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 

Abstract—This paper presents numerical investigations into the 

effect of feedback phase on the stability of semiconductor 

nanolasers (SNLs) in presence of the external optical feedback 

(EOF). For this purpose, numerical solutions are obtained from 

rate equations where the effects of Purcell cavity-enhanced 

spontaneous emission factor F and an enhanced spontaneous 

emission coupling factor β are included. In this way, a 

phase-insensitive stable SNL is identified when the feedback 

coupling fraction is below a critical threshold, ηc. Furthermore, 

the relationship between ηc and two other important system 

parameters, namely the injection current (Idc) and the initial 

external cavity length (L0), is studied. The results show that ηc has 

a bi-exponential relationship with either Idc or L0. Moreover, the 

influence of F on the ηc is evaluated and it is found that ηc 

increases with the increase of F. The results presented in this 

paper provide practical guidelines for the design of 

phase-insensitive stable SNLs which are useful for densely 

integrated photonic circuits based applications such as optical 

communications and sensing. 

 
Index Terms—Optical feedback, photonic integrated circuits, 

semiconductor nanolasers. 

 

I. INTRODUCTION 

N the past two decades, considerable progress in miniaturing 

lasers has been achieved along with the development of 

integrated photonic circuits and system-on-a-chip technologies 

where light sources are required. As part of that effort, 

considerable attention has been given to the design of 

semiconductor nanolasers (SNLs) [1] which offer ultra-small 

footprints (typically being smaller than the free-space laser 

wavelength in all three dimensions) and compatibility with 

existing photonic integrated circuits (PICs) platforms. In the 

meanwhile, interesting physical aspects of SNLs have been 

recognized including the potential for demonstrating enhanced 

coupling efficiency of spontaneous emission into the lasing 

cavity mode via the Purcell effect [2]. Such enhanced 
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spontaneous emission can significantly reduce or even 

eliminate the threshold of SNLs [3, 4]. Moreover, the 

opportunities for achieving high modulation bandwidth using 

SNLs have been suggested [5].  

For most applications it would be expected that SNLs can 

operate stably. However, as the complexity of PICs increases 

with the incorporation of a variety of optical components, such 

stable operation may be compromised due to unwanted external 

optical feedback (EOF) into the SNL from such PIC 

components. Due to such EOF, SNLs may exhibit a variety of 

dynamical behaviours, e.g., periodic oscillations, 

quasi-periodic oscillations, and optical chaos [6, 7]. As is well 

known, EOF effects can occur with only a small portion of light 

re-entering the SNL, and such effects cannot be prevented 

without convenient means for achieving optical isolation of 

order -20 dB [8]. There are three main controllable parameters 

that influence the stability of SNLs when subject to EOF. They 

are, respectively, the laser injection current (Idc), the feedback 

strength (κ), and the external cavity length (L) (or the feedback 

phase ϕ0). It is thus of importance to establish the range of these 

parameters over which SNLs can remain stable. Note that 

external cavity length can also be expressed in a way that 

L=L0+ΔL, where L0 is the initial external cavity length, and ΔL 

is a small variation of external cavity length within the range of 

[0, λ0/2]. Feedback phase ϕ0 is related to L via 

ϕ0=4πL/λ0=4πL0/λ0+4πΔL/λ0, where λ0 is the wavelength of the 

solitary SNL.  

Investigations of the stability of SNLs subject to optical 

feedback have been reported in [7]. However, [7] only 

considers cases of optical feedback where the feedback phase is 

fixed. In fact, the influence of feedback phase is of particular 

importance due to its laser-wavelength-scale sensitivity. For 

instance, a half-wavelength change of L will lead to a phase 

change of 2π. Within such a change of phase, it has been seen in 

conventional semiconductor lasers that transitions between 

stable and unstable states can easily occur [9-16]. However, in 

practice, it is challenging to maintain a fixed ϕ0 even with use of 

precise phase control elements [14]. For SNLs which may be 

operated in photonic integrated circuits, it can be anticipated 

that the feedback phase will be difficult to control. Therefore, 

from a practical point of view, it is important to fully 

understand the effects of feedback phase in order that the SNL 

can be operated stably independently of the feedback phase.  

