portionately high in children (14), somewhat surprisingly, the 
interplay between glycemia, markers of secondary neurological 
insult, and outcome remains poorly described in the pediatric 
population. The primary objective of this study was to determine 
associations between systemic glucose, cerebral pressure reactiv-
ity (PRx), and outcome in a cohort of pediatric TBI patients. 
Secondary objectives were to determine associations between 
systemic lactate, PRx and ICP.

MaTerials anD MeThODs

Patients
This is a retrospective observational study of all pediatric patients 
admitted to an Intensive Care Unit in Addenbrooke’s Hospital, 

Cambridge with severe TBI from January 2001 to December 
2015 inclusive. Consecutive patients with a clinical need for 
ICP monitoring were included for analysis. The insertion of an 
intracranial monitoring device is part of routine clinical practice 
and as such did not require ethical approval. The analysis of 
data within this study for the purposes of service evaluation 
was approved by the Cambridge University Hospital NHS Trust, 
Audit and Service Evaluation Department (Ref: 2143) and did 
not require ethical approval or patient consent.

Inclusion criteria were as follows: (1) TBI-related pathology, 
confirmed on CT or MRI, (2) severe injury (GCS <  8) failing 
to demonstrate significant early clinical improvement (i.e., poor 
neurology on sedation hold), and (3) requirement for invasive 
monitoring of ICP and mean arterial pressure (MAP). Patients 
were excluded if there was suspicion of non-accidental injury. 
Multi-modality monitoring was commenced at the earliest 
possible opportunity following arrival to the ICU and was ter-
minated when sedation was lifted and the child either began to 
waken or died.

Pre-hospital data were recorded from the ambulance service 
records. Hypoxia was defined as saturations under 96% on 
arrival of the crew. Hypotension was defined as age-specific 
hypo tension on arrival of the crew.

Patients were managed according to current TBI guidelines 
(15). Interventions were aimed at keeping ICP  <  20  mmHg 
using a tiered treatment protocol of positioning, sedation, 
muscle paralysis, moderate hyperventilation, ventriculostomy, 
osmotic agents, and induced hypothermia. CPP was maintained 
>50–60 mmHg using intravenous fluids, vasopressors, and ino-
tropes. Glucose management was achieved with a continuous 
intravenous insulin infusion targeting a blood glucose between 
6 and 10 mmol/L. Clinical outcome was determined using the 
Glasgow Outcome Scale at 6  months (1—death, 2—persistent 
vegetative state, 3—severe disability, 4—moderate disability, 
5—good recovery) (16). A favorable outcome was defined as a 
GOS ≥ 4.

Data acquisition and analyses
Intracranial pressure was monitored with an intraparenchymal 
microsensor inserted into the right frontal cortex (Codman 
ICP MicroSensor, Codman and Shurtleff, Raynham, MA, USA) 
and arterial blood pressure (MAP) was monitored in the radial 
or femoral artery with a zero level at the right atrium (Baxter 
Healthcare CA, USA; Sidcup, UK). End-tidal carbon dioxide 
(CO2) data were collected from the ventilator.

Data were sampled at 100 Hz with proprietary data acquisi-
tion software (ICM+, Cambridge Enterprise, Cambridge, UK) 
and stored for subsequent analysis. Data were collected on 
each day of invasive monitoring until the fifth day post ictus. 
Cerebrovascular PRx was calculated as a moving Pearson correla-
tion coefficient between 30 consecutive, 10-s averaged values of 
MAP and corresponding ICP signals (with 80% overlap of data). 
Averages over 10  s were used to suppress the influence of the 
pulse and respiratory frequency wave components.

Arterial blood samples were taken at 8 a.m. and 8 p.m. daily for 
the measurement of arterial glucose and lactate. All blood sam-
ples were analyzed by the Core Biochemical Assay Laboratory 
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TaBle 1 | Demographics of pediatric patients presenting with a traumatic  
brain injury.

 survived  
(n = 32)

non-survivors  
(n = 12)

p-Value

Age, mean ± SD 12.1 + 5.1 12.5 + 5.7 0.45
Male (%) 26(62) 8(66) 0.62
Admission GCS,  
median (range)