In this paper, with a view to achieving a 

feedback-phase-independent stable SNL, we, first of all, 

investigate the influence of feedback phase with the aid of rate 
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equations where the Purcell effect is included. This work 

reveals the impact of the feedback phase on the stability of 

SNLs. Attention is then given to the SNL stability with respect 

to feedback phase and feedback strength leading to the 

definition of a feedback-phase-independent stable region. 

Finally, consideration is given to aspects of stability associated 

with the injection current and initial external cavity length. This 

work provides practical guidelines for the design of a 

phase-independent stable SNL. 

II. MODEL 

The model used to describe the dynamics of semiconductor 

nanolasers (SNLs) in the presence of external optical feedback 

(EOF) is based on a modified form of Lang and Kobayashi rate 

equations [17], where enhanced spontaneous emission is 

incorporated via two factors: the Purcell factor, F and an 

enhanced spontaneous emission coupling factor, β (see (1)-(4)) 

as introduced in [18]. Note that this model can be used for 

Fabry-Perot (FP) lasers, but not for ring lasers. 
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These two factors act together and so for computational 

purposes may be incorporated into one parameter. However, it 

is argued here that two separate physical effects are at work and 

hence their impacts can, in principle, be amended 

independently. One observes that SNLs are not necessarily 

single mode lasers and hence, for a given cavity, if the number 

of lasing modes excited changed say with laser drive current so 

would β. It is underlined that the Purcell factor and the 

spontaneous emission coupling factor impact the spontaneous 

emission rate as shown in (1) and (3) above. Specifically, it is 

pointed out that for Purcell factors greater than unity an 

effective reduction in the carrier lifetime will result. Similarly, 

an increase of the spontaneous emission coupling factor 

towards unity also causes an effective reduction of the carrier 

lifetime. In contrast, the phase in (2) is dependent on the laser 

gain and is thus not affected by the enhanced spontaneous 

emission. Enhanced spontaneous emission may be expected to 

increase the laser linewidth and thereby raising issues of the 

coherence length of SNLs. We are unaware of any publications 

detailing calculations of the linewidth of the SNL but published 

experimental results suggest that narrow linewidths occur in 

SNLs [19-21]. For example, in [19], with a centre wavelength 

of 1560.8 nm, the linewidth of the nanolaser is 1.17 pm (143.5 

MHz) which gives a coherence length of 66.5 cm. 

In (1)-(4), t is the time , S(t) is the photon density, N(t) is the 

carrier density and ϕ(t) is the phase, θ(t) is the phase change. 

The three main controllable parameters for an SNL are, 

respectively, the injection current Idc, the feedback strength κ, 

and the external cavity length L (or feedback phase ϕ0). 

κ=η(1-r2)(r1/r2)c/(2nLin), where η is the fraction of the reflected 

field which couples back into the lasing mode. η=(fextr2)1/2/r1, 

where fext is the feedback fraction (ratio of externally reflected 

light power versus emitted light power) [22]. r1=0.95 and 

r2=0.85 are the power reflectivities of the external object and 

the front laser facet respectively, c is the speed of light, n=3.4 is 

the refractive index and Lin =1.39 μm is the laser internal cavity 

length. Note that the external cavity roundtrip delay τ in (1), (2), 

and (4) is related to L via τ=2L/c, where L is the effective 

external cavity length. In a PIC, L=nʹLʹ where nʹ and Lʹ are, 

respectively, the refractive index of the waveguide and the 

physical distance to the external reflector.  FS(t), Fϕ(t) and FN(t) 

are Langevin noise sources used to model spontaneous 

emission noise [23]. They are calculated by: 
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where xS, xϕ and xN are independent Gaussian distributed 

random variables with zero mean and unity variance for 

ensembles of time. ΔT is called Langevin noise application 

interval [23] which is the time slot of Langevin noise. The noise 

forces should describe a white noise spectrum at least up to the 

relaxation oscillation frequency [24] which is 6.3 GHz for the 

SNL (as shown in Fig. 3(f) in Section IV). In this work ΔT is 

chosen to be 125 ps. This results in a power spectral density for 

the noise having its first zero at a frequency of 8 GHz (ΔT-1) 

which covers the relaxation oscillation frequency of the SNL, 

hence satisfying the condition that the noise spectrum is white 

up to a frequency greater than the relaxation oscillation 

frequency. The physical meanings and values of other symbols 

in (1) - (4) are listed in Table I. 