9 (3–13) 3 (3–9) 0.03

Motor score 6 (1–6) 1 (1–5) 0.02
Pupils
Reactive (%) 91 25 0.01
Fixed Unilaterally (%) 6 25 0.04
Fixed Bilaterally (%) 3 50 0.01
Hypoxia 6 33 0.45
Hypotension 6 17 0.15
Lactate, mean ± SD 1.9 ± 1.7 6.9 ± 3.1 0.21
Glucose, mean ± SD 6.4 ± 1.9 13.1 ± 3.9 0.02
ICP, mean ± SD 16.3 ± 4.1 24.8 ± 19.5 <0.001
PRx, mean ± SD −0.03 ± 0.16 0.10 ± 0.43 0.01

ICP, intracranial pressure; PRx, pressure- reactivity index.

TaBle 2 | Mean values (SD) and correlations of physiologic variables during 
intracranial monitoring during the first 5 days since ictus.

Day 1–5 
(n = 44)

95% ci p Value

Arterial glucose in mmol/L (SD) 6.1 (1.6)
Arterial lactate in mmol/L (SD) 2.2 (3.3)
PRx a.u. (SD) −0.01 (0.23)
ICP mmHg (SD) 17.6 (9.0)
MAP mmHg (SD) 89.7 (9.0)
Glucose versus PRx  
(Pearson coefficient)

0.351* 0.2.04–0.497 <0.001

Lactate versus PRx  
(Pearson coefficient)

0.284* 0.133–0.434 <0.001

Glucose versus ICP  
(Pearson coefficient)

0.240* 0.088–0.392 0.002

Lactate versus ICP  
(Pearson coefficient)

0.294* 0.144–0.444 <0.001

ICP, intracranial pressure; CPP, cerebral perfusion pressure; PRx, pressure reactivity; 
MAP, mean arterial pressure.
*p value less than 0.05.
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at Addenbrookes Hospital, Cambridge. Meso Scale Diagnostics 
(MD, USA) assays were standardized against an approved refer-
ence preparation (IFCC calibration). Six hours of time-averaged 
cerebrovascular data (CPP, ICP, PRx, and end-tidal CO2) were 
assessed for each measurement of arterial glucose and lactate.

statistical analyses
Raw data were screened and cleared of artifacts and then 
examined for normality prior to analysis. The cohort was 
dichotomized into survivors and non-survivors. Ordinal data are 
presented as medians (IQR) and continuous data as means (SD). 
Differences in physiological values between survivors and non-
survivors were interrogated with the Mann–Whitney U-test. The 
significance level was set to 0.05, and all tests were two-tailed 
and unadjusted for multiple comparisons. Bivariate correlation 
analyses (Pearson coefficient) were calculated between glucose, 
CPP, ICP, and PRx. Correlations are zero-order and unadjusted 
for multiple comparisons.

A repeated measures mixed effect model was generated to 
evaluate associations between systemic glucose and lactate, 
and intracerebral biochemical and pressure parameters with 
plasma glucose and lactate as covariates, time as a fixed effect 
and patient ID as a random effect. The model was adjusted 
for the following; age, injury characteristics (hypotensive and 
hypoxic episodes), ICP, PRx, and outcome. All data analyses 
were performed on SPSS version 21.0 software (SPSS Inc., 
Chicago, IL, USA). All statistical tests were performed with 
α ≤ 0.05 (two-tailed).

resUlTs

A total of 44 patients with an average age of 12.2  years were 
admitted to the Paediatric Intensive Care Unit with a TBI 
requiring invasive neuro-monitoring (Table  1). Thirty-two 
patients (73%) were alive at 6  months, and 27 (62%) were 
deemed to have a favorable outcome. Thirty patients (68%) 
sustained an isolated head injury with the others having poly 

trauma. The incidence of poly trauma had no significant impact 
on outcome. All ICP wires were placed after sedation hold 
demonstrated poor neurology. This was usually within 6 h of 
injury. No patients were excluded on the basis of the timing 
of ICP insertion. Prior to the injury two children had mild 
learning disabilities, and one had attention deficit hyperactivity 
disorder. All patients were maintained at normothermia, none 
of them were cooled to hypothermia. Five patients had external 
ventricular drain inserted. Two patients had a decompressive 
craniectomy. 82% of patients had vassopressor/inotrope sup-
port. 64% of patients had insulin infusions in an attempt to 
control glucose levels. Mean physiologic monitoring values 
during the first 5 days since ictus are shown in Table 2. The mean 
(SD) ICP was 17.6 (9.0)  mmHg, MAP was 89.7 (9.0)  mmHg 
and PRx was −0.01 (0.22)  a.u. The mean (SD) serum lactate 
was 2.2 (3.3)  mmol/L. The mean (SD) serum glucose was 
6.1 (1.6)  mmol/L. The observed evolution of serum glucose 
and lactate over the first 5 days post-TBI has been visualized  
in Figures 1A,B.