A fourth order Runge-Kutta integration method was used to 

numerically solve (1)-(4). In the simulations, a temporal 

resolution of Δt=1 ps is selected and the duration of the time 

series is set to be 1 μs which leads to 1 million integration steps. 

The Gaussian distributed random variables xS, xϕ and xN are 

calculated at the start of each integration step. The dynamics of 

SNLs, including stable and unstable states, can be determined 

from the temporal waveforms of the photon density S(t) after 

the cessation of transient effects. Details for distinguishing 
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TABLE I 
PHYSICAL MEANING AND VALUE OF SYMBOLS IN (1)-(4) 

Symbol Physical Meaning Value 

F Purcell factor variable 

dcI  injection current variable 

  feedback strength variable 
  external cavity roundtrip delay variable 

  confinement factor 0.65  

  spontaneous emission coupling factor 0.05  

n  carrier life time 91.00 10 s  

ng  differential gain 12 31.65 10 m s  

0N  carrier density at transparency 24 31.10 10 m  

  gain saturation factor 23 32.30 10 m   

p  photon life time 120.36 10 s  

  line-width enhancement factor 5  

e  elementary charge 191.60 10 C  

aV  volume of the active region 19 33.96 10 m  

0  optical frequency 151.18 10 rad s  

 

different dynamics of SNLs are described in the following 

sections. 

III. INFLUENCE OF FEEDBACK PHASE ON SNL STABILITY 

In this section, the influence of feedback phase on the 

stability of SNLs is investigated using bifurcation diagrams 

which are informative and effective means widely used for 

investigating the dynamics of a system as a function of one of 

the system parameters [25-27]. 

Figure 1 (a)-(c) show the bifurcation diagrams of the SNLs 

as a function of feedback phase, ϕ0, with the feedback coupling 

fraction of η=2.5×10-3, η=4.5×10-3, and η=6.0×10-3 

respectively. In order to clearly identify the dynamic regimes, 

the bifurcation diagrams, as is usual, are obtained without 

considering noise. The regimes of different dynamics are 

distinguished by dashed lines in Fig. 1(a)-(c). These bifurcation 

diagrams are obtained by recording the local extremum of the 

time series of the photon density at every different point of ϕ0 

which takes 300 equally spaced points within the range of ϕ0 ∈ 

[0, 2π], corresponding to L ∈ [L0, L0+λ0/2]. For each point of 

ϕ0, the same initial conditions are employed, and the time series 

is also obtained to visually verify the dynamics of SNL. Note 

that the dynamics of a laser is 2π periodic with respect to ϕ0 

[28]. When the SNL is stable (S), only one extremum, can be 

found in the temporal waveform of photon density. When the 

SNL is unstable, two or more extrema are located, and the 

number of the extrema can be used to define different types of 

dynamics. For example, a few extrema indicate periodic 

oscillations (PO), clusters of extrema indicate quasi-periodic 

(QP) oscillations whereas many extrema indicate chaos (C). As 

shown in the following section the transitions between these 

dynamical behaviours can be identified both in the time domain 

(time series) and the frequency domain (power spectrum). It is 

noted that the simulations reveal no multi-state intermittency 

[29] which have been found in conventional lasers with EOF. 

In Fig. 1 (a), where η=2.5×10-3 (fext=6.6×10-6), the SNL is 

stable only when ϕ0 is within the range [0.47π, 1.23π]. An 

example of a stable time series of S(t) when ϕ0=0.93π is shown 

in the inset of Fig. 1(a). Note that this example and the other 

time series insets of Fig. 1 are obtained taking account of 

Langevin noise. When ϕ0=0.47π, the relaxation oscillation of 

the SNL becomes self-sustained leading to a periodic 

oscillation of the photon density. An example of such periodic 

oscillations is shown in the inset of Fig. 1 (a) where ϕ0=0.21π. 