comparison of Demographic and 
Physiological Parameters between 
survivors and non-survivors
Demographic and physiological data for survivors and non-
survivors are presented in Table 1. The admission GCS in those 
who survived was 9 (3–13) at presentation compared to 3 (3–9) 
in non-survivors (p = 0.03). More significantly, the motor score 
was 6 (1–6) in survivors and 1 (1–5) in non-survivors (p = 0.02). 
The majority of survivors had bilateral reactive pupils (91%) 
versus 25% in non-survivors (p =  0.01). Only 6% of survivors 
had a unilaterally fixed pupil compared to 25% of non-survivors 
(p = 0.04), whereas 3% of survivors had bilaterally fixed pupils 
versus 50% of non-survivors (p = 0.01). There was no significant 
difference between the incidence of pre-hospital hypoxia or 
hypotension between survivors and non-survivors (7 versus 
33%; p = −0.45 and 7 versus 17%; p = 0.15, respectively).
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FigUre 1 | (a) Observed mean arterial glucose (SD) in pediatric traumatic brain injury (TBI) patients during the first 5 days since ictus, stratified by fatal outcome. 
(B) Observed mean arterial lactate (SD) in pediatric TBI patients during the first 5 days since ictus, stratified by fatal outcome.
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correlations between systemic glucose, 
cerebral autoregulation, and Outcome
Mean arterial glucose concentration for each patient during the 
first 5  days from ictus was significantly correlated with mean  
PRx (Pearson correlation 0.351, p  <  0.001; Table  2; Figure  2) 
and mean ICP (Pearson correlation 0.240, p = 0.002; Table 2).  
To account for the repeated measures for each patient in each 
outcome group, a linear mixed effects model analysis was used.  
The linear mixed effects model fitting identified a significant effect 
of PRx (p = 0.016) and non-survivors (p = 0.021) on arterial glu-
cose. The interaction of these two factors (PRx versus Outcome) 
was non-significant (p  =  0.124). Further modeling showed no 
additional contribution to model fit from age (p = 0.886), hypoxia 
and hypotension on admission (p  =  0.408 and p  =  0.488), or 

ICP (p = 0.593). Only daily mean arterial glucose concentration 
during the first 2  days post-TBI correlated significantly with 
mean PRx in the mixed effects model (p < 0.001), i.e., increases  
in systemic glucose correlated with a worse state of cerebral  
pressure reactivity.

correlations between systemic lactate, 
cerebral autoregulation, and Outcome
Mean arterial glucose concentration for each patient during the 
first 5 days from ictus was significantly correlated with mean PRx 
(Pearson correlation 0.284, p < 0.001; Table 2) and mean ICP 
(Pearson correlation 0.294, p < 0.001; Table 2). The linear mixed 
effects model fitting did not demonstrate correlations between 
serum lactate and PRx (p =  0.108) and hypoxia on admission 
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FigUre 2 | Correlation between mean arterial glucose and PRx in pediatric 
traumatic brain injury patients during the first 5 days since ictus. There was  
a significant positive relationship between blood glucose and PRx (Pearson 
correlation = 0.351; p < 0.001). Each data point represents the mean of the 
available arterial glucose concentration and PRx measurements during the 
first 5 days since ictus.
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(p  =  0.87). However, a significant effect of ICP (p  =  0.001) 
and hypotension on admission (p  =  0.013) on arterial lactate 
was observed. The temporal evolution of lactate did not differ 
between fatal and non-fatal patients after adjustment in the 
mixed model (p = 0.318).

DiscUssiOn

The key finding of this observational study is a significant positive 
relationship between arterial glucose concentration and cerebral 
pressure reactivity in pediatric TBI patients. Secondary obser-
vations are (i) a strong association between increasing blood 
glucose and mortality and (ii) a positive relationship between 
serum lactate and ICP.