With an increase of feedback coupling factor to η=4.5×10-3 

(fext=2.2×10-5), the SNL is always unstable irrespective of the 

value of ϕ0, as shown in Fig. 1 (b). Moreover, the order of 

periodic oscillations increases with the increase of feedback 

 
Fig. 1. Bifurcation diagrams in terms of feedback phase ϕ0 for a semiconductor 

nanolaser (F=20, β=0.05) in presence of optical feedback where injection 

current Idc=2.7 Ith and initial external cavity length L0 =15 mm (Ith=1.1 mA [7] 
is the threshold current). Dashed lines separate different dynamical regimes 

which include Stable (S), Periodic Oscillations (PO), Quasi-Periodic (QP) 

oscillations and Chaos (C). (a) η=2.5×10-3 (fext=6.6×10-6), (b) η=4.5×10-3 
(fext=2.2×10-5), (c) η=6.0×10-3 (fext=3.8×10-5). Insets respectively represent 

temporal waveforms of S(t) in stable operation, periodic oscillations, 

quasi-periodic oscillations and chaos for particular feedback phases. 
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and quasi-periodic oscillations start to appear. An example of 

quasi-periodic oscillations is shown in the inset of Fig. 1(b) 

where ϕ0=1.44π. 

When η further increases to 6.0×10-3 (fext=3.8×10-5), as 

shown in Fig. 1 (c), the SNL becomes even more unstable as 

evidenced by the fact that chaos almost occupies half of the 

bifurcation diagram with the remainder of the diagram being 

occupied by higher order of periodic oscillations and 

quasi-periodic oscillations. An example of chaos is shown in 

the inset of Fig. 1 (c) where ϕ0=1.44π.  

Based on the bifurcation diagrams in Fig. 1, it is clear to see 

that the feedback phase can significantly influence the 

dynamics of the SNL. It should be also noted that precise 

control of feedback phase is almost impossible in photonic 

integrated circuits due to the laser-wavelength-scale sensitivity 

of the feedback phase. Therefore, it is highly desirable to 

identify a region where the stability of the SNL is independent 

of the feedback phase. In the next section, this issue is 

approached by investigating the stability map of the SNL where 

a phase independent stable region is indeed found. 

IV. FEEDBACK PHASE INDEPENDENT STABLE SNLS 

A. Stability Map 

The stability map is constructed by numerically solving 

(1)-(4) with respect to the feedback coupling factor and phase 

which both take 150 points equally spaced within the ranges of 

η ∈ [0.0, 6.0×10-3] and ϕ0 ∈ [0, 2π] respectively. Due to the 

presence of the noise some care needs to be taken in defining 

the boundary between the stable and unstable states. To this 

end, we define a measure which characterizes that transition. 

Specifically, we define the parameter δ as follows:   

 

0

0

S 





                                     (8) 

 

where σS and σ0 are respectively the standard deviation of the 

time series of the photon density for the SNL with and without 

EOF. When δ is larger than 10%, the SNL is considered here to 

be unstable.  

Figure 2(a) shows the stability map of an SNL (F=20, β=0.05) 

when Idc=2.7 Ith, L0=15 mm. The blue shaded region is the 

unstable region which is separated from the stable region by the 

stability limit (red in Fig. 2(a)). From Fig. 2, it is seen that 

below some value of the feedback coupling factor a 

feedback-phase-independent stable SNL is obtained. We define 

this minimum feedback coupling factor as critical feedback 

coupling factor and denote it as ηc (shown as dashed line in Fig. 

2(a)). It is worth to mention that there is also a tilted stable 

region above the dashed line in Fig. 2(a). This region can be 

utilized for stable operation if the phase can be tuned over some 

range.   

To further verify the stability map in Fig. 2(a), both the time 

series and the power spectra for five different values of η when 

ϕ0=1.45π are presented in Fig. 3. These five η values are, 

respectively, η1=1.0×10 -3 ,  η2=1.6×10 -3,  η3=1.9×10 -3, 

η4=4.0×10-3 and η5=5.8×10-3 which are shown as green dots in 

Fig. 2(a). An enlarged view of the circled area in Fig. 2(a)  

 
Fig. 2. The stability map of an SNL (F=20, β=0.05) when Idc=2.7 Ith and L0=15 

mm. (a) The stability map where the blue shaded region is the unstable region 

which is separated from the stable region by the stability limit (shown as the red 
line). (b) An enlarged view of the circled area in Fig. 2(a). η1- η5: Feedback 

strength used to verify the stability map. ηc: the minimum value of η on the 

stability limit below which a feedback-phase-independent stable SNL is 
guaranteed. 

 

 
Fig. 3. Time series and power spectra for different values of η shown in Fig. 

2(a). (a)-(e) Time series. (f)-(j) Power spectra. 