Cerebral autoregulation is the physiologic mechanism that 
protects the brain against detrimental variations in cerebral 
blood flow (17), it is frequently impaired following severe TBI 
and is associated with worse functional outcomes following 
pediatric TBI (18, 19). Independently, poor glycemic control has 
been demonstrated to be linked to worse outcomes in pediatric 
TBI (20). Interestingly, the CHiP study (Control of hyperglyce-
mia in pediatric intensive care) demonstrated no difference in 
outcome when comparing tight glycemic control versus conven-
tional methods (21). Nevertheless, this study included multiple 
pathologies including trauma. By using the cerebral perfusion 
index as a surrogate measure of cerebral autoregulation, this is 
the first study to report an association between glycemia and 
impaired cerebral autoregulation in a pediatric TBI population. 
These findings are consistent with the association between gly-
cemia and cerebral pressure reactivity in an adult TBI (7) and 

strengthen the external validity of these results as children are 
less likely to have any pre-existing systemic vascular pathology 
that could result in impaired cerebral autoregulation (22).

Traumatic brain injury initiates a dramatic systemic stress 
response with the release of cortisol, catecholamines, and 
glu cagon leading to excessive hepatic gluconeogenesis and 
peripheral insulin resistance. The hyperglycemia attributed to 
these metabolic derangements is further exacerbated by thera-
peutic interventions, such as the administration of exogenous 
catecholamines and enteral or parenteral nutrition. Resultantly, 
hyperglycemia occurs frequently in patients with TBI, even in 
pediatric patients who were glucose tolerant prior to the traumatic 
insult (3–6). Consistent with these previous studies, we report an 
association between elevated blood glucose concentration and 
mortality. Despite these findings, there remains a lack of evidence 
guiding the management of hyperglycemia in the pediatric TBI 
population which is reflected in a marked disparity in insulin 
regimens and glucose targets worldwide (23). Furthermore,  
it remains unclear whether hyperglycemia is truly deleterious 
or is simply a marker of illness severity; however, it is generally 
accepted the extremes of hyperglycemia (>10 mmol/L) should 
be avoided (24).

Manifold putative mechanisms whereby glucose causes 
neurological harm have been described including induction of 
oxidative stress pathways (25, 26), generation of pro-inflamma-
tory transcription factors (27), and disruption of blood–brain 
barrier integrity (28) predisposing to oedma and cell death  
(29, 30). It has also been suggested that hyperglycemia may impair 
vascular function; exogenous glucose reduces regional cerebral 
blood flow (31, 32) which may be linked to impaired endothelial 
function and smooth muscle vasoconstriction (33, 34). While 
we acknowledge that association does not prove causation, our 
findings support the concept that hyperglycemia post-TBI may 
contribute to impaired cerebral autoregulation.

Finally, we report an association between ICP and serum 
lactate. While this may just be a marker of severity of illness, 
the concept that lactate, or rather acidosis, may alter ICP merits 
consideration. The presence of high levels of lactate within the 
cerebrovascular circulation can result in localized vasodilation, 
extravasation, and worsening edema with a potential increase 
in ICP (35, 36). Furthermore, the ubiquitous disruption of 
blood–brain barrier integrity following TBI allows the inap-
propriate passage of lactate into the brain parenchyma where it 
can exert an osmotic load and contribute to brain edema (37). 
Future mechanistic studies employing tracer labeled lactate 
and cerebral microdialysis are required to help clarify this  
relationship further.

limitations
The current study has several important limitations. Primarily, 
it is possible that the observed relationships could be due to 
the effect of a confounding physiologic variable. Additionally, 
serum glucose levels were collected only twice daily. Since severe 
TBI in pediatric patients is relatively rare, strong multi-center 
collaborative groups are required to evaluate mechanisms 
underlying the relationships observed with the ultimate aim of 
guiding clinical practice to improve patient outcomes.
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cOnclUsiOn

Consistent with data from the adult TBI population, we have 
demonstrated that elevations in blood glucose may impair cer-
ebrovascular reactivity in pediatric TBI, supporting the require-
ment for adequate glucose control in the first few days post insult. 
Further studies are warranted to delineate mechanisms linking 
glycemia and impaired cerebral autoregulation.
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