 

shows that η2 and η3, respectively, are slightly below and above 

the stability boundary (as shown in Fig. 2(b)). From Fig. 3, it 

can be seen that when η1=1.0×10-3, the SNL is stable (S) where 

δ=2.7%. This stability can also be confirmed by the power 

spectrum (Fig. 3(f)) where there are small and broad 

components at around 6.3 GHz that corresponds to the 
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relaxation oscillation frequency of the solitary SNL. The 

fluctuations in the time series of the photon density (Fig. 3(a)) 

are, of course, due to the Langevin noises.  

With increase of feedback coupling factor to η2=1.6×10-3 

which is slightly below the stability boundary (as shown in Fig. 

2(b)), the SNL remains stable (δ=7.3%) as shown in Fig. 3(b) 

and a peak appears in the spectrum at 7.1 GHz (Fig. 3(g)) 

showing the SNL is about to enter the unstable region. 

When the SNL enters the unstable region where η3=1.9×10-3, 

the photon density undergoes periodic oscillations (PO) with 

δ=11.6% (Fig. 3 (c)). The frequency of the peak in the spectrum 

becomes sharper and shifts from the stand-alone laser 

relaxation oscillation frequency to 7.3 GHz (Fig. 3(h)) due to 

the EOF [30]. 

With further increase of the feedback coupling factor to 

η4=4.0×10-3, the photon density exhibits quasi-periodic (QP) 

dynamics with δ=78.7% (Fig. 3(d)) as evidenced by the 

appearance of other peaks in the spectrum (Fig. 3(i)). 

When the feedback coupling factor increases to a higher 

value, i.e., η5=5.8×10-3, the peaks in the spectrum are 

broadened and the floor level increases (Fig. 3(j)) compared 

with the cases of S, PO and QP. These two phenomena indicate 

the occurrence of chaos (C) (Fig. 3(e)) [30]. In this case, 

δ=216.5%. 

Based on the results in Fig. 3, it can be seen that the SNL 

follows a quasi-periodic route to chaos as the feedback strength 

increases thereby confirming the significance of the stability 

boundary in Fig. 2.  

After identifying ηc, it is natural to consider how ηc depends 

on the other two main system parameters, i.e., the injection 

current, Idc, and initial external cavity length, L0, and hence to 

explore the opportunities for achieving stable operations of the 

SNL over a wider operating range. To achieve this, the 

following two sets of simulations are performed. 

B. Relationship Between ηc and Idc 

The first set of simulations investigates the relationship 

between ηc and Idc for three different SNLs all with a fixed 

initial external cavity length L0=15 mm. In the simulation, we 

set the Idc within the range of Idc∈ [1.4 Ith, 4.1 Ith] with 25 

equally spaced points. For each point, we numerically generate 

a stability map and record the corresponding ηc. The 

relationships between ηc and Idc of three different SNLs are 

shown in Fig. 4 where circles, diamonds and squares 

respectively represent SNLs with β=0.05 and Purcell factors 

F=20, 40 and 60. Furthermore, the relationships between ηc and 

Idc can be described by (9) obtained by using curve fitting 

technique [31], where A1, A2, A3 and A4 are functions of F. The 

values of A1, A2, A3 and A4 are listed in Table II. The fitting 

results are plotted in Fig. 4, where green, yellow and red solid 

lines respectively represent for F=20, 40 and 60. 
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From Fig. 4, we can see that the results obtained from (9) match 

well the numerical results where ηc increases bi-exponentially 

with the decrease of injection current. Such a trend indicates 

that a low injection current is desired to achieve a 

feedback-phase-independent stable SNL that is able to resist 

high feedback strength. Clearly for lower injection currents the 

laser emission is lower and hence the reflected light intensity is 

lower, thus leading to a more stable SNL. However, a low 

injection current also leads to a low modulation bandwidth 

[32]. Therefore, there is a tradeoff between the stability and 

modulation bandwidth of SNL. Careful choice should be made 

of the injection current when a feedback-phase- independent 

stable SNL is sought.  

Further, in Fig. 4, it can be seen ηc increases with increase of 

Purcell factor and the increment of ηc decreases with the 

increase of injection current. The enhancement of Purcell factor 

can be achieved in an SNL by enhancing the Q factor [33]. This 

is possible with changes in the nanolaser design by using highly 

reflective mirrors which can be attained by the use of metal coat 

[34-40], or by adjusting claddings on top of the active region to 

eliminate mode coupling [41, 42]. 

 
TABLE II 

VALUES OF A1, A2, A3 AND A4 FOR DIFFERENT F 

F A1 A2 A3 A4 

20 0.010 -2700 0.0017 -4.36 

40 0.009 -1420 0.0026 -28.39 

60 0.082 -2338 0.0038 -84.18 

 

 
Fig. 4. The relationship between ηc and Idc of three different SNLs with β=0.05 
and Purcell factors are respectively F=20, 40 and 60. The initial external cavity 

length L0=15 mm. Circles, diamonds and squares are numerical results 

respectively when F=20, 40 and 60. Green, yellow and red solid lines are 
results respectively obtained from (9) for F=20, 40 and 60. 

 

C. Relationship between ηc and L0 

The second set of simulations investigates the relationship 

between ηc and L0 for three different SNLs all with a fixed 

injection current Idc=2.7 Ith. L0 is set within the range of L0∈ [0 

mm, 50 mm] also with 25 equally spaced points.  Note that such 

a range is much less than the coherence length calculated using 

the linewidth in [19], i.e., 66.5 cm. The simulation results are 

plotted in Fig. 5 where circles, diamonds and squares still 

respectively represent SNLs with β=0.05 and different Purcell 

factors F=20, 40 and 60. 

In Fig. 5, we also plot the relationship between ηc and L0 for 

the three SNLs using the following bi-exponential expression: 
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where B1, B2, B3 and B4 are functions of F. Table III lists the values of 

B1, B2, B3 and B4 for F=1, 20, 40 and 60. 

 
TABLE III 

VALUES OF B1, B2, B3, AND B4 FOR DIFFERENT F 

F B1 B2 B3 B4 

1 0.009 -251.0 0.0019 -10.850 

20 0.009 -265.2 0.0016 -0.243 

40 0.006 -161.9 0.0019 3.997 

60 0.006 -138.1 0.0021 6.087 

 

 
Fig. 5. The relationship between ηc and L0 of three different SNLs with  β=0.05 

and Purcell factors F=20, 40 and 60. The injection current Idc=2.7 Ith. Circles, 

diamonds and squares are numerical results for  F=20, 40 and 60. Green, yellow 

and red solid lines are results respectively obtained from (10) for F=20, 40 and 

60. Crosses are numerical results for a conventional laser where F=1 and 

β=1×10-5. The blue solid line is obtained from (10) for F=1. 

 

From Fig. 5, it can be seen that, with the decrease of initial 

external cavity length, ηc firstly decreases and then slightly 

increases both in a bi-exponential way as described by (10) for 

a relatively large F, e.g., F=40 and 60. For F=20, ηc increases 

bi-exponentially with the decrease of L0. This confirms that 

sources of reflection should be placed as close as possible to the 

SNL in order to ensure a stable SNL. Note that for a relatively 

short external cavity length (e.g., L0<4 mm), the SNLs are 

always feedback-phase-independent stable even under strong 

feedback. It is noteworthy that such behaviour is in line with 

that found in conventional lasers with L0=4.5 mm as reported in 

[26, 43]. In Fig. 5, we plot the relationship between ηc and L0 

for F=1 and β=1×10-5 which are typical values for conventional 

lasers. The crosses and blue solid line in Fig. 5 are respectively 

the numerical and curve fitting results for the conventional 

laser. In contrast, results in [13, 44, 45] showed that the 

feedback phase can destabilize the laser for short external 

cavities and certain feedback strengths. We point that in the 

present work and in [26, 43], effects of nonlinear gain have 

been taken into account whereas such effects were not 

considered in [13, 44, 45]. 

V. CONCLUSION 

In this paper, the stability of semiconductor nanolasers (SNLs) 

with external optical feedback (EOF) is investigated in order to 

achieve a feedback-phase-independent stable SNL. Based on 

the investigations, a critical feedback coupling fraction ηc is 

identified, below which the SNL operates stably independent of 

the feedback phase. Further, this critical ηc is found to decrease 

with increasing injection current and initial external cavity 

length, and to increase with increasing Purcell factor. The 

results presented in this paper provide practical guidelines for 

assessing the stability of SNLs within the densely integrated 

photonic circuits where the feedback phase is inevitable and 

difficult to control, which is important for designing 

phase-independent stable SNLs for various photonic integrated 

circuit (PIC) based applications such as optical 

communications and sensing.  
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